1
|
Wuni R, Amerah H, Ammache S, Cruvinel NT, da Silva NR, Kuhnle GGC, Horst MA, Vimaleswaran KS. Interaction between genetic risk score and dietary fat intake on lipid-related traits in Brazilian young adults. Br J Nutr 2024; 132:575-589. [PMID: 39308196 PMCID: PMC11536265 DOI: 10.1017/s0007114524001594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 11/01/2024]
Abstract
The occurrence of dyslipidaemia, which is an established risk factor for cardiovascular diseases, has been attributed to multiple factors including genetic and environmental factors. We used a genetic risk score (GRS) to assess the interactions between genetic variants and dietary factors on lipid-related traits in a cross-sectional study of 190 Brazilians (mean age: 21 ± 2 years). Dietary intake was assessed by a trained nutritionist using three 24-h dietary recalls. The high GRS was significantly associated with increased concentration of TAG (beta = 0·10 mg/dl, 95 % CI 0·05-0·16; P < 0·001), LDL-cholesterol (beta = 0·07 mg/dl, 95 % CI 0·04, 0·11; P < 0·0001), total cholesterol (beta = 0·05 mg/dl, 95 % CI: 0·03, 0·07; P < 0·0001) and the ratio of TAG to HDL-cholesterol (beta = 0·09 mg/dl, 95 % CI: 0·03, 0·15; P = 0·002). Significant interactions were found between the high GRS and total fat intake on TAG:HDL-cholesterol ratio (Pinteraction = 0·03) and between the high GRS and SFA intake on TAG:HDL-cholesterol ratio (Pinteraction = 0·03). A high intake of total fat (>31·5 % of energy) and SFA (>8·6 % of energy) was associated with higher TAG:HDL-cholesterol ratio in individuals with the high GRS (beta = 0·14, 95 % CI: 0·06, 0·23; P < 0·001 for total fat intake; beta = 0·13, 95 % CI: 0·05, 0·22; P = 0·003 for SFA intake). Our study provides evidence that the genetic risk of high TAG:HDL-cholesterol ratio might be modulated by dietary fat intake in Brazilians, and these individuals might benefit from limiting their intake of total fat and SFA.
Collapse
Affiliation(s)
- Ramatu Wuni
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences and Institute for Cardiovascular and Metabolic Research (ICMR), University of Reading, ReadingRG6 6DZ, UK
| | - Heyam Amerah
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences and Institute for Cardiovascular and Metabolic Research (ICMR), University of Reading, ReadingRG6 6DZ, UK
| | - Serena Ammache
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences and Institute for Cardiovascular and Metabolic Research (ICMR), University of Reading, ReadingRG6 6DZ, UK
| | - Nathália T. Cruvinel
- Nutritional Genomics Research Group, Faculty of Nutrition, Federal University of Goiás (UFG), Goiania, Brazil
| | - Nara R. da Silva
- Nutritional Genomics Research Group, Faculty of Nutrition, Federal University of Goiás (UFG), Goiania, Brazil
| | - Gunter G. C. Kuhnle
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences and Institute for Cardiovascular and Metabolic Research (ICMR), University of Reading, ReadingRG6 6DZ, UK
| | - Maria A. Horst
- Nutritional Genomics Research Group, Faculty of Nutrition, Federal University of Goiás (UFG), Goiania, Brazil
| | - Karani S. Vimaleswaran
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences and Institute for Cardiovascular and Metabolic Research (ICMR), University of Reading, ReadingRG6 6DZ, UK
- Institute for Food, Nutrition, and Health (IFNH), University of Reading, ReadingRG6 6EU, UK
| |
Collapse
|
2
|
Dabravolski S, Orekhov NA, Melnichenko A, Sukhorukov VN, Popov MA, Orekhov A. Cholesteryl Ester Transfer Protein (CETP) Variations in Relation to Lipid Profiles and Cardiovascular Diseases: An Update. Curr Pharm Des 2024; 30:742-756. [PMID: 38425105 DOI: 10.2174/0113816128284695240219093612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/02/2024] [Accepted: 01/11/2024] [Indexed: 03/02/2024]
Abstract
Lipid metabolism plays an essential role in the pathogenesis of cardiovascular and metabolic diseases. Cholesteryl ester transfer protein (CETP) is a crucial glycoprotein involved in lipid metabolism by transferring cholesteryl esters (CE) and triglycerides (TG) between plasma lipoproteins. CETP activity results in reduced HDL-C and increased VLDL- and LDL-C concentrations, thus increasing the risk of cardiovascular and metabolic diseases. In this review, we discuss the structure of CETP and its mechanism of action. Furthermore, we focus on recent experiments on animal CETP-expressing models, deciphering the regulation and functions of CETP in various genetic backgrounds and interaction with different external factors. Finally, we discuss recent publications revealing the association of CETP single nucleotide polymorphisms (SNPs) with the risk of cardiovascular and metabolic diseases, lifestyle factors, diet and therapeutic interventions. While CETP SNPs can be used as effective diagnostic markers, diet, lifestyle, gender and ethnic specificity should also be considered for effective treatment.
Collapse
Affiliation(s)
- Siarhei Dabravolski
- Department of Biotechnology Engineering, ORT Braude College, Braude Academic College of Engineering, Karmiel, Israel
| | - Nikolay A Orekhov
- Laboratory of Angiopatology, Research Institute of General Pathology and Pathophysiology, The Russian Academy of Medical Sciences, Moscow, Russian Federation
| | - Alexandra Melnichenko
- Laboratory of Angiopatology, Research Institute of General Pathology and Pathophysiology, The Russian Academy of Medical Sciences, Moscow, Russian Federation
| | - Vasily N Sukhorukov
- Laboratory of Angiopatology, Research Institute of General Pathology and Pathophysiology, The Russian Academy of Medical Sciences, Moscow, Russian Federation
| | - Mikhail A Popov
- Laboratory of Angiopatology, Research Institute of General Pathology and Pathophysiology, The Russian Academy of Medical Sciences, Moscow, Russian Federation
| | - Alexander Orekhov
- Laboratory of Angiopatology, Research Institute of General Pathology and Pathophysiology, The Russian Academy of Medical Sciences, Moscow, Russian Federation
| |
Collapse
|
3
|
Sachan V, Le Dévéhat M, Roubtsova A, Essalmani R, Laurendeau JF, Garçon D, Susan-Resiga D, Duval S, Mikaeeli S, Hamelin J, Evagelidis A, Chong M, Paré G, Chernetsova E, Gao ZH, Robillard I, Ruiz M, Trinh VQH, Estall JL, Faraj M, Austin RC, Sauvageau M, Prat A, Kiss RS, Seidah NG. PCSK7: A novel regulator of apolipoprotein B and a potential target against non-alcoholic fatty liver disease. Metabolism 2024; 150:155736. [PMID: 37967646 DOI: 10.1016/j.metabol.2023.155736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 10/17/2023] [Accepted: 11/08/2023] [Indexed: 11/17/2023]
Abstract
BACKGROUND Epidemiological evidence links the proprotein convertase subtilisin/kexin 7 (PCSK7) to triglyceride (TG) metabolism. We associated the known PCSK7 gain-of-function non-coding SNP rs236918 with higher levels of plasma apolipoprotein B (apoB) and the loss-of-function coding variant p.Pro777Leu (SNP rs201598301) with lower apoB and TG. Herein, we aimed to unravel the in vivo role of liver PCSK7. METHODS We biochemically defined the functional role of PCSK7 in lipid metabolism using hepatic cell lines and Pcsk7-/- mice. Our findings were validated following subcutaneous administration of hepatocyte-targeted N-acetylgalactosamine (GalNAc)-antisense oligonucleotides (ASOs) against Pcsk7. RESULTS Independent of its proteolytic activity, membrane-bound PCSK7 binds apoB100 in the endoplasmic reticulum and enhances its secretion. Mechanistically, the loss of PCSK7/Pcsk7 leads to apoB100 degradation, triggering an unfolded protein response, autophagy, and β-oxidation, eventually reducing lipid accumulation in hepatocytes. Non-alcoholic fatty liver disease (NAFLD) was induced by a 12-week high fat/fructose/cholesterol diet in wild type (WT) and Pcsk7-/- mice that were then allowed to recover on a 4-week control diet. Pcsk7-/- mice recovered more effectively than WT mice from all NAFLD-related liver phenotypes. Finally, subcutaneous administration of GalNAc-ASOs targeting hepatic Pcsk7 to WT mice validated the above results. CONCLUSIONS Our data reveal hepatic PCSK7 as one of the major regulators of apoB, and its absence reduces apoB secretion from hepatocytes favoring its ubiquitination and degradation by the proteasome. This results in a cascade of events, eventually reducing hepatic lipid accumulation, thus supporting the notion of silencing PCSK7 mRNA in hepatocytes for targeting NAFLD.
Collapse
Affiliation(s)
- Vatsal Sachan
- Biochemical Neuroendocrinology, Institut de Recherches Cliniques de Montréal (IRCM), affiliated to the Université de Montréal, Montréal, QC, Canada
| | - Maïlys Le Dévéhat
- Biochemical Neuroendocrinology, Institut de Recherches Cliniques de Montréal (IRCM), affiliated to the Université de Montréal, Montréal, QC, Canada
| | - Anna Roubtsova
- Biochemical Neuroendocrinology, Institut de Recherches Cliniques de Montréal (IRCM), affiliated to the Université de Montréal, Montréal, QC, Canada
| | - Rachid Essalmani
- Biochemical Neuroendocrinology, Institut de Recherches Cliniques de Montréal (IRCM), affiliated to the Université de Montréal, Montréal, QC, Canada
| | - Jean-Francois Laurendeau
- RNA and Noncoding Mechanisms of Disease, Institut de Recherches Cliniques de Montréal (IRCM), affiliated to the Université de Montréal, Montréal, QC, Canada
| | - Damien Garçon
- Biochemical Neuroendocrinology, Institut de Recherches Cliniques de Montréal (IRCM), affiliated to the Université de Montréal, Montréal, QC, Canada
| | - Delia Susan-Resiga
- Biochemical Neuroendocrinology, Institut de Recherches Cliniques de Montréal (IRCM), affiliated to the Université de Montréal, Montréal, QC, Canada
| | - Stéphanie Duval
- Biochemical Neuroendocrinology, Institut de Recherches Cliniques de Montréal (IRCM), affiliated to the Université de Montréal, Montréal, QC, Canada
| | - Sahar Mikaeeli
- Biochemical Neuroendocrinology, Institut de Recherches Cliniques de Montréal (IRCM), affiliated to the Université de Montréal, Montréal, QC, Canada
| | - Josée Hamelin
- Biochemical Neuroendocrinology, Institut de Recherches Cliniques de Montréal (IRCM), affiliated to the Université de Montréal, Montréal, QC, Canada
| | - Alexandra Evagelidis
- Biochemical Neuroendocrinology, Institut de Recherches Cliniques de Montréal (IRCM), affiliated to the Université de Montréal, Montréal, QC, Canada
| | - Michael Chong
- Department of Biochemistry & Biomedical Sciences, McMaster University Faculty of Health Sciences, Hamilton, Ontario, Canada
| | - Guillaume Paré
- Department of Biochemistry & Biomedical Sciences, McMaster University Faculty of Health Sciences, Hamilton, Ontario, Canada
| | | | - Zu-Hua Gao
- Department of Pathology, McGill University Health Centre, Montréal, QC, Canada
| | - Isabelle Robillard
- Montreal Heart Institute, Metabolomics Platform, Montreal, Quebec, Canada; Department of Nutrition, Université de Montréal, Montréal, QC, Canada
| | - Matthieu Ruiz
- Montreal Heart Institute, Metabolomics Platform, Montreal, Quebec, Canada; Department of Nutrition, Université de Montréal, Montréal, QC, Canada
| | - Vincent Quoc-Huy Trinh
- Departement of Pathology and Cellular Biology, Institut de Recherche en Immunologie et Cancérologie, Université de Montréal, Montréal, QC, Canada
| | - Jennifer L Estall
- Molecular Mechanisms of Diabetes, Institut de Recherches Cliniques de Montréal (IRCM), affiliated to the Université de Montréal, Montréal, QC, Canada
| | - May Faraj
- Nutrition Department, Université de Montréal, Research Unit on Nutrition, Lipoproteins and Cardiometabolic Diseases, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC, Canada
| | - Richard C Austin
- Department of Medicine, Division of Nephrology, McMaster University, The Research Institute of St. Joe's Hamilton and the Hamilton Center for Kidney Research, Hamilton, ON, Canada
| | - Martin Sauvageau
- RNA and Noncoding Mechanisms of Disease, Institut de Recherches Cliniques de Montréal (IRCM), affiliated to the Université de Montréal, Montréal, QC, Canada
| | - Annik Prat
- Biochemical Neuroendocrinology, Institut de Recherches Cliniques de Montréal (IRCM), affiliated to the Université de Montréal, Montréal, QC, Canada
| | - Robert S Kiss
- McGill University Health Centre Research Institute, Montréal, QC, Canada
| | - Nabil G Seidah
- Biochemical Neuroendocrinology, Institut de Recherches Cliniques de Montréal (IRCM), affiliated to the Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
4
|
Wang N, Yu B, Jun G, Qi Q, Durazo-Arvizu RA, Lindstrom S, Morrison AC, Kaplan RC, Boerwinkle E, Chen H. StocSum: stochastic summary statistics for whole genome sequencing studies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.06.535886. [PMID: 37066281 PMCID: PMC10104122 DOI: 10.1101/2023.04.06.535886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Genomic summary statistics, usually defined as single-variant test results from genome-wide association studies, have been widely used to advance the genetics field in a wide range of applications. Applications that involve multiple genetic variants also require their correlations or linkage disequilibrium (LD) information, often obtained from an external reference panel. In practice, it is usually difficult to find suitable external reference panels that represent the LD structure for underrepresented and admixed populations, or rare genetic variants from whole genome sequencing (WGS) studies, limiting the scope of applications for genomic summary statistics. Here we introduce StocSum, a novel reference-panel-free statistical framework for generating, managing, and analyzing stochastic summary statistics using random vectors. We develop various downstream applications using StocSum including single-variant tests, conditional association tests, gene-environment interaction tests, variant set tests, as well as meta-analysis and LD score regression tools. We demonstrate the accuracy and computational efficiency of StocSum using two cohorts from the Trans-Omics for Precision Medicine Program. StocSum will facilitate sharing and utilization of genomic summary statistics from WGS studies, especially for underrepresented and admixed populations.
Collapse
Affiliation(s)
- Nannan Wang
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Bing Yu
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Goo Jun
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Qibin Qi
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ramon A. Durazo-Arvizu
- The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, California
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sara Lindstrom
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, School of Public Health, University of Washington, 3980 15th Ave NE, Seattle, WA, USA
| | - Alanna C. Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Robert C. Kaplan
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Han Chen
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
5
|
Apolipoprotein D modulates lipid mediators and osteopontin in an anti-inflammatory direction. Inflamm Res 2023; 72:263-280. [PMID: 36536251 DOI: 10.1007/s00011-022-01679-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/07/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND HDL has been proposed to possess anti-inflammatory properties; however, the detail mechanisms have not been fully elucidated. METHODS We investigated the roles of Apolipoprotein D (ApoD) in the pathogenesis of inflammation in the mouse model of diet-induced obesity and that of lipopolysaccharide-induced sepsis and the in vitro experiments. Furthermore, we analyzed serum ApoD levels in human subjects. RESULTS The overexpression of human ApoD decreased the plasma IL-6 and TNF-a levels in both mice models. Lipidomics analyses demonstrated association of ApoD with increase of arachidonic acid, eicosapentaenoic acid, and docosahexaenoic acid, as well as of their metabolites, and of the anti-inflammatory molecule sphingosine 1-phosphate, and decrease of proinflammatory lysophosphatidic acids and lysophosphatidylinositol. ApoD-containing lipoproteins might directly bind eicosapentaenoic acid and docosahexaenoic acid. The modulations of the lysophosphatidic acid and sphingosine 1-phosphate levels resulted from the suppression of autotaxin expression and elevation of apolipoprotein M (ApoM), respectively. Moreover, ApoD negatively regulated osteopontin, a proinflammatory adipokine. The activation of PPARg by ApoD might suppress autotaxin and osteopontin. Serum ApoD levels were negatively correlated with the serum osteopontin and autotaxin levels and, positively with serum ApoM levels. CONCLUSION ApoD is an anti-inflammatory apolipoprotein, which modulates lipid mediators and osteopontin in an anti-inflammatory direction.
Collapse
|
6
|
Wuni R, Adela Nathania E, Ayyappa AK, Lakshmipriya N, Ramya K, Gayathri R, Geetha G, Anjana RM, Kuhnle GGC, Radha V, Mohan V, Sudha V, Vimaleswaran KS. Impact of Lipid Genetic Risk Score and Saturated Fatty Acid Intake on Central Obesity in an Asian Indian Population. Nutrients 2022; 14:2713. [PMID: 35807893 PMCID: PMC9269337 DOI: 10.3390/nu14132713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 11/22/2022] Open
Abstract
Abnormalities in lipid metabolism have been linked to the development of obesity. We used a nutrigenetic approach to establish a link between lipids and obesity in Asian Indians, who are known to have a high prevalence of central obesity and dyslipidaemia. A sample of 497 Asian Indian individuals (260 with type 2 diabetes and 237 with normal glucose tolerance) (mean age: 44 ± 10 years) were randomly chosen from the Chennai Urban Rural Epidemiological Study (CURES). Dietary intake was assessed using a previously validated questionnaire. A genetic risk score (GRS) was constructed based on cholesteryl ester transfer protein (CETP) and lipoprotein lipase (LPL) genetic variants. There was a significant interaction between GRS and saturated fatty acid (SFA) intake on waist circumference (WC) (Pinteraction = 0.006). Individuals with a low SFA intake (≤23.2 g/day), despite carrying ≥2 risk alleles, had a smaller WC compared to individuals carrying <2 risk alleles (Beta = −0.01 cm; p = 0.03). For those individuals carrying ≥2 risk alleles, a high SFA intake (>23.2 g/day) was significantly associated with a larger WC than a low SFA intake (≤23.2 g/day) (Beta = 0.02 cm, p = 0.02). There were no significant interactions between GRS and other dietary factors on any of the measured outcomes. We conclude that a diet low in SFA might help reduce the genetic risk of central obesity confirmed by CETP and LPL genetic variants. Conversely, a high SFA diet increases the genetic risk of central obesity in Asian Indians.
Collapse
Affiliation(s)
- Ramatu Wuni
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences, University of Reading, Reading RG6 6DZ, UK; (R.W.); (G.G.C.K.)
| | - Evelyn Adela Nathania
- Indonesia International Institute for Life Sciences, JI. Pulomas Barat Kav. 88, Jakarta Timur 13210, Indonesia;
| | - Ashok K. Ayyappa
- Department of Molecular Genetics, Madras Diabetes Research Foundation, ICMR Centre for Advanced Research on Diabetes, Chennai 603103, India; (A.K.A.); (K.R.); (R.M.A.); (V.R.); (V.M.)
| | - Nagarajan Lakshmipriya
- Department of Food, Nutrition and Dietetics Research, Madras Diabetes Research Foundation, Chennai 600086, India; (N.L.); (R.G.); (G.G.); (V.S.)
| | - Kandaswamy Ramya
- Department of Molecular Genetics, Madras Diabetes Research Foundation, ICMR Centre for Advanced Research on Diabetes, Chennai 603103, India; (A.K.A.); (K.R.); (R.M.A.); (V.R.); (V.M.)
| | - Rajagopal Gayathri
- Department of Food, Nutrition and Dietetics Research, Madras Diabetes Research Foundation, Chennai 600086, India; (N.L.); (R.G.); (G.G.); (V.S.)
| | - Gunasekaran Geetha
- Department of Food, Nutrition and Dietetics Research, Madras Diabetes Research Foundation, Chennai 600086, India; (N.L.); (R.G.); (G.G.); (V.S.)
| | - Ranjit Mohan Anjana
- Department of Molecular Genetics, Madras Diabetes Research Foundation, ICMR Centre for Advanced Research on Diabetes, Chennai 603103, India; (A.K.A.); (K.R.); (R.M.A.); (V.R.); (V.M.)
- Department of Food, Nutrition and Dietetics Research, Madras Diabetes Research Foundation, Chennai 600086, India; (N.L.); (R.G.); (G.G.); (V.S.)
- Dr. Mohan’s Diabetes Specialties Centre, IDF Centre of Excellence in Diabetes Care, Gopalapuram, Chennai 600086, India
| | - Gunter G. C. Kuhnle
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences, University of Reading, Reading RG6 6DZ, UK; (R.W.); (G.G.C.K.)
| | - Venkatesan Radha
- Department of Molecular Genetics, Madras Diabetes Research Foundation, ICMR Centre for Advanced Research on Diabetes, Chennai 603103, India; (A.K.A.); (K.R.); (R.M.A.); (V.R.); (V.M.)
| | - Viswanathan Mohan
- Department of Molecular Genetics, Madras Diabetes Research Foundation, ICMR Centre for Advanced Research on Diabetes, Chennai 603103, India; (A.K.A.); (K.R.); (R.M.A.); (V.R.); (V.M.)
- Department of Food, Nutrition and Dietetics Research, Madras Diabetes Research Foundation, Chennai 600086, India; (N.L.); (R.G.); (G.G.); (V.S.)
- Dr. Mohan’s Diabetes Specialties Centre, IDF Centre of Excellence in Diabetes Care, Gopalapuram, Chennai 600086, India
| | - Vasudevan Sudha
- Department of Food, Nutrition and Dietetics Research, Madras Diabetes Research Foundation, Chennai 600086, India; (N.L.); (R.G.); (G.G.); (V.S.)
| | - Karani Santhanakrishnan Vimaleswaran
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences, University of Reading, Reading RG6 6DZ, UK; (R.W.); (G.G.C.K.)
- The Institute for Food, Nutrition, and Health (IFNH), University of Reading, Reading RG6 6AP, UK
| |
Collapse
|
7
|
Post-Transcriptional Effects of miRNAs on PCSK7 Expression and Function: miR-125a-5p, miR-143-3p, and miR-409-3p as Negative Regulators. Metabolites 2022; 12:metabo12070588. [PMID: 35888711 PMCID: PMC9323720 DOI: 10.3390/metabo12070588] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 12/14/2022] Open
Abstract
The regulatory mechanism of PCSK7 gene is still unknown, although its encoded protein PC7 is the most ancient and highly conserved of all proprotein convertases and exhibits enzymatic and non-enzymatic functions in liver triglyceride regulation. Bioinformatics algorithms were used to predict regulatory microRNAs (miRNAs) of PCSK7 expression. This led to the identification of four miRNAs, namely miR-125a-5p, miR-143-3p, miR-409-3p, and miR-320a-3p, with potential binding sites on the 3′-untranslated region (3′-UTR) of human PCSK7 mRNA. The expression patterns of these miRNAs and PCSK7 mRNA were assessed in three different cell lines with quantitative polymerase chain reaction (qPCR), which revealed reciprocal expression patterns between the expression levels of the four selected miRNAs and PCSK7. Next, the interactions and effects of these miRNAs on PCSK7 expression levels were investigated via cell-based expression analysis, dual-luciferase assay, and Western blot analysis. The data revealed that PCSK7 mRNA levels decreased in cells transfected with vectors overexpressing miR-125a-5p, miR-143-3p, and miR-409-3p, but not miR-320a-3p. The dual-luciferase assay demonstrated that the above three miRNAs could directly interact with putative target sites in PCSK7 3′-UTR and regulate its expression, whereas miR-320-3p exhibited no interaction. Western blot analysis further revealed that the overexpression of miR-125a-5p in Huh7 cells inhibits the expression and ability of PC7 to cleave human transferrin receptor 1. Our results support a regulatory role of these miRNAs on PCSK7 expression and function and open the way to assess their roles in the regulation of PC7 activity in vivo in the development of hepatic steatosis.
Collapse
|
8
|
Wuni R, Kuhnle GGC, Wynn-Jones AA, Vimaleswaran KS. A Nutrigenetic Update on CETP Gene–Diet Interactions on Lipid-Related Outcomes. Curr Atheroscler Rep 2022; 24:119-132. [PMID: 35098451 PMCID: PMC8924099 DOI: 10.1007/s11883-022-00987-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2021] [Indexed: 02/08/2023]
Abstract
Purpose of Review An abnormal lipid profile is considered a main risk factor for cardiovascular diseases and evidence suggests that single nucleotide polymorphisms (SNPs) in the cholesteryl ester transfer protein (CETP) gene contribute to variations in lipid levels in response to dietary intake. The objective of this review was to identify and discuss nutrigenetic studies assessing the interactions between CETP SNPs and dietary factors on blood lipids. Recent Findings Relevant articles were obtained through a literature search of PubMed and Google Scholar through to July 2021. An article was included if it examined an interaction between CETP SNPs and dietary factors on blood lipids. From 49 eligible nutrigenetic studies, 27 studies reported significant interactions between 8 CETP SNPs and 17 dietary factors on blood lipids in 18 ethnicities. The discrepancies in the study findings could be attributed to genetic heterogeneity, and differences in sample size, study design, lifestyle and measurement of dietary intake. The most extensively studied ethnicities were those of Caucasian populations and majority of the studies reported an interaction with dietary fat intake. The rs708272 (TaqIB) was the most widely studied CETP SNP, where ‘B1’ allele was associated with higher CETP activity, resulting in lower high-density lipoprotein cholesterol and higher serum triglycerides under the influence of high dietary fat intake. Summary Overall, the findings suggest that CETP SNPs might alter blood lipid profiles by modifying responses to diet, but further large studies in multiple ethnic groups are warranted to identify individuals at risk of adverse lipid response to diet. Supplementary Information The online version contains supplementary material available at 10.1007/s11883-022-00987-y.
Collapse
|
9
|
Affiliation(s)
- Masa-Aki Kawashiri
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kanazawa University
| |
Collapse
|
10
|
Corella D. Why is it important to know DNA methylation patterns in people with hypertriglyceridaemia? CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE ARTERIOSCLEROSIS 2022; 34:33-35. [PMID: 35151430 DOI: 10.1016/j.arteri.2022.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Affiliation(s)
- Dolores Corella
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, Valencia, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
11
|
Eshraghian A, Moasser E, Azarpira N, Fattahi MR, Nikeghbalian S, Malek-Hosseini SA, Geramizadeh B. Variations in TM6SF2, PCSK9 and PCSK7 genes and risk of hepatic steatosis after liver transplantation: a cross-sectional study. BMC Gastroenterol 2021; 21:458. [PMID: 34876018 PMCID: PMC8650293 DOI: 10.1186/s12876-021-02041-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 11/22/2021] [Indexed: 11/29/2022] Open
Abstract
Background Genetic abnormalities might have important role in pathogenesis of hepatic steatosis after liver transplantation. We aimed to investigate association between genetic variations in transmembrane 6 superfamily member 2 (TM6SF2) rs58542926, proprotein convertase subtilisin/kexin type 9 (PCSK9) rs505151 and proprotein convertase subtilisin/kexin type 7 (PCSK7) rs2277287 with hepatic steatosis in liver transplant recipients.
Methods In a cross-sectional study, adult (> 18 years) liver transplant recipients who were referred for their routine post-transplant follow-up between June 2018 and September 2018 were included in the study. Hepatic steatosis in transplant recipients was assessed by controlled attenuation parameter (CAP). Polymerase chain reaction-restriction fragment length polymorphism (PCR–RFLP) was used to study TM6SF2 rs58542926, PCSK7 rs2277287 and PCSK9 rs505151 genotypes. Results 107 liver transplant recipients were included. There was no association between different genotypes of PCSK9 rs505151 and PCSK7 rs2277287 with hepatic steatosis in liver transplant recipients (P value > 0.05). The presence of TT genotype of TM6SF2 rs58542926 was higher in patients with hepatic steatosis measured by CAP after liver transplantation. In patients with moderate and severe hepatic steatosis (grade 2 and 3 steatosis), AG + GG genotypes of PCSK9 rs505151 were more prevalent than AA genotype (OR 8.667; 95% CI 1.841–40.879; P value = 0.004) compared to patients with mild steatosis (grade 1). In multivariate regression model, AG + GG genotypes of PCSK9 rs505151 were associated with moderate and severe steatosis in liver transplant recipients (OR 5.747; 95% CI 1.086–30.303; P value = 0.040). Conclusions Genetic variations in TM6SF2 rs58542926 and PCSK9 rs505151 might be associated with hepatic steatosis in liver transplant recipients.
Collapse
Affiliation(s)
- Ahad Eshraghian
- Shiraz Transplant Center, Abu-Ali Sina Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elham Moasser
- Transplant Research Center, Shiraz University of Medical Sciences, Research Tower, PO Box 71994-67985, Shiraz, Iran.
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Research Tower, PO Box 71994-67985, Shiraz, Iran.
| | - Mohammad Reza Fattahi
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saman Nikeghbalian
- Shiraz Transplant Center, Abu-Ali Sina Hospital, Shiraz University of Medical Sciences, Shiraz, Iran.,Transplant Research Center, Shiraz University of Medical Sciences, Research Tower, PO Box 71994-67985, Shiraz, Iran
| | - Seyed Ali Malek-Hosseini
- Shiraz Transplant Center, Abu-Ali Sina Hospital, Shiraz University of Medical Sciences, Shiraz, Iran.,Transplant Research Center, Shiraz University of Medical Sciences, Research Tower, PO Box 71994-67985, Shiraz, Iran
| | - Bita Geramizadeh
- Transplant Research Center, Shiraz University of Medical Sciences, Research Tower, PO Box 71994-67985, Shiraz, Iran
| |
Collapse
|
12
|
Furuhashi M, Kataoka Y, Nishikawa R, Koyama M, Sakai A, Higashiura Y, Tanaka M, Saitoh S, Shimamoto K, Ohnishi H. Circulating PCSK7 Level is Independently Associated with Obesity, Triglycerides Level and Fatty Liver Index in a General Population without Medication. J Atheroscler Thromb 2021; 29:1275-1284. [PMID: 34565765 PMCID: PMC9444688 DOI: 10.5551/jat.63159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
AIM Dyslipidemia and altered iron metabolism are typical features of non-alcoholic fatty liver disease (NAFLD). Proprotein convertase subtilisin/kexin type 7 (PCSK7), a transmembrane-anchored endonuclease, is associated with triglycerides level and processing of transferrin receptor 1. However, the significance of circulating PCSK7 has not been fully addressed, though prosegment PCSK7 is secreted from cells. We investigated the associations of plasma PCSK7 level with several parameters. METHODS Plasma PCSK7 concentration was measured in 282 subjects (male/female: 126/156) without medication of the Tanno-Sobetsu Study, a population-based cohort study. RESULTS There was no significant sex difference in PCSK7 level. Current smoking habit, but not alcohol drinking habit, was associated with increased PCSK7 level. PCSK7 concentration was negatively correlated with age and blood urea nitrogen and was positively correlated with body mass index (BMI) and levels of γ-glutamyl transpeptidase (γGTP), triglycerides and fatty liver index (FLI), which is calculated by BMI, waist circumference and levels of γGTP and triglycerides, as a noninvasive and simple predictor of NAFLD. There were no significant correlations of PCSK7 level with levels of iron and plasma PCSK9, a secreted PCSK family member and a regulator of low-density lipoprotein cholesterol level. Multivariable regression analyses after adjustment of age, sex and current smoking habit showed that PCSK7 concentration was independently associated with BMI (β=0.130, P=0.035), triglycerides (β=0.141, P=0.027) or FLI (β=0.139, P=0.030). CONCLUSIONS Plasma PCSK7 concentration is independently associated with chronic liver disease including obesity and elevated triglycerides level in a general population of individuals who had not regularly taken any medications.
Collapse
Affiliation(s)
- Masato Furuhashi
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine
| | - Yu Kataoka
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
| | - Ryo Nishikawa
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine
| | - Masayuki Koyama
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine.,Department of Public Health, Sapporo Medical University School of Medicine
| | - Akiko Sakai
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine
| | - Yukimura Higashiura
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine
| | - Marenao Tanaka
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine
| | - Shigeyuki Saitoh
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine.,Department of Nursing, Division of Medical and Behavioral Subjects, Sapporo Medical University School of Health Sciences
| | | | - Hirofumi Ohnishi
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine.,Department of Public Health, Sapporo Medical University School of Medicine
| |
Collapse
|
13
|
The rs508487, rs236911, and rs236918 Genetic Variants of the Proprotein Convertase Subtilisin-Kexin Type 7 ( PCSK7) Gene Are Associated with Acute Coronary Syndrome and with Plasma Concentrations of HDL-Cholesterol and Triglycerides. Cells 2021; 10:cells10061444. [PMID: 34207761 PMCID: PMC8227151 DOI: 10.3390/cells10061444] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/01/2021] [Accepted: 06/05/2021] [Indexed: 01/18/2023] Open
Abstract
Dyslipidemia has a substantial role in the development of acute coronary syndrome (ACS). Previous reports, including genome-wide associations studies (GWAS), have shown that some genetic variants of the proprotein convertase subtilisin–kexin type 7 (PCSK7) gene are associated with plasma lipid levels. In the present study, we evaluated whether PCSK7 gene polymorphisms are significantly associated with the plasma lipid profile and ACS. Three PCSK7 gene polymorphisms (rs508487 T/C, rs236911 C/A, and rs236918 C/G) were determined using TaqMan genotyping assays in a group of 603 ACS patients and 622 healthy controls. The plasma lipid profile was determined in the study groups by enzymatic/colorimetric assays. Under the recessive model, the rs236918 C allele was associated with a high risk of ACS (OR = 2.11, pC = 0.039). In the same way, under the recessive and additive models, the rs236911 C allele was associated with a high risk of ACS (OR = 1.95, pC = 0.037, and OR = 1.28, pC = 0.037, respectively). In addition, under the co-dominant model, the rs508487 T allele was associated with a higher risk of ACS (OR = 1.78, pC = 0.010). The CCC and TCC haplotypes were associated with a high risk of ACS (OR = 1.21, pC = 0.047, and OR = 1.80, pC = 0.001, respectively). The rs236911 CC and rs236918 CC genotypes were associated with lower high-density lipoproteins-cholesterol (HDL-C) plasma concentrations, whereas the rs236911 CC genotype was associated with a higher concentration of triglycerides, as demonstrated in the control individuals who were not receiving antidyslipidemic drugs. Our data suggest that the PCSK7 rs508487 T/C, rs236911 C/A, and rs236918 C/G polymorphisms are associated with the risk of developing ACS, and with plasma concentrations of HDL-C and triglycerides.
Collapse
|
14
|
Abstract
The kexin-like proprotein convertases perform the initial proteolytic cleavages that ultimately generate a variety of different mature peptide and proteins, ranging from brain neuropeptides to endocrine peptide hormones, to structural proteins, among others. In this review, we present a general introduction to proprotein convertase structure and biochemistry, followed by a comprehensive discussion of each member of the kexin-like subfamily of proprotein convertases. We summarize current knowledge of human proprotein convertase insufficiency syndromes, including genome-wide analyses of convertase polymorphisms, and compare these to convertase null and mutant mouse models. These mouse models have illuminated our understanding of the roles specific convertases play in human disease and have led to the identification of convertase-specific substrates; for example, the identification of procorin as a specific PACE4 substrate in the heart. We also discuss the limitations of mouse null models in interpreting human disease, such as differential precursor cleavage due to species-specific sequence differences, and the challenges presented by functional redundancy among convertases in attempting to assign specific cleavages and/or physiological roles. However, in most cases, knockout mouse models have added substantively both to our knowledge of diseases caused by human proprotein convertase insufficiency and to our appreciation of their normal physiological roles, as clearly seen in the case of the furin, proprotein convertase 1/3, and proprotein convertase 5/6 mouse models. The creation of more sophisticated mouse models with tissue- or temporally-restricted expression of specific convertases will improve our understanding of human proprotein convertase insufficiency and potentially provide support for the emerging concept of therapeutic inhibition of convertases.
Collapse
Affiliation(s)
- Manita Shakya
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Iris Lindberg
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
15
|
Niu L, Guo W, Song X, Song X, Xie L. Tumor-educated leukocytes mRNA as a diagnostic biomarker for non-small cell lung cancer. Thorac Cancer 2021; 12:737-745. [PMID: 33474835 PMCID: PMC7952788 DOI: 10.1111/1759-7714.13833] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/24/2020] [Accepted: 12/24/2020] [Indexed: 12/24/2022] Open
Abstract
Background This study aimed to investigate the diagnostic and prognostic role of tumor‐educated leukocytes (TELs) mRNA in Chinese patients with non‐small cell lung cancer (NSCLC). Methods The TELs collected underwent total RNA isolation. RNA‐sequencing (RNA‐seq) technology was used to analyze the transcriptome of the TELs. The mRNA expression levels of differential genes were analyzed by RT‐qPCR. Statistical analyses were performed using Prism and SPSS by Mann–Whitney nonparametric test, Kruskal‐Wallis test and one‐way ANOVA. Results We used RNA‐seq technology to screen 95 differential genes (DEGs) from seven NSCLC and four controls, wherein 15 genes were upregulated, and 80 were downregulated. Of these, four genes were selected for further analysis, wherein one was upregulated (GPX1) and three were downregulated (BCL9L, MAP3K7CL, PCSK7). RT‐qPCR was performed in 431 samples (237 NSCLC, 194 healthy donors). The four‐gene panel showed significant differences (p < 0.001) in the expression levels between NSCLC and healthy samples. ROC curves of the panel revealed an AUC of 0.803, with a sensitivity of 73.8% and specificity of 75.3%. GPX1, BCL9L and PCSK7 genes distinguished early‐stage NSCLC patients from healthy group (p < 0.05). When the three genes were combined to diagnose early‐stage NSCLC, the diagnostic efficacy was 0.772, sensitivity was 73.7%, and specificity was 72.2%. In addition, the downregulated gene BCL9L was associated with chemotherapeutic effect. Conclusions The present study provided a systematic description of gene expression profiling in the TELs. It is worth noting that these four genes may be potential candidate genes for NSCLC diagnostic biomarkers and provide a basis for further biological and functional studies.
Collapse
Affiliation(s)
- Limin Niu
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Wei Guo
- Ultrasound Diagnosis Department, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xingguo Song
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.,Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xianrang Song
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.,Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Li Xie
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
16
|
Yang C, Wan X, Lin X, Chen M, Zhou X, Liu J. CoMM: a collaborative mixed model to dissecting genetic contributions to complex traits by leveraging regulatory information. Bioinformatics 2020; 35:1644-1652. [PMID: 30295737 DOI: 10.1093/bioinformatics/bty865] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 09/15/2018] [Accepted: 10/05/2018] [Indexed: 12/12/2022] Open
Abstract
MOTIVATION Genome-wide association studies (GWASs) have been successful in identifying many genetic variants associated with complex traits. However, the mechanistic links between these variants and complex traits remain elusive. A scientific hypothesis is that genetic variants influence complex traits at the organismal level via affecting cellular traits, such as regulating gene expression and altering protein abundance. Although earlier works have already presented some scientific insights about this hypothesis and their findings are very promising, statistical methods that effectively harness multilayered data (e.g. genetic variants, cellular traits and organismal traits) on a large scale for functional and mechanistic exploration are highly demanding. RESULTS In this study, we propose a collaborative mixed model (CoMM) to investigate the mechanistic role of associated variants in complex traits. The key idea is built upon the emerging scientific evidence that genetic effects at the cellular level are much stronger than those at the organismal level. Briefly, CoMM combines two models: the first model relating gene expression with genotype and the second model relating phenotype with predicted gene expression using the first model. The two models are fitted jointly in CoMM, such that the uncertainty in predicting gene expression has been fully accounted. To demonstrate the advantages of CoMM over existing methods, we conducted extensive simulation studies, and also applied CoMM to analyze 25 traits in NFBC1966 and Genetic Epidemiology Research on Aging (GERA) studies by integrating transcriptome information from the Genetic European in Health and Disease (GEUVADIS) Project. The results indicate that by leveraging regulatory information, CoMM can effectively improve the power of prioritizing risk variants. Regarding the computational efficiency, CoMM can complete the analysis of NFBC1966 dataset and GERA datasets in 2 and 18 min, respectively. AVAILABILITY AND IMPLEMENTATION The developed R package is available at https://github.com/gordonliu810822/CoMM. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Can Yang
- Department of Mathematics, Hong Kong University of Science and Technology, Hong Kong, China
| | - Xiang Wan
- Shenzhen Research Institute of Big Data, Shenzhen, China
| | - Xinyi Lin
- Centre for Quantitative Medicine, Program in Health Services and Systems Research, Duke-NUS Medical School, Singapore
| | - Mengjie Chen
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Xiang Zhou
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Jin Liu
- Centre for Quantitative Medicine, Program in Health Services and Systems Research, Duke-NUS Medical School, Singapore
| |
Collapse
|
17
|
Ashraf Y, Duval S, Sachan V, Essalmani R, Susan-Resiga D, Roubtsova A, Hamelin J, Gerhardy S, Kirchhofer D, Tagliabracci VS, Prat A, Kiss RS, Seidah NG. Proprotein convertase 7 (PCSK7) reduces apoA-V levels. FEBS J 2020; 287:3565-3578. [PMID: 31945259 DOI: 10.1111/febs.15212] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/07/2019] [Accepted: 01/10/2020] [Indexed: 01/24/2023]
Abstract
The locus of the human proprotein convertase subtilisin-kexin type-7 (PC7) gene (PCSK7) is on chromosome 11q23.3 close to the gene cluster APOA5/APOA4/APOC3/APOA1, a region implicated in the regulation of lipoprotein metabolism. A GWAS reported the association of PCSK7 SNPs with plasma triglyceride (TG), and exome sequencing of African Americans revealed the association of a low-frequency coding variant of PC7 (R504H; SNP rs142953140) with a ~ 30% TG reduction. Another PCSK7 SNP rs508487 is in linkage disequilibrium with a promoter variant of the liver-derived apolipoprotein A-V (apoA-V), an indirect activator of the lipoprotein lipase (LpL), and is associated with elevated TG levels. We thus hypothesized that PC7 regulates the levels/activity of apoA-V. Studies in the human hepatic cell line HuH7 revealed that wild-type (WT) PC7 and its endoplasmic reticulum (ER)-retained forms bind to and enhance the degradation of human apoA-V in acidic lysosomes in a nonenzymatic fashion. PC7-induced degradation of apoA-V is inhibited by bafilomycin A1 and the alkalinizing agents: chloroquine and NH4 Cl. Thus, the PC7-induced apoA-V degradation implicates an ER-lysosomal communication inhibited by bafilomycin A1. In vitro, the natural R504H mutant enhances PC7 Ser505 phosphorylation at the structurally exposed Ser-X-Glu507 motif recognized by the secretory kinase Fam20C. Co-expression of the phosphomimetic PC7-S505E with apoA-V resulted in lower degradation compared to WT, suggesting that Ser505 phosphorylation of PC7 lowers TG levels via reduced apoA-V degradation. In agreement, in Pcsk7-/- mice fed high-fat diet, plasma apoA-V levels and adipocyte LpL activity are increased, providing an in vivo mechanistic link for a role of liver PC7 in enhanced TG storage in adipocytes.
Collapse
Affiliation(s)
- Yahya Ashraf
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, QC, Canada
| | - Stéphanie Duval
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, QC, Canada
| | - Vatsal Sachan
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, QC, Canada
| | - Rachid Essalmani
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, QC, Canada
| | - Delia Susan-Resiga
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, QC, Canada
| | - Anna Roubtsova
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, QC, Canada
| | - Josée Hamelin
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, QC, Canada
| | - Stefan Gerhardy
- Early Discovery Biochemistry, Genentech Inc., South San Francisco, CA, USA
| | - Daniel Kirchhofer
- Early Discovery Biochemistry, Genentech Inc., South San Francisco, CA, USA
| | - Vincent S Tagliabracci
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Annik Prat
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, QC, Canada
| | - Robert Scott Kiss
- Research Institute, McGill University Health Center, Montreal, QC, Canada
| | - Nabil G Seidah
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, QC, Canada
| |
Collapse
|
18
|
Genome-wide association study of metabolic syndrome in Korean populations. PLoS One 2020; 15:e0227357. [PMID: 31910446 PMCID: PMC6946588 DOI: 10.1371/journal.pone.0227357] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 12/17/2019] [Indexed: 12/24/2022] Open
Abstract
Metabolic syndrome (MetS) which is caused by obesity and insulin resistance, is well known for its predictive capability for the risk of type 2 diabetes mellitus and cardiovascular disease. The development of MetS is associated with multiple genetic factors, environmental factors and lifestyle. We performed a genome-wide association study to identify single-nucleotide polymorphism (SNP) related to MetS in large Korean population based samples of 1,362 subjects with MetS and 6,061 controls using the Axiom® Korean Biobank Array 1.0. We replicated the data in another sample including 502 subjects with MetS and 1,751 controls. After adjusting for age and sex, rs662799 located in the APOA5 gene were significantly associated with MetS. 15 SNPs in GCKR, C2orf16, APOA5, ZPR1, and BUD13 were associated with high triglyceride (TG). 14 SNPs in APOA5, ALDH1A2, LIPC, HERPUD1, and CETP, and 2 SNPs in MTNR1B were associated with low high density lipoprotein cholesterol (HDL-C) and high fasting blood glucose respectively. Among these SNPs, 6 TG SNPs: rs1260326, rs1260333, rs1919127, rs964184, rs2075295 and rs1558861 and 11 HDL-C SNPs: rs4775041, rs10468017, rs1800588, rs72786786, rs173539, rs247616, rs247617, rs3764261, rs4783961, rs708272, and rs7499892 were first discovered in Koreans. Additional research is needed to confirm these 17 novel SNPs in Korean population.
Collapse
|
19
|
Zeng X, Li C, Li Y, Yu H, Fu P, Hong HG, Zhang W. A network-based variable selection approach for identification of modules and biomarker genes associated with end-stage kidney disease. Nephrology (Carlton) 2019; 25:775-784. [PMID: 31464346 DOI: 10.1111/nep.13655] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2019] [Indexed: 02/05/2023]
Abstract
AIMS Intervention for end-stage kidney disease (ESKD), which is associated with adverse prognoses and major economic burdens, is challenging due to its complex pathogenesis. The study was performed to identify biomarker genes and molecular mechanisms for ESKD by bioinformatics approach. METHODS Using the Gene Expression Omnibus dataset GSE37171, this study identified pathways and genomic biomarkers associated with ESKD via a multi-stage knowledge discovery process, including identification of modules of genes by weighted gene co-expression network analysis, discovery of important involved pathways by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses, selection of differentially expressed genes by the empirical Bayes method, and screening biomarker genes by the least absolute shrinkage and selection operator (Lasso) logistic regression. The results were validated using GSE70528, an independent testing dataset. RESULTS Three clinically important gene modules associated with ESKD, were identified by weighted gene co-expression network analysis. Within these modules, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses revealed important biological pathways involved in ESKD, including transforming growth factor-β and Wnt signalling, RNA-splicing, autophagy and chromatin and histone modification. Furthermore, Lasso logistic regression was conducted to identify five final genes, namely, CNOT8, MST4, PPP2CB, PCSK7 and RBBP4 that are differentially expressed and associated with ESKD. The accuracy of the final model in distinguishing the ESKD cases and controls was 96.8% and 91.7% in the training and validation datasets, respectively. CONCLUSION Network-based variable selection approaches can identify biological pathways and biomarker genes associated with ESKD. The findings may inform more in-depth follow-up research and effective therapy.
Collapse
Affiliation(s)
- Xiaoxi Zeng
- West China Biomedical Big Data Center, West China School of Medicine (West China Hospital), Sichuan University, Chengdu, China.,Division of Nephrology, Kidney Research Institute, West China Hospital, Sichuan University, Chengdu, China.,Medical Big Data Center, Sichuan University, Chengdu, China
| | - Chunyang Li
- West China Biomedical Big Data Center, West China School of Medicine (West China Hospital), Sichuan University, Chengdu, China.,Medical Big Data Center, Sichuan University, Chengdu, China
| | - Yi Li
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Haopeng Yu
- West China Biomedical Big Data Center, West China School of Medicine (West China Hospital), Sichuan University, Chengdu, China.,Medical Big Data Center, Sichuan University, Chengdu, China
| | - Ping Fu
- Division of Nephrology, Kidney Research Institute, West China Hospital, Sichuan University, Chengdu, China.,Medical Big Data Center, Sichuan University, Chengdu, China
| | - Hyokyoung G Hong
- Department of Statistics and Probability, Michigan State University, East Lansing, Michigan, USA
| | - Wei Zhang
- West China Biomedical Big Data Center, West China School of Medicine (West China Hospital), Sichuan University, Chengdu, China.,Medical Big Data Center, Sichuan University, Chengdu, China
| |
Collapse
|
20
|
Yasukochi Y, Sakuma J, Takeuchi I, Kato K, Oguri M, Fujimaki T, Horibe H, Yamada Y. Evolutionary history of disease-susceptibility loci identified in longitudinal exome-wide association studies. Mol Genet Genomic Med 2019; 7:e925. [PMID: 31402603 PMCID: PMC6732299 DOI: 10.1002/mgg3.925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 06/12/2019] [Accepted: 07/26/2019] [Indexed: 12/17/2022] Open
Abstract
Background Our longitudinal exome‐wide association studies previously detected various genetic determinants of complex disorders using ~26,000 single‐nucleotide polymorphisms (SNPs) that passed quality control and longitudinal medical examination data (mean follow‐up period, 5 years) in 4884–6022 Japanese subjects. We found that allele frequencies of several identified SNPs were remarkably different among four ethnic groups. Elucidating the evolutionary history of disease‐susceptibility loci may help us uncover the pathogenesis of the related complex disorders. Methods In the present study, we conducted evolutionary analyses such as extended haplotype homozygosity, focusing on genomic regions containing disease‐susceptibility loci and based on genotyping data of our previous studies and datasets from the 1000 Genomes Project. Results Our evolutionary analyses suggest that derived alleles of rs78338345 of GGA3, rs7656604 at 4q13.3, rs34902660 of SLC17A3, and six SNPs closely located at 12q24.1 associated with type 2 diabetes mellitus, obesity, dyslipidemia, and three complex disorders (hypertension, hyperuricemia, and dyslipidemia), respectively, rapidly expanded after the human dispersion from Africa (Out‐of‐Africa). Allele frequencies of GGA3 and six SNPs at 12q24.1 appeared to have remarkably changed in East Asians, whereas the derived alleles of rs34902660 of SLC17A3 and rs7656604 at 4q13.3 might have spread across Japanese and non‐Africans, respectively, although we cannot completely exclude the possibility that allele frequencies of disease‐associated loci may be affected by demographic events. Conclusion Our findings indicate that derived allele frequencies of nine disease‐associated SNPs (rs78338345 of GGA3, rs7656604 at 4q13.3, rs34902660 of SLC17A3, and six SNPs at 12q24.1) identified in the longitudinal exome‐wide association studies largely increased in non‐Africans after Out‐of‐Africa.
Collapse
Affiliation(s)
- Yoshiki Yasukochi
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Mie University, Tsu, Japan.,CREST, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Jun Sakuma
- CREST, Japan Science and Technology Agency, Kawaguchi, Japan.,Computer Science Department, College of Information Science, University of Tsukuba, Tsukuba, Japan.,RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
| | - Ichiro Takeuchi
- CREST, Japan Science and Technology Agency, Kawaguchi, Japan.,RIKEN Center for Advanced Intelligence Project, Tokyo, Japan.,Department of Computer Science, Nagoya Institute of Technology, Nagoya, Japan
| | - Kimihiko Kato
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Mie University, Tsu, Japan.,Department of Internal Medicine, Meitoh Hospital, Nagoya, Japan
| | - Mitsutoshi Oguri
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Mie University, Tsu, Japan.,Department of Cardiology, Kasugai Municipal Hospital, Kasugai, Japan
| | - Tetsuo Fujimaki
- Department of Cardiovascular Medicine, Inabe General Hospital, Inabe, Japan
| | - Hideki Horibe
- Department of Cardiovascular Medicine, Gifu Prefectural Tajimi Hospital, Tajimi, Japan
| | - Yoshiji Yamada
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Mie University, Tsu, Japan.,CREST, Japan Science and Technology Agency, Kawaguchi, Japan
| |
Collapse
|
21
|
Anower-E-Khuda F, Singh G, Deng Y, Gordts PLSM, Esko JD. Triglyceride-rich lipoprotein binding and uptake by heparan sulfate proteoglycan receptors in a CRISPR/Cas9 library of Hep3B mutants. Glycobiology 2019; 29:582-592. [PMID: 31094413 PMCID: PMC6639542 DOI: 10.1093/glycob/cwz037] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 05/01/2019] [Accepted: 05/13/2019] [Indexed: 12/20/2022] Open
Abstract
Binding and uptake of triglyceride-rich lipoproteins (TRLs) in mice depend on heparan sulfate and the hepatic proteoglycan, syndecan-1 (SDC1). Alteration of glucosamine N-sulfation by deletion of glucosamine N-deacetylase-N-sulfotransferase 1 (Ndst1) and 2-O-sulfation of uronic acids by deletion of uronyl 2-O-sulfotransferase (Hs2st) led to diminished lipoprotein metabolism, whereas inactivation of glucosaminyl 6-O-sulfotransferase 1 (Hs6st1), which encodes one of the three 6-O-sulfotransferases, had little effect on lipoprotein binding. However, other studies have suggested that 6-O-sulfation may be important for TRL binding and uptake. In order to explain these discrepant findings, we used CRISPR/Cas9 gene editing to create a library of mutants in the human hepatoma cell line, Hep3B. Inactivation of EXT1 encoding the heparan sulfate copolymerase, NDST1 and HS2ST dramatically reduced binding of TRLs. Inactivation of HS6ST1 had no effect, but deletion of HS6ST2 reduced TRL binding. Compounding mutations in HS6ST1 and HS6ST2 did not exacerbate this effect indicating that HS6ST2 is the dominant 6-O-sulfotransferase and that binding of TRLs indeed depends on 6-O-sulfation of glucosamine residues. Uptake studies showed that TRL internalization was also affected in 6-O-sulfation deficient cells. Interestingly, genetic deletion of SDC1 only marginally impacted binding of TRLs but reduced TRL uptake to the same extent as treating the cells with heparin lyases. These findings confirm that SDC1 is the dominant endocytic proteoglycan receptor for TRLs in human Hep3B cells and that binding and uptake of TRLs depend on SDC1 and N- and 2-O-sulfation as well as 6-O-sulfation of heparan sulfate chains catalyzed by HS6ST2.
Collapse
Affiliation(s)
| | | | - Yiping Deng
- Department of Cellular and Molecular Medicine
- Juventas Cell Therapy Ltd, Beijing, China
| | - Philip L S M Gordts
- Department of Medicine
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA, USA
| | - Jeffrey D Esko
- Department of Cellular and Molecular Medicine
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
22
|
Petty LE, Highland HM, Gamazon ER, Hu H, Karhade M, Chen HH, de Vries PS, Grove ML, Aguilar D, Bell GI, Huff CD, Hanis CL, Doddapaneni H, Munzy DM, Gibbs RA, Ma J, Parra EJ, Cruz M, Valladares-Salgado A, Arking DE, Barbeira A, Im HK, Morrison AC, Boerwinkle E, Below JE. Functionally oriented analysis of cardiometabolic traits in a trans-ethnic sample. Hum Mol Genet 2019; 28:1212-1224. [PMID: 30624610 PMCID: PMC6423424 DOI: 10.1093/hmg/ddy435] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 11/13/2018] [Accepted: 11/20/2018] [Indexed: 01/02/2023] Open
Abstract
Interpretation of genetic association results is difficult because signals often lack biological context. To generate hypotheses of the functional genetic etiology of complex cardiometabolic traits, we estimated the genetically determined component of gene expression from common variants using PrediXcan (1) and determined genes with differential predicted expression by trait. PrediXcan imputes tissue-specific expression levels from genetic variation using variant-level effect on gene expression in transcriptome data. To explore the value of imputed genetically regulated gene expression (GReX) models across different ancestral populations, we evaluated imputed expression levels for predictive accuracy genome-wide in RNA sequence data in samples drawn from European-ancestry and African-ancestry populations and identified substantial predictive power using European-derived models in a non-European target population. We then tested the association of GReX on 15 cardiometabolic traits including blood lipid levels, body mass index, height, blood pressure, fasting glucose and insulin, RR interval, fibrinogen level, factor VII level and white blood cell and platelet counts in 15 755 individuals across three ancestry groups, resulting in 20 novel gene-phenotype associations reaching experiment-wide significance across ancestries. In addition, we identified 18 significant novel gene-phenotype associations in our ancestry-specific analyses. Top associations were assessed for additional support via query of S-PrediXcan (2) results derived from publicly available genome-wide association studies summary data. Collectively, these findings illustrate the utility of transcriptome-based imputation models for discovery of cardiometabolic effect genes in a diverse dataset.
Collapse
Affiliation(s)
- Lauren E Petty
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA.,Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Heather M Highland
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA.,Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Eric R Gamazon
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA.,Clare Hall, University of Cambridge, Cambridge, UK
| | - Hao Hu
- Department of Epidemiology, MD Anderson Cancer Center, Houston, TX, USA
| | - Mandar Karhade
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Hung-Hsin Chen
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA.,Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Paul S de Vries
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Megan L Grove
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - David Aguilar
- Department of Cardiology, Baylor College of Medicine Houston, TX, USA
| | - Graeme I Bell
- Departments of Medicine and Human Genetics, The University of Chicago, Chicago, IL, USA
| | - Chad D Huff
- Department of Epidemiology, MD Anderson Cancer Center, Houston, TX, USA
| | - Craig L Hanis
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | | | - Donna M Munzy
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Richard A Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Jianzhong Ma
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Esteban J Parra
- Department of Anthropology, University of Toronto at Mississauga, Mississauga, Ontario, Canada
| | - Miguel Cruz
- Unidad de Investigación Médica en Bioquímica, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, IMSS, Mexico City, Mexico
| | - Adan Valladares-Salgado
- Unidad de Investigación Médica en Bioquímica, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, IMSS, Mexico City, Mexico
| | - Dan E Arking
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alvaro Barbeira
- Section of Genetic Medicine, Department of Medicine, University of Chicago, IL, USA
| | - Hae Kyung Im
- Section of Genetic Medicine, Department of Medicine, University of Chicago, IL, USA
| | - Alanna C Morrison
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Eric Boerwinkle
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jennifer E Below
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA.,Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
23
|
Carr RM, Davidson NO. Building bridges: PCSK7 as a NAFLD candidate gene connecting hepatic inflammation with hypertriglyceridemia. J Lipid Res 2019; 60:1067-1068. [PMID: 31023721 DOI: 10.1194/jlr.c094888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Rotonya M Carr
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Nicholas O Davidson
- Gastroenterology Division, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110
| |
Collapse
|
24
|
Hosseinzadeh N, Mehrabi Y, Daneshpour MS, Zayeri F, Guity K, Azizi F. Identifying new associated pleiotropic SNPs with lipids by simultaneous test of multiple longitudinal traits: An Iranian family-based study. Gene 2019; 692:156-169. [DOI: 10.1016/j.gene.2019.01.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/05/2019] [Accepted: 01/11/2019] [Indexed: 02/08/2023]
|
25
|
Dongiovanni P, Meroni M, Baselli G, Mancina RM, Ruscica M, Longo M, Rametta R, Cespiati A, Pelusi S, Ferri N, Ranzani V, Nobili V, Pihlajamaki J, Fracanzani AL, Badiali S, Petta S, Fargion S, Romeo S, Kozlitina J, Valenti L. PCSK7 gene variation bridges atherogenic dyslipidemia with hepatic inflammation in NAFLD patients. J Lipid Res 2019; 60:1144-1153. [PMID: 30918065 DOI: 10.1194/jlr.p090449] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 03/22/2019] [Indexed: 12/22/2022] Open
Abstract
Dyslipidemia and altered iron metabolism are typical features of nonalcoholic fatty liver disease (NAFLD). Proprotein convertase subtilisin/kexin type 7 (PCSK7) gene variation has been associated with circulating lipids and liver damage during iron overload. The aim of this study was to examine the impact of the PCSK7 rs236918 variant on NAFLD-related traits in 1,801 individuals from the Liver Biopsy Cohort (LBC), 500,000 from the UK Biobank Cohort (UKBBC), and 4,580 from the Dallas Heart Study (DHS). The minor PCSK7 rs236918 C allele was associated with higher triglycerides, aminotransferases, and hepatic inflammation in the LBC (P < 0.05) and with hypercholesterolemia and liver disease in the UKBBC. In the DHS, PCSK7 missense variants were associated with circulating lipids. PCSK7 was expressed in hepatocytes and its hepatic expression correlated with that of lipogenic genes (P < 0.05). The rs236918 C allele was associated with upregulation of a new "intra-PCSK7" long noncoding RNA predicted to interact with the protein, higher hepatic and circulating PCSK7 protein (P < 0.01), which correlated with triglycerides (P = 0.04). In HepG2 cells, PCSK7 deletion reduced lipogenesis, fat accumulation, inflammation, transforming growth factor β pathway activation, and fibrogenesis. In conclusion, PCSK7 gene variation is associated with dyslipidemia and more severe liver disease in high risk individuals, likely by modulating PCSK7 expression/activity.
Collapse
Affiliation(s)
- Paola Dongiovanni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Marica Meroni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Departments of Pathophysiology and Transplantation Università degli Studi di Milano, Milan, Italy
| | - Guido Baselli
- Departments of Pathophysiology and Transplantation Università degli Studi di Milano, Milan, Italy
| | - Rosellina M Mancina
- Department of Molecular and Clinical Medicine University of Gothenburg, Gothenburg, Sweden
| | - Massimiliano Ruscica
- Pharmacological and Biomolecular Sciences Università degli Studi di Milano, Milan, Italy
| | - Miriam Longo
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Raffaela Rametta
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Annalisa Cespiati
- Departments of Pathophysiology and Transplantation Università degli Studi di Milano, Milan, Italy
| | - Serena Pelusi
- Departments of Pathophysiology and Transplantation Università degli Studi di Milano, Milan, Italy.,Translational Medicine, Department of Transfusion Medicine and Hematology Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Nicola Ferri
- Dipartimento di Scienze del Farmaco Università degli Studi di Padova, Padova, Italy
| | - Valeria Ranzani
- Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, Milan, Italy
| | - Valerio Nobili
- Department of Gastroenterology, Ospedale Bambin Gesù, Roma, Italy
| | - Jussi Pihlajamaki
- Departments of Medicine and Public Health and Clinical Nutrition University of Eastern Finland, and Clinical Nutrition and Obesity Center, Kuopio University Hospital, Kuopio, Finland
| | - Anna Ludovica Fracanzani
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Departments of Pathophysiology and Transplantation Università degli Studi di Milano, Milan, Italy
| | - Sara Badiali
- Surgery Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Salvatore Petta
- Department of Gastroenterology Universita di Palermo, Palermo, Italy
| | - Silvia Fargion
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Departments of Pathophysiology and Transplantation Università degli Studi di Milano, Milan, Italy
| | - Stefano Romeo
- Pharmacological and Biomolecular Sciences Università degli Studi di Milano, Milan, Italy.,Cardiology Department Sahlgrenska University Hospital, Gothenburg, Sweden and Clinical Nutrition Department of Medical and Surgical Science, University Magna Graecia, Catanzaro, Italy
| | - Julia Kozlitina
- McDermott Center for Human Growth and Development University of Texas Southwestern Medical Center, Dallas, TX
| | - Luca Valenti
- Departments of Pathophysiology and Transplantation Università degli Studi di Milano, Milan, Italy .,Translational Medicine, Department of Transfusion Medicine and Hematology Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
26
|
Bandesh K, Prasad G, Giri AK, Kauser Y, Upadhyay M, Basu A, Tandon N, Bharadwaj D. Genome-wide association study of blood lipids in Indians confirms universality of established variants. J Hum Genet 2019; 64:573-587. [PMID: 30911093 DOI: 10.1038/s10038-019-0591-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 03/02/2019] [Accepted: 03/03/2019] [Indexed: 12/30/2022]
Abstract
Lipids foster energy production and their altered levels have been coupled with metabolic ailments. Indians feature high prevalence of metabolic diseases, yet uncharacterized for genes regulating lipid homeostasis. We performed first GWAS for quantitative lipids (total cholesterol, LDL, HDL, and triglycerides) exclusively in 5271 Indians. Further to corroborate our genetic findings, we investigated DNA methylation marks in peripheral blood in Indians at the identified loci (N = 233) and retrieved gene regulatory features from public domains. Recurrent GWAS loci-CELSR2, CETP, LPL, ZNF259, and BUD13 cropped up as lead signals in Indians, reflecting their universal applicability. Besides established variants, we found certain unreported variants at sub-genome-wide level-QKI, REEP3, TMCC2, FAM129C, FAM241B, and LOC100506207. These variants though failed to attain GWAS significance in Indians, but largely turned out to be active CpG sites in human subcutaneous adipose tissue and showed robust association to two or more lipid traits. Of which, QKI variants showed significant association to all four lipid traits and their designated region was observed to be a key gene regulatory segment denoting active transcription particularly in human subcutaneous adipose tissue. Both established and novel loci were observed to be significantly associated with altered DNA methylation in Indians for specific CpGs that resided in key regulatory elements. Further, gene-based association analysis pinpointed novel GWAS loci-LINC01340 and IQCJ-SCHIP1 for TC; IFT27, IFT88, and LINC02141 for HDL; and TEX26 for TG. Present study ascertains universality of selected known genes and also identifies certain novel loci for lipids in Indians by integrating data from various levels of gene regulation.
Collapse
Affiliation(s)
- Khushdeep Bandesh
- Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi, 110020, India.,Academy of Scientific and Innovative Research, CSIR-Institute of Genomics and Integrative Biology Campus, New Delhi, 110020, India
| | - Gauri Prasad
- Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi, 110020, India.,Academy of Scientific and Innovative Research, CSIR-Institute of Genomics and Integrative Biology Campus, New Delhi, 110020, India
| | - Anil K Giri
- Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi, 110020, India.,Academy of Scientific and Innovative Research, CSIR-Institute of Genomics and Integrative Biology Campus, New Delhi, 110020, India
| | - Yasmeen Kauser
- Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi, 110020, India.,Academy of Scientific and Innovative Research, CSIR-Institute of Genomics and Integrative Biology Campus, New Delhi, 110020, India
| | - Medha Upadhyay
- Systems Genomics Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | | | - Analabha Basu
- National Institute of Biomedical Genomics, P.O.: Netaji Subhas Sanatorium, Kalyani, 741251, West Bengal, India
| | - Nikhil Tandon
- Department of Endocrinology and Metabolism, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Dwaipayan Bharadwaj
- Academy of Scientific and Innovative Research, CSIR-Institute of Genomics and Integrative Biology Campus, New Delhi, 110020, India. .,Systems Genomics Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
27
|
Distinct phospholipid and sphingolipid species are linked to altered HDL function in apolipoprotein A-I deficiency. J Clin Lipidol 2019; 13:468-480.e8. [PMID: 31003938 DOI: 10.1016/j.jacl.2019.02.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 01/10/2019] [Accepted: 02/18/2019] [Indexed: 01/23/2023]
Abstract
BACKGROUND Familial apolipoprotein A-I (apoA-I) deficiency (FAID) involving low levels of both apoA-I and high-density lipoprotein (HDL) cholesterol is associated with accelerated atherosclerosis. OBJECTIVE The objective of this study was to define distinctive patterns in the lipidome of HDL subpopulations in FAID in relationship to antiatherogenic activities. METHODS Five HDL subfractions were isolated by ultracentrifugation from plasma of FAID Caucasian patients (n = 5) and age-matched healthy normolipidemic Caucasian controls (n = 8), and the HDL lipidome (160 molecular species of 9 classes of phospholipids and sphingolipids) was quantitatively evaluated. RESULTS Increased concentrations of numerous molecular species of lysophosphatidylcholine (up to 12-fold), ceramides (up to 3-fold), phosphatidylserine (up to 34-fold), phosphatidic acid (up to 71-fold), and phosphatidylglycerol (up to 20-fold) were detected throughout all five HDL subpopulations as compared with their counterparts from controls, whereas concentrations of phosphatidylethanolamine species were decreased (up to 5-fold). Moderately to highly abundant, within their lipid class, species of phosphatidylcholine, sphingomyelin, phosphatidylinositol, phosphatidylethanolamine, phosphatidylserine, and ceramide featuring multiple unsaturations were primarily affected by apoA-I deficiency; their HDL content, particularly that of phosphatidylcholine (34:2), was strongly correlated with HDL function, impaired in FAID. Metabolic pathway analysis revealed that sphingolipid, glycerophospholipid, and linoleic acid metabolism was significantly affected by FAID. CONCLUSION These data reveal that altered content of specific phospholipid and sphingolipid species is linked to deficient antiatherogenic properties of HDL in FAID.
Collapse
|
28
|
Pikó P, Fiatal S, Kósa Z, Sándor J, Ádány R. Generalizability and applicability of results obtained from populations of European descent regarding the effect direction and size of HDL-C level-associated genetic variants to the Hungarian general and Roma populations. Gene 2018; 686:187-193. [PMID: 30468910 DOI: 10.1016/j.gene.2018.11.067] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/28/2018] [Accepted: 11/19/2018] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Large-scale association studies that mainly involve European populations identified many genetic loci related to high-density lipoprotein cholesterol (HDL-C) levels, one of the most important indicators of the risk for cardiovascular diseases. The question with intense speculation of whether the effect estimates obtained from European populations for different HDL-C level-related SNPs are applicable to the Roma ethnicity, the largest minority group in Europe with a South Asian origin, was addressed in the present study. DESIGN The associations between 21 SNPs (in the genes LIPC(G), CETP, GALNT2, HMGCP, ABCA1, KCTD10 and WWOX) and HDL-C levels were examined separately in adults of the Hungarian general (N = 1542) and Roma (N = 646) populations by linear regression. Individual effects (direction and size) of single SNPs on HDL-C levels were computed and compared between the study groups and with data published in the literature. RESULTS Significant associations between SNPs and HDL-C levels were more frequently found in general subjects than in Roma subjects (11 SNPs in general vs. 4 SNPs in Roma). The CETP gene variants rs1532624, rs708272 and rs7499892 consistently showed significant associations with HDL-C levels across the study groups (p ˂ 0.05), indicating a possible causal variant(s) in this region. Although nominally significant differences in effect size were found for three SNPs (rs693 in gene APOB, rs9989419 in gene CETP, and rs2548861 in gene WWOX) by comparing the general and Roma populations, most of these SNPs did not have a significant effect on HDL-C levels. The β coefficients for SNPs in the Roma population were found to be identical both in direction and magnitude to the effect obtained previously in large-scale studies on European populations. CONCLUSIONS The effect of the vast majority of the SNPs on HDL-C levels could be replicated in the Hungarian general and Roma populations, which indicates that the effect size measurements obtained from the literature can be used for risk estimation for both populations.
Collapse
Affiliation(s)
- Péter Pikó
- MTA-DE Public Health Research Group of the Hungarian Academy of Sciences, Faculty of Public Health, University of Debrecen, Debrecen 4028, Hungary; Department of Preventive Medicine, Faculty of Public Health, University of Debrecen, Debrecen 4028, Hungary
| | - Szilvia Fiatal
- Department of Preventive Medicine, Faculty of Public Health, University of Debrecen, Debrecen 4028, Hungary; WHO Collaborating Centre on Vulnerability and Health, Department of Preventive Medicine, Faculty of Public Health, University of Debrecen, Debrecen 4028, Hungary
| | - Zsigmond Kósa
- Department of Health Visitor Methodology and Public Health, Faculty of Health, University of Debrecen, Nyíregyháza 4400, Hungary
| | - János Sándor
- Department of Preventive Medicine, Faculty of Public Health, University of Debrecen, Debrecen 4028, Hungary; WHO Collaborating Centre on Vulnerability and Health, Department of Preventive Medicine, Faculty of Public Health, University of Debrecen, Debrecen 4028, Hungary
| | - Róza Ádány
- MTA-DE Public Health Research Group of the Hungarian Academy of Sciences, Faculty of Public Health, University of Debrecen, Debrecen 4028, Hungary; Department of Preventive Medicine, Faculty of Public Health, University of Debrecen, Debrecen 4028, Hungary; WHO Collaborating Centre on Vulnerability and Health, Department of Preventive Medicine, Faculty of Public Health, University of Debrecen, Debrecen 4028, Hungary.
| |
Collapse
|
29
|
Liu W, Cui Z, Xu P, Han H, Zhu J. Conditional GWAS revealing genetic impacts of lifestyle behaviors on low-density lipoprotein (LDL). Comput Biol Chem 2018; 78:497-503. [PMID: 30473251 DOI: 10.1016/j.compbiolchem.2018.11.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 11/16/2018] [Indexed: 10/27/2022]
Abstract
BACKGROUND Accumulation of LDL cholesterol (LDL-c) within artery walls is strongly associated with the initiation and progression of atherosclerosis development. This complex trait is affected by multifactor involving polygenes, environments, and their interactions. Uncovering genetic architecture of LDL may help to increase the understanding of the genetic mechanism of cardiovascular diseases. METHODS We used a genetic model to analyze genetic effects including additive, dominance, epistasis, and ethnic interactions for data from the Multi-Ethnic Study of Atherosclerosis (MESA). Three lifestyle behaviors (reading, intentional exercising, smoking) were used as cofactor in conditional models. RESULTS We identified 156 genetic effects of 10 quantitative trait SNPs (QTSs) in base model and three conditional models. The total estimated heritability of these genetic effects was approximately 72.88% in the base model. Five genes (CELSR2, MARK2, ADAMTS12, PFDN4, and MAGI2) have biological functions related to LDL. CONCLUSIONS Compared with the based model LDL, the results in three conditional models revealed that intentional exercising and smoking could have impacts for causing and suppressing some of genetic effects and influence the levels of LDL. Furthermore, these two lifestyles could have different genetic effects for each ethnic group on a specific QTS. As most of the heritability in based model LDL and conditional model LDL|Smk was contributed from epistasis effects, our result indicated that epistasis effects played important roles in determining LDL levels. Our study provided useful insight into the biological mechanisms underlying regulation of LDL and might help in the discovery of novel therapeutic targets for cardiovascular disease.
Collapse
Affiliation(s)
- Wenbin Liu
- Institute of Computational Science and Technology, Guangzhou University, Guangzhou, 510006, China.
| | - Zhendong Cui
- Institute of Computational Science and Technology, Guangzhou University, Guangzhou, 510006, China
| | - Peng Xu
- Institute of Computational Science and Technology, Guangzhou University, Guangzhou, 510006, China
| | - Henrry Han
- Department of Computer and Information Science, Fordham University, New York, NY, 10458, USA
| | - Jun Zhu
- Institute of Bioinformatics, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
30
|
Yamada Y, Kato K, Oguri M, Horibe H, Fujimaki T, Yasukochi Y, Takeuchi I, Sakuma J. Identification of 12 novel loci that confer susceptibility to early-onset dyslipidemia. Int J Mol Med 2018; 43:57-82. [PMID: 30365130 PMCID: PMC6257857 DOI: 10.3892/ijmm.2018.3943] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 09/26/2018] [Indexed: 01/14/2023] Open
Abstract
The circulating concentrations of triglycerides, high density lipoprotein (HDL)-cholesterol, and low density lipoprotein (LDL)-cholesterol have a substantial genetic component, and the heritability of early-onset dyslipidemia might be expected to be higher compared with late-onset forms. In the present study, exome-wide association studies (EWASs) were performed for early-onset hypertriglyceridemia, hypo-HDL-cholesterolemia, and hyper-LDL-cholesterolemia, with the aim to identify genetic variants that confer susceptibility to these conditions in the Japanese population. A total of 8,073 individuals aged ≤65 years were enrolled in the study. The EWASs for hypertriglyceridemia (2,664 cases and 5,294 controls), hypo-HDL-cholesterolemia (974 cases and 7,085 controls), and hyper-LDL-cholesterolemia (2,911 cases and 5,111 controls) were performed with Illumina Human Exome-12 v1.2 DNA Analysis BeadChip or Infinium Exome-24 v1.0 BeadChip arrays. The association of allele frequencies for 31,198, 31,133, or 31,175 single nucleotide polymorphisms (SNPs) to hypertriglyceridemia, hypo-HDL-cholesterolemia, or hyper-LDL-cholesterolemia, respectively, was examined with Fisher’s exact test. To compensate for multiple comparisons of genotypes with each of the three conditions, Bonferroni’s correction was applied for statistical significance of association. The results demonstrated that 25, 28 and 65 SNPs were significantly associated with hypertriglyceridemia, hypo-HDL-cholesterolemia and hyper-LDL-cholesterolemia, respectively. Multivariable logistic regression analysis with adjustment for age and sex revealed that all 25, 28 and 65 of these SNPs were significantly associated with hypertriglyceridemia, hypo-HDL-cholesterolemia and hyper-LDL-cholesterolemia, respectively. Following examination of the association of the identified SNPs to serum concentrations of triglycerides, HDL-cholesterol, or LDL-cholesterol, linkage disequilibrium of the SNPs, and results of previous genome-wide association studies, we newly identified chromosomal region 19p12 as a susceptibility locus for hypertriglyceridemia, eight loci (MOB3C-TMOD4, LPGAT1, EHD3, COL6A3, ZNF860-CACNA1D, COL6A5, DCLRE1C, ZNF77) for hypo-HDL-cholesterolemia, and three loci (KIAA0319-FAM65B, UBD, LOC105375015) for hyper-LDL-cholesterolemia. The present study thus identified 12 novel loci that may confer susceptibility to early-onset dyslipidemia. Determination of genotypes for the SNPs at these loci may prove informative for assessment of genetic risk for hypertriglyceridemia, hypo-HDL-cholesterolemia, or hyper-LDL-cholesterolemia in the Japanese population.
Collapse
Affiliation(s)
- Yoshiji Yamada
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Mie University, Tsu, Mie 514‑8507, Japan
| | - Kimihiko Kato
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Mie University, Tsu, Mie 514‑8507, Japan
| | - Mitsutoshi Oguri
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Mie University, Tsu, Mie 514‑8507, Japan
| | - Hideki Horibe
- Department of Cardiovascular Medicine, Gifu Prefectural Tajimi Hospital, Tajimi, Gifu 507‑8522, Japan
| | - Tetsuo Fujimaki
- Department of Cardiovascular Medicine, Northern Mie Medical Center Inabe General Hospital, Inabe, Mie 511‑0428, Japan
| | - Yoshiki Yasukochi
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Mie University, Tsu, Mie 514‑8507, Japan
| | - Ichiro Takeuchi
- CREST, Japan Science and Technology Agency, Kawaguchi, Saitama 332‑0012, Japan
| | - Jun Sakuma
- CREST, Japan Science and Technology Agency, Kawaguchi, Saitama 332‑0012, Japan
| |
Collapse
|
31
|
Do DN, Schenkel FS, Miglior F, Zhao X, Ibeagha-Awemu EM. Genome wide association study identifies novel potential candidate genes for bovine milk cholesterol content. Sci Rep 2018; 8:13239. [PMID: 30185830 PMCID: PMC6125589 DOI: 10.1038/s41598-018-31427-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 08/14/2018] [Indexed: 12/31/2022] Open
Abstract
This study aimed to identify single nucleotide polymorphisms (SNPs) associated with milk cholesterol (CHL) content via a genome wide association study (GWAS). Milk CHL content was determined by gas chromatography and expressed as mg of CHL in 100 g of fat (CHL_fat) or in 100 mg of milk (CHL_milk). GWAS was performed with 1,183 cows and 40,196 SNPs using a univariate linear mixed model. Two and 20 SNPs were significantly associated with CHL_fat and CHL_milk, respectively. The important regions for CHL_fat and CHL_milk were at 41.9 Mb on chromosome (BTA) 17 and 1.6-3.2 Mb on BTA 14, respectively. DGAT1, PTPN1, INSIG1, HEXIM1, SDS, and HTR5A genes, also known to be associated with human plasma CHL phenotypes, were identified as potential candidate genes for bovine milk CHL. Additional new potential candidate genes for milk CHL were RXFP1, FAM198B, TMEM144, CXXC4, MAML2 and CDH13. Enrichment analyses suggested that identified candidate genes participated in cell-cell signaling processes and are key members in tight junction, focal adhesion, Notch signaling and glycerolipid metabolism pathways. Furthermore, identified transcription factors such as PPARD, LXR, and NOTCH1 might be important in the regulation of bovine milk CHL content. The expression of several positional candidate genes (such as DGAT1, INSIG1 and FAM198B) and their correlation with milk CHL content were further confirmed with RNA sequence data from mammary gland tissues. This is the first GWAS on bovine milk CHL. The identified markers and candidate genes need further validation in a larger cohort for use in the selection of cows with desired milk CHL content.
Collapse
Affiliation(s)
- Duy N Do
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, QC, J1M 0C8, Canada
- Department of Animal Science, McGill University, Ste-Anne-de-, Bellevue, QC, H9X 3V9, Canada
| | - Flavio S Schenkel
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Filippo Miglior
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
- Canadian Dairy Network, Guelph, ON, N1K 1E5, Canada
| | - Xin Zhao
- Department of Animal Science, McGill University, Ste-Anne-de-, Bellevue, QC, H9X 3V9, Canada.
| | - Eveline M Ibeagha-Awemu
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, QC, J1M 0C8, Canada.
| |
Collapse
|
32
|
Hebbar P, Nizam R, Melhem M, Alkayal F, Elkum N, John SE, Tuomilehto J, Alsmadi O, Thanaraj TA. Genome-wide association study identifies novel recessive genetic variants for high TGs in an Arab population. J Lipid Res 2018; 59:1951-1966. [PMID: 30108155 DOI: 10.1194/jlr.p080218] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 07/23/2018] [Indexed: 12/12/2022] Open
Abstract
Abnormal blood lipid levels are influenced by genetic and lifestyle/dietary factors. Although many genetic variants associated with blood lipid traits have been identified in Europeans, similar data in Middle Eastern populations are limited. We performed a genome-wide association study with Arab individuals (discovery cohort: 1,353; replication cohort: 1,176) from Kuwait to identify possible associations of genetic variants with high lipid levels. We used Illumina HumanOmniExpress BeadChip and candidate SNP genotyping in the discovery and replication phases, respectively. For association tests, we used genetic models that were based on additive and recessive modes of inheritance. High triglycerides (TGs) were recessively associated with six risk variants (rs1002487/RPS6KA1, rs11805972/LAD1) rs7761746/Or5v1, rs39745/CTTNBP2-LSM8, rs2934952/PGAP3, and rs9626773/RP11-191L9.4-CERK) at genome-wide significance (P 6.12E-09), and another six variants (rs10873925/ST6GALNAC5, rs4663379/SPP2-ARL4C, rs10033119/NPY1R, rs17709449/LINC00911-FLRT2, rs11654954/CDK12-NEUROD2, and rs9972882/STARD3) were associated at borderline significance (P 5.0E-08). High TG was also additively associated with rs11654954. All of the 12 identified markers are novel and are harbored in runs of homozygosity. Literature evidence supports the involvement of these gene loci in lipid-related processes. This study in an Arab population augments international efforts to identify genetic regulation of lipid traits.
Collapse
Affiliation(s)
- Prashantha Hebbar
- Dasman Diabetes Institute, Dasman 15462, Kuwait.,Faculty of Medicine, Univerisity of Helsinki, Helsinki, Finland
| | | | | | | | - Naser Elkum
- Dasman Diabetes Institute, Dasman 15462, Kuwait
| | | | | | | | | |
Collapse
|
33
|
Seidah NG, Chrétien M, Mbikay M. The ever-expanding saga of the proprotein convertases and their roles in body homeostasis: emphasis on novel proprotein convertase subtilisin kexin number 9 functions and regulation. Curr Opin Lipidol 2018; 29:144-150. [PMID: 29342010 DOI: 10.1097/mol.0000000000000484] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW The nine members of the proprotein convertase family play major physiological roles during development and in the adult, and their dysregulation leads to various diseases. The primary objective of this article is to review recent findings on the clinical importance of some of these convertases concentrating mostly on PCSK9, the ninth member of the convertase family. This includes the transcriptional and translational regulation of PCSK9, its ability to enhance the degradation of LDL receptor (LDLR), and the implication of PCSK9 in inflammation and sepsis. RECENT FINDINGS PCSK9 levels are upregulated by E2F1 and reduced by specific miRNAs and by Annexin A2 that bind the 3' end of its mRNA. The implication of the LDLR in the clearance of pathogenic bacterial debris in mice and human puts in perspective a new role for PCSK9 in the regulation of sepsis. The specific implication of the LDLR in the clearance of Lp(a) is now confirmed by multiple studies of PCSK9 inhibition in human cohorts. SUMMARY Emerging data suggest that PCSK9 can be regulated at the transcriptional and translational levels by specific factors and miRNAs. The identification of a novel pocket in the catalytic domain of PCSK9 represents a harbinger for a new class of small inhibitor drugs. The implication of the LDLR in reducing the effects of bacterially induced sepsis has been supported by both human and mouse data. Outcome studies confirmed the clinical importance of reducing PCSK9 levels. The present review puts in perspective new developments in the PCSK9 biology and its regulation of the LDLR. VIDEO ABSTRACT: http://links.lww.com/COL/A17.
Collapse
Affiliation(s)
| | - Michel Chrétien
- Laboratory of Functional Endoproteolysis, Montreal Clinical Research Institute of Montreal (IRCM), Montreal, Quebec, Canada
| | - Majambu Mbikay
- Laboratory of Functional Endoproteolysis, Montreal Clinical Research Institute of Montreal (IRCM), Montreal, Quebec, Canada
| |
Collapse
|
34
|
Hoffmann TJ, Theusch E, Haldar T, Ranatunga DK, Jorgenson E, Medina MW, Kvale MN, Kwok PY, Schaefer C, Krauss RM, Iribarren C, Risch N. A large electronic-health-record-based genome-wide study of serum lipids. Nat Genet 2018; 50:401-413. [PMID: 29507422 PMCID: PMC5942247 DOI: 10.1038/s41588-018-0064-5] [Citation(s) in RCA: 191] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 01/19/2018] [Indexed: 12/16/2022]
Abstract
A genome-wide association study of 94,674 multi-ethnic Kaiser Permanente members utilizing 478,866 longitudinal untreated serum lipid electronic-health-record-derived measurements (EHRs) empowered multiple novel findings: 121 new SNP associations (46 primary, 15 conditional, 60 in meta-analysis with Global Lipids Genetic Consortium); increase of 33-42% in variance explained with multiple measurements; sex differences in genetic impact (greater in females for LDL, HDL, TC, the opposite for TG); differences in variance explained amongst non-Hispanic whites, Latinos, African Americans, and East Asians; genetic dominance and epistasis, with strong evidence for both at ABOxFUT2 for LDL; and eQTL tissue-enrichment implicating the liver, adipose, and pancreas. Utilizing EHR pharmacy data, both LDL and TG genetic risk scores (477 SNPs) were strongly predictive of age-at-initiation of lipid-lowering treatment. These findings highlight the value of longitudinal EHRs for identifying novel genetic features of cholesterol and lipoprotein metabolism with implications for lipid treatment and risk of coronary heart disease.
Collapse
Affiliation(s)
- Thomas J Hoffmann
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA. .,Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA.
| | | | - Tanushree Haldar
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Dilrini K Ranatunga
- Division of Research, Kaiser Permanente, Northern California, Oakland, CA, USA
| | - Eric Jorgenson
- Division of Research, Kaiser Permanente, Northern California, Oakland, CA, USA
| | - Marisa W Medina
- Children's Hospital Oakland Research Institute, Oakland, CA, USA
| | - Mark N Kvale
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Pui-Yan Kwok
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Catherine Schaefer
- Division of Research, Kaiser Permanente, Northern California, Oakland, CA, USA
| | - Ronald M Krauss
- Children's Hospital Oakland Research Institute, Oakland, CA, USA
| | - Carlos Iribarren
- Division of Research, Kaiser Permanente, Northern California, Oakland, CA, USA
| | - Neil Risch
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA. .,Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA. .,Division of Research, Kaiser Permanente, Northern California, Oakland, CA, USA.
| |
Collapse
|
35
|
Reiner Ž. Triglyceride-Rich Lipoproteins and Novel Targets for Anti-atherosclerotic Therapy. Korean Circ J 2018; 48:1097-1119. [PMID: 30403015 PMCID: PMC6221868 DOI: 10.4070/kcj.2018.0343] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 10/22/2018] [Indexed: 12/23/2022] Open
Abstract
Although elevated serum low-density lipoprotein-cholesterol (LDL-C) is without any doubts accepted as an important risk factor for cardiovascular disease (CVD), the role of elevated triglycerides (TGs)-rich lipoproteins as an independent risk factor has until recently been quite controversial. Recent data strongly suggest that elevated TG-rich lipoproteins are an independent risk factor for CVD and that therapeutic targeting of them could possibly provide further benefit in reducing CVD morbidity, events and mortality, apart from LDL-C lowering. Today elevated TGs are treated with lifestyle interventions, and with fibrates which could be combined with omega-3 fatty acids. There are also some new drugs. Volanesorsen, is an antisense oligonucleotid that inhibits the production of the Apo C-III which is crucial in regulating TGs metabolism because it inhibits lipoprotein lipase (LPL) and hepatic lipase activity but also hepatic uptake of TGs-rich particles. Evinacumab is a monoclonal antibody against angiopoietin-like protein 3 (ANGPTL3) and it seems that it can substantially lower elevated TGs levels because ANGPTL3 also regulates TGs metabolism. Pemafibrate is a selective peroxisome proliferator-activated receptor alpha modulator which also decreases TGs, and improves other lipid parameters. It seems that it also has some other possible antiatherogenic effects. Alipogene tiparvovec is a nonreplicating adeno-associated viral vector that delivers copies of the LPL gene to muscle tissue which accelerates the clearance of TG-rich lipoproteins thus decreasing extremely high TGs levels. Pradigastat is a novel diacylglycerol acyltransferase 1 inhibitor which substantially reduces extremely high TGs levels and appears to be promising in treatment of the rare familial chylomicronemia syndrome.
Collapse
Affiliation(s)
- Željko Reiner
- Department of Internal Medicine, University Hospital Centre Zagreb, School of Medicine University of Zagreb, Zagreb, Croatia.
| |
Collapse
|
36
|
Richardson TG, Zheng J, Davey Smith G, Timpson NJ, Gaunt TR, Relton CL, Hemani G. Mendelian Randomization Analysis Identifies CpG Sites as Putative Mediators for Genetic Influences on Cardiovascular Disease Risk. Am J Hum Genet 2017; 101:590-602. [PMID: 28985495 PMCID: PMC5630190 DOI: 10.1016/j.ajhg.2017.09.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 09/06/2017] [Indexed: 01/10/2023] Open
Abstract
The extent to which genetic influences on cardiovascular disease risk are mediated by changes in DNA methylation levels has not been systematically explored. We developed an analytical framework that integrates genetic fine mapping and Mendelian randomization with epigenome-wide association studies to evaluate the causal relationships between methylation levels and 14 cardiovascular disease traits. We identified ten genetic loci known to influence proximal DNA methylation which were also associated with cardiovascular traits after multiple-testing correction. Bivariate fine mapping provided evidence that the individual variants responsible for the observed effects on cardiovascular traits at the ADCY3 and ADIPOQ loci were potentially mediated through changes in DNA methylation, although we highlight that we are unable to reliably separate causality from horizontal pleiotropy. Estimates of causal effects were replicated with results from large-scale consortia. Genetic variants and CpG sites identified in this study were enriched for histone mark peaks in relevant tissue types and gene promoter regions. Integrating our results with expression quantitative trait loci data, we provide evidence that variation at these regulatory regions is likely to also influence gene expression levels at these loci.
Collapse
Affiliation(s)
- Tom G Richardson
- MRC Integrative Epidemiology Unit, Bristol Medical School (Population Health Sciences), University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK.
| | - Jie Zheng
- MRC Integrative Epidemiology Unit, Bristol Medical School (Population Health Sciences), University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | - George Davey Smith
- MRC Integrative Epidemiology Unit, Bristol Medical School (Population Health Sciences), University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | - Nicholas J Timpson
- MRC Integrative Epidemiology Unit, Bristol Medical School (Population Health Sciences), University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | - Tom R Gaunt
- MRC Integrative Epidemiology Unit, Bristol Medical School (Population Health Sciences), University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | - Caroline L Relton
- MRC Integrative Epidemiology Unit, Bristol Medical School (Population Health Sciences), University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | - Gibran Hemani
- MRC Integrative Epidemiology Unit, Bristol Medical School (Population Health Sciences), University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| |
Collapse
|
37
|
Identification of eight genetic variants as novel determinants of dyslipidemia in Japanese by exome-wide association studies. Oncotarget 2017; 8:38950-38961. [PMID: 28473662 PMCID: PMC5503585 DOI: 10.18632/oncotarget.17159] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 04/04/2017] [Indexed: 11/29/2022] Open
Abstract
We have performed exome-wide association studies to identify single nucleotide polymorphisms that influence serum concentrations of triglycerides, high density lipoprotein (HDL)–cholesterol, or low density lipoprotein (LDL)–cholesterol or confer susceptibility to hypertriglyceridemia, hypo–HDL-cholesterolemia, or hyper–LDL-cholesterolemia in Japanese. Exome-wide association studies for serum triglycerides (13,414 subjects), HDL-cholesterol (14,119 subjects), LDL-cholesterol (13,577 subjects), hypertriglyceridemia (4742 cases, 8672 controls), hypo–HDL-cholesterolemia (2646 cases, 11,473 controls), and hyper–LDL-cholesterolemia (4489 cases, 9088 controls) were performed with HumanExome-12 DNA Analysis BeadChip or Infinium Exome-24 BeadChip arrays. Twenty-four, 69, or 32 loci were significantly (P < 1.21 × 10−6) associated with serum triglycerides, HDL-cholesterol, or LDL-cholesterol, respectively, with 13, 16, or 9 of these loci having previously been associated with triglyceride-, HDL-cholesterol–, or LDL-cholesterol–related traits, respectively. Two single nucleotide polymorphisms (rs10790162, rs7350481) were significantly related to both serum triglycerides and hypertriglyceridemia; three polymorphisms (rs146515657, rs147317864, rs12229654) were significantly related to both serum HDL-cholesterol and hypo–HDL-cholesterolemia; and six polymorphisms (rs2853969, rs7771335, rs2071653, rs2269704, rs2269703, rs2269702) were significantly related to both serum LDL-cholesterol and hyper–LDL-cholesterolemia. Among polymorphisms identified in the present study, two polymorphisms (rs146515657, rs147317864) may be novel determinants of hypo–HDL-cholesterolemia, and six polymorphisms (rs2853969, rs7771335, rs2071653, rs2269704, rs2269703, rs2269702) may be new determinants of hyper–LDL-cholesterolemia. In addition, 12, 61, 23, or 3 polymorphisms may be new determinants of the serum triglyceride, HDL-cholesterol, or LDL-cholesterol concentrations or of hyper–LDL-cholesterolemia, respectively.
Collapse
|
38
|
Abstract
An elevated serum level of LDL cholesterol is a well-known risk factor for cardiovascular disease (CVD), but the role of elevated triglyceride levels is debated. Controversies regarding hypertriglyceridaemia as an independent risk factor for CVD have occurred partly because elevated triglyceride levels are often a component of atherogenic dyslipidaemia - they are associated with decreased levels of HDL cholesterol and increased levels of small dense LDL particles, which are highly atherogenic. Findings from several large studies indicate that elevated levels of triglycerides (either fasting or nonfasting) or, more specifically, triglyceride-rich lipoproteins and their remnants, are independently associated with increased risk of CVD. Possible mechanisms for this association include excessive free fatty acid release, production of proinflammatory cytokines, coagulation factors, and impairment of fibrinolysis. Therapeutic targeting of hypertriglyceridaemia could, therefore, reduce CVD and cardiovascular events, beyond the reduction achieved by LDL-cholesterol lowering. Elevated triglyceride levels are reduced with lifestyle interventions and fibrates, which can be combined with omega-3 fatty acids. Some new drugs are on the horizon, such as volanesorsen (which targets apolipoprotein C-III), pemafibrate, and others. However, CVD outcome studies with triglyceride-lowering agents have produced inconsistent results, meaning that no convincing evidence is available that lowering triglycerides by any approach can reduce mortality.
Collapse
|