1
|
Ramadesikan S, Showpnil IA, Marhabaie M, Daley A, Varga EA, Gurusamy U, Pastore MT, Sites ER, Manickam M, Bartholomew DW, Hunter JM, White P, Wilson RK, Stottmann RW, Koboldt DC. Expanding the phenotypic spectrum of CSNK2A1-associated Okur-Chung neurodevelopmental syndrome. HGG ADVANCES 2024; 6:100379. [PMID: 39497417 PMCID: PMC11621934 DOI: 10.1016/j.xhgg.2024.100379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/31/2024] [Accepted: 10/31/2024] [Indexed: 12/09/2024] Open
Abstract
De novo variants in CSNK2A1 cause autosomal dominant Okur-Chung neurodevelopmental syndrome (OCNDS). OCNDS has an evolving clinical phenotype predominantly characterized by intellectual disability, global delays, dysmorphic features, and immunological manifestations. Microcephaly, defined as a small head circumference, is not widely recognized as a classical clinical presentation. Here, we describe four individuals from three unrelated families who shared several clinical features characteristic of an underlying syndromic neurodevelopmental condition. Trio clinical exome and research genome sequencing revealed that all affected individuals had heterozygous pathogenic missense variants in CSNK2A1. Two variants (c.468T>A p.Asp156Glu and c.149A>G p.Tyr50Cys) were de novo and previously reported, but the third variant (c.137G>T p.Gly46Val) is novel and segregated in two affected individuals in a family. This adds to growing evidence of inherited disease-causing variants in CSNK2A1, an observation reported only twice previously. A detailed phenotypic analysis of our cohort together with those individuals reported in the literature revealed that OCNDS individuals, on average, have a smaller head circumference with one-third presenting with microcephaly. We also show that the incidence of microcephaly is significantly correlated with the location of the variant in the encoded protein. Our findings suggest that small head circumference is a common but under-recognized feature of OCNDS, which may not be apparent at birth.
Collapse
Affiliation(s)
- Swetha Ramadesikan
- Steve and Cindy Rasmussen Institute for Genomic Medicine, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.
| | - Iftekhar A Showpnil
- Steve and Cindy Rasmussen Institute for Genomic Medicine, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Mohammad Marhabaie
- Steve and Cindy Rasmussen Institute for Genomic Medicine, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Allison Daley
- Steve and Cindy Rasmussen Institute for Genomic Medicine, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Elizabeth A Varga
- Steve and Cindy Rasmussen Institute for Genomic Medicine, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Umamaheswaran Gurusamy
- Steve and Cindy Rasmussen Institute for Genomic Medicine, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Matthew T Pastore
- Division of Genetic and Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Emily R Sites
- Division of Genetic and Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Murugu Manickam
- Division of Genetic and Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Dennis W Bartholomew
- Division of Genetic and Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Jesse M Hunter
- Steve and Cindy Rasmussen Institute for Genomic Medicine, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Peter White
- Steve and Cindy Rasmussen Institute for Genomic Medicine, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Richard K Wilson
- Steve and Cindy Rasmussen Institute for Genomic Medicine, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Rolf W Stottmann
- Steve and Cindy Rasmussen Institute for Genomic Medicine, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Daniel C Koboldt
- Steve and Cindy Rasmussen Institute for Genomic Medicine, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA.
| |
Collapse
|
2
|
Cruz-Gamero JM, Ballardin D, Lecis B, Zhang CL, Cobret L, Gast A, Morisset-Lopez S, Piskorowski R, Langui D, Jose J, Chevreux G, Rebholz H. Missense mutation in the activation segment of the kinase CK2 models Okur-Chung neurodevelopmental disorder and alters the hippocampal glutamatergic synapse. Mol Psychiatry 2024:10.1038/s41380-024-02762-8. [PMID: 39367055 DOI: 10.1038/s41380-024-02762-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 09/14/2024] [Accepted: 09/23/2024] [Indexed: 10/06/2024]
Abstract
Exome sequencing has enabled the identification of causative genes of monogenic forms of autism, amongst them, in 2016, CSNK2A1, the gene encoding the catalytic subunit of the kinase CK2, linking this kinase to Okur-Chung Neurodevelopmental Syndrome (OCNDS), a newly described neurodevelopmental condition with many symptoms resembling those of autism spectrum disorder. Thus far, no preclinical model of this condition exists. Here we describe a knock-in mouse model that harbors the K198R mutation in the activation segment of the α subunit of CK2. This region is a mutational hotspot, representing one-third of patients. These mice exhibit behavioral phenotypes that mirror patient symptoms. Homozygous knock-in mice die mid-gestation while heterozygous knock-in mice are born at half of the expected mendelian ratio and are smaller in weight and size than wildtype littermates. Heterozygous knock-in mice showed alterations in cognition and memory-assessing paradigms, enhanced stereotypies, altered circadian activity patterns, and nesting behavior. Phosphoproteome analysis from brain tissue revealed alterations in the phosphorylation status of major pre- and postsynaptic proteins of heterozygous knock-in mice. In congruence, we detect reduced synaptic maturation in hippocampal neurons and attenuated long-term potentiation in the hippocampus of knock-in mice. Taken together, heterozygous knock-in mice (CK2αK198R/+) exhibit significant face validity, presenting ASD-relevant phenotypes, synaptic deficits, and alterations in synaptic plasticity, all of which strongly validate this line as a mouse model of OCNDS.
Collapse
Affiliation(s)
- Jose M Cruz-Gamero
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Laboratory of Signaling mechanisms in neurological disorders, 75014, Paris, France
| | - Demetra Ballardin
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Laboratory of Signaling mechanisms in neurological disorders, 75014, Paris, France
| | - Barbara Lecis
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Laboratory of Signaling mechanisms in neurological disorders, 75014, Paris, France
- GHU-Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, F-75014, Paris, France
| | - Chun-Lei Zhang
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Laboratory of Signaling mechanisms in neurological disorders, 75014, Paris, France
| | - Laetitia Cobret
- Center for Molecular Biophysics-CNRS UPR 4301, Rue Charles Sadron, Orléans, France
| | - Alexander Gast
- Institute of Pharmaceutical and Medicinal Chemistry, Pharmacampus, University of Münster, Münster, Germany
| | | | - Rebecca Piskorowski
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Laboratory of Signaling mechanisms in neurological disorders, 75014, Paris, France
| | - Dominique Langui
- Inserm, Institut du Cerveau, Plateforme ICM-Quant, Paris, France
| | - Joachim Jose
- Institute of Pharmaceutical and Medicinal Chemistry, Pharmacampus, University of Münster, Münster, Germany
| | | | - Heike Rebholz
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Laboratory of Signaling mechanisms in neurological disorders, 75014, Paris, France.
- GHU-Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, F-75014, Paris, France.
- Center of Neurodegeneration, Faculty of Medicine, Danube Private University, Krems, Austria.
| |
Collapse
|
3
|
Blanc A, Bonnet C, Wandzel M, Roth V, Duffourd Y, Safraou H, Leheup B, Muller F, D Colne J, Feillet F, Schmitt E, Castro M, Savatt J, Burcheri A, Nemos C, Philippe C, Lambert L. Patient with a heterozygous pathogenic variant in CSNK2A1 gene: A new case to update the Okur-Chung neurodevelopmental syndrome. Am J Med Genet A 2024; 194:e63642. [PMID: 38711237 DOI: 10.1002/ajmg.a.63642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/07/2024] [Accepted: 04/11/2024] [Indexed: 05/08/2024]
Abstract
The autosomal dominant Okur-Chung neurodevelopmental syndrome (OCNDS: OMIM #617062) is a rare neurodevelopmental disorder first described in 2016. Features include developmental delay (DD), intellectual disability (ID), behavioral problems, hypotonia, language deficits, congenital heart abnormalities, and non-specific dysmorphic facial features. OCNDS is caused by heterozygous pathogenic variants in CSNK2A1 (OMIM *115440; NM_177559.3). To date, 160 patients have been diagnosed worldwide. The number will likely increase due to the growing use of exome sequencing (ES) and genome sequencing (GS). Here, we describe a novel OCNDS patient carrying a CSNK2A1 variant (NM_177559.3:c.140G>A; NP_808227.1:p.Arg47Gln). Phenotypically, he presented with DD, ID, generalized hypotonia, speech delay, short stature, microcephaly, and dysmorphic features such as low-set ears, hypertelorism, thin upper lip, and a round face. The patient showed several signs not yet described that may extend the phenotypic spectrum of OCNDS. These include prenatal bilateral clubfeet, exotropia, and peg lateral incisors. However, unlike the majority of descriptions, he did not present sleep disturbance, seizures or gait difficulties. A literature review shows phenotypic heterogeneity for OCNDS, whether these patients have the same variant or not. This case report is an opportunity to refine the phenotype of this syndrome and raise the question of the genotype-phenotype correlation.
Collapse
Affiliation(s)
- Albin Blanc
- Service de génétique clinique, CHRU de Nancy, Nancy, France
| | - Céline Bonnet
- Laboratoire de génétique médicale, CHRU Nancy, Nancy, France
- Université de Lorraine, INSERM UMR_S1256, NGERE, Nancy, France
| | - Marion Wandzel
- Laboratoire de génétique médicale, CHRU Nancy, Nancy, France
| | - Virginie Roth
- Laboratoire de génétique médicale, CHRU Nancy, Nancy, France
| | - Yannis Duffourd
- Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, CHU Dijon Bourgogne, Dijon, France
- Université de Bourgogne, INSERM UMR_1231 GAD, Dijon, France
| | - Hanna Safraou
- Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, CHU Dijon Bourgogne, Dijon, France
- Université de Bourgogne, INSERM UMR_1231 GAD, Dijon, France
| | - Bruno Leheup
- Université de Lorraine, INSERM UMR_S1256, NGERE, Nancy, France
| | - Florence Muller
- Service de Chirurgie orthopédique infantile, CHRU Nancy, Nancy, France
| | | | - François Feillet
- Université de Lorraine, INSERM UMR_S1256, NGERE, Nancy, France
- Centre de Référence des maladies métaboliques, CHRU Nancy, Nancy, France
| | | | - Matheus Castro
- Mendelics Genomic Analysis, São Paulo, Brazil
- Medical Genetics Unit, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo HCFMUSP, São Paulo, Brazil
| | - Jullian Savatt
- Autism & Developmental Medicine Institute, Danville, Pennsylvania, USA
| | - Adriano Burcheri
- Département de Biopathologie - Anatomie et Cytologie Pathologiques, CHRU de Nancy, Nancy, France
| | - Christophe Nemos
- Laboratoire de fœtopathologie et de placentologie, CHRU Nancy, Nancy, France
- Département d'histologie, embryologie et cytogénétique de la faculté de médecine, Université de Lorraine, Nancy, France
- Département de Génie Biologique Santé de l'IUT Nancy-Brabois, Université de Lorraine, Nancy, France
- Université de Lorraine Biofonctionnalités et Risques Neurotoxiques (Calbinotox), Nancy, France
| | - Christophe Philippe
- Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, CHU Dijon Bourgogne, Dijon, France
- Université de Bourgogne, INSERM UMR_1231 GAD, Dijon, France
| | - Laëtitia Lambert
- Service de génétique clinique, CHRU de Nancy, Nancy, France
- Université de Lorraine, INSERM UMR_S1256, NGERE, Nancy, France
| |
Collapse
|
4
|
Goel H, O'Donnell S. Inherited loss of function variant in CSNK2A1: the oldest reported cases of Okur-Chung syndrome in a single family. Clin Dysmorphol 2024; 33:121-124. [PMID: 38818820 DOI: 10.1097/mcd.0000000000000502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Affiliation(s)
- Himanshu Goel
- General Genetics Service, Hunter Genetics, Waratah, NSW, Australia
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, Australia
| | | |
Collapse
|
5
|
Nan H, Chu M, Zhang J, Jiang D, Wang Y, Wu L. Okur-Chung neurodevelopmental syndrome: Implications for phenotype and genotype expansion. Mol Genet Genomic Med 2024; 12:e2398. [PMID: 38444259 PMCID: PMC10915366 DOI: 10.1002/mgg3.2398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/17/2024] [Accepted: 01/31/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND Okur-Chung neurodevelopmental syndrome (OCNDS) is a rare autosomal dominant disorder caused by pathogenic variants in CSNK2A1. It is characterized by intellectual disability, developmental delay, and multisystemic abnormalities. METHODS We performed the whole-exome sequencing for a patient in a Chinese family. The co-segregation study using the Sanger sequencing method was performed among family members. Reverse transcription and quantitative real-time polymerase chain reaction were carried out using total RNA from blood samples of the proband and wild-type control subjects. A review of patients with OCNDS harboring CSNK2A1 pathogenic variants was conducted through a comprehensive search of the PubMed database. RESULTS We identified a novel CSNK2A1 frameshift variant p.Tyr323Leufs*16 in a Chinese family. The proband, a 31-year-old female, presented with abnormal eating habits, recurrent seizures, language impairment, and intellectual disability. Her mother exhibited postnatal hernias, splenomegaly, and a predisposition to infections, but showed no significant developmental impairments or intellectual disability. Genetic studies revealed the presence of this variant in CSNK2A1 in both the proband and her mother. Transcription analysis revealed this variant may lead to nonsense-mediated mRNA decay, suggesting haploinsufficiency as a potential disease mechanism. We reviewed 47 previously reported OCNDS cases and discovered that individuals carrying CSNK2A1 null variants may exhibit a diminished frequency of symptoms linked to language deficits, dysmorphic facial features, or intellectual disability, consequently presenting an overall milder phenotype when compared to those with missense variants. CONCLUSION We report a novel frameshift variant, p.Tyr323Leufs*16, in an OCNDS family with a generally mild phenotype. This study may broaden the spectrum of clinical presentations associated with OCNDS and contribute novel insights into the genotype-phenotype correlation of this condition.
Collapse
Affiliation(s)
- Haitian Nan
- Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Min Chu
- Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Jing Zhang
- Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Deming Jiang
- Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Yihao Wang
- Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Liyong Wu
- Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
- National Clinical Research Center for Geriatric DiseasesBeijingChina
| |
Collapse
|
6
|
Zhuri D, Dusenkalkan F, Tunca Alparslan G, Gurkan H. A Case of Okur-Chung Neurodevelopmental Syndrome with a Novel, de novo Variant on the CSNK2A1 Gene in a Turkish Patient. Mol Syndromol 2024; 15:43-50. [PMID: 38357263 PMCID: PMC10862324 DOI: 10.1159/000530585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 04/02/2023] [Indexed: 02/16/2024] Open
Abstract
Introduction Okur-Chung neurodevelopmental syndrome (OCNDS; #617062) has been associated with heterozygous mutations in the CSNK2A1 gene (*115440) mapped on the chromosome's 20p13 region. Case Presentation The analysis was performed on a 2-year-old patient who was admitted to our genetic diseases evaluation center by his family with a complaint of hypotonia. We detected a heterozygous NM_177559.3 (CSNK2A1):c.1139_1140dupGG (p.Met381GlyfsTer32) variant in the CSNK2A1 gene from a whole-exome sequence analysis. Conclusion The variant that we detected has not been reported in open-access databases to date, so it was evaluated as a novel likely pathogenic variant according to the ACMG-2015 criteria. No variant was detected upon segregation analysis of the patient's parents; therefore, the related variant was evaluated as de novo. In this study, we offer the first report of a pathogenic frameshift variant in the CSNK2A1 gene that has a relationship with OCNDS.
Collapse
Affiliation(s)
- Drenushe Zhuri
- Department of Medical Genetics, Trakya University Faculty of Medicine, Edirne, Turkey
| | - Fulya Dusenkalkan
- Department of Medical Genetics, Trakya University Faculty of Medicine, Edirne, Turkey
| | - Guzin Tunca Alparslan
- Department of Genetics and Bioengineering, Trakya University Faculty of Engineering, Edirne, Turkey
| | - Hakan Gurkan
- Department of Medical Genetics, Trakya University Faculty of Medicine, Edirne, Turkey
| |
Collapse
|
7
|
Liu Y, Xia D, Zhong L, Chen L, Zhang L, Ai M, Mei R, Pang R. Casein Kinase 2 Affects Epilepsy by Regulating Ion Channels: A Potential Mechanism. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:894-905. [PMID: 37350003 DOI: 10.2174/1871527322666230622124618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 03/31/2023] [Accepted: 04/10/2023] [Indexed: 06/24/2023]
Abstract
Epilepsy, characterized by recurrent seizures and abnormal brain discharges, is the third most common chronic disorder of the Central Nervous System (CNS). Although significant progress has been made in the research on antiepileptic drugs (AEDs), approximately one-third of patients with epilepsy are refractory to these drugs. Thus, research on the pathogenesis of epilepsy is ongoing to find more effective treatments. Many pathological mechanisms are involved in epilepsy, including neuronal apoptosis, mossy fiber sprouting, neuroinflammation, and dysfunction of neuronal ion channels, leading to abnormal neuronal excitatory networks in the brain. CK2 (Casein kinase 2), which plays a critical role in modulating neuronal excitability and synaptic transmission, has been shown to be associated with epilepsy. However, there is limited research on the mechanisms involved. Recent studies have suggested that CK2 is involved in regulating the function of neuronal ion channels by directly phosphorylating them or their binding partners. Therefore, in this review, we will summarize recent research advances regarding the potential role of CK2 regulating ion channels in epilepsy, aiming to provide more evidence for future studies.
Collapse
Affiliation(s)
- Yan Liu
- Department of Neurology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Di Xia
- Department of Neurology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Lianmei Zhong
- Department of Neurology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Ling Chen
- Department of Neurology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
- Yunnan Provincial Clinical Research Center for Neurological Disease, Kunming, Yunnan, 650032, China
| | - Linming Zhang
- Department of Neurology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Mingda Ai
- Department of Neurology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Rong Mei
- Department of Neurology, the First People's Hospital of Yunnan Province, Kunming, Yunnan, 650034, China
| | - Ruijing Pang
- Department of Neurology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| |
Collapse
|
8
|
Wafik M, Kuoppamaa H, Hirani P, Hignett J, Lillis S, Lascelles K, Sardesai S, Gomez K, Holder-Espinasse M. Two novel CSNK2A1 variants associated with mild Okur-Chung neurodevelopmental syndrome phenotype. Clin Dysmorphol 2023; 32:116-123. [PMID: 37195306 DOI: 10.1097/mcd.0000000000000456] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Affiliation(s)
- Mohamed Wafik
- Department of Clinical Genetics, Guy's and St Thomas' NHS Foundation Trust
| | | | | | - John Hignett
- Viapath LLP, Guy's Hospital, 5th Floor Tower Wing
| | | | | | - Shweta Sardesai
- Community Paediatrics Medical Service, Oxleas NHS Foundation Trust
| | - Kumudini Gomez
- Department of Paediatrics, University Hospital Lewisham, London, UK
| | | |
Collapse
|
9
|
Baalmann N, Spielmann M, Gillessen-Kaesbach G, Hanker B, Schmidt J, Lill CM, Hellenbroich Y, Greiten B, Lohmann K, Trinh J, Hüning I. Phenotypic specificity in patients with neurodevelopmental delay does not correlate with diagnostic yield of trio-exome sequencing. Eur J Med Genet 2023; 66:104774. [PMID: 37120078 DOI: 10.1016/j.ejmg.2023.104774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 03/12/2023] [Accepted: 04/26/2023] [Indexed: 05/01/2023]
Abstract
In this study, we aimed to examine the diagnostic yield achieved by applying a trio approach in exome sequencing (ES) and the interdependency between the clinical specificity in families with neurodevelopmental delay. Thirty-seven families were recruited and trio-ES as well as three criteria for estimating the clinical phenotypic specificity were suggested and applied to the underaged children. All our patients showed neurodevelopmental delay and most of them a large spectrum of congenital anomalies. Applying the pathogenicity guidelines of the American College of Medical Genetics (ACMG), likely pathogenic (29.7%) and pathogenic variants (8.1%) were found in 40,5% of our index patients. Additionally, we found four variants of uncertain significance (VUS; according to ACMG) and two genes of interest (GOI; going beyond ACMG classification) (GLRA4, NRXN2). Spastic Paraplegia 4 (SPG4) caused by a formerly known SPAST variant was diagnosed in a patient with a complex phenotype, in whom a second genetic disorder may be present. A potential pathogenic variant linked to severe intellectual disability in GLRA4 requires further investigation. No interdependency between the diagnostic yield and the clinical specificity of the phenotypes could be observed. In consequence, trio-ES should be used early in the diagnostic process, independently from the specificity of the patient.
Collapse
Affiliation(s)
- Nadja Baalmann
- Institute of Human Genetics, University of Lübeck, Lübeck, Germany.
| | - Malte Spielmann
- Institute of Human Genetics, University of Lübeck, Lübeck, Germany.
| | | | - Britta Hanker
- Institute of Human Genetics, University of Lübeck, Lübeck, Germany.
| | - Julia Schmidt
- Institute of Human Genetics, University of Lübeck, Lübeck, Germany; Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany.
| | - Christina M Lill
- Institute of Human Genetics, University of Lübeck, Lübeck, Germany; Institute of Neurogenetics, University of Lübeck, Lübeck, Germany; Lübeck Interdisciplinary Platform for Genome Analytics, University of Lübeck, Germany; Ageing Epidemiology Research Unit (AGE), School of Public Health, Imperial College London, London, UK.
| | | | - Bianca Greiten
- Institute of Human Genetics, University of Lübeck, Lübeck, Germany.
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany.
| | - Joanne Trinh
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany.
| | - Irina Hüning
- Institute of Human Genetics, University of Lübeck, Lübeck, Germany.
| |
Collapse
|
10
|
Jafari Khamirani H, Zoghi S, Motealleh A, Dianatpour M, Tabei SMB, Mohammadi S, Dastgheib SA. Clinical Features of Okur-Chung Neurodevelopmental Syndrome: Case Report and Literature Review. Mol Syndromol 2022; 13:381-388. [PMID: 36588763 PMCID: PMC9801326 DOI: 10.1159/000522353] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 02/01/2022] [Indexed: 01/04/2023] Open
Abstract
Introduction Autosomal dominant pathogenic variations in the CSNK2A1 gene cause Okur-Chung neurodevelopmental syndrome (OCNDS). Methods The proband and her parents were examined thoroughly and observed for any issues related to OCNDS. Furthermore, peripheral blood samples were collected from each subject for further investigations. Whole-exome sequencing identified a pathogenic variant in CSNK2A1 (NM_001895: c.62G>A, p.R21Q; rs1402734448). Results The proband has global developmental delay, speech disorders, epilepsy, and behavioral issues. Despite the previously reported cases, she manifested both atonic and myoclonic seizures simultaneously. Lastly, we provide a review of the reported cases with OCNDS. Discussion p.R21Q causes OCNDS. Further studies are highly recommended concerning this mutation to validate the results of this study and expand the knowledge regarding CSNK2A1 and the phenotypic spectrum of OCNDS.
Collapse
Affiliation(s)
- Hossein Jafari Khamirani
- Comprehensive Medical Genetics Center, Shiraz University of Medical Sciences, Shiraz, Iran,Department of Medical Genetics, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sina Zoghi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Motealleh
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Dianatpour
- Department of Medical Genetics, Shiraz University of Medical Sciences, Shiraz, Iran,Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mohammad Bagher Tabei
- Department of Medical Genetics, Shiraz University of Medical Sciences, Shiraz, Iran,Maternal-Fetal Medicine Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sanaz Mohammadi
- Comprehensive Medical Genetics Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Alireza Dastgheib
- Department of Medical Genetics, Shiraz University of Medical Sciences, Shiraz, Iran,*Seyed Alireza Dastgheib,
| |
Collapse
|
11
|
Unni P, Friend J, Weinberg J, Okur V, Hochscherf J, Dominguez I. Predictive functional, statistical and structural analysis of CSNK2A1 and CSNK2B variants linked to neurodevelopmental diseases. Front Mol Biosci 2022; 9:851547. [PMID: 36310603 PMCID: PMC9608649 DOI: 10.3389/fmolb.2022.851547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 06/29/2022] [Indexed: 12/02/2022] Open
Abstract
Okur-Chung Neurodevelopmental Syndrome (OCNDS) and Poirier-Bienvenu Neurodevelopmental Syndrome (POBINDS) were recently identified as rare neurodevelopmental disorders. OCNDS and POBINDS are associated with heterozygous mutations in the CSNK2A1 and CSNK2B genes which encode CK2α, a serine/threonine protein kinase, and CK2β, a regulatory protein, respectively, which together can form a tetrameric enzyme called protein kinase CK2. A challenge in OCNDS and POBINDS is to understand the genetic basis of these diseases and the effect of the various CK2⍺ and CK2β mutations. In this study we have collected all variants available to date in CSNK2A1 and CSNK2B, and identified hotspots. We have investigated CK2⍺ and CK2β missense mutations through prediction programs which consider the evolutionary conservation, functionality and structure or these two proteins, compared these results with published experimental data on CK2α and CK2β mutants, and suggested prediction programs that could help predict changes in functionality of CK2α mutants. We also investigated the potential effect of CK2α and CK2β mutations on the 3D structure of the proteins and in their binding to each other. These results indicate that there are functional and structural consequences of mutation of CK2α and CK2β, and provide a rationale for further study of OCNDS and POBINDS-associated mutations. These data contribute to understanding the genetic and functional basis of these diseases, which is needed to identify their underlying mechanisms.
Collapse
Affiliation(s)
- Prasida Unni
- Department of Medicine, Boston University School of Medicine and Boston Medical Center, Boston University, Boston, MA, United States
| | - Jack Friend
- Department of Medicine, Boston University School of Medicine and Boston Medical Center, Boston University, Boston, MA, United States
| | - Janice Weinberg
- Department of Biostatistics, Boston University School of Public Health, Boston University, Boston, MA, United States
| | - Volkan Okur
- New York Genome Center, New York, NY, United States
| | - Jennifer Hochscherf
- Department of Chemistry, Institute of Biochemistry, University of Cologne, Cologne, Germany
| | - Isabel Dominguez
- Department of Medicine, Boston University School of Medicine and Boston Medical Center, Boston University, Boston, MA, United States
- *Correspondence: Isabel Dominguez,
| |
Collapse
|
12
|
Ballardin D, Cruz-Gamero JM, Bienvenu T, Rebholz H. Comparing Two Neurodevelopmental Disorders Linked to CK2: Okur-Chung Neurodevelopmental Syndrome and Poirier-Bienvenu Neurodevelopmental Syndrome—Two Sides of the Same Coin? Front Mol Biosci 2022; 9:850559. [PMID: 35693553 PMCID: PMC9182197 DOI: 10.3389/fmolb.2022.850559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/01/2022] [Indexed: 12/27/2022] Open
Abstract
In recent years, variants in the catalytic and regulatory subunits of the kinase CK2 have been found to underlie two different, yet symptomatically overlapping neurodevelopmental disorders, termed Okur-Chung neurodevelopmental syndrome (OCNDS) and Poirier-Bienvenu neurodevelopmental syndrome (POBINDS). Both conditions are predominantly caused by de novo missense or nonsense mono-allelic variants. They are characterized by a generalized developmental delay, intellectual disability, behavioral problems (hyperactivity, repetitive movements and social interaction deficits), hypotonia, motricity and verbalization deficits. One of the main features of POBINDS is epilepsies, which are present with much lower prevalence in patients with OCNDS. While a role for CK2 in brain functioning and development is well acknowledged, these findings for the first time clearly link CK2 to defined brain disorders. Our review will bring together patient data for both syndromes, aiming to link symptoms with genotypes, and to rationalize the symptoms through known cellular functions of CK2 that have been identified in preclinical and biochemical contexts. We will also compare the symptomatology and elaborate the specificities that distinguish the two syndromes.
Collapse
Affiliation(s)
- Demetra Ballardin
- INSERM U1266, Institute of Psychiatry and Neuroscience of Paris, Université de Paris, Paris, France
- GHU-Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, Paris, France
| | - Jose M. Cruz-Gamero
- INSERM U1266, Institute of Psychiatry and Neuroscience of Paris, Université de Paris, Paris, France
| | - Thierry Bienvenu
- INSERM U1266, Institute of Psychiatry and Neuroscience of Paris, Université de Paris, Paris, France
- Service de Médecine Génomique des Maladies de Système et d’organe, Hôpital Cochin, APHP, Centre Université de Paris, Paris, France
| | - Heike Rebholz
- INSERM U1266, Institute of Psychiatry and Neuroscience of Paris, Université de Paris, Paris, France
- GHU-Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, Paris, France
- Center of Neurodegeneration, Faculty of Medicine, Danube Private University, Krems, Austria
- *Correspondence: Heike Rebholz,
| |
Collapse
|
13
|
Werner C, Gast A, Lindenblatt D, Nickelsen A, Niefind K, Jose J, Hochscherf J. Structural and Enzymological Evidence for an Altered Substrate Specificity in Okur-Chung Neurodevelopmental Syndrome Mutant CK2αLys198Arg. Front Mol Biosci 2022; 9:831693. [PMID: 35445078 PMCID: PMC9014129 DOI: 10.3389/fmolb.2022.831693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Specific de novo mutations in the CSNK2A1 gene, which encodes CK2α, the catalytic subunit of protein kinase CK2, are considered as causative for the Okur-Chung neurodevelopmental syndrome (OCNDS). OCNDS is a rare congenital disease with a high phenotypic diversity ranging from neurodevelopmental disabilities to multi-systemic problems and characteristic facial features. A frequent OCNDS mutation is the exchange of Lys198 to Arg at the center of CK2α′s P+1 loop, a key element of substrate recognition. According to preliminary data recently made available, this mutation causes a significant shift of the substrate specificity of the enzyme. We expressed the CK2αLys198Arg recombinantly and characterized it biophysically and structurally. Using isothermal titration calorimetry (ITC), fluorescence quenching and differential scanning fluorimetry (Thermofluor), we found that the mutation does not affect the interaction with CK2β, the non-catalytic CK2 subunit, and that the thermal stability of the protein is even slightly increased. However, a CK2αLys198Arg crystal structure and its comparison with wild-type structures revealed a significant shift of the anion binding site harboured by the P+1 loop. This observation supports the notion that the Lys198Arg mutation causes an alteration of substrate specificity which we underpinned here with enzymological data.
Collapse
Affiliation(s)
- Christian Werner
- Department of Chemistry, Institute of Biochemistry, University of Cologne, Cologne, Germany
| | - Alexander Gast
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Münster, Germany
| | - Dirk Lindenblatt
- Department of Chemistry, Institute of Biochemistry, University of Cologne, Cologne, Germany
| | - Anna Nickelsen
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Münster, Germany
| | - Karsten Niefind
- Department of Chemistry, Institute of Biochemistry, University of Cologne, Cologne, Germany
| | - Joachim Jose
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Münster, Germany
| | - Jennifer Hochscherf
- Department of Chemistry, Institute of Biochemistry, University of Cologne, Cologne, Germany
- *Correspondence: Jennifer Hochscherf,
| |
Collapse
|
14
|
Murakami H, Uehara T, Enomoto Y, Nishimura N, Kumaki T, Kuroda Y, Asano M, Aida N, Kosaki K, Kurosawa K. Persistent Hyperplastic Primary Vitreous with Microphthalmia and Coloboma in a Patient with Okur-Chung Neurodevelopmental Syndrome. Mol Syndromol 2022; 13:75-79. [PMID: 35221879 PMCID: PMC8832215 DOI: 10.1159/000517977] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/18/2021] [Indexed: 07/23/2024] Open
Abstract
Okur-Chung neurodevelopmental syndrome is a rare autosomal dominant disorder caused by pathogenic variants in CSNK2A1, which encodes the alpha 1 catalytic subunit of -casein kinase II. This syndrome is characterized by intellectual disability, developmental delay, and multisystemic -abnormalities including those of the brain, extremities, and skin as well as cardiovascular, gastrointestinal, and immune systems. In this study, we describe a 5-year-old boy with a de novo novel nonsense variant in CSNK2A1, NM_001895.3:c.319C>T (p.Arg107*). He showed bilateral persistent hyperplastic primary vitreous with microphthalmia, lens dysplasia, and coloboma. Ocular manifestations are very rare in this syndrome, and this study expands the spectrum of the clinical presentations of this syndrome.
Collapse
Affiliation(s)
- Hiroaki Murakami
- Division of Medical Genetics, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Tomoko Uehara
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Yumi Enomoto
- Clinical Research Institute, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Naoto Nishimura
- Division of Medical Genetics, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Tatsuro Kumaki
- Division of Medical Genetics, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Yukiko Kuroda
- Division of Medical Genetics, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Mizuki Asano
- Department of Ophthalmology, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Noriko Aida
- Department of Radiology, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Kenji Kurosawa
- Division of Medical Genetics, Kanagawa Children's Medical Center, Yokohama, Japan
| |
Collapse
|
15
|
Ranganath P, Ranganath P, Vineeth VS, Dalal A, Patil SJ. Report of an Asian-Indian patient with Okur-Chung Syndrome and comparison of the clinical phenotype in different ethnic groups. Clin Dysmorphol 2021; 30:209-212. [PMID: 34417372 DOI: 10.1097/mcd.0000000000000383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Priya Ranganath
- Department of Medical genetics, Nizam's Institute of Medical Sciences
| | - Prajnya Ranganath
- Department of Medical genetics, Nizam's Institute of Medical Sciences
| | - V S Vineeth
- Diagnostics Division, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana
| | - Ashwin Dalal
- Diagnostics Division, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana
| | - Siddaramappa J Patil
- Division of Medical Genetics, Mazumdar Shaw Medical Centre, Narayana Hrudayalaya Hospitals, Bangalore, Karnataka, India
| |
Collapse
|
16
|
Wang A, Ji Z, Xuan R, Zhao X, Hou L, Li Q, Chu Y, Chao T, Wang J. Differentially Expressed MiRNAs of Goat Submandibular Glands Among Three Developmental Stages Are Involved in Immune Functions. Front Genet 2021; 12:678194. [PMID: 34211501 PMCID: PMC8239366 DOI: 10.3389/fgene.2021.678194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/24/2021] [Indexed: 01/14/2023] Open
Abstract
Submandibular glands (SMGs) are one of the primary components of salivary glands in goats. The proteins and biologically active substances secreted by the SMGs change with growth and development. Our previous studies showed that most of the differentially expressed genes in the SMGs of goats at different developmental stages are involved in immune-related signaling pathways, but the miRNA expression patterns in the same tissues are unknown. The aim of this study was to reveal the expression profile of miRNAs at three different developmental stages, detect differentially expressed miRNAs (DE miRNAs) and predict disease-related DE miRNAs. SMG tissue samples were collected from groups of 1-month-old kids, 12-month-old maiden goats and 24-month-old adult goats (three samples from each group), and high-throughout transcriptome sequencing was conducted. A total of 178, 241 and 7 DE miRNAs were discovered between 1-month-old kids and 12-month-old maiden goats, between 1-month-old kids and 24-month-old adult goats, and between 12-month-old maiden goats and 24-month-old adult goats, respectively. Among these DE miRNAs, 88 DE miRNAs with medium or high expression levels (TPM ≥50) were classified into five expression pattern clusters. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses indicated that some of the predicted target genes of the DE miRNAs in the five clusters were enriched in disease-related GO terms and pathways. MiRNA target genes in significant pathways were significantly enriched in Hepatitis B (FDR = 9.03E-10) and Pathways in cancer (FDR = 4.2E-10). Further analysis was performed with a PPI network, and 10 miRNAs were predicted to play an important role in the occurrence and prevention of diseases during the growth and development of goats.
Collapse
Affiliation(s)
- Aili Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China.,Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang, China
| | - Zhibin Ji
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Rong Xuan
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Xiaodong Zhao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Lei Hou
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Qing Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Yunpeng Chu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Tianle Chao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Jianmin Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| |
Collapse
|
17
|
Wu RH, Tang WT, Qiu KY, Li XJ, Tang DX, Meng Z, He ZW. Identification of novel CSNK2A1 variants and the genotype-phenotype relationship in patients with Okur-Chung neurodevelopmental syndrome: a case report and systematic literature review. J Int Med Res 2021; 49:3000605211017063. [PMID: 34038195 PMCID: PMC8161887 DOI: 10.1177/03000605211017063] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
De novo germline variants of the casein kinase 2α subunit (CK2α) gene (CSNK2A1) have been reported in individuals with the congenital neuropsychiatric disorder Okur-Chung neurodevelopmental syndrome (OCNS). Here, we report on two unrelated children with OCNS and review the literature to explore the genotype-phenotype relationship in OCNS. Both children showed facial dysmorphism, growth retardation, and neuropsychiatric disorders. Using whole-exome sequencing, we identified two novel de novo CSNK2A1 variants: c.479A>G p.(H160R) and c.238C>T p.(R80C). A search of the literature identified 12 studies that provided information on 35 CSNK2A1 variants in various protein-coding regions of CK2α. By quantitatively analyzing data related to these CSNK2A1 variants and their corresponding phenotypes, we showed for the first time that mutations in protein-coding CK2α regions appear to influence the phenotypic spectrum of OCNS. Mutations altering the ATP/GTP-binding loop were more likely to cause the widest range of phenotypes. Therefore, any assessment of clinical spectra for this disorder should be extremely thorough. This study not only expands the mutational spectrum of OCNS, but also provides a comprehensive overview to improve our understanding of the genotype-phenotype relationship in OCNS.
Collapse
Affiliation(s)
- Ruo-Hao Wu
- Department of Children's Neuroendocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University Guangzhou, P. R. China.,Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong High Education Institutes, Sun Yat-sen University Guangzhou, P. R. China
| | - Wen-Ting Tang
- Department of Research and Molecular Diagnostics, Sun Yat-sen Cancer Center, Sun Yat-sen University Guangzhou, P. R. China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 71067Sun Yat-sen University Cancer Center Guangzhou, P. R. China
| | - Kun-Yin Qiu
- Department of Children's Neuroendocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University Guangzhou, P. R. China.,Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong High Education Institutes, Sun Yat-sen University Guangzhou, P. R. China
| | - Xiao-Juan Li
- Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong High Education Institutes, Sun Yat-sen University Guangzhou, P. R. China.,Department of Research and Molecular Diagnostics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University Guangzhou, P. R. China
| | - Dan-Xia Tang
- Department of Children's Neuroendocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University Guangzhou, P. R. China.,Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong High Education Institutes, Sun Yat-sen University Guangzhou, P. R. China
| | - Zhe Meng
- Department of Children's Neuroendocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University Guangzhou, P. R. China.,Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong High Education Institutes, Sun Yat-sen University Guangzhou, P. R. China
| | - Zhan-Wen He
- Department of Children's Neuroendocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University Guangzhou, P. R. China.,Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong High Education Institutes, Sun Yat-sen University Guangzhou, P. R. China
| |
Collapse
|
18
|
Protein kinase CK2: a potential therapeutic target for diverse human diseases. Signal Transduct Target Ther 2021; 6:183. [PMID: 33994545 PMCID: PMC8126563 DOI: 10.1038/s41392-021-00567-7] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 02/04/2023] Open
Abstract
CK2 is a constitutively active Ser/Thr protein kinase, which phosphorylates hundreds of substrates, controls several signaling pathways, and is implicated in a plethora of human diseases. Its best documented role is in cancer, where it regulates practically all malignant hallmarks. Other well-known functions of CK2 are in human infections; in particular, several viruses exploit host cell CK2 for their life cycle. Very recently, also SARS-CoV-2, the virus responsible for the COVID-19 pandemic, has been found to enhance CK2 activity and to induce the phosphorylation of several CK2 substrates (either viral and host proteins). CK2 is also considered an emerging target for neurological diseases, inflammation and autoimmune disorders, diverse ophthalmic pathologies, diabetes, and obesity. In addition, CK2 activity has been associated with cardiovascular diseases, as cardiac ischemia-reperfusion injury, atherosclerosis, and cardiac hypertrophy. The hypothesis of considering CK2 inhibition for cystic fibrosis therapies has been also entertained for many years. Moreover, psychiatric disorders and syndromes due to CK2 mutations have been recently identified. On these bases, CK2 is emerging as an increasingly attractive target in various fields of human medicine, with the advantage that several very specific and effective inhibitors are already available. Here, we review the literature on CK2 implication in different human pathologies and evaluate its potential as a pharmacological target in the light of the most recent findings.
Collapse
|
19
|
A complex of distal appendage-associated kinases linked to human disease regulates ciliary trafficking and stability. Proc Natl Acad Sci U S A 2021; 118:2018740118. [PMID: 33846249 PMCID: PMC8072220 DOI: 10.1073/pnas.2018740118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Primary cilia (PC) are sensory organelles essential for the development and maintenance of adult tissues. Accordingly, dysfunction of PC causes human disorders called ciliopathies. Hence, a thorough understanding of the molecular regulation of PC is critical. Our findings highlight CSNK2A1 as a modulator of cilia trafficking and stability, tightly related to TTBK2 function. Enriched at the centrosome, CSNK2A1 prevents abnormal accumulation of key ciliary proteins, instability at the tip, and aberrant activation of the Sonic Hedgehog pathway. Furthermore, we establish that Csnk2a1 mutations associated with Okur-Chung neurodevelopmental disorder (OCNDS) alter cilia morphology. Thus, we report a potential linkage between CSNK2A1 ciliary function and OCNDS. Cilia biogenesis is a complex, multistep process involving the coordination of multiple cellular trafficking pathways. Despite the importance of ciliogenesis in mediating the cellular response to cues from the microenvironment, we have only a limited understanding of the regulation of cilium assembly. We previously identified Tau tubulin kinase 2 (TTBK2) as a key regulator of ciliogenesis. Here, using CRISPR kinome and biotin identification screening, we identify the CK2 catalytic subunit CSNK2A1 as an important modulator of TTBK2 function in cilia trafficking. Superresolution microscopy reveals that CSNK2A1 is a centrosomal protein concentrated at the mother centriole and associated with the distal appendages. Csnk2a1 mutant cilia are longer than those of control cells, showing instability at the tip associated with ciliary actin cytoskeleton changes. These cilia also abnormally accumulate key cilia assembly and SHH-related proteins. De novo mutations of Csnk2a1 were recently linked to the human genetic disorder Okur-Chung neurodevelopmental syndrome (OCNDS). Consistent with the role of CSNK2A1 in cilium stability, we find that expression of OCNDS-associated Csnk2a1 variants in wild-type cells causes ciliary structural defects. Our findings provide insights into mechanisms involved in ciliary length regulation, trafficking, and stability that in turn shed light on the significance of cilia instability in human disease.
Collapse
|
20
|
Yener C, Sayın C, İnan C, Gürkan H, Atlı Eİ, Atlı E, Altan E, Ateş S, Varol F. Prenatal diagnosis of 20p13 microdeletion syndrome. Taiwan J Obstet Gynecol 2021; 60:350-354. [PMID: 33678341 DOI: 10.1016/j.tjog.2021.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2020] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE The objective of this study was to report the first case of prenatal diagnosis of the fetal 20p13 microdeletion syndrome in the literature. CASE REPORT The mother was 31 years old and had a first trimester serum screening that indicated the fetus was at low risk. The prenatal ultrasound at 23 weeks of gestation showed mild ventriculomegaly (10.2 mm) and absent septum pellucidum. She underwent amniocentesis because of the abnormal imaging results. Karyotype analysis revealed normal results. Chromosome microarray analysis (CMA) was then performed to provide genetic analysis of the fetus and parents. CMA detected 317.902 kb deletion of 20p13 in fetus. Finally, pregnancy was terminated at 32 weeks of gestation. CONCLUSION This study is the first to report the prenatal diagnosis of a 20p13 microdeletion syndrome. Our results further confirmed that genes in this region, including SOX12, NRSN2 are essential for normal fetal growth and TBC1D20 for normal brain development.
Collapse
Affiliation(s)
- Cem Yener
- Trakya University Faculty of Medicine, Department of Obstetrics and Gynecology, Division of Perinatology, Edirne, Turkey.
| | - Cenk Sayın
- Trakya University Faculty of Medicine, Department of Obstetrics and Gynecology, Division of Perinatology, Edirne, Turkey
| | - Cihan İnan
- Trakya University Faculty of Medicine, Department of Obstetrics and Gynecology, Division of Perinatology, Edirne, Turkey
| | - Hakan Gürkan
- Trakya University Faculty of Medicine, Department of Medical Genetics, Edirne, Turkey
| | - Emine İkbal Atlı
- Trakya University Faculty of Medicine, Department of Medical Genetics, Edirne, Turkey
| | - Engin Atlı
- Trakya University Faculty of Medicine, Department of Medical Genetics, Edirne, Turkey
| | - Esra Altan
- Trakya University Faculty of Medicine, Department of Obstetrics and Gynecology, Division of Perinatology, Edirne, Turkey
| | - Sinan Ateş
- Trakya University Faculty of Medicine, Department of Obstetrics and Gynecology, Division of Perinatology, Edirne, Turkey
| | - Füsun Varol
- Trakya University Faculty of Medicine, Department of Obstetrics and Gynecology, Division of Perinatology, Edirne, Turkey
| |
Collapse
|
21
|
Montenarh M, Götz C. Protein kinase CK2 and ion channels (Review). Biomed Rep 2020; 13:55. [PMID: 33082952 PMCID: PMC7560519 DOI: 10.3892/br.2020.1362] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/28/2020] [Indexed: 12/18/2022] Open
Abstract
Protein kinase CK2 appears as a tetramer or higher molecular weight oligomer composed of catalytic CK2α, CK2α' subunits and non-catalytic regulatory CK2β subunits or as individual subunits. It is implicated in a variety of different regulatory processes, such as Akt signalling, splicing and DNA repair within eukaryotic cells. The present review evaluates the influence of CK2 on ion channels in the plasma membrane. CK2 phosphorylates platform proteins such as calmodulin and ankyrin G, which bind to channel proteins for a physiological transport to and positioning into the membrane. In addition, CK2 directly phosphorylates a variety of channel proteins directly to regulate opening and closing of the channels. Thus, modulation of CK2 activities by specific inhibitors, by siRNA technology or by CRISPR/Cas technology has an influence on intracellular ion concentrations and thereby on cellular signalling. The physiological regulation of the intracellular ion concentration is important for cell survival and correct intracellular signalling. Disturbance of this regulation results in a variety of different diseases including epilepsy, heart failure, cystic fibrosis and diabetes. Therefore, these effects should be considered when using CK2 inhibition as a treatment option for cancer.
Collapse
Affiliation(s)
- Mathias Montenarh
- Medical Biochemistry and Molecular Biology, Saarland University, D-66424 Homburg, Saarland, Germany
| | - Claudia Götz
- Medical Biochemistry and Molecular Biology, Saarland University, D-66424 Homburg, Saarland, Germany
| |
Collapse
|
22
|
Xu S, Lian Q, Wu J, Li L, Song J. Dual molecular diagnosis of tricho-rhino-phalangeal syndrome type I and Okur-Chung neurodevelopmental syndrome in one Chinese patient: a case report. BMC MEDICAL GENETICS 2020; 21:158. [PMID: 32746809 PMCID: PMC7398275 DOI: 10.1186/s12881-020-01096-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 07/26/2020] [Indexed: 11/30/2022]
Abstract
Background Okur-Chung neurodevelopmental syndrome (OCNDS) and tricho-rhino-phalangeal syndrome type I (TRPSI) are rare Mendelian diseases. OCNDS is caused by CSNK2A1 gene variants and TRPSI is caused by the TRPS1gene. However, to have two Mendelian diseases in one patient is even rarer. Case presentation A 6-year-10-month-old boy characterized by special facial features, short stature and mental retardation was referred to our pediatric endocrinology department. Whole-exome sequencing (WES) was done to detect the molecular basis of his disease. This patient was confirmed to carry two variants in the CSNK2A1 gene and one in the TRPS1 gene. The variant in the CSNK2A1 gene was vertically transmitted from his father, and the variant in TRPS1 gene from his mother. These two variants are classified as pathogenic and the causes of the presentation in this child. This patient’s father and mother have subsequently been diagnosed as having OCNDS and TRPSI respectively. Conclusion This is the first reported case of a dual molecular diagnosis of tricho-rhino-phalangeal syndrome type I and Okur-Chung neurodevelopmental syndrome in the same patient. This patient is the first published example of vertical transmission of this recurrent CSN2A1 variant from parent to child. A novel variant in the TRPS1 gene that is pathogenic was also identified. In conclusion, identification of the variants in this patient expands the phenotypes and molecular basis of dual Mendelian diseases.
Collapse
Affiliation(s)
- Shanshan Xu
- Department of Pediatrics, The First Affiliated Hospital of Xiamen University, No.55 Zhenhai Road, Xiamen, 316003, Fujian Province, China.,Pediatric Key Laboratory of Xiamen, No.55 Zhenhai Road, Xiamen, 361003, China.,Institute of Pediatrics, School of Medicine, Xiamen University, No.55 Zhenhai Road, Xiamen, 361003, China
| | - Qun Lian
- Department of Pediatrics, The First Affiliated Hospital of Xiamen University, No.55 Zhenhai Road, Xiamen, 316003, Fujian Province, China. .,Pediatric Key Laboratory of Xiamen, No.55 Zhenhai Road, Xiamen, 361003, China. .,Institute of Pediatrics, School of Medicine, Xiamen University, No.55 Zhenhai Road, Xiamen, 361003, China.
| | - Jinzhun Wu
- Department of Pediatrics, The First Affiliated Hospital of Xiamen University, No.55 Zhenhai Road, Xiamen, 316003, Fujian Province, China.,Pediatric Key Laboratory of Xiamen, No.55 Zhenhai Road, Xiamen, 361003, China.,Institute of Pediatrics, School of Medicine, Xiamen University, No.55 Zhenhai Road, Xiamen, 361003, China
| | - Lingli Li
- Department of Pediatrics, The First Affiliated Hospital of Xiamen University, No.55 Zhenhai Road, Xiamen, 316003, Fujian Province, China.,Pediatric Key Laboratory of Xiamen, No.55 Zhenhai Road, Xiamen, 361003, China.,Institute of Pediatrics, School of Medicine, Xiamen University, No.55 Zhenhai Road, Xiamen, 361003, China
| | - Jia Song
- Department of Pediatrics, The First Affiliated Hospital of Xiamen University, No.55 Zhenhai Road, Xiamen, 316003, Fujian Province, China.,Pediatric Key Laboratory of Xiamen, No.55 Zhenhai Road, Xiamen, 361003, China.,Institute of Pediatrics, School of Medicine, Xiamen University, No.55 Zhenhai Road, Xiamen, 361003, China
| |
Collapse
|
23
|
Lettieri A, Borgo C, Zanieri L, D’Amore C, Oleari R, Paganoni A, Pinna LA, Cariboni A, Salvi M. Protein Kinase CK2 Subunits Differentially Perturb the Adhesion and Migration of GN11 Cells: A Model of Immature Migrating Neurons. Int J Mol Sci 2019; 20:ijms20235951. [PMID: 31779225 PMCID: PMC6928770 DOI: 10.3390/ijms20235951] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 02/07/2023] Open
Abstract
Protein kinase CK2 (CK2) is a highly conserved and ubiquitous kinase is involved in crucial biological processes, including proliferation, migration, and differentiation. CK2 holoenzyme is a tetramer composed by two catalytically active (α/α’) and two regulatory (β) subunits and exerts its function on a broad range of targets. In the brain, it regulates different steps of neurodevelopment, such as neural differentiation, neuritogenesis, and synaptic plasticity. Interestingly, CK2 mutations have been recently linked to neurodevelopmental disorders; however, the functional requirements of the individual CK2 subunits in neurodevelopment have not been yet investigated. Here, we disclose the role of CK2 on the migration and adhesion properties of GN11 cells, an established model of mouse immortalized neurons, by different in vitro experimental approaches. Specifically, the cellular requirement of this kinase has been assessed pharmacologically and genetically by exploiting CK2 inhibitors and by generating subunit-specific CK2 knockout GN11 cells (with a CRISPR/Cas9-based approach). We show that CK2α’ subunit has a primary role in increasing cell adhesion and reducing migration properties of GN11 cells by activating the Akt-GSK3β axis, whereas CK2α subunit is dispensable. Further, the knockout of the CK2β regulatory subunits counteracts cell migration, inducing dramatic alterations in the cytoskeleton not observed in CK2α’ knockout cells. Collectively taken, our data support the view that the individual subunits of CK2 play different roles in cell migration and adhesion properties of GN11 cells, supporting independent roles of the different subunits in these processes.
Collapse
Affiliation(s)
- Antonella Lettieri
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy; (A.L.); (L.Z.); (R.O.); (A.P.)
| | - Christian Borgo
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy; (C.B.); (C.D.)
| | - Luca Zanieri
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy; (A.L.); (L.Z.); (R.O.); (A.P.)
| | - Claudio D’Amore
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy; (C.B.); (C.D.)
| | - Roberto Oleari
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy; (A.L.); (L.Z.); (R.O.); (A.P.)
| | - Alyssa Paganoni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy; (A.L.); (L.Z.); (R.O.); (A.P.)
| | - Lorenzo A. Pinna
- CNR Institute of Neurosciences, Via U. Bassi 58/B, 35131 Padova, Italy;
| | - Anna Cariboni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy; (A.L.); (L.Z.); (R.O.); (A.P.)
- Correspondence: (A.C.); (M.S.)
| | - Mauro Salvi
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy; (C.B.); (C.D.)
- Correspondence: (A.C.); (M.S.)
| |
Collapse
|
24
|
Novel pathogenic variants and multiple molecular diagnoses in neurodevelopmental disorders. J Neurodev Disord 2019; 11:11. [PMID: 31238879 PMCID: PMC6593513 DOI: 10.1186/s11689-019-9270-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 05/23/2019] [Indexed: 01/27/2023] Open
Abstract
Background Rare denovo variants represent a significant cause of neurodevelopmental delay and intellectual disability (ID). Methods Exome sequencing was performed on 4351 patients with global developmental delay, seizures, microcephaly, macrocephaly, motor delay, delayed speech and language development, or ID according to Human Phenotype Ontology (HPO) terms. All patients had previously undergone whole exome sequencing as part of diagnostic genetic testing with a focus on variants in genes implicated in neurodevelopmental disorders up to January 2017. This resulted in a genetic diagnosis in 1336 of the patients. In this study, we specifically searched for variants in 14 recently implicated novel neurodevelopmental disorder (NDD) genes. Results We identified 65 rare, protein-changing variants in 11 of these 14 novel candidate genes. Fourteen variants in CDK13, CHD4, KCNQ3, KMT5B, TCF20, and ZBTB18 were scored pathogenic or likely pathogenic. Of note, two of these patients had a previously identified cause of their disease, and thus, multiple molecular diagnoses were made including pathogenic/likely pathogenic variants in FOXG1 and CDK13 or in TMEM237 and KMT5B. Conclusions Looking for pathogenic variants in newly identified NDD genes enabled us to provide a molecular diagnosis to 14 patients and their close relatives and caregivers. This underlines the relevance of re-evaluation of existing exome data on a regular basis to improve the diagnostic yield and serve the needs of our patients. Electronic supplementary material The online version of this article (10.1186/s11689-019-9270-4) contains supplementary material, which is available to authorized users.
Collapse
|
25
|
Nakashima M, Tohyama J, Nakagawa E, Watanabe Y, Siew CG, Kwong CS, Yamoto K, Hiraide T, Fukuda T, Kaname T, Nakabayashi K, Hata K, Ogata T, Saitsu H, Matsumoto N. Identification of de novo CSNK2A1 and CSNK2B variants in cases of global developmental delay with seizures. J Hum Genet 2019; 64:313-322. [PMID: 30655572 DOI: 10.1038/s10038-018-0559-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 12/18/2018] [Accepted: 12/27/2018] [Indexed: 12/22/2022]
Abstract
Casein kinase 2 (CK2) is a serine threonine kinase ubiquitously expressed in eukaryotic cells and involved in various cellular processes. In recent studies, de novo variants in CSNK2A1 and CSNK2B, which encode the subunits of CK2, have been identified in individuals with intellectual disability syndrome. In this study, we describe four patients with neurodevelopmental disorders possessing de novo variants in CSNK2A1 or CSNK2B. Using whole-exome sequencing, we detected two de novo variants in CSNK2A1 in two unrelated Japanese patients, a novel variant c.571C>T, p.(Arg191*) and a recurrent variant c.593A>G, p.(Lys198Arg), and two novel de novo variants in CSNK2B in Japanese and Malaysian patients, c.494A>G, p.(His165Arg) and c.533_534insGT, p.(Pro179Tyrfs*49), respectively. All four patients showed mild to profound intellectual disabilities, developmental delays, and various types of seizures. This and previous studies have found a total of 20 CSNK2A1 variants in 28 individuals with syndromic intellectual disability. The hotspot variant c.593A>G, p.(Lys198Arg) was found in eight of 28 patients. Meanwhile, only five CSNK2B variants were identified in five individuals with neurodevelopmental disorders. We reviewed the previous literature to verify the phenotypic spectrum of CSNK2A1- and CSNK2B-related syndromes.
Collapse
Affiliation(s)
- Mitsuko Nakashima
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan. .,Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| | - Jun Tohyama
- Department of Child Neurology, Nishi-Niigata Chuo National Hospital, Niigata, Japan
| | - Eiji Nakagawa
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Yoshihiro Watanabe
- Department of Pediatrics, Yokohama City University Medical Center, Yokohama, Japan
| | - Ch'ng Gaik Siew
- Department of Genetics, Kuala Lumpur Hospital, Kuala Lumpur, Malaysia
| | - Chieng Siik Kwong
- Department of Pediatrics, Sarawak General Hospital, Sarawak, Malaysia
| | - Kaori Yamoto
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takuya Hiraide
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tokiko Fukuda
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tadashi Kaname
- Department of Genome Medicine, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kenichiro Hata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Tsutomu Ogata
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hirotomo Saitsu
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| |
Collapse
|
26
|
Liu Z, Zhang N, Zhang Y, Du Y, Zhang T, Li Z, Wu J, Wang X. Prioritized High-Confidence Risk Genes for Intellectual Disability Reveal Molecular Convergence During Brain Development. Front Genet 2018; 9:349. [PMID: 30279698 PMCID: PMC6153320 DOI: 10.3389/fgene.2018.00349] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/09/2018] [Indexed: 01/09/2023] Open
Abstract
Dissecting the genetic susceptibility to intellectual disability (ID) based on de novo mutations (DNMs) will aid our understanding of the neurobiological and genetic basis of ID. In this study, we identify 63 high-confidence ID genes with q-values < 0.1 based on four background DNM rates and coding DNM data sets from multiple sequencing cohorts. Bioinformatic annotations revealed a higher burden of these 63 ID genes in FMRP targets and CHD8 targets, and these genes show evolutionary constraint against functional genetic variation. Moreover, these ID risk genes were preferentially expressed in the cortical regions from the early fetal to late mid-fetal stages. In particular, a genome-wide weighted co-expression network analysis suggested that ID genes tightly converge onto two biological modules (M1 and M2) during human brain development. Functional annotations showed specific enrichment of chromatin modification and transcriptional regulation for M1 and synaptic function for M2, implying the divergent etiology of the two modules. In addition, we curated 12 additional strong ID risk genes whose molecular interconnectivity with known ID genes (q-values < 0.3) was greater than random. These findings further highlight the biological convergence of ID risk genes and help improve our understanding of the genetic architecture of ID.
Collapse
Affiliation(s)
- Zhenwei Liu
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, China
| | - Na Zhang
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yu Zhang
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yaoqiang Du
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, China
| | - Tao Zhang
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, China
| | - Zhongshan Li
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, China
| | - Jinyu Wu
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, China
| | - Xiaobing Wang
- Department of Rheumatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
27
|
Akahira-Azuma M, Tsurusaki Y, Enomoto Y, Mitsui J, Kurosawa K. Refining the clinical phenotype of Okur-Chung neurodevelopmental syndrome. Hum Genome Var 2018; 5:18011. [PMID: 29619237 PMCID: PMC5874396 DOI: 10.1038/hgv.2018.11] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 01/16/2018] [Accepted: 01/22/2018] [Indexed: 12/30/2022] Open
Abstract
We describe an 8-year-old Japanese boy with a de novo recurrent missense mutation in CSNK2A1, c.593A>G, that is causative of Okur–Chung neurodevelopmental syndrome. He exhibited distinctive facial features, severe growth retardation with relative macrocephaly, and friendly, hyperactive behavior. His dysmorphic features might suggest a congenital histone modification defect syndrome, such as Kleefstra, Coffin–Siris, or Rubinstein–Taybi syndromes, which are indicative of functional interactions between the casein kinase II, alpha 1 gene and histone modification factors.
Collapse
Affiliation(s)
- Moe Akahira-Azuma
- Division of Medical Genetics, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Yoshinori Tsurusaki
- Clinical Research Institute, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Yumi Enomoto
- Clinical Research Institute, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Jun Mitsui
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kenji Kurosawa
- Division of Medical Genetics, Kanagawa Children's Medical Center, Yokohama, Japan
| |
Collapse
|
28
|
Colavito D, Del Giudice E, Ceccato C, Dalle Carbonare M, Leon A, Suppiej A. Are CSNK2A1 gene mutations associated with retinal dystrophy? Report of a patient carrier of a novel de novo splice site mutation. J Hum Genet 2018; 63:779-781. [PMID: 29568000 DOI: 10.1038/s10038-018-0434-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/19/2018] [Accepted: 02/15/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Davide Colavito
- Research & Innovation Srl, Corso Stati Uniti 4, Padua, Italy.
| | | | | | | | - Alberta Leon
- Research & Innovation Srl, Corso Stati Uniti 4, Padua, Italy
| | - Agnese Suppiej
- Robert Hollman Foundation, Via Siena, 1, Padua, Italy.,Pediatric Neurology, Neurophysiology and Neurophtalmology, University Hospital of Padua, Via Giustiniani 3, Padua, Italy
| |
Collapse
|
29
|
Chiu ATG, Pei SLC, Mak CCY, Leung GKC, Yu MHC, Lee SL, Vreeburg M, Pfundt R, van der Burgt I, Kleefstra T, Frederic TMT, Nambot S, Faivre L, Bruel AL, Rossi M, Isidor B, Küry S, Cogne B, Besnard T, Willems M, Reijnders MRF, Chung BHY. Okur-Chung neurodevelopmental syndrome: Eight additional cases with implications on phenotype and genotype expansion. Clin Genet 2018; 93:880-890. [PMID: 29240241 DOI: 10.1111/cge.13196] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/20/2017] [Accepted: 12/10/2017] [Indexed: 12/27/2022]
Abstract
Okur-Chung syndrome is a neurodevelopmental condition attributed to germline CSNK2A1 pathogenic missense variants. We present 8 unreported subjects with the above syndrome, who have recognizable dysmorphism, varying degrees of developmental delay and multisystem involvement. Together with 6 previously reported cases, we present a case series of 7 female and 7 male subjects, highlighting the recognizable facial features of the syndrome (microcephaly, hypertelorism, epicanthic fold, ptosis, arched eyebrows, low set ears, ear fold abnormality, broad nasal bridge and round face) as well as frequently occurring clinical features including neurodevelopmental delay (93%), gastrointestinal (57%), musculoskeletal (57%) and immunological (43%) abnormalities. The variants reported in this study are evolutionary conserved and absent in the normal population. We observed that the CSNK2A1 gene is relatively intolerant to missense genetic changes, and most variants are within the protein kinase domain. All except 1 variant reported in this cohort are spatially located on the binding pocket of the holoenzyme. We further provide key recommendations on the management of Okur-Chung syndrome. To conclude, this is the second case series on Okur-Chung syndrome, and an in-depth review of the phenotypic features and genomic findings of the condition with suggestions on clinical management.
Collapse
Affiliation(s)
- A T G Chiu
- Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, Hong Kong.,Department of Paediatrics, Duchess of Kent Children's Hospital, Hong Kong, Hong Kong
| | - S L C Pei
- Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, Hong Kong
| | - C C Y Mak
- Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, Hong Kong
| | - G K C Leung
- Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, Hong Kong
| | - M H C Yu
- Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, Hong Kong
| | - S L Lee
- Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, Hong Kong.,Department of Paediatrics, Duchess of Kent Children's Hospital, Hong Kong, Hong Kong
| | - M Vreeburg
- Department of Clinical Genetics and School for Oncology & Developmental Biology (GROW), Maastricht University Medical Center, Maastricht, the Netherlands
| | - R Pfundt
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - I van der Burgt
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - T Kleefstra
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands
| | - T M-T Frederic
- Centre de Génétique et Centre de référence, Anomalies du Développement et Syndromes Malformatifs, Hôpital d'Enfants, Centre Hospitalier Universitaire de Dijon, Dijon, France.,Laboratoire de Génétique Moléculaire, Plateau Technique de Biologie, Centre Hospitalier Universitaire de Dijon, Dijon, France.,INSERM UMR 1231 GAD, Génétique des Anomalies du Développement, Dijon, France
| | - S Nambot
- Centre de Génétique et Centre de référence, Anomalies du Développement et Syndromes Malformatifs, Hôpital d'Enfants, Centre Hospitalier Universitaire de Dijon, Dijon, France.,Laboratoire de Génétique Moléculaire, Plateau Technique de Biologie, Centre Hospitalier Universitaire de Dijon, Dijon, France
| | - L Faivre
- Centre de Génétique et Centre de référence, Anomalies du Développement et Syndromes Malformatifs, Hôpital d'Enfants, Centre Hospitalier Universitaire de Dijon, Dijon, France
| | - A-L Bruel
- INSERM UMR 1231 GAD, Génétique des Anomalies du Développement, Dijon, France
| | - M Rossi
- Service de Génétique, Centre de Référence Anomalies du Développement, Hospices Civils de Lyon, Lyon, France.,GENDEV Team, Centre de Recherche en Neurosciences de Lyon, INSERM U1028, CNRS UMR5292, Université Claude Bernard Lyon 1, Lyon, France
| | - B Isidor
- Service de Génétique Médicale, CHU Nantes, Nantes, France.,INSERM, UMR-S 957, Nantes, France
| | - S Küry
- Service de Génétique Médicale, CHU Nantes, Nantes, France
| | - B Cogne
- Service de Génétique Médicale, CHU Nantes, Nantes, France
| | - T Besnard
- Service de Génétique Médicale, CHU Nantes, Nantes, France
| | - M Willems
- Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Centre de Référence Anomalies du Développement et Syndromes Malformatifs, Plateforme Recherche de Microremaniements Chromosomiques, Hôpital Arnaud de Villeneuve, CHU de Montpellier, Faculté de Médecine Montpellier-Nîmes, Université de Montpellier, Montpellier, France
| | - M R F Reijnders
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands
| | - B H Y Chung
- Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, Hong Kong.,Department of Paediatrics, Duchess of Kent Children's Hospital, Hong Kong, Hong Kong
| |
Collapse
|
30
|
Owen CI, Bowden R, Parker MJ, Patterson J, Patterson J, Price S, Sarkar A, Castle B, Deshpande C, Splitt M, Ghali N, Dean J, Green AJ, Crosby C, Tatton-Brown K. Extending the phenotype associated with the CSNK2A1-related Okur-Chung syndrome-A clinical study of 11 individuals. Am J Med Genet A 2018; 176:1108-1114. [PMID: 29383814 DOI: 10.1002/ajmg.a.38610] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/22/2017] [Accepted: 12/16/2017] [Indexed: 02/03/2023]
Abstract
Variants in the Protein Kinase CK2 alpha subunit, encoding the CSNK2A1 gene, have previously been reported in children with an intellectual disability and dysmorphic facial features syndrome: now termed the Okur-Chung neurodevelopmental syndrome. More recently, through trio-based exome sequencing undertaken by the Deciphering Developmental Disorders Study (DDD study), a further 11 children with de novo CSNK2A1 variants have been identified. We have undertaken detailed phenotyping of these patients. Consistent with previously reported patients, patients in this series had apparent intellectual disability, swallowing difficulties, and hypotonia. While there are some shared facial characteristics, the gestalt is neither consistent nor readily recognized. Congenital heart abnormalities were identified in nearly 30% of the patients, representing a newly recognized CSNK2A1 clinical association. Based upon the clinical findings from this study and the previously reported patients, we suggest an initial approach to the management of patients with this recently described intellectual disability syndrome.
Collapse
Affiliation(s)
- Ceris I Owen
- Medical Research Council, London Institute for Medical Sciences, Hammersmith Hospital, London, UK
| | - Ramsay Bowden
- East Anglian Medical Genetics Service, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Michael J Parker
- Sheffield Children's NHS Foundation Trust, Sheffield Clinical Genetics Service, Sheffield, South Yorkshire, UK
| | - Jo Patterson
- Sheffield Children's NHS Foundation Trust, Sheffield Clinical Genetics Service, Sheffield, South Yorkshire, UK
| | - Joan Patterson
- East Anglian Medical Genetics Service, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Sue Price
- Department of Clinical Genetics, Oxford University Hospitals NHS Trust, Oxford, UK
| | - Ajoy Sarkar
- Department of Clinical Genetics, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Bruce Castle
- Peninsula Genetics Service, Royal Devon and Exeter Hospitals NHS Trust, Exeter, UK
| | - Charulatha Deshpande
- South East Thames Regional Genetics Unit, Guys and St Thomas NHS Trust, London, UK
| | - Miranda Splitt
- Northern Genetics Service, Newcastle Upon Tyne Hospital NHS Foundation Trust, Newcastle, UK
| | - Neeti Ghali
- North West Thames Regional Genetics Service, North West London Healthcare NHS Trust, Harrow, UK
| | - John Dean
- Department of Clinical Genetics, NHS Grampian, Aberdeen, UK
| | - Andrew J Green
- National Centre for Medical Genetics, Our Lady's Hospital, Dublin, Republic of Ireland
| | - Charlene Crosby
- South West Thames Regional Genetics Service, St George's University Hospitals NHS Foundation Trust, London, UK
| | -
- Deciphering Developmental Disorders Study, Wellcome Trust Sanger Institute, Cambridge, UK
| | - Katrina Tatton-Brown
- South West Thames Regional Genetics Service, St George's University Hospitals NHS Foundation Trust, London, UK.,St George's University of London, London, UK
| |
Collapse
|