1
|
Hong G, Fu X, Chen X, Zhang L, Han X, Ding S, Liu Z, Bi X, Li W, Chang M, Qiao R, Guo S, Tu H, Chai R. Dyslexia-Related Hearing Loss Occurs Mainly through the Abnormal Spontaneous Electrical Activity of Spiral Ganglion Neurons. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205754. [PMID: 37068190 DOI: 10.1002/advs.202205754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 02/25/2023] [Indexed: 06/04/2023]
Abstract
Dyslexia is a reading and spelling disorder due to neurodevelopmental abnormalities and is occasionally found to be accompanied by hearing loss, but the reason for the associated deafness remains unclear. This study finds that knockout of the dyslexia susceptibility 1 candidate 1 gene (Dyx1c1-/- ) in mice, the best gene for studying dyslexia, causes severe hearing loss, and thus it is a good model for studying the mechanism of dyslexia-related hearing loss (DRHL). This work finds that the Dyx1c1 gene is highly expressed in the mouse cochlea and that the spontaneous electrical activity of inner hair cells and type I spiral ganglion neurons is altered in the cochleae of Dyx1c1-/- mice. In addition, primary ciliary dyskinesia-related phenotypes such as situs inversus and disrupted ciliary structure are seen in Dyx1c1-/- mice. In conclusion, this study gives new insights into the mechanism of DRHL in detail and suggests that Dyx1c1 may serve as a potential target for the clinical diagnosis of DRHL.
Collapse
Affiliation(s)
- Guodong Hong
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, 210096, Nanjing, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, 250000, Jinan, China
| | - Xiaolong Fu
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, 210096, Nanjing, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, 250000, Jinan, China
| | - Xin Chen
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, 210096, Nanjing, China
| | - Liyan Zhang
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, 210096, Nanjing, China
| | - Xuan Han
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, 210096, Nanjing, China
| | - Shuqin Ding
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, 210096, Nanjing, China
| | - Ziyi Liu
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, 250000, Jinan, China
| | - Xiuli Bi
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, 250000, Jinan, China
| | - Wen Li
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, 250000, Jinan, China
| | - Miao Chang
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, 250000, Jinan, China
| | - Ruifeng Qiao
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, 250000, Jinan, China
| | - Siwei Guo
- School of Life Science, Shandong University, 266237, Qingdao, China
| | - Hailong Tu
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, 250000, Jinan, China
| | - Renjie Chai
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, 210096, Nanjing, China
- Co-Innovation Center of Neuroregeneration, Nantong University, 226001, Nantong, China
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 610072, Chengdu, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Science, 100101, Beijing, China
- Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, 100069, Beijing, China
| |
Collapse
|
2
|
Wang Z, Zhao S, Zhang L, Yang Q, Cheng C, Ding N, Zhu Z, Shu H, Liu C, Zhao J. A genome-wide association study identifies a new variant associated with word reading fluency in Chinese children. GENES, BRAIN, AND BEHAVIOR 2023; 22:e12833. [PMID: 36514817 PMCID: PMC9994172 DOI: 10.1111/gbb.12833] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 11/20/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022]
Abstract
Reading disability exhibited defects in different cognitive domains, including word reading fluency, word reading accuracy, phonological awareness, rapid automatized naming and morphological awareness. To identify the genetic basis of Chinese reading disability, we conducted a genome-wide association study (GWAS) of the cognitive traits related to Chinese reading disability in 2284 unrelated Chinese children. Among the traits analyzed in the present GWAS, we detected one genome-wide significant association (p < 5 × 10-8 ) on word reading fluency for one SNP on 4p16.2, within EVC genes (rs6446395, p = 7.33 × 10-10 ). Rs6446395 also showed significant association with Chinese character reading accuracy (p = 2.95 × 10-4 ), phonological awareness (p = 7.11 × 10-3 ) and rapid automatized naming (p = 4.71 × 10-3 ), implying multiple effects of this variant. The eQTL data showed that rs6446395 affected EVC expression in the cerebellum. Gene-based analyses identified a gene (PRDM10) to be associated with word reading fluency at the genome-wide level. Our study discovered a new candidate susceptibility variant for reading ability and provided new insights into the genetics of developmental dyslexia in Chinese children.
Collapse
Affiliation(s)
- Zhengjun Wang
- School of PsychologyShaanxi Normal University and Shaanxi Provincial Key Research Center of Child Mental and Behavioral HealthXi'anChina
| | - Shunan Zhao
- School of PsychologyShaanxi Normal University and Shaanxi Provincial Key Research Center of Child Mental and Behavioral HealthXi'anChina
| | - Liming Zhang
- School of PsychologyShaanxi Normal University and Shaanxi Provincial Key Research Center of Child Mental and Behavioral HealthXi'anChina
| | - Qing Yang
- School of PsychologyShaanxi Normal University and Shaanxi Provincial Key Research Center of Child Mental and Behavioral HealthXi'anChina
| | - Chen Cheng
- School of PsychologyShaanxi Normal University and Shaanxi Provincial Key Research Center of Child Mental and Behavioral HealthXi'anChina
| | - Ning Ding
- School of PsychologyShaanxi Normal University and Shaanxi Provincial Key Research Center of Child Mental and Behavioral HealthXi'anChina
| | - Zijian Zhu
- School of PsychologyShaanxi Normal University and Shaanxi Provincial Key Research Center of Child Mental and Behavioral HealthXi'anChina
| | - Hua Shu
- State Key Laboratory of Cognitive Neuroscience and LearningBeijing Normal UniversityBeijingChina
| | - Chunyu Liu
- School of PsychologyShaanxi Normal University and Shaanxi Provincial Key Research Center of Child Mental and Behavioral HealthXi'anChina
- The School of Life SciencesCentral South UniversityChangshaChina
- Department of PsychiatrySUNY Upstate Medical UniversitySyracuseNew YorkUSA
| | - Jingjing Zhao
- School of PsychologyShaanxi Normal University and Shaanxi Provincial Key Research Center of Child Mental and Behavioral HealthXi'anChina
| |
Collapse
|
3
|
Paniagua S, Cakir B, Hu Y, Kiral FR, Tanaka Y, Xiang Y, Patterson B, Gruen JR, Park IH. Dyslexia associated gene KIAA0319 regulates cell cycle during human neuroepithelial cell development. Front Cell Dev Biol 2022; 10:967147. [PMID: 36016658 PMCID: PMC9395643 DOI: 10.3389/fcell.2022.967147] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 07/07/2022] [Indexed: 11/24/2022] Open
Abstract
Dyslexia, also known as reading disability, is defined as difficulty processing written language in individuals with normal intellectual capacity and educational opportunity. The prevalence of dyslexia is between 5 and 17%, and the heritability ranges from 44 to 75%. Genetic linkage analysis and association studies have identified several genes and regulatory elements linked to dyslexia and reading ability. However, their functions and molecular mechanisms are not well understood. Prominent among these is KIAA0319, encoded in the DYX2 locus of human chromosome 6p22. The association of KIAA0319 with reading performance has been replicated in independent studies and different languages. Rodent models suggest that kiaa0319 is involved in neuronal migration, but its role throughout the cortical development is largely unknown. In order to define the function of KIAA0319 in human cortical development, we applied the neural developmental model of a human embryonic stem cell. We knocked down KIAA0319 expression in hESCs and performed the cortical neuroectodermal differentiation. We found that neuroepithelial cell differentiation is one of the first stages of hESC differentiation that are affected by KIAA0319 knocked down could affect radial migration and thus differentiation into diverse neural populations at the cortical layers.
Collapse
Affiliation(s)
- Steven Paniagua
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, United States
| | - Bilal Cakir
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, United States
| | - Yue Hu
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, United States
| | - Ferdi Ridvan Kiral
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, United States
| | - Yoshiaki Tanaka
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, United States
- Department of Medicine, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, QC, Canada
| | - Yangfei Xiang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Benjamin Patterson
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, United States
| | - Jeffrey R. Gruen
- Departments of Pediatrics and of Genetics, Yale School of Medicine, New Haven, CT, United States
| | - In-Hyun Park
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
4
|
Schlauch KA, Read RW, Neveux I, Lipp B, Slonim A, Grzymski JJ. The Impact of ACEs on BMI: An Investigation of the Genotype-Environment Effects of BMI. Front Genet 2022; 13:816660. [PMID: 35342390 PMCID: PMC8942770 DOI: 10.3389/fgene.2022.816660] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/04/2022] [Indexed: 12/31/2022] Open
Abstract
Adverse Childhood Experiences are stressful and traumatic events occurring before the age of eighteen shown to cause mental and physical health problems, including increased risk of obesity. Obesity remains an ongoing national challenge with no predicted solution. We examine a subset of the Healthy Nevada Project, focusing on a multi-ethnic cohort of 15,886 sequenced participants with recalled adverse childhood events, to study how ACEs and their genotype-environment interactions affect BMI. Specifically, the Healthy Nevada Project participants sequenced by the Helix Exome+ platform were cross-referenced to their electronic medical records and social health determinants questionnaire to identify: 1) the effect of ACEs on BMI in the absence of genetics; 2) the effect of genotype-environment interactions on BMI; 3) how these gene-environment interactions differ from standard genetic associations of BMI. The study found very strong significant associations between the number of adverse childhood experiences and adult obesity. Additionally, we identified fifty-five common and rare variants that exhibited gene-interaction effects including three variants in the CAMK1D gene and four variants in LHPP; both genes are linked to schizophrenia. Surprisingly, none of the variants identified with interactive effects were in canonical obesity-related genes. Here we show the delicate balance between genes and environment, and how the two strongly influence each other.
Collapse
Affiliation(s)
- Karen A Schlauch
- Center for Genomic Medicine, Desert Research Institute, Reno, NV, United States
| | - Robert W Read
- Center for Genomic Medicine, Desert Research Institute, Reno, NV, United States
| | - Iva Neveux
- Center for Genomic Medicine, Desert Research Institute, Reno, NV, United States
| | - Bruce Lipp
- Center for Genomic Medicine, Desert Research Institute, Reno, NV, United States
| | | | - Joseph J Grzymski
- Center for Genomic Medicine, Desert Research Institute, Reno, NV, United States.,Renown Health, Reno, NV, United States
| |
Collapse
|
5
|
Wong PCM, Kang X, So HC, Choy KW. Contributions of common genetic variants to specific languages and to when a language is learned. Sci Rep 2022; 12:580. [PMID: 35022429 PMCID: PMC8755716 DOI: 10.1038/s41598-021-04163-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 12/10/2021] [Indexed: 11/16/2022] Open
Abstract
Research over the past two decades has identified a group of common genetic variants explaining a portion of variance in native language ability. The present study investigates whether the same group of genetic variants are associated with different languages and languages learned at different times in life. We recruited 940 young adults who spoke from childhood Chinese and English as their first (native) (L1) and second (L2) language, respectively, who were learners of a new, third (L3) language. For the variants examined, we found a general decrease of contribution of genes to language functions from native to foreign (L2 and L3) languages, with variance in foreign languages explained largely by non-genetic factors such as musical training and motivation. Furthermore, genetic variants that were found to contribute to traits specific to Chinese and English respectively exerted the strongest effects on L1 and L2. These results seem to speak against the hypothesis of a language- and time-universal genetic core of linguistic functions. Instead, they provide preliminary evidence that genetic contribution to language may depend at least partly on the intricate language-specific features. Future research including a larger sample size, more languages and more genetic variants is required to further explore these hypotheses.
Collapse
Affiliation(s)
- Patrick C M Wong
- Department of Linguistics and Modern Languages, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China. .,Brain and Mind Institute, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China. .,Department of Otorhinolaryngology, Head and Neck Surgery, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| | - Xin Kang
- Department of Linguistics and Modern Languages, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China. .,Brain and Mind Institute, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China. .,Research Centre for Language, Cognition and Language Application, Chongqing University, Chongqing, China. .,School of Foreign Languages and Cultures, Chongqing University, Chongqing, China.
| | - Hon-Cheong So
- Brain and Mind Institute, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.,School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Kwong Wai Choy
- Department of Obsterics and Gynecology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|
6
|
Feng Y, Liu Q, Xie X, Jiang Q, Zhu K, Xiao P, Wu X, Zuo P, Song R. The Prevalence and Associated Risk Factors of Children With Reading Disabilities in a Multiethnic City: A Cross-Sectional Study. Front Pediatr 2022; 10:864175. [PMID: 35844757 PMCID: PMC9282866 DOI: 10.3389/fped.2022.864175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/08/2022] [Indexed: 11/22/2022] Open
Abstract
Numerous studies have been conducted to explore the risk factors for reading disabilities (RDs) among children. Based on these studies, factors such as gender, socioeconomic status, and the home literacy environment have been widely found to be associated with children who have RDs. However, children from a multiethnic city are seldom investigated. This study aimed to explore the prevalence of RDs and the potential environmental risk factors in Shihezi, Xinjiang, where people of multiple ethnicities, including Han and ethnic minority children, live and study together. A cross-sectional study was conducted in the city of Shihezi. A two-stage sampling strategy was applied to randomly select six primary schools in the city. In total, 6,539 students in grades two to six participated in this study. There were 6,065 valid questionnaires obtained for further analyses. We used the Dyslexia Checklist for Chinese Children and the Pupil Rating Scale to screen for the children with RDs. The χ2 test and multivariate logistic regression were employed to reveal the potential risk factors of RDs. The prevalence of children with RDs was 3.38% in Shihezi City and was significantly different between Han (3.28%) and Uighur (7.42%) children (P < 0.05). There was no significant difference in the prevalence of RDs between Han and Hui children. Among these children with RDs, the gender ratio of boys to girls was nearly 2:1. Multiple logistic regression analysis showed that gender (P < 0.01), learning habits (P < 0.01), and the home literacy environment (P < 0.01) were associated with RD. The results may be useful in the early identification and intervention of children with RDs, especially among ethnic minorities.
Collapse
Affiliation(s)
- Yanan Feng
- Department of Nursing, Shihezi University School of Medicine, Shihezi, China.,MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Department of Maternal and Child Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Liu
- MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Department of Maternal and Child Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinyan Xie
- MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Department of Maternal and Child Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Jiang
- MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Department of Maternal and Child Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kaiheng Zhu
- MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Department of Maternal and Child Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pei Xiao
- MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Department of Maternal and Child Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoqian Wu
- MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Department of Maternal and Child Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengxiang Zuo
- Department of Nursing, Shihezi University School of Medicine, Shihezi, China
| | - Ranran Song
- Department of Nursing, Shihezi University School of Medicine, Shihezi, China.,MOE (Ministry of Education) Key Lab of Environment and Health, School of Public Health, Department of Maternal and Child Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Lancaster HS, Liu X, Dinu V, Li J. Identifying interactive biological pathways associated with reading disability. Brain Behav 2020; 10:e01735. [PMID: 32596987 PMCID: PMC7428467 DOI: 10.1002/brb3.1735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/01/2020] [Accepted: 06/07/2020] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Past research has suggested that reading disability is a complex disorder involving genetic and environment contributions, as well as gene-gene and gene-environment interaction, but to date little is known about the underlying mechanisms. METHOD Using the Avon Longitudinal Study of Parents and Children, we assessed the contributions of genetic, demographic, and environmental variables on case-control status using machine learning. We investigated the functional interactions between genes using pathway and network analysis. RESULTS Our results support a systems approach to studying the etiology of reading disability with many genes (e.g., RAPGEF2, KIAA0319, DLC1) and biological pathways (e.g., neuron migration, positive regulation of dendrite regulation, nervous system development) interacting with each other. We found that single nucleotide variants within genes often had opposite effects and that enriched biological pathways were mediated by neuron migration. We also identified behavioral (i.e., receptive language, nonverbal intelligence, and vocabulary), demographic (i.e., mother's highest education), and environmental (i.e., birthweight) factors that influenced case-control status when accounting for genetic information. DISCUSSION The behavioral and demographic factors were suggested to be protective against reading disability status, while birthweight conveyed risk. We provided supporting evidence that reading disability has a complex biological and environmental etiology and that there may be a shared genetic and neurobiological architecture for reading (dis)ability.
Collapse
Affiliation(s)
- Hope Sparks Lancaster
- College of Health SolutionsArizona State UniversityTempeAZUSA
- Department of Computing, Informatics, and Decision Systems EngineeringSchools of EngineeringArizona State UniversityTempeAZUSA
| | - Xiaonan Liu
- Department of Computing, Informatics, and Decision Systems EngineeringSchools of EngineeringArizona State UniversityTempeAZUSA
| | - Valentin Dinu
- College of Health SolutionsArizona State UniversityTempeAZUSA
| | - Jing Li
- School of Industrial and Systems EngineeringGeorgia Institute of TechnologyAtlantaGAUSA
| |
Collapse
|
8
|
Sharma P, Sagar R, Deep R, Mehta M, Subbiah V. Assessment for familial pattern and association of polymorphisms in KIAA0319 gene with specific reading disorder in children from North India visiting a tertiary care centre: A case-control study. DYSLEXIA (CHICHESTER, ENGLAND) 2020; 26:104-114. [PMID: 31814229 DOI: 10.1002/dys.1642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 05/17/2019] [Accepted: 11/06/2019] [Indexed: 06/10/2023]
Abstract
Genetic association studies have identified KIAA0319 gene as a possible susceptibility locus for reading disorder; however, very few studies are available from India. The study was planned to investigate the familial pattern and association of KIAA0319 polymorphisms among children with reading disorder visiting a tertiary centre in North India. This is a case-control, familial, and genetic association study on 30 children diagnosed with reading disorder (ICD-10) and 30 matched healthy controls and their families. The Aggregate Neurobehavioral Student Health and Educational Review System was administered on parents of probands and controls for reading problems in their siblings, and Adult Reading Questionnaire was administered for parents of both groups. The blood sample was taken from probands, and DNA was isolated. Four KIAA0319 coding sequence single nucleotide polymorphisms (SNPs; rs4504469, rs6935076, rs2038137, and rs2179515) were genotyped using SNaPshot single nucleotide extension. The incidence of reading problem was significantly higher in families of probands as compared with families of controls. There were no significant differences in both groups regarding the frequency of alleles of four SNPs. The reading disorder showed a significant familial pattern, but KIAA0319 gene did not appear to be a susceptibility factor. Future replications with larger samples and whole genome studies are warranted.
Collapse
Affiliation(s)
- Pawan Sharma
- Department of Psychiatry, School of Medicine, Patan Academy of Health Sciences, Lalitpur, Nepal
| | - Rajesh Sagar
- Department of Psychiatry, All India Institute of Medical Sciences, New Delhi, India
| | - Raman Deep
- Department of Psychiatry, All India Institute of Medical Sciences, New Delhi, India
| | - Manju Mehta
- Department of Psychiatry, All India Institute of Medical Sciences, New Delhi, India
| | - Vivekanandhan Subbiah
- Department of Neurobiochemistry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
9
|
Association between KIAA0319 SNPs and risk of dyslexia: a meta-analysis. J Genet 2019. [DOI: 10.1007/s12041-019-1103-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
10
|
Deng KG, Zhao H, Zuo PX. Association between KIAA0319 SNPs and risk of dyslexia: a meta-analysis. J Genet 2019; 98:62. [PMID: 31204720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The aetiology of developmental dyslexia (DD) is complex; although candidate genes have been suggested, the molecular mechanism and risk factors remain unknown. The KIAA0319 gene is functionally related to neuronal migration and axon growth, and several studies have examined associations between KIAA0319 polymorphisms with DD, but the results remain inconsistent. The sample size affects the results of meta-analysis. The aim of this meta-analysis was to clarify the effect of KIAA0319 polymorphisms on dyslexia susceptibility according to the available evidence. All eligible case-control and transmission/disequilibrium test (TDT) studies published until March 2018 were identified by searchingMedline, PubMed, Embase, Web of Science and Chinese Biomedical Database, limited to Chinese and English language papers. Pooled odds ratios and 95% confidence intervals were calculated using STATS package v12.0. A total of 11 related studies, including 3130 cases of dyslexia and 3460 healthy control subjects, as well as four TDT studies with 842 families were included in our meta-analysis. The results indicated that the polymorphisms rs4504469, rs2038137, rs2179515, rs3212236, rs6935076, rs9461045, rs2143340 and rs761100 have no association between the polymorphisms and dyslexia risk. Three subgroup meta-analyseswere performed according to the study design, country and population. The stratified analysis revealed that the KIAA0319 rs4504469 minor allele was a risk allele t in the TDT subgroup, rs3212236 minor allele was a risk allele t in the UK subgroup and rs6935076 minor allele was a risk allele t in the Canada subgroup. Further studies with larger sample sizes that assess gene-gene and gene-environment interactions are required. The sample size of our study is larger than that of the previous studies, and the results are different from those of the previous studies.We have synthesized all the current studies on KIAA0319 and obtained reliable results.
Collapse
Affiliation(s)
- Ke-Gao Deng
- Medical School, University of Shihezi, Xinjiang 83 2000, People's Republic of China.
| | | | | |
Collapse
|
11
|
Sharma P, Sagar R. Unfolding the genetic pathways of dyslexia in Asian population: A review. Asian J Psychiatr 2017; 30:225-229. [PMID: 28619243 DOI: 10.1016/j.ajp.2017.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 05/31/2017] [Accepted: 06/06/2017] [Indexed: 01/06/2023]
Abstract
Dyslexia also known as specific reading disorder is a complex heritable disorder with unexpected difficulty in learning to read and spell despite adequate intelligence, education, environment, and normal senses. Over past decades, researchers have attempted to characterize dyslexia neurobiological and genetic levels and unfold its pathophysiology. The genetic research on dyslexia has received attention in Asia from the last decade. Though limited by different constraints the studies from Asia have been able to gather significant evidence in this field. We present a review of studies of genetics in Asian population and suggest future directions.
Collapse
Affiliation(s)
- Pawan Sharma
- Department of Psychiatry, Patan Academy of Health Sciences, Kathmandu, Nepal.
| | - Rajesh Sagar
- Department of Psychiatry, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| |
Collapse
|
12
|
Neurogenetics of developmental dyslexia: from genes to behavior through brain neuroimaging and cognitive and sensorial mechanisms. Transl Psychiatry 2017; 7:e987. [PMID: 28045463 PMCID: PMC5545717 DOI: 10.1038/tp.2016.240] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 10/15/2016] [Indexed: 01/18/2023] Open
Abstract
Developmental dyslexia (DD) is a complex neurodevelopmental deficit characterized by impaired reading acquisition, in spite of adequate neurological and sensorial conditions, educational opportunities and normal intelligence. Despite the successful characterization of DD-susceptibility genes, we are far from understanding the molecular etiological pathways underlying the development of reading (dis)ability. By focusing mainly on clinical phenotypes, the molecular genetics approach has yielded mixed results. More optimally reduced measures of functioning, that is, intermediate phenotypes (IPs), represent a target for researching disease-associated genetic variants and for elucidating the underlying mechanisms. Imaging data provide a viable IP for complex neurobehavioral disorders and have been extensively used to investigate both morphological, structural and functional brain abnormalities in DD. Performing joint genetic and neuroimaging studies in humans is an emerging strategy to link DD-candidate genes to the brain structure and function. A limited number of studies has already pursued the imaging-genetics integration in DD. However, the results are still not sufficient to unravel the complexity of the reading circuit due to heterogeneous study design and data processing. Here, we propose an interdisciplinary, multilevel, imaging-genetic approach to disentangle the pathways from genes to behavior. As the presence of putative functional genetic variants has been provided and as genetic associations with specific cognitive/sensorial mechanisms have been reported, new hypothesis-driven imaging-genetic studies must gain momentum. This approach would lead to the optimization of diagnostic criteria and to the early identification of 'biologically at-risk' children, supporting the definition of adequate and well-timed prevention strategies and the implementation of novel, specific remediation approach.
Collapse
|