1
|
Drole Torkar A, Klinc A, Remec ZI, Rankovic B, Bartolj K, Bertok S, Colja S, Cuk V, Debeljak M, Kozjek E, Repic Lampret B, Mlinaric M, Mohar Hajnsek T, Perko D, Stajer K, Tesovnik T, Trampuz D, Ulaga B, Kovac J, Battelino T, Zerjav Tansek M, Groselj U. Sudden Death of a Four-Day-Old Newborn Due to Mitochondrial Trifunctional Protein/Long-Chain 3-Hydroxyacyl-CoA Dehydrogenase Deficiencies and a Systematic Literature Review of Early Deaths of Neonates with Fatty Acid Oxidation Disorders. Int J Neonatal Screen 2025; 11:9. [PMID: 39982343 PMCID: PMC11843868 DOI: 10.3390/ijns11010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/15/2025] [Accepted: 01/15/2025] [Indexed: 02/22/2025] Open
Abstract
Mitochondrial trifunctional protein (MTP) and long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) deficiencies have been a part of the Slovenian newborn screening (NBS) program since 2018. We describe a case of early lethal presentation of MTPD/LCHADD in a term newborn. The girl was born after an uneventful pregnancy and delivery, and she was discharged home at the age of 3 days, appearing well. At the age of 4 days, she was found without signs of life. Resuscitation was not successful. The NBS test performed using tandem mass spectrometry (MS/MS) showed a positive screen for MTPD/LCHADD. Genetic analysis performed on a dried blood spot (DBS) sample identified two heterozygous variants in the HADHA gene: a nucleotide duplication introducing a premature termination codon (p.Arg205Ter) and a nucleotide substitution (p.Glu510Gln). Post-mortem studies showed massive macro-vesicular fat accumulation in the liver and, to a smaller extent, in the heart, consistent with MTPD/LCHADD. A neonatal acute cardiac presentation resulting in demise was suspected. We conducted a systematic literature review of early neonatal deaths within 14 days postpartum attributed to confirmed fatty acid oxidation disorders (FAODs), which are estimated to account for 5% of sudden infant deaths. We discuss the pitfalls of the NBS for MTPD/LCHADD.
Collapse
Affiliation(s)
- Ana Drole Torkar
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Children’s Hospital, Ljubljana University Medical Center, Bohoriceva 20, 1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia; (A.K.); (J.K.)
| | - Ana Klinc
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia; (A.K.); (J.K.)
| | - Ziga Iztok Remec
- Clinical Institute for Special Laboratory Diagnostics, University Children’s Hospital, Ljubljana University Medical Center, Vrazov trg 1, 1000 Ljubljana, Slovenia
| | - Branislava Rankovic
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia; (A.K.); (J.K.)
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000 Ljubljana, Slovenia
| | - Klara Bartolj
- Novo Mesto General Hospital, Smihelska cesta 1, 8000 Novo Mesto, Slovenia
| | - Sara Bertok
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Children’s Hospital, Ljubljana University Medical Center, Bohoriceva 20, 1000 Ljubljana, Slovenia
| | - Sara Colja
- Clinical Institute for Special Laboratory Diagnostics, University Children’s Hospital, Ljubljana University Medical Center, Vrazov trg 1, 1000 Ljubljana, Slovenia
| | - Vanja Cuk
- Clinical Institute for Special Laboratory Diagnostics, University Children’s Hospital, Ljubljana University Medical Center, Vrazov trg 1, 1000 Ljubljana, Slovenia
| | - Marusa Debeljak
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia; (A.K.); (J.K.)
- Clinical Institute for Special Laboratory Diagnostics, University Children’s Hospital, Ljubljana University Medical Center, Vrazov trg 1, 1000 Ljubljana, Slovenia
| | - Eva Kozjek
- Clinical Institute for Special Laboratory Diagnostics, University Children’s Hospital, Ljubljana University Medical Center, Vrazov trg 1, 1000 Ljubljana, Slovenia
| | - Barbka Repic Lampret
- Clinical Institute for Special Laboratory Diagnostics, University Children’s Hospital, Ljubljana University Medical Center, Vrazov trg 1, 1000 Ljubljana, Slovenia
| | - Matej Mlinaric
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Children’s Hospital, Ljubljana University Medical Center, Bohoriceva 20, 1000 Ljubljana, Slovenia
| | | | - Daša Perko
- Clinical Institute for Special Laboratory Diagnostics, University Children’s Hospital, Ljubljana University Medical Center, Vrazov trg 1, 1000 Ljubljana, Slovenia
| | - Katarina Stajer
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Children’s Hospital, Ljubljana University Medical Center, Bohoriceva 20, 1000 Ljubljana, Slovenia
| | - Tine Tesovnik
- Clinical Institute for Special Laboratory Diagnostics, University Children’s Hospital, Ljubljana University Medical Center, Vrazov trg 1, 1000 Ljubljana, Slovenia
| | - Domen Trampuz
- Clinical Institute for Special Laboratory Diagnostics, University Children’s Hospital, Ljubljana University Medical Center, Vrazov trg 1, 1000 Ljubljana, Slovenia
| | - Blanka Ulaga
- Clinical Institute for Special Laboratory Diagnostics, University Children’s Hospital, Ljubljana University Medical Center, Vrazov trg 1, 1000 Ljubljana, Slovenia
| | - Jernej Kovac
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia; (A.K.); (J.K.)
- Clinical Institute for Special Laboratory Diagnostics, University Children’s Hospital, Ljubljana University Medical Center, Vrazov trg 1, 1000 Ljubljana, Slovenia
| | - Tadej Battelino
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Children’s Hospital, Ljubljana University Medical Center, Bohoriceva 20, 1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia; (A.K.); (J.K.)
| | - Mojca Zerjav Tansek
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Children’s Hospital, Ljubljana University Medical Center, Bohoriceva 20, 1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia; (A.K.); (J.K.)
| | - Urh Groselj
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Children’s Hospital, Ljubljana University Medical Center, Bohoriceva 20, 1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia; (A.K.); (J.K.)
| |
Collapse
|
2
|
Chen QL, Zhang CM. TFP/LCHAD Deficiency Due to HADHA Gene Mutation. Clin Pediatr (Phila) 2024; 63:1604-1607. [PMID: 38379183 DOI: 10.1177/00099228241233099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Affiliation(s)
- Qiao-Lin Chen
- Pediatric Intensive Care Unit, Children's Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Chen-Mei Zhang
- Pediatric Intensive Care Unit, Children's Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
3
|
Vieira Neto E, Wang M, Szuminsky AJ, Ferraro L, Koppes E, Wang Y, Van’t Land C, Mohsen AW, Zanatta G, El-Gharbawy AH, Anthonymuthu TS, Tyurina YY, Tyurin VA, Kagan V, Bayır H, Vockley J. Mitochondrial bioenergetics and cardiolipin remodeling abnormalities in mitochondrial trifunctional protein deficiency. JCI Insight 2024; 9:e176887. [PMID: 39088276 PMCID: PMC11385086 DOI: 10.1172/jci.insight.176887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 07/25/2024] [Indexed: 08/03/2024] Open
Abstract
Mitochondrial trifunctional protein (TFP) deficiency is an inherited metabolic disorder leading to a block in long-chain fatty acid β-oxidation. Mutations in HADHA and HADHB, which encode the TFP α and β subunits, respectively, usually result in combined TFP deficiency. A single common mutation, HADHA c.1528G>C (p.E510Q), leads to isolated 3-hydroxyacyl-CoA dehydrogenase deficiency. TFP also catalyzes a step in the remodeling of cardiolipin (CL), a phospholipid critical to mitochondrial membrane stability and function. We explored the effect of mutations in TFP subunits on CL and other phospholipid content and composition and the consequences of these changes on mitochondrial bioenergetics in patient-derived fibroblasts. Abnormalities in these parameters varied extensively among different fibroblasts, and some cells were able to maintain basal oxygen consumption rates similar to controls. Although CL reduction was universally identified, a simultaneous increase in monolysocardiolipins was discrepant among cells. A similar profile was seen in liver mitochondria isolates from a TFP-deficient mouse model. Response to new potential drugs targeting CL metabolism might be dependent on patient genotype.
Collapse
Affiliation(s)
- Eduardo Vieira Neto
- Genetic and Genomic Medicine Division, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh
- Children’s Neuroscience Institute, Department of Pediatrics, School of Medicine, and
| | - Meicheng Wang
- Genetic and Genomic Medicine Division, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh
| | - Austin J. Szuminsky
- Department of Biological Sciences, Kenneth P. Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Lethicia Ferraro
- Genetic and Genomic Medicine Division, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh
- School of Medicine and
| | - Erik Koppes
- Genetic and Genomic Medicine Division, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh
| | - Yudong Wang
- Genetic and Genomic Medicine Division, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh
| | - Clinton Van’t Land
- Genetic and Genomic Medicine Division, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh
| | - Al-Walid Mohsen
- Genetic and Genomic Medicine Division, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh
| | - Geancarlo Zanatta
- Department of Biophysics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Areeg H. El-Gharbawy
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA
| | | | - Yulia Y. Tyurina
- Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, School of Public Health
| | - Vladimir A. Tyurin
- Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, School of Public Health
| | - Valerian Kagan
- Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, School of Public Health
- Department of Pharmacology and Chemical Biology, School of Medicine; Department of Chemistry, Kenneth P. Dietrich School of Arts and Sciences; and Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Hülya Bayır
- Division of Critical Care and Hospital Medicine, Department of Pediatrics, Redox Health Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
| | - Jerry Vockley
- Genetic and Genomic Medicine Division, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh
- Department of Human Genetics, School of Public Health, Center for Rare Disease Therapy, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
4
|
Daher RT, Taoum KE, Samaha J, Karam PE. Diagnostic challenges and outcome of fatty acid oxidation defects in a tertiary care center in Lebanon. Orphanet J Rare Dis 2024; 19:315. [PMID: 39210374 PMCID: PMC11363453 DOI: 10.1186/s13023-024-03325-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Fatty acid oxidation defects are rare autosomal recessive disorders with variable clinical manifestations and outcome. Early detection by systematic neonatal screening may improve their prognosis. Long-term outcome studies of these disorders in the Middle East and North Africa region are limited. The purpose of this study is to report the diagnostic challenges and outcome of fatty acid oxidation defects in a major tertiary care center in Lebanon, a resource-constrained country in the Middle East. METHODS A retrospective review of charts of all fatty acid oxidation defects sequential patients diagnosed and followed at our center was conducted. Collected data included: parental consanguinity, age at diagnosis, clinical presentation, biochemical profile, confirmatory diagnosis, treatment and outcome. A genotype-phenotype correlation was also performed, when available. RESULTS Seven types of fatty acid oxidation defects were identified in a total of 34 patients from 21 families. Most families (79%) were consanguineous (first-degree cousins). The majority were diagnosed when clinically symptomatic (78%), at various ages between 10 days and 19 years (average: 2 years). Follow-up duration spanned between 2 months and 15 years (average: 5 years). The remainder of the patients were detected while still asymptomatic by systematic neonatal screening (9%) or due to positive family history (9%). The most common defect was carnitine transporter deficiency (50%) with an exclusive cardiac presentation related to a founder variant c.981C > T, (p.Arg254*) in the SLC22A5 gene. Medium chain acyl-CoA dehydrogenase deficiency was found in 13% only, which could be explained by the absence of systematic neonatal screening. Rare gene variants were detected in very long chain and multiple acyl-CoA dehydrogenase deficiency. The worse prognosis was observed in very long chain acyl-CoA dehydrogenase deficiency. The overall survival at last follow-up reached 75% with a complete reversal of symptoms with treatment in most patients (63%), despite their late diagnosis. CONCLUSIONS Our experience highlights the diagnostic challenges and outcome of fatty acid oxidation defects in a resource-constrained country with high consanguinity rates. Physicians' awareness and systematic neonatal screening are key for diagnosis. Larger genotype-phenotype studies are still needed to understand the natural history of these rare diseases and possibly improve their outcome.
Collapse
Affiliation(s)
- Rose T Daher
- Department of Pathology and Laboratory Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Katia El Taoum
- Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Jinane Samaha
- Inherited Metabolic Diseases Program, Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Pascale E Karam
- Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon.
- Inherited Metabolic Diseases Program, Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon.
| |
Collapse
|
5
|
Zhang T, Yu Z, Hu L, Zhang C, Miao H, Yang R, Qi M, Wu B, Huang X. A Comprehensive LOVD Database for Fatty Acid Oxidation Disorders in Chinese Populations. Hum Mutat 2023; 2023:5493978. [PMID: 40225143 PMCID: PMC11919079 DOI: 10.1155/2023/5493978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 06/13/2023] [Accepted: 07/07/2023] [Indexed: 04/15/2025]
Abstract
Fatty acid oxidation disorders (FAODs) are a group of rare, autosomal recessive, metabolic disorders with clinical symptoms from mild types of fatigue, muscle weakness to severe types of hypoketotic hypoglycemia, (cardio)myopathy, arrhythmia, and rhabdomyolysis, especially during prolonged fasting, exercise, and illness. There are eleven diseases caused by thirteen FAOD genes (SLC22A5, ETFDH, ETFA, ETFB, SLC25A20, ACADS, ACADM, ACADVL, ACAT1, CPT1A, CPT2, HADHA, and HADHB) which are specific enzymes or transport proteins involved in the mitochondrial catabolism of fatty acids. We built the LOVD database for FAODs focused on the Chinese population, in which we recorded all the reported variants by literature peer review. In addition, the unpublished variant data of patients from Zhejiang province were also incorporated into the database. Currently, a total of 538 unique variants have been recorded. We also compared the incidence of high-frequency variants of certain FAOD genes among different populations. The database would provide the guidance for genetic screening of Chinese patients.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Genetics and Metabolism, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Zinan Yu
- Department of Genetics and Metabolism, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Lingwei Hu
- Department of Genetics and Metabolism, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Chao Zhang
- Department of Genetics and Metabolism, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Haixia Miao
- Department of Genetics and Metabolism, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Rulai Yang
- Department of Genetics and Metabolism, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Ming Qi
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- DIAN Diagnostics, Hangzhou, Zhejiang, China
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Benqing Wu
- Department of Neonatology, Children's Medical Center, University of Chinese Academy of Science, Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Xinwen Huang
- Department of Genetics and Metabolism, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| |
Collapse
|
6
|
Huguet I, Díaz-Guerra GM. Hypoparathyroidism and medium-chain Acyl-CoA dehydrogenase deficiency, an unusual association. J Pediatr Endocrinol Metab 2023; 36:505-507. [PMID: 36972207 DOI: 10.1515/jpem-2023-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 02/24/2023] [Indexed: 05/03/2023]
Abstract
OBJECTIVES Hypoparathyroidism (HypoPT) is a rare disorder and non-surgical cases require careful evaluation, since may be due to genetic, autoimmune, or metabolic factors. CASE PRESENTATION We present a 15-year-old girl with a previous diagnosis of medium-chain acyl-CoA dehydrogenase (MCAD) deficiency due to G985A homozygous mutation. She was admitted to the emergency department with severe hypocalcaemia and inappropriately normal level of intact parathyroid hormone. Main etiologies of primary HypoPT were excluded, so it was suspected to be related to MCAD deficiency. CONCLUSIONS The association of fatty acid oxidation disorders and HypoPT has been previously described in the literature, but its link to MCAD deficiency has only been reported once. We present the second case describing the coexistence of both rare diseases. Since HypoPT can be a life-threatening condition, we suggest calcium levels be assessed in these patients on a regular basis. Further research is needed to better understand this complex association.
Collapse
|
7
|
Yamada K, Osawa Y, Kobayashi H, Bo R, Mushimoto Y, Hasegawa Y, Yamaguchi S, Taketani T. Clinical and molecular investigation of 37 Japanese patients with multiple acyl-CoA dehydrogenase deficiency: p.Y507D in ETFDH, a common Japanese variant, causes a mortal phenotype. Mol Genet Metab Rep 2022; 33:100940. [DOI: 10.1016/j.ymgmr.2022.100940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
|
8
|
Stolwijk NN, Langeveld M, Jacobs BAW, Vogt L, Haverkamp JA, Ferdinandusse S, Hollak CEM. Recurrent metabolic alkalosis following ketone body treatment of adult mitochondrial trifunctional protein deficiency: A case report. JIMD Rep 2022; 63:407-413. [PMID: 36101817 PMCID: PMC9458612 DOI: 10.1002/jmd2.12309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/19/2022] [Accepted: 06/07/2022] [Indexed: 12/05/2022] Open
Abstract
Recent studies have reported the potential for the therapeutic use of ketones in the form of ketone salts (KSs) in pediatric patients with fatty acid oxidation disorders (FAODs). We report a case of ketone salt administration in an adult patient with mitochondrial trifunctional protein deficiency (MTPD), an ultra-rare inborn error of the fatty acid metabolism. This patient was treated with oral KSs during an episode of sepsis of unknown origin. Before KS supplementation was initiated, he had developed severe rhabdomyolysis as well as a respiratory insufficiency that did not respond to emergency treatment aimed at stabilizing the metabolic decompensation by promoting anabolism. Therefore, KS supplementation was attempted twice to support his energy production and help regain metabolic stability. In both instances, KS supplementation led to a considerable metabolic alkalosis, which prompted its discontinuation. This adverse event could have been caused by an increase in extracellular sodium load due to KS administration. Therefore, the clinical applicability of KSs in adults may be limited. Alternative chemical forms of beta-hydroxybutyrate (βHB), such as ketone esters, might provide a more acceptable safety profile for future research into the therapeutic benefits of ketone body supplementation in adult patients with FAODs.
Collapse
Affiliation(s)
- Nina N. Stolwijk
- Medicine for SocietyAmsterdam UMC location University of AmsterdamAmsterdamThe Netherlands
- Department of Endocrinology and MetabolismAmsterdam UMC location University of AmsterdamAmsterdamThe Netherlands
| | - Mirjam Langeveld
- Department of Endocrinology and MetabolismAmsterdam UMC location University of AmsterdamAmsterdamThe Netherlands
| | - Bart A. W. Jacobs
- Medicine for SocietyAmsterdam UMC location University of AmsterdamAmsterdamThe Netherlands
- Department of Pharmacy and Clinical PharmacologyAmsterdam UMC location University of AmsterdamAmsterdamThe Netherlands
| | - Liffert Vogt
- Division of Nephrology, Department of Internal MedicineAmsterdam UMC location University of AmsterdamAmsterdamThe Netherlands
| | - Jorien A. Haverkamp
- Department of Endocrinology and MetabolismAmsterdam UMC location University of AmsterdamAmsterdamThe Netherlands
| | - Sacha Ferdinandusse
- Laboratory Genetic Metabolic Diseases, Department of Clinical ChemistryAmsterdam UMC location University of AmsterdamAmsterdamThe Netherlands
| | - Carla E. M. Hollak
- Medicine for SocietyAmsterdam UMC location University of AmsterdamAmsterdamThe Netherlands
- Department of Endocrinology and MetabolismAmsterdam UMC location University of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
9
|
Yang J, Yuan D, Tan X, Zeng Y, Tang N, Chen D, Tan J, Cai R, Huang J, Yan T. Analysis of a family with mitochondrial trifunctional protein deficiency caused by HADHA gene mutations. Mol Med Rep 2021; 25:47. [PMID: 34878152 PMCID: PMC8674702 DOI: 10.3892/mmr.2021.12563] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/22/2021] [Indexed: 11/21/2022] Open
Abstract
Mitochondrial trifunctional protein (MTP) deficiency (MTPD; MIM 609015) is a metabolic disease of fatty acid oxidation. MTPD is an autosomal recessive disorder caused by mutations in the HADHA gene, encoding the α-subunit of a trifunctional protease, or in the HADHB gene, encoding the β-subunit of a trifunctional protease. To the best of our knowledge, only two cases of families with MTPD due to HADHB gene mutations have been reported in China, and the HADHA gene mutation has not been reported in a Chinese family with MTPD. The present study reported the clinical characteristics and compound heterozygous HADHA gene mutations of two patients with MTPD in the Chinese population. The medical history, routine examination data, blood acyl-carnitine analysis results, results of pathological examination after autopsy and family pedigree map were collected for patients with MTPD. The HADHA gene was analyzed by Sanger sequencing or high-throughput sequencing, the pathogenicity of the newly discovered variant was interpreted by bioinformatics analysis, and the function of the mutated protein was modeled and analyzed according to 3D structure. The two patients with MTPD experienced metabolic crises and died following an infectious disease. Lactate dehydrogenase, creatine kinase (CK), CK-MB and liver enzyme abnormalities were observed in routine examinations. Tandem mass spectrometry revealed that long-chain acyl-carnitine was markedly elevated in blood samples from the patients with MTPD. The autopsy results for one child revealed fat accumulation in the liver and heart. Next-generation sequencing detected compound heterozygous c.703C>T (p.R235W) and c.2107G>A (p.G703R) mutations in the HADHA gene. The mother did not have acute fatty liver during pregnancy with the two patients. Using amniotic fluid prenatal diagnostic testing, the unborn child was confirmed to carry only c.2107G>A (p.G703R). Molecular mechanistic analysis indicated that the two variants affected the conformation of the α-subunit of the MTP enzyme complex, and consequently affected the stability and function of the enzyme complex. The present study comprehensively analyzed the cases, including exome sequencing and protein structure analysis and, to the best of our knowledge, describes the first observation of compound heterozygous mutations in the HADHA gene underlying this disorder in China. The clinical phenotypes of the two heterozygous variants of the HADHA gene are non-lethal. The present study may improve understanding of the HADHA gene mutation spectrum and clinical phenotype in the Chinese population.
Collapse
Affiliation(s)
- Jinling Yang
- Newborn Screening Center, Department of Medical Genetics, Key Laboratory of Prevention and Control of Birth Defects, Liuzhou Maternity and Child Health Care Hospital, Affiliated Maternity Hospital and Affiliated Children's Hospital of Guangxi University of Science and Technology, Liuzhou, Guangxi 545000, P.R. China
| | - Dejian Yuan
- Newborn Screening Center, Department of Medical Genetics, Key Laboratory of Prevention and Control of Birth Defects, Liuzhou Maternity and Child Health Care Hospital, Affiliated Maternity Hospital and Affiliated Children's Hospital of Guangxi University of Science and Technology, Liuzhou, Guangxi 545000, P.R. China
| | - Xiaohui Tan
- School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yexi Zeng
- Newborn Screening Center, Huizhou Second Maternity and Child Health Care Hospital, Huizhou, Guangdong 516001, P.R. China
| | - Ning Tang
- Newborn Screening Center, Department of Medical Genetics, Key Laboratory of Prevention and Control of Birth Defects, Liuzhou Maternity and Child Health Care Hospital, Affiliated Maternity Hospital and Affiliated Children's Hospital of Guangxi University of Science and Technology, Liuzhou, Guangxi 545000, P.R. China
| | - Dayu Chen
- Newborn Screening Center, Department of Medical Genetics, Key Laboratory of Prevention and Control of Birth Defects, Liuzhou Maternity and Child Health Care Hospital, Affiliated Maternity Hospital and Affiliated Children's Hospital of Guangxi University of Science and Technology, Liuzhou, Guangxi 545000, P.R. China
| | - Jianqiang Tan
- Newborn Screening Center, Department of Medical Genetics, Key Laboratory of Prevention and Control of Birth Defects, Liuzhou Maternity and Child Health Care Hospital, Affiliated Maternity Hospital and Affiliated Children's Hospital of Guangxi University of Science and Technology, Liuzhou, Guangxi 545000, P.R. China
| | - Ren Cai
- Newborn Screening Center, Department of Medical Genetics, Key Laboratory of Prevention and Control of Birth Defects, Liuzhou Maternity and Child Health Care Hospital, Affiliated Maternity Hospital and Affiliated Children's Hospital of Guangxi University of Science and Technology, Liuzhou, Guangxi 545000, P.R. China
| | - Jun Huang
- Newborn Screening Center, Department of Medical Genetics, Key Laboratory of Prevention and Control of Birth Defects, Liuzhou Maternity and Child Health Care Hospital, Affiliated Maternity Hospital and Affiliated Children's Hospital of Guangxi University of Science and Technology, Liuzhou, Guangxi 545000, P.R. China
| | - Tizhen Yan
- Newborn Screening Center, Department of Medical Genetics, Key Laboratory of Prevention and Control of Birth Defects, Liuzhou Maternity and Child Health Care Hospital, Affiliated Maternity Hospital and Affiliated Children's Hospital of Guangxi University of Science and Technology, Liuzhou, Guangxi 545000, P.R. China
| |
Collapse
|
10
|
Guan Y, Zhang Y, Shen XM, Zhou L, Shang X, Peng Y, Hu Y, Li W. Charcot-Marie-Tooth Disease With Episodic Rhabdomyolysis Due to Two Novel Mutations in the β Subunit of Mitochondrial Trifunctional Protein and Effective Response to Modified Diet Therapy. Front Neurol 2021; 12:694966. [PMID: 34712195 PMCID: PMC8546186 DOI: 10.3389/fneur.2021.694966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/30/2021] [Indexed: 11/29/2022] Open
Abstract
A 29-year-old female experienced chronic progressive peripheral neuropathy since childhood and was diagnosed with Charcot–Marie–Tooth disease (CMT) at age 15. She developed recurrent, fever-induced rhabdomyolysis (RM) at age 24. EMG studies showed decreased amplitude of compound muscle action potential, declined motor conductive velocity, and absence of sensor nerve action potential. Acylcarnitine analysis revealed elevated C16-OH, C18-OH, and C18:1-OH. Muscle biopsy showed scattered foci of necrotic myofibers invaded by macrophages, occasional regenerating fibers, and remarkable muscle fiber type grouping. Whole-exome sequencing identified two novel heterozygous mutations: c.490G>A (p.G164S) and c.686G>A (p.R229Q) in HADHB gene encoding the β-subunit of mitochondrial trifunctional protein (MTP). Reduction of long-chain fatty acid via dietary restrictions alleviated symptoms effectively. Our study indicates that the defect of the MTP β-subunit accounts for both CMT and RM in the same patient and expands the clinical spectrum of disorders caused by the HADHB mutations. Our systematic review of all MTPD patients with dietary treatment indicates that the effect of dietary treatment is related to the age of onset and the severity of symptoms.
Collapse
Affiliation(s)
- Yuqing Guan
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanxia Zhang
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xin-Ming Shen
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Liang Zhou
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xuan Shang
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yu Peng
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yafang Hu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wei Li
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
11
|
Li Y, He C, Li S, Wang J, Jiang L, Guo Y. Hypoparathyroidism, neutropenia and nephrotic syndrome in a patient with mitochondrial trifunctional protein deficiency: A case report and review of the literature. Eur J Med Genet 2021; 64:104344. [PMID: 34543737 DOI: 10.1016/j.ejmg.2021.104344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 07/20/2021] [Accepted: 09/15/2021] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Mitochondrial trifunctional protein (TFP) deficiency is an autosomal recessive disorder that causes a clinical spectrum of diseases ranging from severe infantile cardiomyopathy to mild chronic progressive neuromyopathy, however, parathyroid glands, hematologic system and kidney damage are not the common presentations of this disease. METHODS We describe the clinical, biochemical and molecular features of the TFP deficiency patient at our institution. We also provide an extensive literature review of previous published cases with emphasis on the clinical/biochemical phenotype-genotype correlation of this disorder. RESULTS Our case is a complete TFP deficiency patient dominated presented with hypoparathyroidism, neutropenia and nephrotic syndrome, which caused by compound heterozygoues variants in HADHB gene. Based on the retrospective study of 157 cases, TFP patients presented with diverse clinical, biochemical and molecular features. The onset age is typically before early childhood. Neuromuscular system is more vulnerable involved. Severe form is generally characterized by multiorgan involvement. A notable feature of severe and intermediate form is respiratory failure. Neuropathy and rhabdomyolysis are the typical manifestations of mild form. Increased long-chain 3-OH-acylcarnitines (C16-OH, C18:1-OH) are the most common biochemical finding. The mortality of the present study is as high as 57.9%, which is linked with the onset age, phenotype, mutation type and muscular histology. Mutations in HADHB are more frequent in Asian descent with complete TFP deficiency and usually presented with atypical presentations. The type of mutation, rather than residual enzyme activity seem to be more related to the phenotype and prognosis. The most common HADHA variant is 1528G > C, no common HADHB variant were detected. CONCLUSIONS TFP deficiency is heterogeneous at both the molecular and phenotypic levels, generally a high mortality. Although there is no strict clinical/biochemical phenotype-genotype correlation, difference in ethnic and subunit mutations still have certain characteristics.
Collapse
Affiliation(s)
- Yi Li
- Department of Neurology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China
| | - ChuangFeng He
- Department of Neurology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China
| | - Shengrui Li
- Department of Neurology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China
| | - Juan Wang
- Department of Neurology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, China; Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Li Jiang
- Department of Neurology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, China; Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Yi Guo
- Department of Neurology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, China; Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China.
| |
Collapse
|
12
|
Carneiro A, Viana-Gomes D, Macedo-da-Silva J, Lima GHO, Mitri S, Alves SR, Kolliari-Turner A, Zanoteli E, Neto FRDA, Palmisano G, Pesquero JB, Moreira JC, Pereira MD. Risk factors and future directions for preventing and diagnosing exertional rhabdomyolysis. Neuromuscul Disord 2021; 31:583-595. [PMID: 34193371 DOI: 10.1016/j.nmd.2021.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 12/19/2022]
Abstract
Exertional rhabdomyolysis may occur when an individual is subjected to strenuous physical exercise. It is occasionally associated with myoglobinuria (i.e. "cola-colored" urine) alongside muscle pain and weakness. The pathophysiology of exertional rhabdomyolysis involves striated muscle damage and the release of cellular components into extracellular fluid and bloodstream. This can cause acute renal failure, electrolyte abnormalities, arrhythmias and potentially death. Exertional rhabdomyolysis is observed in high-performance athletes who are subjected to intense, repetitive and/or prolonged exercise but is also observed in untrained individuals and highly trained or elite groups of military personnel. Several risk factors have been reported to increase the likelihood of the condition in athletes, including: viral infection, drug and alcohol abuse, exercise in intensely hot and humid environments, genetic polymorphisms (e.g. sickle cell trait and McArdle disease) and epigenetic modifications. This article reviews several of these risk factors and proposes screening protocols to identify individual susceptibility to exertional rhabdomyolysis as well as the relevance of proteomics for the evaluation of potential biomarkers of muscle damage.
Collapse
Affiliation(s)
- Andréia Carneiro
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Brazil; Departamento de Química, Diretoria de Sistemas de Armas da Marinha, Marinha do Brazil, Brazil; Departamento de Parasitologia, Universidade de São Paulo, Instituto de Ciencias Biomédicas, Brazil.
| | - Diego Viana-Gomes
- Departamento de Corridas, Universidade Federal do Rio de Janeiro, Escola de Educação Física, Brazil
| | - Janaina Macedo-da-Silva
- Departamento de Parasitologia, Universidade de São Paulo, Instituto de Ciencias Biomédicas, Brazil
| | - Giscard Humberto Oliveira Lima
- Departamento de Biofísica, Universidade Federal de São Paulo, Brazil; Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Italy
| | - Simone Mitri
- Centro de Ecologia Humana e Saúde do Trabalhador, Fundação Oswaldo Cruz, Brazil
| | | | | | - Edmar Zanoteli
- Departamento de Neurologia, Faculdade de Medicina, Universidade de São Paulo, Brazil
| | | | - Giuseppe Palmisano
- Departamento de Parasitologia, Universidade de São Paulo, Instituto de Ciencias Biomédicas, Brazil
| | - João Bosco Pesquero
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Italy
| | | | - Marcos Dias Pereira
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Brazil.
| |
Collapse
|
13
|
Dagher R, Massie R, Gentil BJ. MTP deficiency caused by HADHB mutations: Pathophysiology and clinical manifestations. Mol Genet Metab 2021; 133:1-7. [PMID: 33744096 DOI: 10.1016/j.ymgme.2021.03.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 12/17/2022]
Abstract
Mutations in the HADHB gene lead to Mitochondrial Trifunctional Protein (MTP) deficiency. MTP deficiency is a rare autosomal recessive disorder affecting long-chain fatty acid oxidation. Patients affected by MTP deficiency are unable to metabolize long-chain fatty-acids and suffer a variety of symptoms exacerbated during fasting. The three phenotypes associated with complete MTP deficiency are an early-onset cardiomyopathy and early death, an intermediate form with recurrent hypoketotic hypoglycemia and a sensorimotor neuropathy with episodic rhabdomyolysis with small amount of residual enzyme activities. This review aims to discuss the pathophysiological mechanisms and clinical manifestations of each phenotype, which appears different and linked to HADHB expression levels. Notably, the pathophysiology of the sensorimotor neuropathy is relatively unknown and we provide a hypothesis on the qualitative aspect of the role of acylcarnitine buildup in Schwann cells in MTP deficiency patients. We propose that acylcarnitine may exit the Schwann cell and alter membrane properties of nearby axons leading to axonal degeneration based on recent findings in different metabolic disorders.
Collapse
Affiliation(s)
- Robin Dagher
- Department of Kinesiology and Physical Education, McGill University, Montreal, QC H3A 2B4, Canada
| | - Rami Massie
- Department of Neurology/Neurosurgery, McGill University, Montreal, QC H3A 2B4, Canada
| | - Benoit J Gentil
- Department of Kinesiology and Physical Education, McGill University, Montreal, QC H3A 2B4, Canada; Department of Neurology/Neurosurgery, McGill University, Montreal, QC H3A 2B4, Canada.
| |
Collapse
|
14
|
Marsden D, Bedrosian CL, Vockley J. Impact of newborn screening on the reported incidence and clinical outcomes associated with medium- and long-chain fatty acid oxidation disorders. Genet Med 2021; 23:816-829. [PMID: 33495527 PMCID: PMC8105167 DOI: 10.1038/s41436-020-01070-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/01/2020] [Accepted: 12/07/2020] [Indexed: 02/07/2023] Open
Abstract
Fatty acid oxidation disorders (FAODs) are potentially fatal inherited disorders for which management focuses on early disease detection and dietary intervention to reduce the impact of metabolic crises and associated spectrum of clinical symptoms. They can be divided functionally into long-chain (LC-FAODs) and medium-chain disorders (almost exclusively deficiency of medium-chain acyl-coenzyme A dehydrogenase). Newborn screening (NBS) allows prompt identification and management. FAOD detection rates have increased following the addition of FAODs to NBS programs in the United States and many developed countries. NBS-identified neonates with FAODs may remain asymptomatic with dietary management. Evidence from numerous studies suggests that NBS-identified patients have improved outcomes compared with clinically diagnosed patients, including reduced rates of symptomatic manifestations, neurodevelopmental impairment, and death. The limitations of NBS include the potential for false-negative and false-positive results, and the need for confirmatory testing. Although NBS alone does not predict the consequences of disease, outcomes, or management needs, subsequent genetic analyses may have predictive value. Genotyping can provide valuable information on the nature and frequency of pathogenic variants involved with FAODs and their association with specific phenotypes. Long-term follow-up to fully understand the clinical spectrum of NBS-identified patients and the effect of different management strategies is needed.
Collapse
Affiliation(s)
| | | | - Jerry Vockley
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
15
|
Expanding the genotype-phenotype correlation of childhood sensory polyneuropathy of genetic origin. Sci Rep 2020; 10:16184. [PMID: 32999401 PMCID: PMC7528082 DOI: 10.1038/s41598-020-73219-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 09/14/2020] [Indexed: 01/02/2023] Open
Abstract
Pure sensory polyneuropathy of genetic origin is rare in childhood and hence important to document the clinical and genetic etiologies from single or multi-center studies. This study focuses on a retrospective chart-review of neurological examinations and genetic and electrodiagnostic data of confirmed sensory polyneuropathy in subjects at a tertiary-care Children's Hospital from 2013 to 2019. Twenty subjects were identified and included. Neurological examination and electrodiagnostic testing showed gait-difficulties, absent tendon reflexes, decreased joint-position, positive Romberg's test and large fiber sensory polyneuropathy on sensory nerve conduction studies in all patients associated with lower-extremity spasticity (6), cardiac abnormalities or cardiomyopathy (5), developmental delay (4), scoliosis (3), epilepsy (3) and hearing-difficulties (2). Confirmation of genetic diagnosis in correlation with clinical presentation was obtained in all cases (COX20 n = 2, HADHA n = 2, POLG n = 1, FXN n = 4, ATXN2 n = 3, ATM n = 3, GAN n = 2, SPG7 n = 1, ZFYVE26 n = 1, FH n = 1). Our single-center study shows genetic sensory polyneuropathies associated with progressive neurodegenerative disorders such as mitochondrial ataxia, Friedreich ataxia, spinocerebellar ataxia type 2, ataxia telangiectasia, spastic paraplegia, giant axonal neuropathy, and fumarate hydratase deficiency. We also present our cohort data in light of clinical features reported for each gene-specific disease subtype in the literature and highlight the importance of genetic testing in the relevant clinical context of electrophysiological findings of peripheral sensory polyneuropathy.
Collapse
|
16
|
Suyama T, Shimura M, Fushimi T, Kuranobu N, Ichimoto K, Matsunaga A, Takayanagi M, Murayama K. Efficacy of bezafibrate in two patients with mitochondrial trifunctional protein deficiency. Mol Genet Metab Rep 2020; 24:100610. [PMID: 32509533 PMCID: PMC7264074 DOI: 10.1016/j.ymgmr.2020.100610] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 12/26/2022] Open
Abstract
Mitochondrial trifunctional protein (TFP) deficiency is a rare inherited metabolic disorder caused by defects in fatty acid β-oxidation (FAO) of long-chain fatty acids, leading to impaired energy production. Fasting avoidance, fatty acid-restricted diets, and supplementation with medium-chain triglycerides are recommended as a treatment, but there are no pharmaceutical treatments available with strong evidence of efficacy. Bezafibrate, which enhances the transcription of FAO enzymes, is a promising therapeutic option for FAO disorders (FAODs). The effectiveness of bezafibrate for FAODs has been reported in some clinical trials, but few clinical studies have investigated its in vivo efficacy toward TFP deficiency. Herein, we describe two Japanese patients with TFP deficiency. Patient 1 presented with recurrent myalgia since the age of 5 years. Laboratory findings showed increased serum levels of long-chain fatty acids and reduced expression of TFPα and TFPβ in his skin fibroblasts. Based on these findings, he was diagnosed with the myopathic type of TFP deficiency. Patient 2 suddenly exhibited cardiopulmonary arrest one day after birth. Elevated levels of creatine kinase and long-chain acylcarnitines were observed. Genetic analysis identified compound heterozygous variants in HADHB (c.1175C>T/c.1364T>G). He was diagnosed with the lethal type of TFP deficiency. Although both patients were treated with dietary therapy and l-carnitine supplementation, they experienced frequent myopathic attacks associated with respiratory infections and exercise. After the initiation of bezafibrate, their myopathic manifestations were markedly reduced, leading to an improvement in quality of life without any side effects. Our clinical findings indicate that bezafibrate combined with other treatments such as dietary therapy may be effective in improving myopathic manifestations in TFP deficiency.
Collapse
Key Words
- ALT, alanine aminotransferase
- AST, aspartate aminotransferase
- Bezafibrate
- CK, creatine kinase
- CPA, cardiopulmonary arrest
- CPT2, carnitine palmitoyltransferase II
- FAO, fatty acid β-oxidation
- FAODs, fatty acid β-oxidation disorders
- Fatty acid β-oxidation disorders (FAODs)
- LCHAD, long-chain 3-hydroxyacyl-CoA dehydrogenase
- MCT, medium-chain triglycerides
- Myalgia
- QOL, quality of life
- Rhabdomyolysis
- TFP deficiency
- TFP, trifunctional protein
- VLCAD, very-long-chain acyl-CoA dehydrogenase
- l-carnitine
Collapse
Affiliation(s)
- Tomonori Suyama
- Center for Medical Genetics, Department of Metabolism, Chiba Children's Hospital, 579-1 Heta-cho, Midori-ku, Chiba 266-0007, Japan
| | - Masaru Shimura
- Center for Medical Genetics, Department of Metabolism, Chiba Children's Hospital, 579-1 Heta-cho, Midori-ku, Chiba 266-0007, Japan
| | - Takuya Fushimi
- Center for Medical Genetics, Department of Metabolism, Chiba Children's Hospital, 579-1 Heta-cho, Midori-ku, Chiba 266-0007, Japan
| | - Naomi Kuranobu
- Center for Medical Genetics, Department of Metabolism, Chiba Children's Hospital, 579-1 Heta-cho, Midori-ku, Chiba 266-0007, Japan
| | - Keiko Ichimoto
- Center for Medical Genetics, Department of Metabolism, Chiba Children's Hospital, 579-1 Heta-cho, Midori-ku, Chiba 266-0007, Japan
| | - Ayako Matsunaga
- Center for Medical Genetics, Department of Metabolism, Chiba Children's Hospital, 579-1 Heta-cho, Midori-ku, Chiba 266-0007, Japan
| | - Masaki Takayanagi
- Center for Medical Genetics, Department of Metabolism, Chiba Children's Hospital, 579-1 Heta-cho, Midori-ku, Chiba 266-0007, Japan
| | - Kei Murayama
- Center for Medical Genetics, Department of Metabolism, Chiba Children's Hospital, 579-1 Heta-cho, Midori-ku, Chiba 266-0007, Japan
| |
Collapse
|
17
|
Nakama M, Sasai H, Kubota M, Hasegawa Y, Fujiki R, Okuyama T, Ohara O, Fukao T. Novel HADHB mutations in a patient with mitochondrial trifunctional protein deficiency. Hum Genome Var 2020; 7:10. [PMID: 32257295 PMCID: PMC7118068 DOI: 10.1038/s41439-020-0097-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/07/2020] [Accepted: 02/21/2020] [Indexed: 01/02/2023] Open
Abstract
We encountered a patient with mitochondrial trifunctional protein deficiency in whom the corresponding mutations were not identified by a DNA panel for newborn screening for targeted diseases. After diagnosis confirmation by an enzyme assay and immunoblotting using the autopsied liver, the re-evaluation of the panel data indicated a heterozygous deletion of exons 6-9 that was later confirmed at the genomic level. cDNA analysis also identified exonization of the 5' region of intron 9 caused by a deep intronic mutation, c.811 + 82A>G.
Collapse
Affiliation(s)
- Mina Nakama
- Clinical Genetics Center, Gifu University Hospital, Gifu, Japan
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Hideo Sasai
- Clinical Genetics Center, Gifu University Hospital, Gifu, Japan
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Mitsuru Kubota
- Department of General Pediatrics & Interdisciplinary Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Yuki Hasegawa
- Department of Pediatrics, Faculty of Medicine, Shimane University, Shimane, Japan
| | - Ryoji Fujiki
- Department of Applied Genomics, Kazusa DNA Research Institute, Chiba, Japan
| | - Torayuki Okuyama
- Department of Clinical Laboratory Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Osamu Ohara
- Department of Applied Genomics, Kazusa DNA Research Institute, Chiba, Japan
| | - Toshiyuki Fukao
- Clinical Genetics Center, Gifu University Hospital, Gifu, Japan
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
| |
Collapse
|
18
|
Fraser H, Geppert J, Johnson R, Johnson S, Connock M, Clarke A, Taylor-Phillips S, Stinton C. Evaluation of earlier versus later dietary management in long-chain 3-hydroxyacyl-CoA dehydrogenase or mitochondrial trifunctional protein deficiency: a systematic review. Orphanet J Rare Dis 2019; 14:258. [PMID: 31730477 PMCID: PMC6858661 DOI: 10.1186/s13023-019-1226-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/09/2019] [Indexed: 12/11/2022] Open
Abstract
Background Mitochondrial trifunctional protein (MTP) and long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) deficiencies are rare fatty acid β-oxidation disorders. Without dietary management the conditions are life-threatening. We conducted a systematic review to investigate whether pre-symptomatic dietary management following newborn screening provides better outcomes than treatment following symptomatic detection. Methods We searched Web of Science, Medline, Pre-Medline, Embase and the Cochrane Library up to 23rd April 2018. Two reviewers independently screened titles, abstracts and full texts for eligibility and quality appraised the studies. Data extraction was performed by one reviewer and checked by another. Results We included 13 articles out of 7483 unique records. The 13 articles reported on 11 patient groups, including 174 people with LCHAD deficiency, 18 people with MTP deficiency and 12 people with undifferentiated LCHAD/MTP deficiency. Study quality was moderate to weak in all studies. Included studies suggested fewer heart and liver problems in screen-detected patients, but inconsistent results for mortality. Follow up analyses compared long-term outcomes of (1) pre-symptomatically versus symptomatically treated patients, (2) screened versus unscreened patients, and (3) asymptomatic screen-detected, symptomatic screen-detected, and clinically diagnosed patients in each study. For follow up analyses 1 and 2, we found few statistically significant differences in the long-term outcomes. For follow up analysis 3 we found a significant difference for only one comparison, in the incidence of cardiomyopathy between the three groups. Conclusions There is some evidence that dietary management following screen-detection might be associated with a lower incidence of some LCHAD and MTP deficiency-related complications. However, the evidence base is limited by small study sizes, quality issues and risk of confounding. An internationally collaborative research effort is needed to fully examine the risks and the benefits to pre-emptive dietary management with particular attention paid to disease severity and treatment group.
Collapse
Affiliation(s)
- Hannah Fraser
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK.
| | - Julia Geppert
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Rebecca Johnson
- Faculty of Health and Life Sciences, Coventry University, Coventry, CV1 5RW, UK
| | | | - Martin Connock
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Aileen Clarke
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | | | - Chris Stinton
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
19
|
Identification and functional characterization of mutations within HADHB associated with mitochondrial trifunctional protein deficiency. Mitochondrion 2019; 49:200-205. [DOI: 10.1016/j.mito.2019.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 08/11/2019] [Accepted: 09/11/2019] [Indexed: 12/24/2022]
|
20
|
Abstract
INTRODUCTION Metabolic myopathies are a heterogeneous group of disorders characterized by inherited defects of enzymatic pathways involved in muscle fiber energetics. Diagnosing metabolic myopathies requires a thoroughly taken individual and family history, a meticulous neurologic exam, exercise tests, blood and urine tests, needle-electromyography, nerve-conduction studies, muscle biopsy, targeted genetic tests, or next-generation sequencing. There is limited evidence from the literature to guide treatment of metabolic myopathies. Treatment is largely limited to non-invasive/invasive symptomatic measures. However, promising results have been achieved with enzyme replacement therapy in Pompe disease (GSD-II). Primary coenzyme-Q deficiency responds favorably to coenzyme-Q supplementation. MNGIE responds to allogeneic hematopoietic stem cell transplantation, orthotopic liver transplantation, and carrier erythrocyte entrapped thymidine phosphorylase enzyme therapy. MADD may respond to riboflavin. Areas covered: This review aims to summarize and discuss recent findings and new insights concerning diagnosis and treatment of metabolic myopathies. Expert commentary: Except for GSD-II, coenzyme-Q deficiency, and MNGIE, treatment of metabolic myopathies is usually palliative and supportive (non-invasive or invasive). Non-invasive symptomatic treatment includes physiotherapy, diet, administration of drugs, conservative orthopedic measures, and respiratory non-invasive support. Important is the avoidance of triggers for episodic forms of fatty acid oxidation disorders. Invasive measures include orthopedic surgery and invasive mechanical ventilation.
Collapse
Affiliation(s)
- Josef Finsterer
- a Krankenanstalt Rudolfstiftung, Messerli Institute , Veterinary University of Vienna , Vienna , Austria
| |
Collapse
|
21
|
Management and diagnosis of mitochondrial fatty acid oxidation disorders: focus on very-long-chain acyl-CoA dehydrogenase deficiency. J Hum Genet 2018; 64:73-85. [PMID: 30401918 DOI: 10.1038/s10038-018-0527-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 10/15/2018] [Accepted: 10/21/2018] [Indexed: 12/31/2022]
Abstract
Mitochondrial fatty acid oxidation disorders (FAODs) are caused by defects in β-oxidation enzymes, including very long-chain acyl-CoA dehydrogenase (VLCAD), trifunctional protein (TFP), carnitine palmitoyltransferase-2 (CPT2), carnitine-acylcarnitine translocase (CACT) and others. During prolonged fasting, infection, or exercise, patients with FAODs present with hypoglycemia, rhabdomyolysis, cardiomyopathy, liver dysfunction, and occasionally sudden death. This article describes the diagnosis, newborn screening, and treatment of long-chain FAODs with a focus on VLCAD deficiency. VLCAD deficiency is generally classified into three phenotypes based on onset time, but the classification should be comprehensively determined based on genotype, residual enzyme activity, and clinical course, due to a lack of apparent genotype-phenotype correlation. With the expansion of newborn screening for FAODs, several issues have arisen, such as missed detection, overdiagnosis (including detection of benign/asymptomatic type), and poor prognosis of the neonatal-onset form. Meanwhile, dietary management and restriction of exercise have been unnecessary for patients with the benign/asymptomatic type of VLCAD deficiency with a high fatty acid oxidation flux score. Although L-carnitine therapy for VLCAD/TFP deficiency has been controversial, supplementation with L-carnitine may be accepted for CPT2/CACT and multiple acyl-CoA dehydrogenase deficiencies. Recently, a double-blind, randomized controlled trial of triheptanoin (seven-carbon fatty acid triglyceride) versus trioctanoin (regular medium-chain triglyceride) was conducted and demonstrated improvement of cardiac functions on triheptanoin. Additionally, although the clinical efficacy of bezafibrate remains controversial, a recent open-label clinical trial showed efficacy of this drug in improving quality of life. These drugs may be promising for the treatment of FAODs, though further studies are required.
Collapse
|
22
|
Barvinska O, Olkhovych N, Gorovenko N. High Prevalence of c.1528G>C Rearrangement in Patients with Long Chain 3-Hydroxyacyl-CoA Dehydrogenase Deficiency from Ukraine. CYTOL GENET+ 2018. [DOI: 10.3103/s0095452718030027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|