1
|
Osmond MJ, Dabertrand F, Quillinan N, Su EJ, Lawrence DA, Marr DW, Neeves KB. Harnessing micrometer-scale tPA beads for high plasmin generation and accelerated fibrinolysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.06.621942. [PMID: 39574757 PMCID: PMC11580863 DOI: 10.1101/2024.11.06.621942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Rapid restoration of blood flow is critical in treating acute ischemic stroke. Current fibrinolytic therapies using tissue plasminogen activator (tPA) are limited by low recanalization rates and risks of off-target bleeding. Here, we present a strategy using tPA immobilized on micrometer-scale beads to enhance local plasmin generation. We synthesized tPA-functionalized beads of varying sizes (0.1 μm and 1.0 μm) and evaluated their efficacy. In vitro assays demonstrated that 1.0 μm tPA-beads generated higher plasmin generation compared to free tPA and 0.1 μm beads, overcoming antiplasmin inhibition and promoting a self-propagating wave of fibrinolysis. In a murine model of acute ischemic stroke, intravenous administration of 1.0 μm tPA-beads at doses nearly two orders of magnitude lower than the standard free tPA dose led to rapid and near-complete thrombus removal within minutes. This approach addresses kinetic and transport limitations of current therapies and may reduce the risk of hemorrhagic complications.
Collapse
Affiliation(s)
- Matthew J. Osmond
- Department of Bioengineering, University of Colorado Denver | Anschutz Medical Campus
| | - Fabrice Dabertrand
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus
- Department of Pharmacology, University of Colorado Anschutz Medical Campus
| | - Nidia Quillinan
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus
| | - Enming J. Su
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan
| | - Daniel A. Lawrence
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan
| | - David W.M. Marr
- Department of Chemical and Biological Engineering, Colorado School of Mines
| | - Keith B. Neeves
- Department of Bioengineering, University of Colorado Denver | Anschutz Medical Campus
- Departmet of Pediatrics, Section of Hematology, Oncology, and Bone Marrow Transplant, University of Colorado Anschutz Medical Campus
- Hemophilia and Thrombosis Center, University of Colorado Anschutz Medical Campus
| |
Collapse
|
2
|
Rashedi S, Greason CM, Sadeghipour P, Talasaz AH, O'Donoghue ML, Jimenez D, Monreal M, Anderson CD, Elkind MSV, Kreuziger LMB, Lang IM, Goldhaber SZ, Konstantinides SV, Piazza G, Krumholz HM, Braunwald E, Bikdeli B. Fibrinolytic Agents in Thromboembolic Diseases: Historical Perspectives and Approved Indications. Semin Thromb Hemost 2024; 50:773-789. [PMID: 38428841 DOI: 10.1055/s-0044-1781451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Fibrinolytic agents catalyze the conversion of the inactive proenzyme plasminogen into the active protease plasmin, degrading fibrin within the thrombus and recanalizing occluded vessels. The history of these medications dates to the discovery of the first fibrinolytic compound, streptokinase, from bacterial cultures in 1933. Over time, researchers identified two other plasminogen activators in human samples, namely urokinase and tissue plasminogen activator (tPA). Subsequently, tPA was cloned using recombinant DNA methods to produce alteplase. Several additional derivatives of tPA, such as tenecteplase and reteplase, were developed to extend the plasma half-life of tPA. Over the past decades, fibrinolytic medications have been widely used to manage patients with venous and arterial thromboembolic events. Currently, alteplase is approved by the U.S. Food and Drug Administration (FDA) for use in patients with pulmonary embolism with hemodynamic compromise, ST-segment elevation myocardial infarction (STEMI), acute ischemic stroke, and central venous access device occlusion. Reteplase and tenecteplase have also received FDA approval for treating patients with STEMI. This review provides an overview of the historical background related to fibrinolytic agents and briefly summarizes their approved indications across various thromboembolic diseases.
Collapse
Affiliation(s)
- Sina Rashedi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Christie M Greason
- Thrombosis Research Group, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Parham Sadeghipour
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
- Clinical Trial Center, Rajaie Cardiovascular, Medical, and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Azita H Talasaz
- Department of Pharmacotherapy and Outcomes Sciences, Virginia Commonwealth University, Richmond, Virginia
- Department of Pharmacy Practice, Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, New York, New York
- Department of Pharmacy, New York-Presbyterian Hospital Columbia University Medical Center, New York, New York
| | - Michelle L O'Donoghue
- Division of Cardiovascular Medicine, TIMI Study Group, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - David Jimenez
- Respiratory Department, Hospital Ramón y Cajal (IRYCIS), Madrid, Spain
- Medicine Department, Universidad de Alcalá (IRYCIS), Madrid, Spain
- CIBER Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Manuel Monreal
- Department of Internal Medicine, Hospital Germans Trias i Pujol, Badalona, Spain
- Universidad Catolica de Murcia, Murcia, Spain
| | - Christopher D Anderson
- Program in Medical and Population Genetics, Broad Institute of Harvard and the Massachusetts Institute of Technology, Boston, Massachusetts
- McCance Center for Brain Health, Massachusetts General Hospital, Boston, Massachusetts
- Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Mitchell S V Elkind
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York
| | - Lisa M Baumann Kreuziger
- Medical College of Wisconsin, Milwaukee, Wisconsin
- Blood Research Institute, Versiti, Milwaukee, Wisconsin
| | - Irene M Lang
- Department of Internal Medicine II, Cardiology and Center of Cardiovascular Medicine, Medical University of Vienna, Vienna, Austria
| | - Samuel Z Goldhaber
- Thrombosis Research Group, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Cardiovascular Medicine Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Stavros V Konstantinides
- Center for Thrombosis and Haemostasis, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- Department of Cardiology, Democritus University of Thrace, Alexandroupolis, Greece
| | - Gregory Piazza
- Thrombosis Research Group, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Cardiovascular Medicine Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Harlan M Krumholz
- YNHH/Yale Center for Outcomes Research and Evaluation (CORE), New Haven, Connecticut
- Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, Connecticut
- Department of Health Policy and Management, Yale School of Public Health, New Haven, Connecticut
| | - Eugene Braunwald
- Division of Cardiovascular Medicine, TIMI Study Group, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Cardiovascular Medicine Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Behnood Bikdeli
- Thrombosis Research Group, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Cardiovascular Medicine Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- YNHH/Yale Center for Outcomes Research and Evaluation (CORE), New Haven, Connecticut
| |
Collapse
|
3
|
Marta-Enguita J, Navarro-Oviedo M, Machado FJDM, Bermejo R, Aymerich N, Herrera M, Zandio B, Pagola J, Juega J, Marta-Moreno J, Rodriguez JA, Páramo JA, Roncal C, Muñoz R, Orbe J. Role of factor XIII in ischemic stroke: a key molecule promoting thrombus stabilization and resistance to lysis. J Thromb Haemost 2024; 22:1080-1093. [PMID: 38160727 DOI: 10.1016/j.jtha.2023.12.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Active coagulation factor XIII (FXIII) catalyzing crosslinking of fibrin and other hemostatic factors plays a key role in clot stability and lysis. OBJECTIVES To evaluate the effect of FXIII inhibition in a mouse model of ischemic stroke (IS) and the role of activated FXIII (FXIIIa) in clot formation and lysis in patients with IS. METHODS A ferric chloride IS murine model was performed before and after administration of a FXIIIa inhibitor (FXIIIinh). Thromboelastometry in human and mice blood was used to evaluate thrombus stiffness and lysis with FXIIIinh. FXIIIa-dependent fibrin crosslinking and lysis with fibrinolytic drugs (tissue plasminogen activator and tenecteplase) were studied on fibrin plates and on thrombi and clotted plasma of patients with IS. Finally, circulating and thrombus FXIIIa were measured in 85 patients with IS. RESULTS FXIIIinh administration before stroke induction reduced infarct size, α2-antiplasmin (α2AP) crosslinking, and local microthrombosis, improving motor coordination and fibrinolysis without intracranial bleeds (24 hours). Interestingly, FXIII blockade after stroke also reduced brain damage and neurologic deficit. Thromboelastometry in human/mice blood with FXIIIinh showed delayed clot formation, reduced clot firmness, and shortened tissue plasminogen activator lysis time. FXIIIa fibrin crosslinking increased fibrin density and lysis resistance, which increased further after α2AP addition. FXIIIinh enhanced ex vivo lysis in stroke thrombi and fibrin plates. In patients with IS, thrombus FXIII and α2AP were associated with inflammatory and hemostatic components, and plasma FXIIIa correlated with thrombus α2AP and fibrin. CONCLUSION Our results suggest a key role of FXIIIa in thrombus stabilization, α2AP crosslinking, and lysis resistance, with a protective effect of FXIIIinh in an IS experimental model.
Collapse
Affiliation(s)
- Juan Marta-Enguita
- Atherothrombosis Laboratory, Cardiovascular Diseases Program, Centro de Investigacion Medica Aplicada (CIMA), Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona Spain; Neurology Department, Hospital Universitario Navarra, Pamplona, Spain; Red de Investigación Cooperativa Orientada a Resultados en Salud (RICORS)-Ictus Instituto de Salud Carlos III (ISCIII), Madrid, Spain. https://twitter.com/jmartaen
| | - Manuel Navarro-Oviedo
- Atherothrombosis Laboratory, Cardiovascular Diseases Program, Centro de Investigacion Medica Aplicada (CIMA), Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona Spain
| | - Florencio J D M Machado
- Atherothrombosis Laboratory, Cardiovascular Diseases Program, Centro de Investigacion Medica Aplicada (CIMA), Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona Spain
| | - Rebeca Bermejo
- Neurointervencionist Radiology, Hospital Universitario Navarra, Pamplona, Spain
| | - Nuria Aymerich
- Neurology Department, Hospital Universitario Navarra, Pamplona, Spain; Red de Investigación Cooperativa Orientada a Resultados en Salud (RICORS)-Ictus Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Maria Herrera
- Neurology Department, Hospital Universitario Navarra, Pamplona, Spain; Red de Investigación Cooperativa Orientada a Resultados en Salud (RICORS)-Ictus Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Beatriz Zandio
- Neurology Department, Hospital Universitario Navarra, Pamplona, Spain; Red de Investigación Cooperativa Orientada a Resultados en Salud (RICORS)-Ictus Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Jorge Pagola
- Red de Investigación Cooperativa Orientada a Resultados en Salud (RICORS)-Ictus Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Stroke Unit, Vall d'Hebron Instituto de Investigación (VHIR), Hospital Universitario Vall d'Hebron, Barcelona, Spain
| | - Jesús Juega
- Red de Investigación Cooperativa Orientada a Resultados en Salud (RICORS)-Ictus Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Stroke Unit, Vall d'Hebron Instituto de Investigación (VHIR), Hospital Universitario Vall d'Hebron, Barcelona, Spain
| | - Javier Marta-Moreno
- Red de Investigación Cooperativa Orientada a Resultados en Salud (RICORS)-Ictus Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Neurology Department, Hospital Universitario Miguel Servet, IIS-Aragon, Zaragoza, Spain
| | - Jose-Antonio Rodriguez
- Atherothrombosis Laboratory, Cardiovascular Diseases Program, Centro de Investigacion Medica Aplicada (CIMA), Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), ISCIII, Madrid, Spain
| | - Jose-Antonio Páramo
- Atherothrombosis Laboratory, Cardiovascular Diseases Program, Centro de Investigacion Medica Aplicada (CIMA), Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), ISCIII, Madrid, Spain; Hematology Department, Clinica Universidad Navarra, Pamplona, Spain
| | - Carmen Roncal
- Atherothrombosis Laboratory, Cardiovascular Diseases Program, Centro de Investigacion Medica Aplicada (CIMA), Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), ISCIII, Madrid, Spain
| | - Roberto Muñoz
- Neurology Department, Hospital Universitario Navarra, Pamplona, Spain; Red de Investigación Cooperativa Orientada a Resultados en Salud (RICORS)-Ictus Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Josune Orbe
- Atherothrombosis Laboratory, Cardiovascular Diseases Program, Centro de Investigacion Medica Aplicada (CIMA), Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona Spain; Red de Investigación Cooperativa Orientada a Resultados en Salud (RICORS)-Ictus Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| |
Collapse
|
4
|
Mutch NJ, Medcalf RL. The fibrinolysis renaissance. J Thromb Haemost 2023; 21:3304-3316. [PMID: 38000850 DOI: 10.1016/j.jtha.2023.09.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/13/2023] [Accepted: 09/13/2023] [Indexed: 11/26/2023]
Abstract
Fibrinolysis is the system primarily responsible for removal of fibrin deposits and blood clots in the vasculature. The terminal enzyme in the pathway, plasmin, is formed from its circulating precursor, plasminogen. Fibrin is by far the most legendary substrate, but plasmin is notoriously prolific and is known to cleave many other proteins and participate in the activation of other proteolytic systems. Fibrinolysis is often overshadowed by the coagulation system and viewed as a simplistic poorer relation. However, the primordial plasminogen activators evolved alongside the complement system, approximately 70 million years before coagulation saw the light of day. It is highly likely that the plasminogen activation system evolved with its roots in primordial immunity. Almost all immune cells harbor at least one of a dozen plasminogen receptors that allow plasmin formation on the cell surface that in turn modulates immune cell behavior. Similarly, numerous pathogens express their own plasminogen activators or contain surface proteins that provide binding sites for host plasminogen. The fibrinolytic system has been harnessed for clinical medicine for many decades with the development of thrombolytic drugs and antifibrinolytic agents. Our refined understanding and appreciation of the fibrinolytic system and its alliance with infection and immunity and beyond are paving the way for new developments and interest in novel therapeutics and applications. One must ponder as to whether the nomenclature of the system hampered our understanding, by focusing on fibrin, rather than the complex myriad of interactions and substrates of the plasminogen activation system.
Collapse
Affiliation(s)
- Nicola J Mutch
- Aberdeen Cardiovascular & Diabetes Centre, Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, UK.
| | - Robert L Medcalf
- Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
5
|
Lam T, Medcalf RL, Cloud GC, Myles PS, Keragala CB. Tranexamic acid for haemostasis and beyond: does dose matter? Thromb J 2023; 21:94. [PMID: 37700271 PMCID: PMC10496216 DOI: 10.1186/s12959-023-00540-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/04/2023] [Indexed: 09/14/2023] Open
Abstract
Tranexamic acid (TXA) is a widely used antifibrinolytic agent that has been used since the 1960's to reduce blood loss in various conditions. TXA is a lysine analogue that competes for the lysine binding sites in plasminogen and tissue-type plasminogen activator impairing its interaction with the exposed lysine residues on the fibrin surface. The presence of TXA therefore, impairs the plasminogen and tPA engagement and subsequent plasmin generation on the fibrin surface, protecting fibrin clot from proteolytic degradation. However, critical lysine binding sites for plasmin(ogen) also exist on other proteins and on various cell-surface receptors allowing plasmin to exert potent effects on other targets that are unrelated to classical fibrinolysis, notably in relation to immunity and inflammation. Indeed, TXA was reported to significantly reduce post-surgical infection rates in patients after cardiac surgery unrelated to its haemostatic effects. This has provided an impetus to consider TXA in other indications beyond inhibition of fibrinolysis. While there is extensive literature on the optimal dosage of TXA to reduce bleeding rates and transfusion needs, it remains to be determined if these dosages also apply to blocking the non-canonical effects of plasmin.
Collapse
Affiliation(s)
- Tammy Lam
- Australian Centre for Blood Diseases, Monash AMREP Building, Monash University, Level 1 Walkway, Via The Alfred Centre, 99 Commercial Rd, Melbourne, 3004, Australia
| | - Robert L Medcalf
- Australian Centre for Blood Diseases, Monash AMREP Building, Monash University, Level 1 Walkway, Via The Alfred Centre, 99 Commercial Rd, Melbourne, 3004, Australia
| | - Geoffrey C Cloud
- Department of Clinical Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Paul S Myles
- Department of Anaesthesiology and Perioperative Medicine, Alfred Hospital, Melbourne VIC, Australia
- Department of Anaesthesiology and Perioperative Medicine, Monash University, Melbourne VIC, Australia
| | - Charithani B Keragala
- Australian Centre for Blood Diseases, Monash AMREP Building, Monash University, Level 1 Walkway, Via The Alfred Centre, 99 Commercial Rd, Melbourne, 3004, Australia.
| |
Collapse
|
6
|
Jaime Garcia D, Chagnot A, Wardlaw JM, Montagne A. A Scoping Review on Biomarkers of Endothelial Dysfunction in Small Vessel Disease: Molecular Insights from Human Studies. Int J Mol Sci 2023; 24:13114. [PMID: 37685924 PMCID: PMC10488088 DOI: 10.3390/ijms241713114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/19/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Small vessel disease (SVD) is a highly prevalent disorder of the brain's microvessels and a common cause of dementia as well as ischaemic and haemorrhagic strokes. Though much about the underlying pathophysiology of SVD remains poorly understood, a wealth of recently published evidence strongly suggests a key role of microvessel endothelial dysfunction and a compromised blood-brain barrier (BBB) in the development and progression of the disease. Understanding the causes and downstream consequences associated with endothelial dysfunction in this pathological context could aid in the development of effective diagnostic and prognostic tools and provide promising avenues for potential therapeutic interventions. In this scoping review, we aim to summarise the findings from clinical studies examining the role of the molecular mechanisms underlying endothelial dysfunction in SVD, focussing on biochemical markers of endothelial dysfunction detectable in biofluids, including cell adhesion molecules, BBB transporters, cytokines/chemokines, inflammatory markers, coagulation factors, growth factors, and markers involved in the nitric oxide cascade.
Collapse
Affiliation(s)
- Daniela Jaime Garcia
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK; (D.J.G.); (J.M.W.)
- UK Dementia Research Institute, University of Edinburgh, Edinburgh EH16 4SB, UK;
| | - Audrey Chagnot
- UK Dementia Research Institute, University of Edinburgh, Edinburgh EH16 4SB, UK;
| | - Joanna M. Wardlaw
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK; (D.J.G.); (J.M.W.)
- UK Dementia Research Institute, University of Edinburgh, Edinburgh EH16 4SB, UK;
| | - Axel Montagne
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK; (D.J.G.); (J.M.W.)
- UK Dementia Research Institute, University of Edinburgh, Edinburgh EH16 4SB, UK;
| |
Collapse
|
7
|
Liu Z, McCutcheon FM, Ho H, Chia J, Xiao Y, Tippett I, Keragala CB, Cloud GC, Medcalf RL. Tranexamic acid in a mouse model of cerebral amyloid angiopathy: setting the stage for a novel stroke treatment approach. Res Pract Thromb Haemost 2023; 7:102166. [PMID: 37694270 PMCID: PMC10483050 DOI: 10.1016/j.rpth.2023.102166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/22/2023] [Accepted: 07/04/2023] [Indexed: 09/12/2023] Open
Abstract
Background Symptomatic intracerebral hemorrhage (sICH) commonly occurs in patients with cerebral amyloid angiopathy (CAA). Amyloid also initiates plasminogen activation and might promote sICH. Objectives As amyloid-driven plasmin formation can be blocked by tranexamic acid (TXA), we aimed to evaluate the biodistribution and long-term consequences of TXA on brain amyloid-beta (Aβ) levels, inflammation, and neurologic function in APP/PS1 mice. Methods APP/PS1 mice overexpressing the mutant human amyloid precursor protein and wild-type littermates were randomized to TXA (20 mg/mL) or placebo in the drinking water for 6 months. TXA in plasma and various organs was determined by liquid chromatography-mass spectrometry. Plasmin activity assays were performed to evaluate changes in fibrinolytic activity. Neurologic function was evaluated by Y-maze and parallel rod floor testing. Proximity ligation-based immunoassays were used to quantitate changes of 92 biomarkers of inflammation. Brain Aβ levels were assessed by immunohistochemistry. Results Long-term oral TXA administration inhibited fibrinolysis. TXA accumulated in the kidney (19.4 ± 11.2 μg/g) with 2- to 5-fold lower levels seen in the lung, spleen, and liver. TXA levels were lowest in the brain (0.28 ± 0.01 μg/g). Over 6 months, TXA had no discernible effect on motor coordination, novelty preference, or brain Aβ levels. TXA reduced plasma levels of epithelial cell adhesion molecule and increased CCL20. Conclusion Long-term TXA treatment does not alter brain Aβ levels or impact neurologic behavior in mice predisposed to amyloid deposition and had minor effects on the levels of inflammatory mediators. This finding supports the safety of TXA and lays the foundation for TXA as a novel treatment to reduce sICH in patients with CAA.
Collapse
Affiliation(s)
- Zikou Liu
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia
| | - Fiona M. McCutcheon
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia
| | - Heidi Ho
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia
| | - Joanne Chia
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia
| | - Yunxin Xiao
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia
| | - Isabel Tippett
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia
| | | | - Geoffrey C. Cloud
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Robert L. Medcalf
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
8
|
Platelet-targeted thrombolysis for treatment of acute ischemic stroke. Blood Adv 2022; 7:561-574. [PMID: 35482909 PMCID: PMC9984306 DOI: 10.1182/bloodadvances.2021006691] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/28/2022] [Accepted: 04/09/2022] [Indexed: 11/20/2022] Open
Abstract
Thrombolysis with tissue-type plasminogen activator (tPA) remains the main treatment for acute ischemic stroke. Nevertheless, tPA intervention is limited by a short therapeutic window, low recanalization rates, and a risk of intracranial hemorrhage (ICH), highlighting the clinical demand for improved thrombolytic drugs. We examined a novel thrombolytic agent termed "SCE5-scuPA," comprising a single-chain urokinase plasminogen activator (scuPA) fused with a single-chain antibody (SCE5) that targets the activated glycoprotein IIb/IIIa platelet receptor, for its effects in experimental stroke. SCE5-scuPA was first tested in a whole blood clot degradation assay to show the benefit of platelet-targeted thrombolysis. The tail bleeding time, blood clearance, and biodistribution were then determined to inform the use of SCE5-scuPA in mouse models of photothrombotic stroke and middle cerebral artery occlusion against tenecteplase. The impacts of SCE5-scuPA on motor function, ICH, blood-brain barrier (BBB) integrity, and immunosuppression were evaluated. Infarct size was measured by computed tomography imaging and magnetic resonance imaging. SCE5-scuPA enhanced clot degradation ex vivo compared with its nonplatelet-targeting control. The maximal SCE5-scuPA dose that maintained hemostasis and a rapid blood clearance was determined. SCE5-scuPA administration both before and 2 hours after photothrombotic stroke reduced the infarct volume. SCE5-scuPA also improved neurologic deficit, decreased intracerebral blood deposits, preserved the BBB, and alleviated immunosuppression poststroke. In middle cerebral artery occlusion, SCE5-scuPA did not worsen stroke outcomes or cause ICH, and it protected the BBB. Our findings support the ongoing development of platelet-targeted thrombolysis with SCE5-scuPA as a novel emergency treatment for acute ischemic stroke with a promising safety profile.
Collapse
|
9
|
Morrow GB, Mutch NJ. Removing plasmin from the equation - Something to chew on…. J Thromb Haemost 2022; 20:280-284. [PMID: 34816576 DOI: 10.1111/jth.15590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 11/29/2022]
Affiliation(s)
- Gael B Morrow
- Aberdeen Cardiovascular & Diabetes Centre, Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Nicola J Mutch
- Aberdeen Cardiovascular & Diabetes Centre, Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
10
|
Ye Y, Li Q, Pan CS, Yan L, Sun K, Wang XY, Yao SQ, Fan JY, Han JY. QiShenYiQi Inhibits Tissue Plasminogen Activator-Induced Brain Edema and Hemorrhage after Ischemic Stroke in Mice. Front Pharmacol 2022; 12:759027. [PMID: 35095486 PMCID: PMC8790519 DOI: 10.3389/fphar.2021.759027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/22/2021] [Indexed: 12/30/2022] Open
Abstract
Background: Thrombolysis with tissue plasminogen activator (tPA) remains the only approved drug therapy for acute ischemic stroke. However, delayed tPA treatment is associated with an increased risk of brain hemorrhage. In this study, we assessed whether QiShenYiQi (QSYQ), a compound Chinese medicine, can attenuate tPA-induced brain edema and hemorrhage in an experimental stroke model. Methods: Male mice were subjected to ferric chloride-induced carotid artery thrombosis followed by mechanical detachment of thrombi. Then mice were treated with QSYQ at 2.5 h followed by administration of tPA (10 mg/kg) at 4.5 h. Hemorrhage, infarct size, neurological score, cerebral blood flow, Evans blue extravasation, FITC-labeled albumin leakage, tight and adherens junction proteins expression, basement membrane proteins expression, matrix metalloproteinases (MMPs) expression, leukocyte adhesion, and leukocyte infiltration were assessed 24 h after tPA administration. Results: Compared with tPA alone treatments, the combination therapy of QSYQ and tPA significantly reduced hemorrhage, infarction, brain edema, Evans blue extravasation, albumin leakage, leukocyte adhesion, MMP-9 expression, and leukocyte infiltration at 28.5 h after stroke. The combination also significantly improved the survival rate, cerebral blood flow, tight and adherens junction proteins (occludin, claudin-5, junctional adhesion molecule-1, zonula occludens-1, VE-cadherin, α-catenin, β-catenin) expression, and basement membrane proteins (collagen IV, laminin) expression. Addition of QSYQ protected the downregulated ATP 5D and upregulated p-Src and Caveolin-1 after tPA treatment. Conclusion: Our results show that QSYQ inhibits tPA-induced brain edema and hemorrhage by protecting the blood-brain barrier integrity, which was partly attributable to restoration of energy metabolism, protection of inflammation and Src/Caveolin signaling activation. The present study supports QSYQ as an effective adjunctive therapy to increase the safety of delayed tPA thrombolysis for ischemic stroke.
Collapse
Affiliation(s)
- Yang Ye
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China.,Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Academy of Integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China
| | - Quan Li
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Academy of Integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China
| | - Chun-Shui Pan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Academy of Integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China
| | - Li Yan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Academy of Integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China
| | - Kai Sun
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Academy of Integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China
| | - Xiao-Yi Wang
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China.,Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Academy of Integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China
| | - Shu-Qi Yao
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China.,Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Academy of Integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China
| | - Jing-Yu Fan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Academy of Integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China
| | - Jing-Yan Han
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China.,Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Academy of Integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China
| |
Collapse
|
11
|
Shavit-Stein E, Berkowitz S, Gofrit SG, Altman K, Weinberg N, Maggio N. Neurocoagulation from a Mechanistic Point of View in the Central Nervous System. Semin Thromb Hemost 2022; 48:277-287. [PMID: 35052009 DOI: 10.1055/s-0041-1741569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Coagulation mechanisms are critical for maintaining homeostasis in the central nervous system (CNS). Thrombin, an important player of the coagulation cascade, activates protease activator receptors (PARs), members of the G-protein coupled receptor family. PAR1 is located on neurons and glia. Following thrombin activation, PAR1 signals through the extracellular signal-regulated kinase pathway, causing alterations in neuronal glutamate release and astrocytic morphological changes. Similarly, the anticoagulation factor activated protein C (aPC) can cleave PAR1, following interaction with the endothelial protein C receptor. Both thrombin and aPC are expressed on endothelial cells and pericytes in the blood-brain barrier (BBB). Thrombin-induced PAR1 activation increases cytosolic Ca2+ concentration in brain vessels, resulting in nitric oxide release and increasing F-actin stress fibers, damaging BBB integrity. aPC also induces PAR1 activation and preserves BBB vascular integrity via coupling to sphingosine 1 phosphate receptors. Thrombin-induced PAR1 overactivation and BBB disruption are evident in CNS pathologies. During epileptic seizures, BBB disruption promotes thrombin penetration. Thrombin induces PAR1 activation and potentiates N-methyl-D-aspartate receptors, inducing glutamate-mediated hyperexcitability. Specific PAR1 inhibition decreases status epilepticus severity in vivo. In stroke, the elevation of brain thrombin levels further compromises BBB integrity, with direct parenchymal damage, while systemic factor Xa inhibition improves neurological outcomes. In multiple sclerosis (MS), brain thrombin inhibitory capacity correlates with clinical presentation. Both thrombin inhibition by hirudin and the use of recombinant aPC improve disease severity in an MS animal model. This review presents the mechanisms underlying the effects of coagulation on the physiology and pathophysiology of the CNS.
Collapse
Affiliation(s)
- Efrat Shavit-Stein
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel.,Department of Neurology and Neurosurgery, Sackler School of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Shani Berkowitz
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel.,Department of Neurology and Neurosurgery, Sackler School of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Shany Guly Gofrit
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Keren Altman
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Nitai Weinberg
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Nicola Maggio
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel.,Department of Neurology and Neurosurgery, Sackler School of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.,Talpiot Medical Leadership Program, The Chaim Sheba Medical Center, Ramat Gan, Israel
| |
Collapse
|
12
|
Heurich M, Föcking M, Mongan D, Cagney G, Cotter DR. Dysregulation of complement and coagulation pathways: emerging mechanisms in the development of psychosis. Mol Psychiatry 2022; 27:127-140. [PMID: 34226666 PMCID: PMC8256396 DOI: 10.1038/s41380-021-01197-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 06/04/2021] [Accepted: 06/10/2021] [Indexed: 02/06/2023]
Abstract
Early identification and treatment significantly improve clinical outcomes of psychotic disorders. Recent studies identified protein components of the complement and coagulation systems as key pathways implicated in psychosis. These specific protein alterations are integral to the inflammatory response and can begin years before the onset of clinical symptoms of psychotic disorder. Critically, they have recently been shown to predict the transition from clinical high risk to first-episode psychosis, enabling stratification of individuals who are most likely to transition to psychotic disorder from those who are not. This reinforces the concept that the psychosis spectrum is likely a central nervous system manifestation of systemic changes and highlights the need to investigate plasma proteins as diagnostic or prognostic biomarkers and pathophysiological mediators. In this review, we integrate evidence of alterations in proteins belonging to the complement and coagulation protein systems, including the coagulation, anticoagulation, and fibrinolytic pathways and their dysregulation in psychosis, into a consolidated mechanism that could be integral to the progression and manifestation of psychosis. We consolidate the findings of altered blood proteins relevant for progression to psychotic disorders, using data from longitudinal studies of the general population in addition to clinical high-risk (CHR) individuals transitioning to psychotic disorder. These are compared to markers identified from first-episode psychosis and schizophrenia as well as other psychosis spectrum disorders. We propose the novel hypothesis that altered complement and coagulation plasma levels enhance their pathways' activating capacities, while low levels observed in key regulatory components contribute to excessive activation observed in patients. This hypothesis will require future testing through a range of experimental paradigms, and if upheld, complement and coagulation pathways or specific proteins could be useful diagnostic or prognostic tools and targets for early intervention and preventive strategies.
Collapse
Affiliation(s)
- Meike Heurich
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK.
| | - Melanie Föcking
- grid.4912.e0000 0004 0488 7120Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - David Mongan
- grid.4912.e0000 0004 0488 7120Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Gerard Cagney
- grid.7886.10000 0001 0768 2743School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin, Ireland
| | - David R. Cotter
- grid.4912.e0000 0004 0488 7120Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
13
|
Bagoly Z, Behme D, Kaesmacher J, Martinez De Lizarrondo S. Editorial: Hemostasis and Stroke. Front Neurol 2021; 12:737556. [PMID: 34456855 PMCID: PMC8385136 DOI: 10.3389/fneur.2021.737556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 07/15/2021] [Indexed: 11/22/2022] Open
Affiliation(s)
- Zsuzsa Bagoly
- Division of Clinical Laboratory Sciences, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen and Eötvös Loránd Research Network-University of Debrecen Cerebrovascular and Neurodegenerative Research Group, Debrecen, Hungary
| | - Daniel Behme
- Faculty of Medicine, Otto von Guericke University Magdeburg, Madgeburg, Germany
| | - Johannes Kaesmacher
- University Institute of Diagnostic and Interventional Neuroradiology and University Institute of Diagnostic, Pediatric and Interventional Radiology, University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland
| | - Sara Martinez De Lizarrondo
- INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders, GIP Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), Bd H. Becquerel, BP 5229, Caen, France
| |
Collapse
|
14
|
Mutimer CA, Keragala CB, Markus HS, Werring DJ, Cloud GC, Medcalf RL. Cerebral Amyloid Angiopathy and the Fibrinolytic System: Is Plasmin a Therapeutic Target? Stroke 2021; 52:2707-2714. [PMID: 34126761 DOI: 10.1161/strokeaha.120.033107] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cerebral amyloid angiopathy is a devastating cause of intracerebral hemorrhage for which there is no specific secondary stroke prevention treatment. Here we review the current literature regarding cerebral amyloid angiopathy pathophysiology and treatment, as well as what is known of the fibrinolytic pathway and its interaction with amyloid. We postulate that tranexamic acid is a potential secondary stroke prevention treatment agent in sporadic cerebral amyloid angiopathy, although further research is required.
Collapse
Affiliation(s)
- Chloe A Mutimer
- Department of Neurology, Alfred Hospital, Melbourne, Australia (C.A.M., G.C.C.)
| | - Charithani B Keragala
- Australian Centre for Blood Diseases (C.B.K., R.L.M.), Monash University, Melbourne, Australia
| | - Hugh S Markus
- Stroke Research Group, Department of Clinical Neuroscience, University of Cambridge, United Kingdom (H.S.M.)
| | - David J Werring
- Stroke Research Centre, Queen Square Institute of Neurology, London, United Kingdom (D.J.W.)
| | - Geoffrey C Cloud
- Department of Neurology, Alfred Hospital, Melbourne, Australia (C.A.M., G.C.C.).,Department of Clinical Neuroscience, Central Clinical School (G.C.C.), Monash University, Melbourne, Australia
| | - Robert L Medcalf
- Australian Centre for Blood Diseases (C.B.K., R.L.M.), Monash University, Melbourne, Australia
| |
Collapse
|
15
|
Abstract
Plasminogen is an abundant plasma protein that exists in various zymogenic forms. Plasmin, the proteolytically active form of plasminogen, is known for its essential role in fibrinolysis. To date, therapeutic targeting of the fibrinolytic system has been for 2 purposes: to promote plasmin generation for thromboembolic conditions or to stop plasmin to reduce bleeding. However, plasmin and plasminogen serve other important functions, some of which are unrelated to fibrin removal. Indeed, for >40 years, the antifibrinolytic agent tranexamic acid has been administered for its serendipitously discovered skin-whitening properties. Plasmin also plays an important role in the removal of misfolded/aggregated proteins and can trigger other enzymatic cascades, including complement. In addition, plasminogen, via binding to one of its dozen cell surface receptors, can modulate cell behavior and further influence immune and inflammatory processes. Plasminogen administration itself has been reported to improve thrombolysis and to accelerate wound repair. Although many of these more recent findings have been derived from in vitro or animal studies, the use of antifibrinolytic agents to reduce bleeding in humans has revealed additional clinically relevant consequences, particularly in relation to reducing infection risk that is independent of its hemostatic effects. The finding that many viruses harness the host plasminogen to aid infectivity has suggested that antifibrinolytic agents may have antiviral benefits. Here, we review the broadening role of the plasminogen-activating system in physiology and pathophysiology and how manipulation of this system may be harnessed for benefits unrelated to its conventional application in thrombosis and hemostasis.
Collapse
|
16
|
Anderson TN, Farrell DH, Rowell SE. Fibrinolysis in Traumatic Brain Injury: Diagnosis, Management, and Clinical Considerations. Semin Thromb Hemost 2021; 47:527-537. [PMID: 33878779 DOI: 10.1055/s-0041-1722970] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Posttraumatic coagulopathy involves disruption of both the coagulation and fibrinolytic pathways secondary to tissue damage, hypotension, and inflammatory upregulation. This phenomenon contributes to delayed complications after traumatic brain injury (TBI), including intracranial hemorrhage progression and systemic disseminated intravascular coagulopathy. Development of an early hyperfibrinolytic state may result in uncontrolled bleeding and is associated with increased mortality in patients with TBI. Although fibrinolytic assays are not routinely performed in the assessment of posttraumatic coagulopathy, circulating biomarkers such as D-dimer and fibrin degradation products have demonstrated potential utility in outcome prediction. Unfortunately, the relatively delayed nature of these tests limits their clinical utility. In contrast, viscoelastic tests are able to provide a rapid global assessment of coagulopathy, although their ability to reliably identify disruptions in the fibrinolytic cascade remains unclear. Limited evidence supports the use of hypertonic saline, cryoprecipitate, and plasma to correct fibrinolytic disruption; however, some studies suggest more harm than benefit. Recently, early use of tranexamic acid in patients with TBI and confirmed hyperfibrinolysis has been proposed as a strategy to further improve clinical outcomes. Moving forward, further delineation of TBI phenotypes and the clinical implications of fibrinolysis based on phenotypic variation is needed. In this review, we summarize the clinical aspects of fibrinolysis in TBI, including diagnosis, treatment, and clinical correlates, with identification of targeted areas for future research efforts.
Collapse
Affiliation(s)
- Taylor N Anderson
- School of Medicine, Division of Trauma, Critical Care and Acute Care Surgery, Oregon Health and Science University, Portland, Oregon
| | - David H Farrell
- School of Medicine, Division of Trauma, Critical Care and Acute Care Surgery, Oregon Health and Science University, Portland, Oregon
| | - Susan E Rowell
- Department of Surgery, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
17
|
Molecular Dambusters: What Is Behind Hyperpermeability in Bradykinin-Mediated Angioedema? Clin Rev Allergy Immunol 2021; 60:318-347. [PMID: 33725263 PMCID: PMC7962090 DOI: 10.1007/s12016-021-08851-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2021] [Indexed: 02/08/2023]
Abstract
In the last few decades, a substantial body of evidence underlined the pivotal role of bradykinin in certain types of angioedema. The formation and breakdown of bradykinin has been studied thoroughly; however, numerous questions remained open regarding the triggering, course, and termination of angioedema attacks. Recently, it became clear that vascular endothelial cells have an integrative role in the regulation of vessel permeability. Apart from bradykinin, a great number of factors of different origin, structure, and mechanism of action are capable of modifying the integrity of vascular endothelium, and thus, may participate in the regulation of angioedema formation. Our aim in this review is to describe the most important permeability factors and the molecular mechanisms how they act on endothelial cells. Based on endothelial cell function, we also attempt to explain some of the challenging findings regarding bradykinin-mediated angioedema, where the function of bradykinin itself cannot account for the pathophysiology. By deciphering the complex scenario of vascular permeability regulation and edema formation, we may gain better scientific tools to be able to predict and treat not only bradykinin-mediated but other types of angioedema as well.
Collapse
|
18
|
Matrix Metalloproteinase-9 Expression is Enhanced by Ischemia and Tissue Plasminogen Activator and Induces Hemorrhage, Disability and Mortality in Experimental Stroke. Neuroscience 2021; 460:120-129. [PMID: 33465414 DOI: 10.1016/j.neuroscience.2021.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 12/29/2022]
Abstract
Matrix metalloproteinase-9 (MMP-9) degrades collagen and other cellular matrix proteins. After acute ischemic stroke, increased MMP-9 levels are correlated with hemorrhage, lack of reperfusion and stroke severity. Nevertheless, definitive data that MMP-9 itself causes poor outcomes in ischemic stroke are limited. In a model of experimental ischemic stroke with reperfusion, we examined whether ischemia and recombinant tissue plasminogen activator (r-tPA) therapy affected MMP-9 expression, and we used specific inhibitors to test if MMP-9 affects brain injury and recovery. After stroke, MMP-9 expression increased significantly in the ischemic vs. non-ischemic hemisphere of the brain (p < 0.001). MMP-9 expression in the ischemic, but not the non-ischemic hemisphere, was further increased by r-tPA treatment (p < 0.001). To determine whether MMP-9 expression contributed to stroke outcomes after r-tPA treatment, we tested three different antibody MMP-9 inhibitors. When compared to treatment with r-tPA and saline, treatment with r-tPA and MMP-9 antibody inhibitors significantly reduced brain hemorrhage by 11.3 to 38.6-fold (p < 0.01), brain swelling by 2.8 to 4.3-fold (p < 0.001) and brain infarction by 2.5 to 3.9-fold (p < 0.0001). Similarly, when compared to treatment with r-tPA and saline, treatment with r-tPA and an MMP-9 antibody inhibitor significantly improved neurobehavioral outcomes (p < 0.001), decreased weight loss (p < 0.001) and prolonged survival (p < 0.01). In summary, both prolonged ischemia and r-tPA selectively enhanced MMP-9 expression in the ischemic hemisphere. When administered with r-tPA, specific MMP-9 inhibitors markedly reduced brain hemorrhage, swelling, infarction, disability and death, which suggests that blocking the deleterious effects of MMP-9 may improve outcomes after ischemic stroke.
Collapse
|
19
|
Keragala CB, Woodruff TM, Liu Z, Niego B, Ho H, McQuilten Z, Medcalf RL. Tissue-Type Plasminogen Activator and Tenecteplase-Mediated Increase in Blood Brain Barrier Permeability Involves Cell Intrinsic Complement. Front Neurol 2020; 11:577272. [PMID: 33363504 PMCID: PMC7753024 DOI: 10.3389/fneur.2020.577272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 11/09/2020] [Indexed: 11/26/2022] Open
Abstract
Background: Tissue-type plasminogen activator (t-PA) has been the mainstay of therapeutic thrombolysis for patients with acute ischaemic stroke (AIS). However, t-PA can cause devastating intracerebral hemorrhage. t-PA can also influence the CNS in part by modulation of BBB permeability. Complement activation also occurs after AIS and has also been reported to increase BBB permeability. The complement components, C3 and C5, can also be activated by t-PA via plasmin formation and cell intrinsic complement may be involved in this process. Tenecteplase (TNK-tPA) is a t-PA variant with a longer plasma half-life, yet the ability of TNK-tPA to modulate the BBB and complement is less clear. Aim: To evaluate the effect of C5 and C5a-receptor 1 (C5aR1) inhibitors on t-PA- and TNK-tPA-mediated opening of the BBB. Methods: We used an in vitro model of the BBB where human brain endothelial cells and human astrocytes were co-cultured on the opposite sides of a porous membrane assembled in transwell inserts. The luminal (endothelial) compartment was stimulated with t-PA or TNK-tPA together with plasminogen, in the presence of PMX205 (a non-competitive C5aR1 antagonist), Avacopan (a competitive C5aR1 antagonist) or Eculizumab (a humanized monoclonal inhibitor of human C5). BBB permeability was assessed 5 and 24 h later. Immunofluorescence was also used to detect changes in C5 and C5aR1 expression in endothelial cells and astrocytes. Results: PMX205, but not Avacopan or Eculizumab, blocked t-PA-mediated increase in BBB permeability at both the 5 and 24 h time points. PMX205 also blocked TNK-tPA-mediated increase in BBB permeability. Immunofluorescence analysis revealed intracellular staining of C5 in both cell types. C5aR1 expression was also detected on the cell surfaces and also located intracellularly in both cell types. Conclusion: t-PA and TNK-tPA-mediated increase in BBB permeability involves C5aR1 receptor activation from cell-derived C5a. Selective inhibitors of C5aR1 may have therapeutic potential in AIS.
Collapse
Affiliation(s)
- Charithani B Keragala
- Molecular Neurotrauma and Haemostasis, Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
| | - Trent M Woodruff
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Zikou Liu
- Molecular Neurotrauma and Haemostasis, Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
| | - Be'eri Niego
- Molecular Neurotrauma and Haemostasis, Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
| | - Heidi Ho
- Molecular Neurotrauma and Haemostasis, Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
| | - Zoe McQuilten
- Transfusion Research Unit, Department of Epidemiology and Preventative Medicine, Australian and New Zealand Intensive Care Research Centre, Monash University, Melbourne, VIC, Australia
| | - Robert L Medcalf
- Molecular Neurotrauma and Haemostasis, Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
20
|
Abstract
Supplemental Digital Content is available in the text. Rationale: Current thrombolytic agents activate plasminogen to plasmin which triggers fibrinolysis to dissolve thrombi. Since plasmin is a nonspecific proteolytic enzyme, all of the current plasmin-dependent thrombolytics lead to serious hemorrhagic complications, demanding a new class of fibrinolytic enzymes independent from plasmin activation and undesirable side effects. We speculated that the mammalian version of bacterial heat-shock proteins could selectively degrade intravascular thrombi, a typical example of a highly aggregated protein mixture. Objective: The objective of this study is to identify enzymes that can dissolve intravascular thrombi specifically without affecting fibrinogen and fibronectin so that the wound healing processes remain uninterrupted and tissues are not damaged. In this study, HtrA (high-temperature requirement A) proteins were tested for its specific proteolytic activity on intravascular thrombi independently from plasmin activation. Methods and Results: HtrA1 and HtrA2/Omi proteins, collectively called as HtrAs, lysed ex vivo blood thrombi by degrading fibrin polymers. The thrombolysis by HtrAs was plasmin-independent and specific to vascular thrombi without causing the systemic activation of plasminogen and preventing nonspecific proteolysis of other proteins including fibrinogen and fibronectin. As expected, HtrAs did not disturb clotting and wound healing of excised wounds from mouse skin. It was further confirmed in a tail bleeding and a rebleeding assay that HtrAs allowed normal clotting and maintenance of clot stability in wounds, unlike other thrombolytics. Most importantly, HtrAs completely dissolved blood thrombi in tail thrombosis mice, and the intravenous injection of HtrAs to mice with pulmonary embolism completely dissolved intravascular thrombi and thus rescued thromboembolism. Conclusions: Here, we identified HtrA1 and HtrA2/Omi as plasmin-independent and highly specific thrombolytics that can dissolve intravascular thrombi specifically without bleeding risk. This work is the first report of a plasmin-independent thrombolytic pathway, providing HtrA1 and HtrA2/Omi as ideal therapeutic candidates for various thrombotic diseases without hemorrhagic complications.
Collapse
Affiliation(s)
- Md Mehedi Hassan
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, South Korea (M.M.H., S.S., S.-T.H.).,JINIS BDRD institute, JINIS Biopharmaceuticals, Inc, 224 Wanjusandan 6-Ro, Bongdong, Wanju, Jeonbuk, South Korea (M.M.H., H.-J.K.)
| | - Shirina Sharmin
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, South Korea (M.M.H., S.S., S.-T.H.)
| | - Hyeon-Jin Kim
- JINIS BDRD institute, JINIS Biopharmaceuticals, Inc, 224 Wanjusandan 6-Ro, Bongdong, Wanju, Jeonbuk, South Korea (M.M.H., H.-J.K.).,SNJ Pharma, Inc, BioLabs LA in the Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA (H.-J.K.)
| | - Seong-Tshool Hong
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, South Korea (M.M.H., S.S., S.-T.H.)
| |
Collapse
|
21
|
Mindel E, Weiss R, Bushi D, Gera O, Orion D, Chapman J, Shavit-Stein E. Increased brain plasmin levels following experimental ischemic stroke in male mice. J Neurosci Res 2020; 99:966-976. [PMID: 33296953 DOI: 10.1002/jnr.24764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 10/29/2020] [Accepted: 11/15/2020] [Indexed: 12/19/2022]
Abstract
Many coagulation factor proteases are increased in the brain during ischemic stroke. One of these proteases is plasmin. In this study we established a novel method for direct quantitative measurement of plasmin activity in male mouse brain slices using a sensitive fluorescent substrate in the presence of specific protease inhibitors. In both the ischemic and contralateral hemispheres, plasmin activity increased 3, 6, and 24 hr following stroke in comparison to healthy mice (F(3, 72) = 39.5, p < 0.0001, repeated measures ANOVA) after the induction of permanent middle cerebral artery occlusion (PMCAo). Plasmin activity was higher in the ischemic hemisphere (F(1,36) = 9.1, p = 0.005) and there was a significant interaction between time and ischemic hemisphere (F(3,36) = 4.4, p = 0.009). Plasmin activity was correlated with infarct volume (R2 = 0.5289, p = 0.0009 by Spearman). The specificity of the assay was verified utilizing tissue-type plasminogen activator (tPA)-deficient mice which, as expected, had significantly lower levels of plasmin 24 hr following ischemia compared to wild-type mice (ischemic (0.6 ± 0.23 and 1.94 ± 0.5, respectively), p = 0.049 and contralateral hemispheres (0.13 ± 0.14 and 0.75 ± 0.10, respectively), p = 0.018 by t test). There is a time-dependent increase in plasmin levels and an association of higher levels of plasmin with larger infarct volumes in an experimental stroke model. This suggests caution in the use of recombinant tPA (rtPA) and that plasmin inhibition in the brain may be a therapeutic target in acute ischemic stroke.
Collapse
Affiliation(s)
- Ekaterina Mindel
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel.,Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ronen Weiss
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Doron Bushi
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel.,Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Comprehensive Stroke Center, Department of Neurology, Sackler Faculty of Medicine, Sheba Medical Center, Ramat Gan, Israel
| | - Orna Gera
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel.,Department of Physical Therapy, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - David Orion
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel.,Comprehensive Stroke Center, Department of Neurology, Sackler Faculty of Medicine, Sheba Medical Center, Ramat Gan, Israel
| | - Joab Chapman
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel.,Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Robert and Martha Harden Chair in Mental and Neurological Diseases, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Efrat Shavit-Stein
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan, Israel.,Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
22
|
Hasan MT, Lewis D, Siddiqui M. Brain abscess – A rare complication of endovascular treatment for acute ischemic stroke. Surg Neurol Int 2020; 11:319. [PMID: 33093996 PMCID: PMC7568088 DOI: 10.25259/sni_481_2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/11/2020] [Indexed: 11/18/2022] Open
Abstract
Background: Brain abscess is a neurosurgical emergency, which can arise through direct bacterial seeding or hematogenous spread. Rarely, brain abscess formation has been reported following ischemic stroke. An increasingly utilized therapy for stroke is mechanical thrombectomy, and within this report, we present a case of brain abscess formation following this procedure. Case Description: A 78-year-old female presented to our center with a right total anterior circulation stroke (TACS) secondary to terminal internal carotid artery occlusion. An emergent mechanical thrombectomy was performed and the patient’s initial postoperative recovery was good. In the 3rd week after the procedure, however, the patient became more confused and following the onset of fever, an MRI brain was performed, which demonstrated an extensive multiloculated right-sided brain abscess. Burr hole drainage of the abscess was subsequently undertaken and pus samples obtained grew Proteus mirabilis, presumed secondary to a urinary tract infection, and the patient was started on prolonged antibiotic therapy. To date, the infection has been eradicated and the patient survives albeit with persistent neurological deficits. Conclusion: To the best of our knowledge, this is the first reported UK case of brain abscess following mechanical thrombectomy for stroke. Endovascular interventions can lead to increased incidence of ischemia-reperfusion injury in stroke with increased blood–brain barrier damage and risk of microbial seeding. This case highlights the need for rigorous asepsis and proactive treatment of systemic infections in the acute phase following endovascular treatment and consideration of brain abscess in all patients who present with new-onset confusion and unexplained fever following stroke.
Collapse
Affiliation(s)
- Md Tanvir Hasan
- Departments of Neurosurgery Salford Royal NHS Foundation Trust, Salford, Manchester, United Kingdom
| | - Daniel Lewis
- Departments of Neurosurgery Salford Royal NHS Foundation Trust, Salford, Manchester, United Kingdom
| | - Mohammed Siddiqui
- Departments of Stroke Medicine, Salford Royal NHS Foundation Trust, Salford, Manchester, United Kingdom
| |
Collapse
|
23
|
Daglas M, Galle A, Draxler DF, Ho H, Liu Z, Sashindranath M, Medcalf RL. Sex-dependent effects of tranexamic acid on blood-brain barrier permeability and the immune response following traumatic brain injury in mice. J Thromb Haemost 2020; 18:2658-2671. [PMID: 32668057 DOI: 10.1111/jth.15015] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Tranexamic acid (TXA) is an anti-fibrinolytic agent used to reduce bleeding in various conditions including traumatic brain injury (TBI). As the fibrinolytic system also influences the central nervous system and the immune response, TXA may also modulate these parameters following TBI. OBJECTIVES To determine the effect of TXA on blood-brain barrier (BBB) integrity and changes in immune and motor function in male and female mice subjected to TBI. METHODS Wild-type and plasminogen deficient (plg-/-) mice were subjected to TBI then administered either TXA/vehicle. The degree of BBB breakdown, intracerebral hemorrhage (ICH), motor dysfunction, and changes in inflammatory subsets in blood and brain were determined. RESULTS AND CONCLUSIONS Tranexamic acid significantly reduced BBB breakdown, and increased blood neutrophils in male mice 3 hours post-TBI. In contrast, TXA treatment of female mice increased BBB permeability and ICH but had no effect on blood neutrophils at the same time-point. TXA improved motor function in male mice but still increased BBB breakdown in female mice 24 hours post-TBI. Brain urokinase-type plasminogen activator (u-PA) antigen and activity levels were significantly higher in injured females compared to males. Because TXA can promote a pro-fibrinolytic effect via u-PA, these sex differences may be related to brain u-PA levels. TXA also increased monocyte subsets and dendritic cells in the injured brain of wild-type male mice 1 week post-TBI. Plg-/- mice of both sexes had reduced BBB damage and were protected from TBI irrespective of treatment indicating that TXA modulation of the BBB is plasmin-dependent. In conclusion, TXA is protective post-TBI but only in male mice.
Collapse
Affiliation(s)
- Maria Daglas
- Molecular Neurotrauma and Haemostasis, Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Adam Galle
- Molecular Neurotrauma and Haemostasis, Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Dominik F Draxler
- Molecular Neurotrauma and Haemostasis, Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Heidi Ho
- Molecular Neurotrauma and Haemostasis, Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Zikou Liu
- Molecular Neurotrauma and Haemostasis, Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Maithili Sashindranath
- Molecular Neurotrauma and Haemostasis, Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Robert L Medcalf
- Molecular Neurotrauma and Haemostasis, Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
24
|
Kyyriäinen J, Tapiala J, Lipponen A, Ekolle Ndode-Ekane X, Pitkänen A. Plau/Plaur double-deficiency did not worsen lesion severity or vascular integrity after traumatic brain injury. Neurosci Lett 2020; 729:134935. [PMID: 32360936 DOI: 10.1016/j.neulet.2020.134935] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/06/2020] [Accepted: 03/25/2020] [Indexed: 12/27/2022]
Abstract
Binding of urokinase-type plasminogen activator receptor (uPAR) to its ligand uPA or to its plasma membrane partner, platelet-derived growth factor receptor β (PDGFRβ), promotes neuroprotection, cell proliferation, and angiogenesis. Following injury, single deficiency in uPA or uPAR leads in increased tissue loss and compromised vascular remodeling. We hypothesized that double-deficiency of uPAR (Plaur) and uPA (Plau) would result in increased lesion area and poor vascular integrity after traumatic brain injury (TBI). TBI was induced by lateral fluid-percussion injury in Plau/Plaur double-knockout (dKO) and wild-type (Wt) mice. The cortical lesion area was quantified in unfolded cortical maps prepared from thionin-stained sections at 4 d or 30 d post-TBI. The density of PDGFRβ+ pericytes and blood vessels was calculated from immunostained sections. Blood-brain barrier leakage was analyzed using ImageJ® from IgG-immunostained sections. Genotype had no effect on the total area of the cortical lesion at 4 d or 30 d post-TBI (p > 0.05) or its progression as the overall lesion area was comparable at 4 d and 30 d post-TBI in both genotypes (p > 0.05). Subfield analysis, however, indicated that damage to the visual cortex at 4 d post-TBI in dKO-TBI mice was 53 % of that in Wt-TBI mice (p < 0.05). Both genotypes had a higher density of PDGFRβ-positive pericytes at 4 d than at 30 d post-TBI (p < 0.05), but no genotype effect was detected between these time-points (p > 0.05). TBI-induced increase in the density of PDGFRβ+ blood vessels at the region adjacent to the lesion core was comparable in both genotypes (p > 0.05). Genotype had no effect on TBI-induced IgG leakage into the perilesional cortical parenchyma (p > 0.05). Contrary to our expectations, Plau/Plaur double-deficiency did not aggravate TBI-related structural outcome.
Collapse
Affiliation(s)
- Jenni Kyyriäinen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FI-70211, Kuopio, Finland
| | - Jesse Tapiala
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FI-70211, Kuopio, Finland
| | - Anssi Lipponen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FI-70211, Kuopio, Finland
| | - Xavier Ekolle Ndode-Ekane
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FI-70211, Kuopio, Finland
| | - Asla Pitkänen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FI-70211, Kuopio, Finland.
| |
Collapse
|
25
|
Zhang L, Xu S, Wu X, Muse FM, Chen J, Cao Y, Yan J, Cheng Z, Yi X, Han Z. Protective Effects of the Soluble Epoxide Hydrolase Inhibitor 1-Trifluoromethoxyphenyl-3-(1-Propionylpiperidin-4-yl) Urea in a Rat Model of Permanent Middle Cerebral Artery Occlusion. Front Pharmacol 2020; 11:182. [PMID: 32184732 PMCID: PMC7058996 DOI: 10.3389/fphar.2020.00182] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 02/10/2020] [Indexed: 02/06/2023] Open
Abstract
Acute ischemic stroke is a serious disease that endangers human health. In our efforts to develop an effective therapy, we previously showed that the potent, highly selective inhibitor of soluble epoxide hydrolase called 1-trifuoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea (TPPU) protects the brain against focal ischemia in rats. Here we explored the mechanism of TPPU action by assessing whether it could preserve blood-brain barrier integrity and reduce apoptosis in the brain during permanent middle cerebral artery occlusion in male Sprague-Dawley rats. TPPU administration at the onset of stroke and once daily thereafter led to smaller infarct volume and brain edema as well as milder neurological deficits. TPPU significantly inhibited the activity of soluble epoxide hydrolase and matrix metalloproteases 2 and 9, reducing 14,15-DHET levels, while increasing expression of tight junction proteins. TPPU decreased numbers of apoptotic cells by down-regulating the pro-apoptotic proteins BAX and Caspase-3, while up-regulating the anti-apoptotic protein BCL-2. Our results suggest that TPPU can protect the blood-brain barrier and reduce the apoptosis of brain tissue caused by ischemia.
Collapse
Affiliation(s)
- Linlei Zhang
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Department of General Intensive Care Unit, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Shasha Xu
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaoxiao Wu
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Farah Mohamed Muse
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiaou Chen
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yungang Cao
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jueyue Yan
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zicheng Cheng
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xingyang Yi
- Department of Neurology, People's Hospital of Deyang City, Deyang, China
| | - Zhao Han
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
26
|
Kadri S, El Ayed M, Limam F, Aouani E, Mokni M. Preventive and curative effects of grape seed powder on stroke using in vitro and in vivo models of cerebral ischemia/reperfusion. Biomed Pharmacother 2020; 125:109990. [PMID: 32070874 DOI: 10.1016/j.biopha.2020.109990] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/15/2020] [Accepted: 01/31/2020] [Indexed: 12/20/2022] Open
Abstract
Stroke is a worldwide concern. Many studies pointed out relevant preventive effect of grape seed powder (GSP) against deleterious brain ischemia/reperfusion (I/R) injury, but curative effect has been scarcely approached. The present work aimed at studying the preventive and curative effect of GSP against stroke using in-vitro and in-vivo models. Primary neuron-astrocyte cocultures were used to evaluate in-vitro GSP protective and curative effect on oxygen-glucose-deprivation (OGD). A murine I/R model, in which GSP was administered as delayed post stroke drug, to evaluate its potential clinically translatable therapy was used and behavioral tests were conducted after 15 days. Ultra-structure of hippocampus dentate gyrus using Transmission Electron Microscopy (TEM) was also undertaken. GSP prevented OGD-induced toxicity and cell death in a dose dependent manner and was neuroprotective as assessed by sustained cell viability (70 % ±1 for OGD + GSP and 37 % ±2 for OGD) and modulated cytokines and brain derived neurotrophic factor (BDNF) expression. GSP also promoted behavioral outcomes by increasing step-down inhibitory time from 17s±4 to 50s±11 and rat overall activities by improving scores in open field test to near control level. Furthermore, GSP protected hippocampus dentate gyrus area from I/R-induced drastic alterations as assessed by reduced autophagic vacuoles.
Collapse
Affiliation(s)
- Safwen Kadri
- Bioactive Substances Laboratory, Biotechnology Centre, Technopolis Borj-Cedria, BP-901, 2050, Hammam-Lif, Tunisia.
| | - Mohamed El Ayed
- Bioactive Substances Laboratory, Biotechnology Centre, Technopolis Borj-Cedria, BP-901, 2050, Hammam-Lif, Tunisia
| | - Ferid Limam
- Bioactive Substances Laboratory, Biotechnology Centre, Technopolis Borj-Cedria, BP-901, 2050, Hammam-Lif, Tunisia
| | - Ezzedine Aouani
- Bioactive Substances Laboratory, Biotechnology Centre, Technopolis Borj-Cedria, BP-901, 2050, Hammam-Lif, Tunisia
| | - Meherzia Mokni
- Bioactive Substances Laboratory, Biotechnology Centre, Technopolis Borj-Cedria, BP-901, 2050, Hammam-Lif, Tunisia
| |
Collapse
|
27
|
Evaluation of long-term rt-PA effects on bEnd.3 endothelial cells under ischemic conditions; changes in ZO-1 expression and glycosylation of the bradykinin B2 receptor. Thromb Res 2020; 187:1-8. [PMID: 31935582 DOI: 10.1016/j.thromres.2019.12.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 12/20/2019] [Accepted: 12/27/2019] [Indexed: 02/07/2023]
Abstract
Recombinant tissue plasminogen activator (rt-PA) has proven effective in the treatment of acute ischemic stroke, despite the increased risk of hemorrhagic transformation (HT), its major associated complication. Although it is known that HT is related to blood brain barrier (BBB) disruption, the underlying mechanisms are not well established. We assessed time-dependent effects of rt-PA on the bEnd.3 murine brain endothelial cell line subjected either to normoxia or to 2.5 h of oxygen and glucose deprivation (OGD), evaluating a longer period than has previously been done, beyond 6 h post-reoxygenation. Parameters of cell viability, metabolic activity, ionic and transcellular permeability, as well as levels of claudin-5, zonula occludens-1 (ZO-1) and bradykinin B2 receptor (B2R) protein expression were analyzed at 24, 48 and 72 h post-reoxygenation with or without the administration of rt-PA. rt-PA treatment increased both the ionic and transcellular permeability until 72 h and did not modify cell viability or metabolic activity or the expression of claudin-5, ZO-1 and B2R under normoxia at any analyzed time. Under OGD conditions, rt-PA exacerbated OGD effects on metabolic activity from 48 to 72 h, increased transcellular permeability from 24 to 72 h, significantly decreased ZO-1 protein levels at the plasma membrane and increased B2R glycosylation at 72 h post-reoxygenation. Our findings suggest that a long-term analysis is necessary to elucidate time-dependent molecular mechanisms associated to BBB breakdown due to rt-PA administration under ischemia. Thus, protective BBB therapies after ischemic stroke and rt-PA treatment should be explored at least until 72 h after OGD and rt-PA administration.
Collapse
|
28
|
Draxler DF, Daglas M, Fernando A, Hanafi G, McCutcheon F, Ho H, Galle A, Gregory J, Larsson P, Keragala C, Wright DK, Tavancheh E, Au AE, Niego B, Wilson K, Plebanski M, Sashindranath M, Medcalf RL. Tranexamic acid modulates the cellular immune profile after traumatic brain injury in mice without hyperfibrinolysis. J Thromb Haemost 2019; 17:2174-2187. [PMID: 31393041 DOI: 10.1111/jth.14603] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 07/30/2019] [Indexed: 01/12/2023]
Abstract
BACKGROUND Traumatic brain injury (TBI) is known to promote immunosuppression, making patients more susceptible to infection, yet potentially exerting protective effects by inhibiting central nervous system (CNS) reactivity. Plasmin, the effector protease of the fibrinolytic system, is now recognized for its involvement in modulating immune function. OBJECTIVE To evaluate the effects of plasmin and tranexamic acid (TXA) on the immune response in wild-type and plasminogen-deficient (plg-/- ) mice subjected to TBI. METHODS Leukocyte subsets in lymph nodes and the brain in mice post TBI were evaluated by flow cytometry and in blood with a hemocytometer. Immune responsiveness to CNS antigens was determined by Enzyme-linked Immunosorbent Spot (ELISpot) assay. Fibrinolysis was determined by thromboelastography and measuring D-dimer and plasmin-antiplasmin complex levels. RESULTS Plg-/- mice, but not plg+/+ mice displayed increases in both the number and activation of various antigen-presenting cells and T cells in the cLN 1 week post TBI. Wild-type mice treated with TXA also displayed increased cellularity of the cLN 1 week post TBI together with increases in innate and adaptive immune cells. These changes occurred despite the absence of systemic hyperfibrinolysis or coagulopathy in this model of TBI. Importantly, neither plg deficiency nor TXA treatment enhanced the autoreactivity within the CNS. CONCLUSION In the absence of systemic hyperfibrinolysis, plasmin deficiency or blockade with TXA increases migration and proliferation of conventional dendritic cells (cDCs) and various antigen-presenting cells and T cells in the draining cervical lymph node (cLN) post TBI. Tranexamic acid might also be clinically beneficial in modulating the inflammatory and immune response after TBI, but without promoting CNS autoreactivity.
Collapse
Affiliation(s)
- Dominik F Draxler
- Molecular Neurotrauma and Haemostasis, Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia
| | - Maria Daglas
- Molecular Neurotrauma and Haemostasis, Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia
| | - Anushka Fernando
- Molecular Neurotrauma and Haemostasis, Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia
| | - Gryselda Hanafi
- Molecular Neurotrauma and Haemostasis, Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia
| | - Fiona McCutcheon
- Molecular Neurotrauma and Haemostasis, Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia
| | - Heidi Ho
- Molecular Neurotrauma and Haemostasis, Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia
| | - Adam Galle
- Molecular Neurotrauma and Haemostasis, Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia
| | - Julia Gregory
- Molecular Neurotrauma and Haemostasis, Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia
| | - Pia Larsson
- Molecular Neurotrauma and Haemostasis, Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia
| | - Charithani Keragala
- Molecular Neurotrauma and Haemostasis, Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia
| | - David K Wright
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Elnaz Tavancheh
- Molecular Neurotrauma and Haemostasis, Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia
| | - Amanda E Au
- Molecular Neurotrauma and Haemostasis, Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia
| | - Be'eri Niego
- Molecular Neurotrauma and Haemostasis, Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia
| | - Kirsty Wilson
- Department of Immunology and Pathology, Monash University, Melbourne, Victoria, Australia
| | - Magdalena Plebanski
- Department of Immunology and Pathology, Monash University, Melbourne, Victoria, Australia
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Maithili Sashindranath
- Molecular Neurotrauma and Haemostasis, Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia
| | - Robert L Medcalf
- Molecular Neurotrauma and Haemostasis, Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
29
|
Disharoon D, Marr DW, Neeves KB. Engineered microparticles and nanoparticles for fibrinolysis. J Thromb Haemost 2019; 17:2004-2015. [PMID: 31529593 PMCID: PMC6893081 DOI: 10.1111/jth.14637] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/09/2019] [Accepted: 09/12/2019] [Indexed: 12/28/2022]
Abstract
Fibrinolytic agents including plasmin and plasminogen activators improve outcomes in acute ischemic stroke and thrombosis by recanalizing occluded vessels. In the decades since their introduction into clinical practice, several limitations of have been identified in terms of both efficacy and bleeding risk associated with these agents. Engineered nanoparticles and microparticles address some of these limitations by improving circulation time, reducing inhibition and degradation in circulation, accelerating recanalization, improving targeting to thrombotic occlusions, and reducing off-target effects; however, many particle-based approaches have only been used in preclinical studies to date. This review covers four advances in coupling fibrinolytic agents with engineered particles: (a) modifications of plasminogen activators with macromolecules, (b) encapsulation of plasminogen activators and plasmin in polymer and liposomal particles, (c) triggered release of encapsulated fibrinolytic agents and mechanical disruption of clots with ultrasound, and (d) enhancing targeting with magnetic particles and magnetic fields. Technical challenges for the translation of these approaches to the clinic are discussed.
Collapse
Affiliation(s)
- Dante Disharoon
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO
| | - David W.M. Marr
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO
| | - Keith B. Neeves
- Departments of Bioengineering and Pediatrics, Hemophilia and Thrombosis Center, University of Colorado Denver | Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
30
|
Short-term inhibition of fibrinolytic system restores locomotor function after spinal cord injury in mice. Sci Rep 2019; 9:16024. [PMID: 31690812 PMCID: PMC6831600 DOI: 10.1038/s41598-019-52621-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 10/21/2019] [Indexed: 02/06/2023] Open
Abstract
Spinal cord injury (SCI) is caused by an initial mechanical insult followed by a series of deleterious events that promote the progressive damage of affected tissues. Fibrinolysis, the process by which plasmin degrades cross-linked fibrin clots, has numerous functions in the central nervous system. However, the roles of the fibrinolytic system in SCI pathophysiology remain unknown. We investigated the roles of fibrinolysis in SCI, and explored therapeutic applications targeting fibrinolysis. Plasminogen-deficient (Plg-/-) mice exhibited significantly improved locomotor function in the early phase of SCI (the first 7 days post injury), with significant inhibition of bleeding and vascular permeability, but failed to demonstrate conclusive functional recovery. Consistent with these findings, the short-term administration of tranexamic acid (TXA) in wild-type mice over the first 3 days post injury significantly improved locomotor function after SCI, whereas prolonged TXA administration did not. Prolonged TXA administration resulted in significantly lower levels of matrix metalloproteinase activities in the spinal cord, suggesting that inhibition of the fibrinolytic system impaired tissue remodeling. Our results indicate that the fibrinolytic system has time-dependent biphasic actions following SCI. The temporally optimised modulation of fibrinolytic activity may thus be a novel therapeutic strategy to improve functional outcomes after SCI.
Collapse
|
31
|
Chen QF, Liu YY, Pan CS, Fan JY, Yan L, Hu BH, Chang X, Li Q, Han JY. Angioedema and Hemorrhage After 4.5-Hour tPA (Tissue-Type Plasminogen Activator) Thrombolysis Ameliorated by T541 via Restoring Brain Microvascular Integrity. Stroke 2019; 49:2211-2219. [PMID: 30354988 DOI: 10.1161/strokeaha.118.021754] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Background and Purpose- tPA (tissue-type plasminogen activator) is the only recommended intravenous thrombolytic agent for ischemic stroke. However, its application is limited because of increased risk of hemorrhagic transformation beyond the time window. T541 is a Chinese compound medicine with potential to attenuate ischemia and reperfusion injury. This study was to explore whether T541-benefited subjects underwent tPA thrombolysis extending the time window. Methods- Male C57BL/6 N mice were subjected to carotid artery thrombosis by stimulation with 10% FeCl3 followed by 10 mg/kg tPA with/without 20 mg/kg T541 intervention at 4.5 hours. Thrombolysis and cerebral blood flow were observed dynamically until 24 hours after drug treatment. Neurological deficit scores, brain edema and hemorrhage, cerebral microvascular junctions and basement membrane proteins, and energy metabolism in cortex were assessed then. An in vitro hypoxia/reoxygenation model using human cerebral microvascular endothelial cells was used to evaluate effect of T541 on tight junctions and F-actin in the presence of tPA. Results- tPA administered at 4.5 hours after carotid thrombosis resulted in a decrease in thrombus area and survival rate, whereas no benefit on cerebral blood flow. Study at 24 hours after tPA administration revealed a significant angioedema and hemorrhage in the ischemia hemisphere, a decreased expression of junction proteins claudin-5, zonula occludens-1, occludin, junctional adhesion molecule-1 and vascular endothelial cadherin, and collagen IV and laminin. Meanwhile, ADP/ATP, AMP/ATP, and ATP5D (ATP synthase subunit) expression and activities of mitochondria complex I, II, and IV declined, whereas malondialdehyde and 8-Oxo-2'-deoxyguanosine increased and F-actin arrangement disordered. All the insults after tPA treatment were attenuated by addition of T541 dose dependently. Conclusions- The results suggest T541 as a potential remedy to attenuate delayed tPA-related angioedema and hemorrhage and extend time window for tPA treatment. The potential of T541 to upregulate energy metabolism and protect blood-brain barrier is likely attributable to its effects observed.
Collapse
Affiliation(s)
- Qing-Fang Chen
- From the Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China (Q.-F.C., J.-Y.H.).,Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.).,Key Laboratory of Microcirculation (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.).,Key Laboratory of Stasis and Phlegm (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.).,State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.).,Beijing Microvascular Institute of Integration of Chinese and Western Medicine (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.)
| | - Yu-Ying Liu
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.).,Key Laboratory of Microcirculation (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.).,Key Laboratory of Stasis and Phlegm (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.).,State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.).,Beijing Microvascular Institute of Integration of Chinese and Western Medicine (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.)
| | - Chun-Shui Pan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.).,Key Laboratory of Microcirculation (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.).,Key Laboratory of Stasis and Phlegm (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.).,State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.).,Beijing Microvascular Institute of Integration of Chinese and Western Medicine (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.)
| | - Jing-Yu Fan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.).,Key Laboratory of Microcirculation (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.).,Key Laboratory of Stasis and Phlegm (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.).,State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.).,Beijing Microvascular Institute of Integration of Chinese and Western Medicine (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.)
| | - Li Yan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.).,Key Laboratory of Microcirculation (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.).,Key Laboratory of Stasis and Phlegm (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.).,State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.).,Beijing Microvascular Institute of Integration of Chinese and Western Medicine (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.)
| | - Bai-He Hu
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.).,Key Laboratory of Microcirculation (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.).,Key Laboratory of Stasis and Phlegm (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.).,State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.).,Beijing Microvascular Institute of Integration of Chinese and Western Medicine (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.)
| | - Xin Chang
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.).,Key Laboratory of Microcirculation (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.).,Key Laboratory of Stasis and Phlegm (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.).,State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.).,Beijing Microvascular Institute of Integration of Chinese and Western Medicine (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.)
| | - Quan Li
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.).,Key Laboratory of Microcirculation (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.).,Key Laboratory of Stasis and Phlegm (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.).,State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.).,Beijing Microvascular Institute of Integration of Chinese and Western Medicine (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.)
| | - Jing-Yan Han
- From the Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China (Q.-F.C., J.-Y.H.).,Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.).,Key Laboratory of Microcirculation (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.).,Key Laboratory of Stasis and Phlegm (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.).,State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing; State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.).,Beijing Microvascular Institute of Integration of Chinese and Western Medicine (Q.-F.C., Y.-Y.L., C.-S.P., J.-Y.F., L.Y., B.-H.H., X.C., Q.L., J.-Y.H.)
| |
Collapse
|
32
|
Dobrynina LA, Shabalina AA, Zabitova MR, Kremneva EI, Gadzhieva ZS, Krotenkova MV, Gnedovskaya EV, Berdalin AB, Kalashnikova LA. Tissue Plasminogen Activator and MRI Signs of Cerebral Small Vessel Disease. Brain Sci 2019; 9:E266. [PMID: 31590405 PMCID: PMC6826933 DOI: 10.3390/brainsci9100266] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 10/01/2019] [Accepted: 10/02/2019] [Indexed: 01/11/2023] Open
Abstract
Cerebral small vessel disease (SVD) is one of the leading causes of cognitive impairment and stroke. The importance of endothelial dysfunction and high blood-brain barrier (BBB) permeability in pathogenesis, together with ischemia, is under discussion. The aim of this study was to clarify the relationship between tissue plasminogen activator (t-PA), plasminogen activator inhibitor (PAI-1), and magnetic resonance imaging (MRI) signs of SVD. We examined 71 patients (23 men and 48 women; mean age: 60.5 ± 6.9 years) with clinical and MRI signs of SVD, and 21 healthy volunteers with normal MRIs. All subjects underwent 3T MRI and measurements of t-PA and PAI-1 levels. An increase in t-PA level is correlated with the volume of white matter hyperintensities (WMH) (R = 0.289, p = 0.034), severity on the Fazekas scale (p = 0.000), and with the size of subcortical (p = 0.002) and semiovale (p = 0.008) perivascular spaces. The PAI-1 level is not correlated with the t-PA level or MRI signs of SVD. The correlation between t-PA and the degree of WMH and perivascular spaces' enlargement, without a correlation with PAI-1 and lacunes, is consistent with the importance of t-PA in BBB disruption and its role in causing brain damage in SVD.
Collapse
Affiliation(s)
- Larisa A Dobrynina
- Research Center of Neurology, 80 Volokolamskoe shosse, 125367 Moscow, Russia.
| | - Alla A Shabalina
- Research Center of Neurology, 80 Volokolamskoe shosse, 125367 Moscow, Russia.
| | - Maryam R Zabitova
- Research Center of Neurology, 80 Volokolamskoe shosse, 125367 Moscow, Russia.
| | - Elena I Kremneva
- Research Center of Neurology, 80 Volokolamskoe shosse, 125367 Moscow, Russia.
| | - Zukhra Sh Gadzhieva
- Research Center of Neurology, 80 Volokolamskoe shosse, 125367 Moscow, Russia.
| | - Marina V Krotenkova
- Research Center of Neurology, 80 Volokolamskoe shosse, 125367 Moscow, Russia.
| | - Elena V Gnedovskaya
- Research Center of Neurology, 80 Volokolamskoe shosse, 125367 Moscow, Russia.
| | - Alexander B Berdalin
- Federal State Budgetary Institution "Federal Center for Cerebrovascular Pathology and Stroke", 1, stroenie 10, Ostrovityanova, 117342, Moscow, Russia.
| | | |
Collapse
|
33
|
Fukuta T, Ishii T, Asai T, Oku N. Applications of Liposomal Drug Delivery Systems to Develop Neuroprotective Agents for the Treatment of Ischemic Stroke. Biol Pharm Bull 2019; 42:319-326. [PMID: 30828062 DOI: 10.1248/bpb.b18-00683] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ischemic stroke is one of the leading causes of severe disability and death. In clinical settings, tissue plasminogen activator (t-PA) for thrombolytic therapy is the only globally approved drug for the treatment of ischemic stroke. However, the proportion of patients who receive t-PA therapy is extremely limited due to its narrow therapeutic time window (TTW) and the risk of cerebral hemorrhage. Cerebral ischemia-reperfusion (I/R) injury is also a serious problem for patients' outcomes. Hence, the development of more effective therapies has been desired to prolong the TTW of t-PA and prevent cerebral I/R injury. For delivering drugs into the brain, the blood-brain barrier (BBB) must be overcome since it limits drug penetration into the brain, leading to insufficient therapeutic efficacy. As a distinctive pathology after an ischemic stroke, it was reported that the vascular permeability of the BBB is increased around the ischemic region. We found that nano-sized liposomes can pass through the disrupted BBB and accumulate in the I/R region, and that delivery of neuroprotective agents using a liposomal drug delivery system (DDS) is effective for the treatment of cerebral I/R injury. Moreover, we have recently demonstrated that combination therapy with liposomal drugs and t-PA can suppress the deleterious effects of t-PA and extend its TTW in a rat ischemic stroke model. These findings indicate that applications of nanoparticle DDS technology could be a hopeful approach to drug development for ischemic stroke therapy. In this review, we introduce our findings on ischemic stroke treatment using liposomal DDS and recent advances from other research groups.
Collapse
Affiliation(s)
- Tatsuya Fukuta
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka.,Department of Pharmaceutical Health Chemistry, Graduate School of Biomedical Sciences, Tokushima University
| | - Takayuki Ishii
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka
| | - Tomohiro Asai
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka
| | - Naoto Oku
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka.,Faculty of Pharma-Science, Teikyo University
| |
Collapse
|
34
|
Draxler DF, Lee F, Ho H, Keragala CB, Medcalf RL, Niego B. t-PA Suppresses the Immune Response and Aggravates Neurological Deficit in a Murine Model of Ischemic Stroke. Front Immunol 2019; 10:591. [PMID: 30972077 PMCID: PMC6445967 DOI: 10.3389/fimmu.2019.00591] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 03/05/2019] [Indexed: 01/08/2023] Open
Abstract
Introduction: Acute ischemic stroke (AIS) is a potent trigger of immunosuppression, resulting in increased infection risk. While thrombolytic therapy with tissue-type plasminogen activator (t-PA) is still the only pharmacological treatment for AIS, plasmin, the effector protease, has been reported to suppress dendritic cells (DCs), known for their potent antigen-presenting capacity. Accordingly, in the major group of thrombolyzed AIS patients who fail to reanalyze (>60%), t-PA might trigger unintended and potentially harmful immunosuppressive consequences instead of beneficial reperfusion. To test this hypothesis, we performed an exploratory study to investigate the immunomodulatory properties of t-PA treatment in a mouse model of ischemic stroke. Methods: C57Bl/6J wild-type mice and plasminogen-deficient (plg−/−) mice were subjected to middle cerebral artery occlusion (MCAo) for 60 min followed by mouse t-PA treatment (0.9 mg/kg) at reperfusion. Behavioral testing was performed 23 h after occlusion, pursued by determination of blood counts and plasma cytokines at 24 h. Spleens and cervical lymph nodes (cLN) were also harvested and characterized by flow cytometry. Results: MCAo resulted in profound attenuation of immune activation, as anticipated. t-PA treatment not only worsened neurological deficit, but further reduced lymphocyte and monocyte counts in blood, enhanced plasma levels of both IL-10 and TNFα and decreased various conventional DC subsets in the spleen and cLN, consistent with enhanced immunosuppression and systemic inflammation after stroke. Many of these effects were abolished in plg−/− mice, suggesting plasmin as a key mediator of t-PA-induced immunosuppression. Conclusion: t-PA, via plasmin generation, may weaken the immune response post-stroke, potentially enhancing infection risk and impairing neurological recovery. Due to the large number of comparisons performed in this study, additional pre-clinical work is required to confirm these significant possibilities. Future studies will also need to ascertain the functional implications of t-PA-mediated immunosuppression for thrombolyzed AIS patients, particularly for those with failed recanalization.
Collapse
Affiliation(s)
- Dominik F Draxler
- Molecular Neurotrauma and Haemostasis, Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
| | - Felix Lee
- Molecular Neurotrauma and Haemostasis, Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
| | - Heidi Ho
- Molecular Neurotrauma and Haemostasis, Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
| | - Charithani B Keragala
- Molecular Neurotrauma and Haemostasis, Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
| | - Robert L Medcalf
- Molecular Neurotrauma and Haemostasis, Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
| | - Be'eri Niego
- Molecular Neurotrauma and Haemostasis, Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
35
|
González-Miguel J, Valero MA, Reguera-Gomez M, Mas-Bargues C, Bargues MD, Simón F, Mas-Coma S. Numerous Fasciola plasminogen-binding proteins may underlie blood-brain barrier leakage and explain neurological disorder complexity and heterogeneity in the acute and chronic phases of human fascioliasis. Parasitology 2019; 146:284-298. [PMID: 30246668 PMCID: PMC6402360 DOI: 10.1017/s0031182018001464] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 07/26/2018] [Accepted: 07/27/2018] [Indexed: 12/17/2022]
Abstract
Human fascioliasis is a worldwide, pathogenic food-borne trematodiasis. Impressive clinical pictures comprising puzzling polymorphisms, manifestation multifocality, disease evolution changes, sequelae and mortality, have been reported in patients presenting with neurological, meningeal, neuropsychic and ocular disorders caused at distance by flukes infecting the liver. Proteomic and mass spectrometry analyses of the Fasciola hepatica excretome/secretome identified numerous, several new, plasminogen-binding proteins enhancing plasmin generation. This may underlie blood-brain barrier leakage whether by many simultaneously migrating, small-sized juvenile flukes in the acute phase, or by breakage of encapsulating formations triggered by single worm tracks in the chronic phase. Blood-brain barrier leakages may subsequently occur due to a fibrinolytic system-dependent mechanism involving plasmin-dependent generation of the proinflammatory peptide bradykinin and activation of bradykinin B2 receptors, after different plasminogen-binding protein agglomeration waves. Interactions between diverse parasitic situations and non-imbalancing fibrinolysis system alterations are for the first time proposed that explain the complexity, heterogeneity and timely variations of neurological disorders. Additionally, inflammation and dilation of blood vessels may be due to contact system-dependent generation bradykinin. This baseline allows for search of indicators to detect neurological risk in fascioliasis patients and experimental work on antifibrinolytic treatments or B2 receptor antagonists for preventing blood-brain barrier leakage.
Collapse
Affiliation(s)
- J. González-Miguel
- Laboratorio de Parasitología, Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA-CSIC), Cordel de Merinas 40-52, 37008 Salamanca, Spain
| | - M. A. Valero
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
| | - M. Reguera-Gomez
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
| | - C. Mas-Bargues
- Departamento de Fisiología, Facultad de Medicina, Universidad de Valencia, Av. Blasco Ibáñez No. 15, 46010 Valencia, Spain
| | - M. D. Bargues
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
| | - F. Simón
- Área de Parasitología, Facultad de Farmacia, Universidad de Salamanca, Av. Licenciado Méndez Nieto s/n, 37007 Salamanca, Spain
| | - S. Mas-Coma
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
| |
Collapse
|
36
|
Reinhold AK, Yang S, Chen JTC, Hu L, Sauer RS, Krug SM, Mambretti EM, Fromm M, Brack A, Rittner HL. Tissue plasminogen activator and neuropathy open the blood-nerve barrier with upregulation of microRNA-155-5p in male rats. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1160-1169. [PMID: 30625382 DOI: 10.1016/j.bbadis.2019.01.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 11/30/2018] [Accepted: 01/04/2019] [Indexed: 12/14/2022]
Abstract
The blood-nerve barrier (BNB) consisting of the perineurium and endoneurial vessels is sealed by tight junction proteins. BNB alterations are a crucial factor in the pathogenesis of peripheral neuropathies. However, barrier opening, e.g. by tissue plasminogen activator (tPA), can also facilitate topical application of analgesics. Here, we examined tPA both in the pathophysiology of neuropathy-induced BNB opening or via exogenous application and its effect on the cytoplasmatic tight junction protein anchoring protein, zona occludens-1 (ZO-1), the adherens molecule JAM-C and microRNA(miR)-155-5p. Specifically, we investigated whether tPA alone and barrier opening lead to pain behavioral changes, i.e. hyperalgesia, or whether these effects require further factors. Male Wistar rats underwent chronic constriction injury (CCI) or were treated by a single perisciatic application of recombinant (r)tPA. CCI elicited mechanical allodynia, tPA mRNA upregulation, macrophage invasion, BNB leakage for large molecule tracers, downregulation of ZO-1 and JAM-C mRNA/protein, and a loss of immunoreactivity of both in perineurium and endoneurial cells. Similarly, after perisciatic rtPA injection, ZO-1 and JAM-C mRNA as well as cytosolic/membrane protein and ZO-1 immunoreactivity were downregulated, and the BNB was opened. Neither mechanical hypersensitivity nor macrophage infiltration was observed after rtPA in contrast to CCI. Mechanistically, miR-155-5p, which is known to destabilize barriers and tight junction proteins like claudin-1 and ZO-1, was increased in CCI and to lesser extent after rtPA application. In summary, tPA transiently opens the BNB possibly via miR-155-5p. However, tPA does not provoke allodynia in the absence of a neuropathic stimulus like a ligation or inflammation.
Collapse
Affiliation(s)
- Ann-Kristin Reinhold
- Dept. of Anesthesiology, University Hospital of Würzburg, 97080 Würzburg, Germany
| | - Shaobing Yang
- Dept. of Anesthesiology, University Hospital of Würzburg, 97080 Würzburg, Germany; Dept. of Anesthesiology and Pain Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
| | | | - Liu Hu
- Dept. of Anesthesiology, University Hospital of Würzburg, 97080 Würzburg, Germany; Dept. of Anesthesiology and Pain Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Reine-Solange Sauer
- Dept. of Anesthesiology, University Hospital of Würzburg, 97080 Würzburg, Germany
| | - Susanne M Krug
- Institute of Clinical Physiology, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, 12200 Berlin, Germany
| | - Egle M Mambretti
- Dept. of Anesthesiology, University Hospital of Würzburg, 97080 Würzburg, Germany
| | - Michael Fromm
- Institute of Clinical Physiology, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, 12200 Berlin, Germany
| | - Alexander Brack
- Dept. of Anesthesiology, University Hospital of Würzburg, 97080 Würzburg, Germany
| | - Heike L Rittner
- Dept. of Anesthesiology, University Hospital of Würzburg, 97080 Würzburg, Germany.
| |
Collapse
|
37
|
Longstaff C, Locke M. Increased urokinase and consumption of α 2 -antiplasmin as an explanation for the loss of benefit of tranexamic acid after treatment delay. J Thromb Haemost 2019; 17:195-205. [PMID: 30451372 PMCID: PMC6334274 DOI: 10.1111/jth.14338] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Indexed: 12/26/2022]
Abstract
Essentials Delayed treatment with tranexamic acid results in loss of efficacy and poor outcomes. Increasing urokinase activity may account for adverse effects of late tranexamic acid treatment. Urokinase + tranexamic acid produces plasmin in plasma or blood and disrupts clotting. α2 -Antiplasmin consumption with ongoing fibrinolysis increases plasmin-induced coagulopathy. SUMMARY: Background Tranexamic acid (TXA) is an effective antifibrinolytic agent with a proven safety record. However, large clinical trials show TXA becomes ineffective or harmful if treatment is delayed beyond 3 h. The mechanism is unknown but urokinase plasminogen activator (uPA) has been implicated. Methods Inhibitory mechanisms of TXA were explored in a variety of clot lysis systems using plasma and whole blood. Lysis by tissue plasminogen activator (tPA), uPA and plasmin were investigated. Coagulopathy was investigated using ROTEM and activated partial thromboplastin time (APTT). Results IC50 values for antifibrinolytic activity of TXA varied from < 10 to > 1000 μmol L-1 depending on the system, but good fibrin protection was observed in the presence of tPA, uPA and plasmin. However, in plasma or blood, active plasmin was generated by TXA + uPA (but not tPA) and coagulopathy developed leading to no or poor clot formation. The extent of coagulopathy was sensitive to available α2 -antiplasmin. No clot formed with plasma containing 40% normal α2 -antiplasmin after short incubation with TXA + uPA. Adding purified α2 -antiplasmin progressively restored clotting. Plasmin could be inhibited by aprotinin, IC50 = 530 nmol L-1 , in plasma. Conclusions Tranexamic acid protects fibrin but stimulates uPA activity and slows inhibition of plasmin by α2 -antiplasmin. Plasmin proteolytic activity digests fibrinogen and disrupts coagulation, exacerbated when α2 -antiplasmin is consumed by ongoing fibrinolysis. Additional direct inhibition of plasmin by aprotinin may prevent development of coagulopathy and extend the useful time window of TXA treatment.
Collapse
Affiliation(s)
- C. Longstaff
- Biotherapeutics DivisionNational Institute for Biological Standards and ControlSouth MimmsUK
| | - M. Locke
- Biotherapeutics DivisionNational Institute for Biological Standards and ControlSouth MimmsUK
| |
Collapse
|
38
|
Abstract
Located at the interface of the circulation system and the CNS, the basement membrane (BM) is well positioned to regulate blood-brain barrier (BBB) integrity. Given the important roles of BBB in the development and progression of various neurological disorders, the BM has been hypothesized to contribute to the pathogenesis of these diseases. After stroke, a cerebrovascular disease caused by rupture (hemorrhagic) or occlusion (ischemic) of cerebral blood vessels, the BM undergoes constant remodeling to modulate disease progression. Although an association between BM dissolution and stroke is observed, how each individual BM component changes after stroke and how these components contribute to stroke pathogenesis are mostly unclear. In this review, I first briefly introduce the composition of the BM in the brain. Next, the functions of the BM and its major components in BBB maintenance under homeostatic conditions are summarized. Furthermore, the roles of the BM and its major components in the pathogenesis of hemorrhagic and ischemic stroke are discussed. Last, unsolved questions and potential future directions are described. This review aims to provide a comprehensive reference for future studies, stimulate the formation of new ideas, and promote the generation of new genetic tools in the field of BM/stroke research.
Collapse
Affiliation(s)
- Yao Yao
- Yao Yao, Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 340 Pharmacy South Building, 250 West Green Street, Athens, GA 30602, USA.
| |
Collapse
|
39
|
Page S, Patel R, Raut S, Al-Ahmad A. Neurological diseases at the blood-brain barrier: Stemming new scientific paradigms using patient-derived induced pluripotent cells. Biochim Biophys Acta Mol Basis Dis 2018; 1866:165358. [PMID: 30593893 DOI: 10.1016/j.bbadis.2018.12.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/15/2018] [Accepted: 12/05/2018] [Indexed: 02/08/2023]
Abstract
The blood-brain barrier (BBB) is a component of the neurovascular unit formed by specialized brain microvascular endothelial cells (BMECs) surrounded by a specific basement membrane interacting with astrocytes, neurons, and pericytes. The BBB plays an essential function in the maintenance of brain homeostasis, by providing a physical and chemical barrier against pathogens and xenobiotics. Although the disruption of the BBB occurs with several neurological disorders, the scarcity of patient material source and lack of reliability of current in vitro models hindered our ability to model the BBB during such neurological conditions. The development of novel in vitro models based on patient-derived stem cells opened new venues in modeling the human BBB in vitro, by being more accurate than existing in vitro models, but also bringing such models closer to the in vivo setting. In addition, patient-derived models of the BBB opens the avenue to address the contribution of genetic factors commonly associated with certain neurological diseases on the BBB pathophysiology. This review provides a comprehensive understanding of the BBB, the current development of stem cell-based models in the field, the current challenges and limitations of such models.
Collapse
Affiliation(s)
- Shyanne Page
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, School of Pharmacy, Amarillo, TX, United States of America
| | - Ronak Patel
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, School of Pharmacy, Amarillo, TX, United States of America
| | - Snehal Raut
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, School of Pharmacy, Amarillo, TX, United States of America
| | - Abraham Al-Ahmad
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, School of Pharmacy, Amarillo, TX, United States of America.
| |
Collapse
|
40
|
Guo X, Zhang L, Chen J, Cao Y, Zhang Z, Li L, Han Z. Protective effects of 2-(2-benzonfuranyl)-2-imidazoline combined with tissue plasminogen activator after embolic stroke in rats. Brain Res 2018; 1699:142-149. [PMID: 30170015 DOI: 10.1016/j.brainres.2018.08.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 08/24/2018] [Accepted: 08/26/2018] [Indexed: 10/28/2022]
Abstract
Stroke is the third leading cause of death and disability in developing countries. The effective therapy for acute ischemic stroke is thrombolysis with recombinant tissue plasminogen activator (rt-PA) within 4.5 h of stroke onset. An effective post-ischemic neuroprotectant would extend the advantages of rt-PA, and protect against complications of thrombolysis. We previously reported that 2-(2-benzofuranyl)-2-imidazoline (2-BFI), a newly discovered ligand for high-affinity type 2 imidazoline receptor (I2R), provides neuroprotection against ischemic stroke in rats. Here we investigated the protective effects of 2-BFI in combination with delayed intravenous rt-PA after stroke induced by embolic middle cerebral artery occlusion (eMCAO) in rats. Infarct size was determined using 2,3,5-triphenyltrazolium chloride staining, while neurological deficit was assessed based on neurological score. Numbers of apoptotic cells in vivo were estimated using TUNEL stain, and expression of the pro-apoptotic protein BAX and anti-apoptotic protein BCL-2 were quantified by Western blotting. The results showed that 2-BFI (3 mg/kg) administered at 0.5 h after embolic MCAO combined with rt-PA (10 mg/kg) administered at 6 h reduced brain infarct size, mitigated neurological deficit, decreased the number of TUNEL-positive cells, down-regulated BAX expression, and up-regulated BCL-2 expression. These findings suggest that 2-BFI may extend the therapeutic window of rt-PA to 6 h after embolic stroke onset in rats.
Collapse
Affiliation(s)
- Xiaoling Guo
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China; Center of Scientific Research, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Linlei Zhang
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiaou Chen
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yungang Cao
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zheng Zhang
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Li Li
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhao Han
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
41
|
Gauberti M, Potzeha F, Vivien D, Martinez de Lizarrondo S. Impact of Bradykinin Generation During Thrombolysis in Ischemic Stroke. Front Med (Lausanne) 2018; 5:195. [PMID: 30018956 PMCID: PMC6037726 DOI: 10.3389/fmed.2018.00195] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/14/2018] [Indexed: 12/22/2022] Open
Abstract
Ischemic stroke is one of the leading causes of death and disability worldwide. Current medical management in the acute phase is based on the activation of the fibrinolytic cascade by intravenous injection of a plasminogen activator (such as tissue-type plasminogen activator, tPA) that promotes restauration of the cerebral blood flow and improves stroke outcome. Unfortunately, the use of tPA is associated with deleterious effects such as hemorrhagic transformation, symptomatic brain edema, and angioedema, which limit the efficacy of this therapeutic strategy. Preclinical and clinical evidence suggests that intravenous thrombolysis generates large amounts of bradykinin, a peptide with potent pro-inflammatory, and pro-edematous effects. This tPA-triggered generation of bradykinin could participate in the deleterious effects of thrombolysis and is a potential target to improve neurological outcome in tPA-treated patients. The present review aims at summarizing current evidence linking thrombolysis, bradykinin generation, and neurovascular damage.
Collapse
Affiliation(s)
- Maxime Gauberti
- Normandie Univ, UNICAEN, Institut National de la Santé et de la Recherche Médicale UMR-S U1237, "Physiopathology and Imaging of Neurological Disorders" PhIND, Caen, France.,Department of Diagnostic Imaging and Interventional Radiology, Centre Hospitalier Universitaire Caen Côte de Nacre, Caen, France
| | - Fanny Potzeha
- Normandie Univ, UNICAEN, Institut National de la Santé et de la Recherche Médicale UMR-S U1237, "Physiopathology and Imaging of Neurological Disorders" PhIND, Caen, France
| | - Denis Vivien
- Normandie Univ, UNICAEN, Institut National de la Santé et de la Recherche Médicale UMR-S U1237, "Physiopathology and Imaging of Neurological Disorders" PhIND, Caen, France.,Department of Clinical Research, Centre Hospitalier Universitaire Caen, Caen, France
| | - Sara Martinez de Lizarrondo
- Normandie Univ, UNICAEN, Institut National de la Santé et de la Recherche Médicale UMR-S U1237, "Physiopathology and Imaging of Neurological Disorders" PhIND, Caen, France
| |
Collapse
|
42
|
Rao SK, Ahmad O, Tariq F, Suchdev K, Mittal S, Mohamed W. Cerebral Abscess following Mechanical Thrombectomy for Ischemic Stroke: Report of a Case and Review of Literature. Cureus 2018; 10:e2824. [PMID: 30233996 PMCID: PMC6138238 DOI: 10.7759/cureus.2824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Cerebral infections have been reported after endovascular interventions such as embolization and coiling. Such complications are extremely rare and only one other case has been reported in a patient who underwent an endovascular therapy for ischemic stroke. We report a 32-year-old woman, who presented to our hospital with headaches lasting four weeks after an endovascular intervention for ischemic stroke via mechanical thrombectomy. Further investigations revealed a cerebral abscess in the area of the infarct. She was effectively treated with antibiotics in combination with stereotactic drainage and was discharged after she made a good recovery. A review of literature on cerebral abscesses after minimally invasive procedures such as endovascular intervention was also done and is being presented in this paper. A cerebral abscess can occur rarely after endovascular interventions. A high degree of suspicion is important in identifying patients with an abscess and appropriate treatment can prevent significant morbidity or even death.
Collapse
Affiliation(s)
- Shishir K Rao
- Neurology, Wayne State University School of Medicine, Detroit, USA
| | - Owais Ahmad
- Neurosurgery, Wayne State University School of Medicine, Detroit, USA
| | - Farzana Tariq
- Neurosurgery, Wayne State University School of Medicine, Detroit, USA
| | - Kushak Suchdev
- Neurology, Wayne State University School of Medicine, Detroit, USA
| | - Sandeep Mittal
- Neurosurgery, Wayne State University School of Medicine, Detroit, USA
| | - Wazim Mohamed
- Neurology, Wayne State University School of Medicine, Detroit, USA
| |
Collapse
|
43
|
Chen S, Chen Z, Cui J, McCrary ML, Song H, Mobashery S, Chang M, Gu Z. Early Abrogation of Gelatinase Activity Extends the Time Window for tPA Thrombolysis after Embolic Focal Cerebral Ischemia in Mice. eNeuro 2018; 5:ENEURO.0391-17.2018. [PMID: 29963617 PMCID: PMC6021166 DOI: 10.1523/eneuro.0391-17.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 04/28/2018] [Accepted: 05/22/2018] [Indexed: 02/02/2023] Open
Abstract
Acute ischemic stroke (AIS) is caused by clotting in the cerebral arteries, leading to brain oxygen deprivation and cerebral infarction. Recombinant human tissue plasminogen activator (tPA) is currently the only Food and Drug Administration-approved drug for ischemic stroke. However, tPA has to be administered within 4.5 h from the disease onset and delayed treatment of tPA can increase the risk of neurovascular impairment, including neuronal cell death, blood-brain barrier (BBB) disruption, and hemorrhagic transformation. A key contributing factor for tPA-induced neurovascular impairment is activation of matrix metalloproteinase-9 (MMP-9). We used a clinically-relevant mouse embolic model of focal-cerebral ischemia by insertion of a single embolus of blood clot to block the right middle cerebral artery. We showed that administration of the potent and highly selective gelatinase inhibitor SB-3CT extends the time window for administration of tPA, attenuating infarct volume, mitigating BBB disruption, and antagonizing the increase in cerebral hemorrhage induced by tPA treatment. We demonstrated that SB-3CT attenuates tPA-induced expression of vascular MMP-9, prevents gelatinase-mediated cleavage of extracellular laminin, rescues endothelial cells, and reduces caveolae-mediated transcytosis of endothelial cells. These results suggest that abrogation of MMP-9 activity mitigates the detrimental effects of tPA treatment, thus the combination treatment holds great promise for extending the therapeutic window for tPA thrombolysis, which opens the opportunity for clinical recourse to a greater number of patients.
Collapse
Affiliation(s)
- Shanyan Chen
- Department of Pathology and Anatomical Sciences, University of Missouri at Columbia, Columbia, MO 65212
- Interdisciplinary Neuroscience Program, University of Missouri at Columbia, Columbia, MO 65212
| | - Zhenzhou Chen
- Department of Pathology and Anatomical Sciences, University of Missouri at Columbia, Columbia, MO 65212
| | - Jiankun Cui
- Department of Pathology and Anatomical Sciences, University of Missouri at Columbia, Columbia, MO 65212
- Harry S. Truman Memorial Veterans' Hospital Research Service, Columbia, MO 65201
| | - Myah L. McCrary
- Department of Pathology and Anatomical Sciences, University of Missouri at Columbia, Columbia, MO 65212
| | - Hailong Song
- Department of Pathology and Anatomical Sciences, University of Missouri at Columbia, Columbia, MO 65212
- Interdisciplinary Neuroscience Program, University of Missouri at Columbia, Columbia, MO 65212
| | - Shahriar Mobashery
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556
| | - Mayland Chang
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556
| | - Zezong Gu
- Department of Pathology and Anatomical Sciences, University of Missouri at Columbia, Columbia, MO 65212
- Harry S. Truman Memorial Veterans' Hospital Research Service, Columbia, MO 65201
| |
Collapse
|
44
|
Kit OI, Frantsiyants EM, Kozlova LS, Rostorguev EE, Balyazin-Parfenov IV, Pogorelova YA. [A plasminogen regulation system in brain tumors]. ZHURNAL VOPROSY NEĬROKHIRURGII IMENI N. N. BURDENKO 2018; 81:22-27. [PMID: 28524122 DOI: 10.17116/neiro201781222-27] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Tumor progression and neovascularization during malignant processes are believed to be associated with plasminogen activators and the PAI-1 inhibitor, but their role and interactions in various types of brain tumors have been studied insufficiently. AIM To conduct a comparative study of plasminogen regulation in optic nerve sheath meningiomas, glioblastomas, and brain metastases of breast cancer, as well as in perifocal tissues surrounding the tumors. MATERIAL AND METHODS Tumors and perifocal areas of 19 breast cancer (BC) metastases, 24 glioblastomas, and 13 meningiomas without perifocal edema were investigated by ELISA in 56 patients aged 35-72 years. Histological control was carried out in each case. RESULTS Significant differences were found in the levels of urokinase (uPA), tissue plasminogen activator (tPA), and PAI-1 inhibitor between glioblastomas and breast cancer metastases and the histologically unaltered (relatively intact) tissue around meningioma lesions (p≤0.05 in all cases). The levels of uPA-AG and uPA-act in meningioma were higher than those in the relatively intact tissue, while the levels of both tPA forms were reduced. The levels of uPA-AG and uPA-act in both malignant tumors and their perifocal areas were elevated compared to those in the relatively intact tissue. The levels of both tPA forms were reduced in all other tissues, except for glioblastoma. The level of PAI-1 inhibitor in malignant tissues was higher (being predominant in tumors) compared to that in the intact tissue surrounding meningioma, as well as relative to that in meningioma. The study proves that uPA and its inhibitor PAI-1 are directly involved in the metabolism of malignant gliomas and brain metastases of breast cancer. The role of tPA is to protect meningiomas; tPA activation in malignant brain tumors is suppressed.
Collapse
Affiliation(s)
- O I Kit
- Rostov Cancer Research Institute, Rostov-on-Don, Russia
| | | | - L S Kozlova
- Rostov Cancer Research Institute, Rostov-on-Don, Russia
| | | | | | | |
Collapse
|
45
|
Gerzanich V, Kwon MS, Woo SK, Ivanov A, Simard JM. SUR1-TRPM4 channel activation and phasic secretion of MMP-9 induced by tPA in brain endothelial cells. PLoS One 2018; 13:e0195526. [PMID: 29617457 PMCID: PMC5884564 DOI: 10.1371/journal.pone.0195526] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 03/23/2018] [Indexed: 11/25/2022] Open
Abstract
Background Hemorrhagic transformation is a major complication of ischemic stroke, is linked to matrix metalloproteinase-9 (MMP-9), and is exacerbated by tissue plasminogen activator (tPA). Cerebral ischemia/reperfusion is characterized by SUR1-TRPM4 (sulfonylurea receptor 1—transient receptor potential melastatin 4) channel upregulation in microvascular endothelium. In humans and rodents with cerebral ischemia/reperfusion (I/R), the SUR1 antagonist, glibenclamide, reduces hemorrhagic transformation and plasma MMP-9, but the mechanism is unknown. We hypothesized that tPA induces protease activated receptor 1 (PAR1)-mediated, Ca2+-dependent phasic secretion of MMP-9 from activated brain endothelium, and that SUR1-TRPM4 is required for this process. Methods Cerebral I/R, of 2 and 4 hours duration, respectively, was obtained using conventional middle cerebral artery occlusion. Immunolabeling was used to quantify p65 nuclear translocation. Murine and human brain endothelial cells (BEC) were studied in vitro, without and with NF-κB activation, using immunoblot, zymography and ELISA, patch clamp electrophysiology, and calcium imaging. Genetic and pharmacological manipulations were used to identify signaling pathways. Results Cerebral I/R caused prominent nuclear translocation of p65 in microvascular endothelium. NF-κB-activation of BEC caused de novo expression of SUR1-TRPM4 channels. In NF-κB-activated BEC: (i) tPA caused opening of SUR1-TRPM4 channels in a plasmin-, PAR1-, TRPC3- and Ca2+-dependent manner; (ii) tPA caused PAR1-dependent secretion of MMP-9; (iii) tonic secretion of MMP-9 by activated BEC was not influenced by SUR1 inhibition; (iv) phasic secretion of MMP-9 induced by tPA or the PAR1-agonist, TFLLR, required functional SUR1-TRPM4 channels, with inhibition of SUR1 decreasing tPA-induced MMP-9 secretion. Conclusions tPA induces PAR1-mediated, SUR1-TRPM4-dependent, phasic secretion of MMP-9 from activated brain endothelium.
Collapse
Affiliation(s)
- Volodymyr Gerzanich
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Min Seong Kwon
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Seung Kyoon Woo
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Alexander Ivanov
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - J. Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
46
|
Liu C, Shi F, Chen Z, Yan S, Ding X, Lou M. Severe Blood-Brain Barrier Disruption in Cardioembolic Stroke. Front Neurol 2018; 9:55. [PMID: 29472890 PMCID: PMC5809413 DOI: 10.3389/fneur.2018.00055] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 01/22/2018] [Indexed: 12/24/2022] Open
Abstract
Background Previous studies demonstrated that cardioembolism (CE) was prone to develop hemorrhagic transformation (HT), whereas hyper-permeability of blood–brain barrier (BBB) might be one reason for the development of HT. We, thus, aimed to investigate whether the BBB permeability (BBBP) was higher in CE stroke than other stroke subtypes in acute ischemic stroke (AIS) patients. Methods This study was a retrospective review of prospectively collected clinical and imaging database of AIS patients who underwent CT perfusion. Hypoperfusion was defined as Tmax >6 s. The average relative permeability-surface area product (rPS), reflecting the BBBP, was calculated within the hypoperfusion region (rPShypo). CE was diagnosed according to the international Trial of Org 10172 in Acute Stroke Treatment criteria. Receiver operating characteristics (ROC) curve analysis was used to determine predictive value of rPShypo for CE. Logistic regression was used to identify independent predictors for CE. Results A total of 187 patients were included in the final analysis [median age, 73 (61–80) years; 75 (40.1%) females; median baseline National Institutes of Health Stroke Scale score, 12 (7–16)]. Median rPShypo was 65.5 (35.8–110.1)%. Ninety-seven (51.9%) patients were diagnosed as CE. ROC analysis revealed that the optimal rPShypo threshold for CE was 86.71%. The value of rPShypo and the rate of rPShypo>86.71% were significantly higher in patients with CE than other stroke subtypes (p < 0.05), after adjusting for the potential confounds. Conclusion The extent of BBB disruption is more severe in CE stroke than other stroke subtypes during the hyperacute stage.
Collapse
Affiliation(s)
- Chang Liu
- Department of Neurology, School of Medicine, The 2nd Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Feina Shi
- Department of Neurology, School of Medicine, The 2nd Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Zhicai Chen
- Department of Neurology, School of Medicine, The 2nd Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Shenqiang Yan
- Department of Neurology, School of Medicine, The 2nd Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Xinfa Ding
- Department of Radiology, School of Medicine, The 2nd Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Min Lou
- Department of Neurology, School of Medicine, The 2nd Affiliated Hospital of Zhejiang University, Hangzhou, China
| |
Collapse
|
47
|
Takeyama M, Takeuchi F, Gosho M, Sugita K, Zako M, Iwaki M, Kamei M. Effect of oral tranexamic acid on macular edema associated with retinal vein occlusion or diabetes. Clin Ophthalmol 2018; 12:35-41. [PMID: 29339919 PMCID: PMC5745154 DOI: 10.2147/opth.s149935] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Purpose Tranexamic acid (TXA) is a widely used antifibrinolytic agent that can also cause a decrease in vascular permeability. We hypothesized that TXA could improve macular edema (ME) that is caused by an increase in retinal vascular permeability. The aim of this study is to evaluate the efficacy of oral TXA for ME associated with retinal vein occlusion (RVO) or diabetic ME (DME). Patients and methods Oral TXA (1,500 mg daily for 2 weeks) was administered to patients with persistent ME secondary to RVO (7 eyes) and DME (7 eyes). After 2 weeks (ie, the final day of administration) and 6 weeks (ie, 4 weeks after the final administration), best-corrected visual acuity and central macular thickness (CMT) were measured and compared with baseline. Analyses were performed for RVO and DME cases. No other treatment was performed during the study period. Results In RVO cases, significant improvement in CMT was found between baseline (467.7±121.4 μm) and 2-week measurements after treatment (428.7±110.5 μm, p=0.024). No significant change was found in CMT between measurements taken at baseline and 6 weeks after treatment. In DME cases, no significant change was found in CMT between measurements taken at baseline and 2 or 6 weeks after treatment. In all analyses of best-corrected visual acuity, no significant change was observed. Conclusion The results support the hypothesis that plasmin plays a role in the development of ME associated with RVO, and oral TXA administration may be useful as an adjuvant treatment when combined with other agents such as anti-vascular endothelial growth factor.
Collapse
Affiliation(s)
| | - Fumio Takeuchi
- Department of Biochemistry, Aichi Medical University, Nagakute
| | - Masahiko Gosho
- Department of Clinical Trial and Clinical Epidemiology, Faculty of Medicine, University of Tsukuba, Tsukuba
| | - Keijiro Sugita
- Department of Ophthalmology, Aichi Medical University, Nagakute
| | | | - Masayoshi Iwaki
- Department of Ophthalmology, Yokkaichi, Digestive Disease Center, Komono, Japan
| | - Motohiro Kamei
- Department of Ophthalmology, Aichi Medical University, Nagakute
| |
Collapse
|
48
|
Medcalf RL. What drives “fibrinolysis”? Hamostaseologie 2017; 35:303-10. [DOI: 10.5482/hamo-14-10-0050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 12/15/2014] [Indexed: 11/05/2022] Open
Abstract
SummaryThe timely removal of blood clots and fibrin deposits is essential in the regulation of haemostasis. This is achieved by the fibrinolytic system, an enzymatic process that regulates the activation of plasminogen into its proteolytic form, plasmin. This is a self-regulated event as the very presence of fibrin initiates plasminogen activation on the fibrin surface due to the presentation of exposed C-terminal lysine residues in fibrin that allow plasminogen to position itself via its lysine binding sites and to be more efficiently cleaved by tissue-type plasminogen activator (t-PA). Hence fibrin, the ultimate substrate of plasmin during fibrinolysis, is indeed an essential cofactor in the cascade. What has now come to light is that the fibrinolytic system is not solely designed to eliminate fibrin. Indeed, it is a broad acting system that processes a variety of proteins, including many in the brain where there is no fibrin. So what drives t-PA-mediated plasminogen activation when fibrin is not available?This review will describe the broadening role of the fibrinolytic system highlighting the importance of fibrin and other key proteins as facilitators during t-PA-mediated plasminogen activation.
Collapse
|
49
|
Yaghi S, Willey JZ, Cucchiara B, Goldstein JN, Gonzales NR, Khatri P, Kim LJ, Mayer SA, Sheth KN, Schwamm LH. Treatment and Outcome of Hemorrhagic Transformation After Intravenous Alteplase in Acute Ischemic Stroke: A Scientific Statement for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke 2017; 48:e343-e361. [DOI: 10.1161/str.0000000000000152] [Citation(s) in RCA: 249] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Purpose—
Symptomatic intracranial hemorrhage (sICH) is the most feared complication of intravenous thrombolytic therapy in acute ischemic stroke. Treatment of sICH is based on expert opinion and small case series, with the efficacy of such treatments not well established. This document aims to provide an overview of sICH with a focus on pathophysiology and treatment.
Methods—
A literature review was performed for randomized trials, prospective and retrospective studies, opinion papers, case series, and case reports on the definitions, epidemiology, risk factors, pathophysiology, treatment, and outcome of sICH. The document sections were divided among writing group members who performed the literature review, summarized the literature, and provided suggestions on the diagnosis and treatment of patients with sICH caused by systemic thrombolysis with alteplase. Several drafts were circulated among writing group members until a consensus was achieved.
Results—
sICH is an uncommon but severe complication of systemic thrombolysis in acute ischemic stroke. Prompt diagnosis and early correction of the coagulopathy after alteplase have remained the mainstay of treatment. Further research is required to establish treatments aimed at maintaining integrity of the blood-brain barrier in acute ischemic stroke based on inhibition of the underlying biochemical processes.
Collapse
|
50
|
Niego B, Broughton BRS, Ho H, Sobey CG, Medcalf RL. LDL receptor blockade reduces mortality in a mouse model of ischaemic stroke without improving tissue-type plasminogen activator-induced brain haemorrhage: towards pre-clinical simulation of symptomatic ICH. Fluids Barriers CNS 2017; 14:33. [PMID: 29157263 PMCID: PMC5696777 DOI: 10.1186/s12987-017-0081-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 10/31/2017] [Indexed: 12/24/2022] Open
Abstract
Background Symptomatic intracerebral haemorrhage (sICH) following tissue-type plasminogen activator (rt-PA) administration is the most feared and lethal complication of thrombolytic therapy for ischaemic stroke, creating a significant obstacle for a broader uptake of this beneficial treatment. rt-PA also undermines cerebral vasculature stability in a multimodal process which involves engagement with LDL receptor-related protein 1 (LRP-1), potentially underlying the development of sICH. Aims and methods We aimed to simulate rt-PA-induced haemorrhagic transformation (HT) in a mouse model of stroke and to assess if it drives symptomatic neurological deterioration and whether it is attenuated by LDL receptor blockade. rt-PA (10 mg/kg) or its vehicle, with or without the LDL receptor antagonist, receptor-associated protein (RAP; 2 mg/kg), were intravenously injected at reperfusion after 0.5 or 4 h of middle cerebral artery occlusion (MCAo). Albumin and haemoglobin content were measured in the perfused mouse brains 24 h post MCAo as indications of blood–brain barrier (BBB) compromise and HT, respectively. Results rt-PA did not elevate brain albumin and haemoglobin levels in sham mice or in mice subjected to 0.5 h MCAo. In contrast, administration of rt-PA after prolonged MCAo (4 h) caused a marked increase in HT (but similar changes in brain albumin) compared to vehicle, mimicking the clinical shift from a safe to detrimental intervention. Interestingly, this HT did not correlate with functional deficit severity at 24 h, suggesting that it does not play a symptomatic role in our mouse stroke model. Co-administration of RAP with or without rt-PA reduced mortality and neurological scores but did not effectively decrease brain albumin and haemoglobin levels. Conclusion Despite the proven causative relationship between severe HT and neurological deterioration in human stroke, rt-PA-triggered HT in mouse MCAo does not contribute to neurological deficit or simulate sICH. Model limitations, such as the long duration of occlusion required, the type of HT achieved and the timing of deficit assessment may account for this mismatch. Our results further suggest that blockade of LDL receptors improves stroke outcome irrespective of rt-PA, blood–brain barrier breakdown and HT.
Collapse
Affiliation(s)
- Be'eri Niego
- Molecular Neurotrauma and Haemostasis, Australian Centre for Blood Diseases, Monash University, Level 4 Burnet Building, 89 Commercial Road, Melbourne, 3004, VIC, Australia.
| | - Brad R S Broughton
- Cardiovascular & Pulmonary Pharmacology Group, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, VIC, Australia
| | - Heidi Ho
- Molecular Neurotrauma and Haemostasis, Australian Centre for Blood Diseases, Monash University, Level 4 Burnet Building, 89 Commercial Road, Melbourne, 3004, VIC, Australia
| | - Christopher G Sobey
- Vascular Biology and Immunopharmacology Group, Department of Physiology, Anatomy & Microbiology, School of Life Sciences, La Trobe University, Bundoora, VIC, Australia
| | - Robert L Medcalf
- Molecular Neurotrauma and Haemostasis, Australian Centre for Blood Diseases, Monash University, Level 4 Burnet Building, 89 Commercial Road, Melbourne, 3004, VIC, Australia
| |
Collapse
|