1
|
Fabrik I, Bilkei-Gorzo O, Öberg M, Fabrikova D, Fuchs J, Sihlbom C, Göransson M, Härtlova A. Lung macrophages utilize unique cathepsin K-dependent phagosomal machinery to degrade intracellular collagen. Life Sci Alliance 2023; 6:e202201535. [PMID: 36697252 PMCID: PMC9877437 DOI: 10.26508/lsa.202201535] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 12/22/2022] [Accepted: 01/03/2023] [Indexed: 01/26/2023] Open
Abstract
Resident tissue macrophages are organ-specialized phagocytes responsible for the maintenance and protection of tissue homeostasis. It is well established that tissue diversity is reflected by the heterogeneity of resident tissue macrophage origin and phenotype. However, much less is known about tissue-specific phagocytic and proteolytic macrophage functions. Here, using a quantitative proteomics approach, we identify cathepsins as key determinants of phagosome maturation in primary peritoneum-, lung-, and brain-resident macrophages. The data further uncover cathepsin K (CtsK) as a molecular marker for lung phagosomes required for intracellular protein and collagen degradation. Pharmacological blockade of CtsK activity diminished phagosomal proteolysis and collagenolysis in lung-resident macrophages. Furthermore, profibrotic TGF-β negatively regulated CtsK-mediated phagosomal collagen degradation independently from classical endocytic-proteolytic pathways. In humans, phagosomal CtsK activity was reduced in COPD lung macrophages and non-COPD lung macrophages exposed to cigarette smoke extract. Taken together, this study provides a comprehensive map of how peritoneal, lung, and brain tissue environment shapes phagosomal composition, revealing CtsK as a key molecular determinant of lung phagosomes contributing to phagocytic collagen clearance in lungs.
Collapse
Affiliation(s)
- Ivo Fabrik
- Institute of Biomedicine, Department of Microbiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Orsolya Bilkei-Gorzo
- Institute of Biomedicine, Department of Microbiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Maria Öberg
- Institute of Biomedicine, Department of Microbiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Daniela Fabrikova
- Institute of Biomedicine, Department of Microbiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Johannes Fuchs
- Proteomics Core Facility, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Carina Sihlbom
- Proteomics Core Facility, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Melker Göransson
- Bioscience COPD/IPF, Research and Early Development, Respiratory and Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Anetta Härtlova
- Institute of Biomedicine, Department of Microbiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- Institute of Medical Microbiology and Hygiene, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany
| |
Collapse
|
2
|
Yang Y, Zhao X, Zhu Z, Zhang L. Vascular dementia: A microglia's perspective. Ageing Res Rev 2022; 81:101734. [PMID: 36113763 DOI: 10.1016/j.arr.2022.101734] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 08/28/2022] [Accepted: 09/11/2022] [Indexed: 01/31/2023]
Abstract
Vascular dementia (VaD) is a second most common form of age-related dementia. It is characterized by cognitive impairment associated with vascular pathology, symptoms mainly caused by cerebral damage due to inadequate blood flow to the brain. The pathogenesis of VaD is complex, and a growing body of literature emphasizes on the involvement of microglia in disease development and progression. Here, we review the current knowledge on the role of microglia in regulating neuroinflammation under the pathogenesis of VaD. The commonly used animal and cell models for understanding the disease pathogenesis were summarized. The mechanisms by which microglia contribute to VaD are multifactorial, and we specifically focus on some of the predominant functions of microglia, including chemotaxis, secretory property, phagocytosis, and its crosstalk with other neurovascular unit cells. Finally, potential therapeutic strategies targeting microglia-modulated neuroinflammation are discussed.
Collapse
Affiliation(s)
- Yi Yang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Hangzhou Key Laboratory of Medical Neurobiology, Hangzhou Normal University, Hangzhou 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China.
| | - Xinyuan Zhao
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Hangzhou Key Laboratory of Medical Neurobiology, Hangzhou Normal University, Hangzhou 311121, China
| | - Zirui Zhu
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Hangzhou Key Laboratory of Medical Neurobiology, Hangzhou Normal University, Hangzhou 311121, China
| | - Lihui Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Hangzhou Key Laboratory of Medical Neurobiology, Hangzhou Normal University, Hangzhou 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China.
| |
Collapse
|
3
|
Cathepsin L-containing exosomes from α-synuclein-activated microglia induce neurotoxicity through the P2X7 receptor. NPJ Parkinsons Dis 2022; 8:127. [PMID: 36202834 PMCID: PMC9537534 DOI: 10.1038/s41531-022-00394-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 09/09/2022] [Indexed: 11/08/2022] Open
Abstract
Uncontrolled microglial activation is pivotal to the pathogenesis of Parkinson's disease (PD), which can secrete Cathepsin L (CTSL) to affect the survival of neurons in the PD patients; however, the precise mechanism has yet to be determined. We demonstrated for the first time that CTSL was mostly released by exosomes derived from α-Syn-activated microglia, resulting in neuronal damage and death. The elevation of CTSL activity was blocked by GW4869, suggesting a critical role for exosomes in mediating CTSL release. Furthermore, the P2X7R/PI3K/AKT signalling pathway was identified as the underlying molecular mechanism since specific antagonists of this signalling pathway, P2X7R knockdown and exosome release inhibitors significantly reduced the injury to cultured mouse cortical neurons. Our study suggests that increased extracellular release of CTSL from α-Syn-activated microglia through exosomes amplifies and aggravates of the neurotoxic effect of microglia, implying that CTSL may be involved in a fresh mechanism of PD pathogenesis, and serve as a potential biomarker and a target for PD drug development.
Collapse
|
4
|
Gu YH, Hawkins BT, Izawa Y, Yoshikawa Y, Koziol JA, Del Zoppo GJ. Intracerebral hemorrhage and thrombin-induced alterations in cerebral microvessel matrix. J Cereb Blood Flow Metab 2022; 42:1732-1747. [PMID: 35510668 PMCID: PMC9441730 DOI: 10.1177/0271678x221099092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Four phase III clinical trials of oral direct factor Xa or thrombin inhibitors demonstrated significantly lower intracranial hemorrhage compared to warfarin in patients with nonvalvular-atrial fibrillation. This is counter-intuitive to the principle that inhibiting thrombosis should increase hemorrhagic risk. We tested the novel hypothesis that anti-thrombin activity decreases the risk of intracerebral hemorrhage by directly inhibiting thrombin-mediated degradation of cerebral microvessel basal lamina matrix, responsible for preventing hemorrhage. Collagen IV, laminin, and perlecan each contain one or more copies of the unique α-thrombin cleavage site consensus sequence. In blinded controlled experiments, α-thrombin significantly degraded each matrix protein in vitro and in vivo in a concentration-dependent fashion. In vivo stereotaxic injection of α-thrombin significantly increased permeability, local IgG extravasation, and hemoglobin (Hgb) deposition together with microvessel matrix degradation in a mouse model. In all formats the direct anti-thrombin dabigatran completely inhibited matrix degradation by α-thrombin. Fourteen-day oral exposure to dabigatran etexilate-containing chow completely inhibited matrix degradation, the permeability to large molecules, and cerebral hemorrhage associated with α-thrombin. These experiments demonstrate that thrombin can degrade microvessel matrix, leading to hemorrhage, and that inhibition of microvessel matrix degradation by α-thrombin decreases cerebral hemorrhage. Implications for focal ischemia and other conditions are discussed.
Collapse
Affiliation(s)
- Yu-Huan Gu
- Division of Hematology, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Brian T Hawkins
- Division of Hematology, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA.,Duke University Center for WaSH-AID, Department of Eklectrical and Computer Engineering, Duke University, Durham, NC, USA
| | - Yoshikane Izawa
- Division of Hematology, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA.,Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Yoji Yoshikawa
- Division of Hematology, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - James A Koziol
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA, USA
| | - Gregory J Del Zoppo
- Division of Hematology, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA.,Department of Neurology, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
5
|
New Insights into the Role of Cysteine Cathepsins in Neuroinflammation. Biomolecules 2021; 11:biom11121796. [PMID: 34944440 PMCID: PMC8698589 DOI: 10.3390/biom11121796] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Neuroinflammation, which is mediated by microglia and astrocytes, is associated with the progression of neurodegenerative diseases. Increasing evidence shows that activated microglia induce the expression and secretion of various lysosomal cathepsins, particularly during the early stage of neuroinflammation. This trigger signaling cascade that aggravate neurodegeneration. To date, most research on neuroinflammation has focused on the role of cysteine cathepsins, the largest cathepsin family. Cysteine cathepsins are primarily responsible for protein degradation in lysosomes; however, they also play a role in regulating a number of other important physiological and pathological processes. This review focuses on the functional roles of cysteine cathepsins in the central nervous system during neuroinflammation, with an emphasis on their roles in the polarization of microglia and neuroinflammation signaling, which in turn causes neuronal death and thus neurodegeneration.
Collapse
|
6
|
Azu OO, Olojede SO, Lawal SK, Oseni SO, Rennie CO, Offo U, Naidu ECS. Novel severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) infection: Microbiologic perspectives and anatomic considerations for sanctuary sites. J Infect Public Health 2021; 14:1237-1246. [PMID: 34455307 PMCID: PMC8378066 DOI: 10.1016/j.jiph.2021.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/31/2021] [Accepted: 08/15/2021] [Indexed: 11/25/2022] Open
Abstract
Introduction A significant chunk of global life – the economy, sports, aviation, academic, and entertainment activities – has significantly been affected by the ravaging outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) with devastating consequences on morbidity and mortality in many countries of the world. Methods This review utilized search engines such as google scholar, PubMed, ResearchGate, and web of science to retrieve articles and information using keywords like “Coronavirus”, “SARS-CoV-2”, “COVID-19”, “Origin of coronavirus and SARS-CoV-2”, “microbiology of coronavirus”, “microbiology of SARS-CoV-2”, COVID-19”, “Coronavirus reservoir sites”, “Anatomic sanctuary sites and SARS-CoV-2”, biological barriers and coronavirus”, biological barrier and SARS-CoV-2”. Results While this pandemic has caught the global scientific community at its lowest level of preparedness, it has inadvertently created a unified and wholesome approach towards developing potential vaccine (s) candidates by escalating clinical trial protocols in many countries of Europe, China and the United States. Interestingly, viral pathobiology continues to be an evolving aspect that potentially shows that the management of the current outbreak may largely depend on the discovery of a vaccine as the administration of known antiviral drugs are proving to offer some respite. Unfortunately, discontinuation and longtime administration of these drugs have been implicated in endocrine, reproductive and neurological disorders owing to the development of pathological lesions at anatomical sanctuary sites such as the brain and testis, as well as the presence of complex biological barriers that permit the entry of viruses but selective to the entrance of chemical substances and drugs. Conclusion This review focuses on the microbiologic perspectives and importance of anatomical sanctuary sites in the possible viral rebound or reinfection into the system and their implications in viral re-entry and development of reproductive and neurological disorders in COVID-19 patients.
Collapse
Affiliation(s)
- Onyemaechi O Azu
- Department of Anatomy, School of Medicine, University of Namibia, Private Bag, Windhoek, 13301, Namibia.
| | - Samuel O Olojede
- Discipline of Clinical Anatomy, School of Laboratory Medicine & Medical Sciences, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, 719 Umbilo Road, Durban, South Africa
| | - Sodiq K Lawal
- Discipline of Clinical Anatomy, School of Laboratory Medicine & Medical Sciences, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, 719 Umbilo Road, Durban, South Africa
| | - Saheed O Oseni
- Department of Biological Sciences, Florida Atlantic University, Davie, FL 33314, USA
| | - Carmen O Rennie
- Discipline of Clinical Anatomy, School of Laboratory Medicine & Medical Sciences, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, 719 Umbilo Road, Durban, South Africa
| | - Ugochukwu Offo
- Department of Pre-Clinical Sciences, University of Limpopo, South Africa
| | - Edwin C S Naidu
- Discipline of Clinical Anatomy, School of Laboratory Medicine & Medical Sciences, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, 719 Umbilo Road, Durban, South Africa
| |
Collapse
|
7
|
Poerwoatmodjo A, Schenk GJ, Geurts JJG, Luchicchi A. Cysteine Proteases and Mitochondrial Instability: A Possible Vicious Cycle in MS Myelin? Front Cell Neurosci 2020; 14:612383. [PMID: 33335477 PMCID: PMC7736044 DOI: 10.3389/fncel.2020.612383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/12/2020] [Indexed: 12/15/2022] Open
Affiliation(s)
| | | | | | - Antonio Luchicchi
- Division Clinical Neurosciences, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam Universitair Medische Centra (UMC), Location Vrije Universiteit (VU) Medical Center, MS Center Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
8
|
Trout AL, Rutkai I, Biose IJ, Bix GJ. Review of Alterations in Perlecan-Associated Vascular Risk Factors in Dementia. Int J Mol Sci 2020; 21:E679. [PMID: 31968632 PMCID: PMC7013765 DOI: 10.3390/ijms21020679] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/09/2020] [Accepted: 01/16/2020] [Indexed: 01/10/2023] Open
Abstract
Perlecan is a heparan sulfate proteoglycan protein in the extracellular matrix that structurally and biochemically supports the cerebrovasculature by dynamically responding to changes in cerebral blood flow. These changes in perlecan expression seem to be contradictory, ranging from neuroprotective and angiogenic to thrombotic and linked to lipid retention. This review investigates perlecan's influence on risk factors such as diabetes, hypertension, and amyloid that effect Vascular contributions to Cognitive Impairment and Dementia (VCID). VCID, a comorbidity with diverse etiology in sporadic Alzheimer's disease (AD), is thought to be a major factor that drives the overall clinical burden of dementia. Accordingly, changes in perlecan expression and distribution in response to VCID appears to be injury, risk factor, location, sex, age, and perlecan domain dependent. While great effort has been made to understand the role of perlecan in VCID, additional studies are needed to increase our understanding of perlecan's role in health and in cerebrovascular disease.
Collapse
Affiliation(s)
- Amanda L. Trout
- Department of Neurology, University of Kentucky, Lexington, KY 40536, USA;
| | - Ibolya Rutkai
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA 70112, USA; (I.R.); (I.J.B.)
- Tulane Brain Institute, Tulane University, New Orleans, LA 70118, USA
| | - Ifechukwude J. Biose
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA 70112, USA; (I.R.); (I.J.B.)
| | - Gregory J. Bix
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA 70112, USA; (I.R.); (I.J.B.)
- Tulane Brain Institute, Tulane University, New Orleans, LA 70118, USA
| |
Collapse
|
9
|
Vizovišek M, Fonović M, Turk B. Cysteine cathepsins in extracellular matrix remodeling: Extracellular matrix degradation and beyond. Matrix Biol 2019; 75-76:141-159. [DOI: 10.1016/j.matbio.2018.01.024] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 01/14/2018] [Accepted: 01/29/2018] [Indexed: 12/21/2022]
|
10
|
Izawa Y, Gu YH, Osada T, Kanazawa M, Hawkins BT, Koziol JA, Papayannopoulou T, Spatz M, Del Zoppo GJ. β1-integrin-matrix interactions modulate cerebral microvessel endothelial cell tight junction expression and permeability. J Cereb Blood Flow Metab 2018; 38:641-658. [PMID: 28787238 PMCID: PMC5888854 DOI: 10.1177/0271678x17722108] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Acutely following focal cerebral ischemia disruption of the microvessel blood-brain barrier allows transit of plasma proteins into the neuropil as edema formation that coincides with loss of microvessel endothelial β1-integrins. We extend previous findings to show that interference with endothelial β1-integrin-matrix adhesion by the monoclonal IgM Ha2/5 increases the permeability of primary cerebral microvascular endothelial cell monolayers through reorganization of claudin-5, occludin, and zonula occludens-1 (ZO-1) from inter-endothelial borders. Interference with β1-integrin-matrix adhesion initiates F-actin conformational changes that coincide with claudin-5 redistribution. β1-integrin-matrix interference simultaneously increases phosphorylation of myosin light chain (MLC), while inhibition of MLC kinase (MLCK) and Rho kinase (ROCK) abolishes the Ha2/5-dependent increased endothelial permeability by 6 h after β1-integrin-matrix interference. These observations are supported by concordant observations in the cortex of a high-quality murine conditional β1-integrin deletion construct. Together they support the hypothesis that detachment of β1-integrins from abluminal matrix ligands increases vascular endothelial permeability through reorganization of tight junction (TJ) proteins via altered F-actin conformation, and indicate that the β1-integrin-MLC signaling pathway is engaged when β1-integrin detachment occurs. These findings provide a novel approach to the research and treatment of cerebral disorders where the breakdown of the blood-brain barrier accounts for their progression and complication.
Collapse
Affiliation(s)
- Yoshikane Izawa
- 1 Division of Hematology, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA.,2 Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Yu-Huan Gu
- 1 Division of Hematology, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Takashi Osada
- 1 Division of Hematology, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA.,2 Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Masato Kanazawa
- 1 Division of Hematology, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA.,3 Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Brian T Hawkins
- 1 Division of Hematology, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA.,4 Discovery, Science, & Technology, RTI International, Research Triangle Park, NC, USA
| | - James A Koziol
- 5 Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Thalia Papayannopoulou
- 1 Division of Hematology, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Maria Spatz
- 6 Stroke Branch, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Gregory J Del Zoppo
- 1 Division of Hematology, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA.,7 Department of Neurology, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
11
|
Tohda C, Tohda M. Extracellular cathepsin L stimulates axonal growth in neurons. BMC Res Notes 2017; 10:613. [PMID: 29169406 PMCID: PMC5701428 DOI: 10.1186/s13104-017-2940-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 11/15/2017] [Indexed: 11/16/2022] Open
Abstract
Objective Cathepsin L, a lysosomal endopeptidase expressed in most eukaryotic cells, is a member of the papain-like family of cysteine proteases. Although commonly recognized as a lysosomal protease, cathepsin L is also secreted and involved in the degradation of extracellular matrix proteins. Previous studies demonstrated that the secretion of cathepsin L was stimulated by basic fibroblast growth factor (bFGF) and bFGF-enhanced axonal terminal sprouting of motor neurons. Based on these results, although it has never been directly investigated, we hypothesized that extracellular cathepsin L may induce axonal growth. Results To confirm the hypothesis, the axonal growth activity of recombinant cathepsin L was evaluated in cultured cortical and spinal cord neurons. Treatment with recombinant cathepsin L significantly enhanced axonal growth, but not dendritic growth. This result indicated that extracellular cathepsin L may act as a new neuronal network modulator.
Collapse
Affiliation(s)
- Chihiro Tohda
- Division of Neuromedical Science, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan.
| | - Michihisa Tohda
- Division of Medicinal Pharmacology, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| |
Collapse
|
12
|
Wang C, Ahmed MM, Jiang Q, Lu N, Tan C, Gao Y, Mahmood Q, Chen D, Fukunaga K, Li M, Chen Z, Wilcox CS, Lu Y, Qin Z, Han F. Melatonin ameliorates hypoglycemic stress-induced brain endothelial tight junction injury by inhibiting protein nitration of TP53-induced glycolysis and apoptosis regulator. J Pineal Res 2017; 63:e12440. [PMID: 28776759 PMCID: PMC5656838 DOI: 10.1111/jpi.12440] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/31/2017] [Indexed: 12/11/2022]
Abstract
Severe hypoglycemia has a detrimental impact on the cerebrovasculature, but the molecular events that lead to the disruption of the integrity of the tight junctions remain unclear. Here, we report that the microvessel integrity was dramatically compromised (59.41% of wild-type mice) in TP53-induced glycolysis and apoptosis regulator (TIGAR) transgenic mice stressed by hypoglycemia. Melatonin, a potent antioxidant, protects against hypoglycemic stress-induced brain endothelial tight junction injury in the dosage of 400 nmol/L in vitro. FRET (fluorescence resonance energy transfer) imaging data of endothelial cells stressed by low glucose revealed that TIGAR couples with calmodulin to promote TIGAR tyrosine nitration. A tyrosine 92 mutation interferes with the TIGAR-dependent NADPH generation (55.60% decreased) and abolishes its protective effect on tight junctions in human brain microvascular endothelial cells. We further demonstrate that the low-glucose-induced disruption of occludin and Caludin5 as well as activation of autophagy was abrogated by melatonin-mediated blockade of nitrosative stress in vitro. Collectively, we provide information on the detailed molecular mechanisms for the protective actions of melatonin on brain endothelial tight junctions and suggest that this indole has translational potential for severe hypoglycemia-induced neurovascular damage.
Collapse
Affiliation(s)
- Cheng‐kun Wang
- Institute of Pharmacology and ToxicologyCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
| | - Muhammad Masood Ahmed
- Institute of Pharmacology and ToxicologyCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
| | - Quan Jiang
- Institute of Pharmacology and ToxicologyCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
| | - Nan‐nan Lu
- Institute of Pharmacology and ToxicologyCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
| | - Chao Tan
- Institute of Pharmacology and ToxicologyCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
| | - Yin‐ping Gao
- Institute of Pharmacology and ToxicologyCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
- School of MedicineZhejiang University City CollegeHangzhouChina
| | - Qaisar Mahmood
- Institute of Pharmacology and ToxicologyCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
| | - Dan‐yang Chen
- Institute of Pharmacology and ToxicologyCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
| | - Kohji Fukunaga
- Department of PharmacologyGraduate School of Pharmaceutical SciencesTohoku UniversitySendaiJapan
| | - Mei Li
- Department of Pharmacology and Laboratory of Aging and Nervous DiseasesSoochow University School of Pharmaceutical ScienceSuzhouChina
| | - Zhong Chen
- Institute of Pharmacology and ToxicologyCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
| | - Christopher S. Wilcox
- Hypertension, Kidney, and Vascular Research CenterGeorgetown University Medical CenterWashingtonDCUSA
| | - Ying‐mei Lu
- School of MedicineZhejiang University City CollegeHangzhouChina
| | - Zheng‐hong Qin
- Department of Pharmacology and Laboratory of Aging and Nervous DiseasesSoochow University School of Pharmaceutical ScienceSuzhouChina
| | - Feng Han
- Institute of Pharmacology and ToxicologyCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
| |
Collapse
|
13
|
Kanazawa M, Ninomiya I, Hatakeyama M, Takahashi T, Shimohata T. Microglia and Monocytes/Macrophages Polarization Reveal Novel Therapeutic Mechanism against Stroke. Int J Mol Sci 2017; 18:ijms18102135. [PMID: 29027964 PMCID: PMC5666817 DOI: 10.3390/ijms18102135] [Citation(s) in RCA: 295] [Impact Index Per Article: 42.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 10/10/2017] [Accepted: 10/10/2017] [Indexed: 12/12/2022] Open
Abstract
Stroke is a leading cause of morbidity and mortality worldwide, and consists of two types, ischemic and hemorrhagic. Currently, there is no effective treatment to increase the survival rate or improve the quality of life after ischemic and hemorrhagic stroke in the subacute to chronic phases. Therefore, it is necessary to establish therapeutic strategies to facilitate functional recovery in patients with stroke during both phases. Cell-based therapies, using microglia and monocytes/macrophages preconditioned by optimal stimuli and/or any therapies targeting these cells, might be an ideal therapeutic strategy for managing stroke. Microglia and monocytes/macrophages polarize to the classic pro-inflammatory type (M1-like) or alternative protective type (M2-like) by optimal condition. Cell-based therapies using M2-like microglia and monocytes/macrophages might be protective therapeutic strategies against stroke for three reasons. First, M2-like microglia and monocytes/monocytes secrete protective remodeling factors, thus prompting neuronal network recovery via tissue (including neuronal) and vascular remodeling. Second, these cells could migrate to the injured hemisphere through the blood–brain barrier or choroid–plexus. Third, these cells could mitigate the extent of inflammation-induced injuries by suitable timing of therapeutic intervention. Although future translational studies are required, M2-like microglia and monocytes/macrophages therapies are attractive for managing stroke based on their protective functions.
Collapse
Affiliation(s)
- Masato Kanazawa
- Department of Neurology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan.
| | - Itaru Ninomiya
- Department of Neurology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan.
| | - Masahiro Hatakeyama
- Department of Neurology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan.
| | - Tetsuya Takahashi
- Department of Neurology, Niishi-Niigata Chuo Hospital, Niigata 950-2085, Japan.
| | - Takayoshi Shimohata
- Department of Neurology and Geriatrics, Gifu University Graduate School of Medicine, Gifu 501-1193, Japan.
| |
Collapse
|
14
|
Thomsen MS, Routhe LJ, Moos T. The vascular basement membrane in the healthy and pathological brain. J Cereb Blood Flow Metab 2017; 37:3300-3317. [PMID: 28753105 PMCID: PMC5624399 DOI: 10.1177/0271678x17722436] [Citation(s) in RCA: 286] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 06/21/2017] [Accepted: 06/28/2017] [Indexed: 12/24/2022]
Abstract
The vascular basement membrane contributes to the integrity of the blood-brain barrier (BBB), which is formed by brain capillary endothelial cells (BCECs). The BCECs receive support from pericytes embedded in the vascular basement membrane and from astrocyte endfeet. The vascular basement membrane forms a three-dimensional protein network predominantly composed of laminin, collagen IV, nidogen, and heparan sulfate proteoglycans that mutually support interactions between BCECs, pericytes, and astrocytes. Major changes in the molecular composition of the vascular basement membrane are observed in acute and chronic neuropathological settings. In the present review, we cover the significance of the vascular basement membrane in the healthy and pathological brain. In stroke, loss of BBB integrity is accompanied by upregulation of proteolytic enzymes and degradation of vascular basement membrane proteins. There is yet no causal relationship between expression or activity of matrix proteases and the degradation of vascular matrix proteins in vivo. In Alzheimer's disease, changes in the vascular basement membrane include accumulation of Aβ, composite changes, and thickening. The physical properties of the vascular basement membrane carry the potential of obstructing drug delivery to the brain, e.g. thickening of the basement membrane can affect drug delivery to the brain, especially the delivery of nanoparticles.
Collapse
Affiliation(s)
- Maj S Thomsen
- Laboratory of Neurobiology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Lisa J Routhe
- Laboratory of Neurobiology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Torben Moos
- Laboratory of Neurobiology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| |
Collapse
|