1
|
Thai AA, Lim AM, Solomon BJ, Rischin D. Biology and Treatment Advances in Cutaneous Squamous Cell Carcinoma. Cancers (Basel) 2021; 13:5645. [PMID: 34830796 PMCID: PMC8615870 DOI: 10.3390/cancers13225645] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 12/24/2022] Open
Abstract
Cutaneous squamous cell carcinoma (CSCC) is the second most common skin cancer diagnosed worldwide. CSCC is generally localized and managed with local therapies such as excision and/or radiotherapy. For patients with unresectable or metastatic disease, recent improvements in our understanding of the underlying biology have led to significant advancements in treatment approaches-including the use of immune checkpoint inhibition (ICI)-which have resulted in substantial gains in response and survival compared to traditional cytotoxic approaches. However, there is a lack of understanding of the biology underpinning CSCC in immunocompromised patients, in whom the risk of developing CSCC is hundreds of times higher compared to immunocompetent patients. Furthermore, current ICI approaches are associated with significant risk of graft rejection in organ transplant recipients who make up a significant proportion of immunocompromised patients. Ongoing scientific and clinical research efforts are needed in order to maintain momentum to increase our understanding and refine our therapeutic approaches for patients with CSCC.
Collapse
Affiliation(s)
- Alesha A. Thai
- Department of Medical Oncology, Peter MacCallum Cancer Centre, 305 Grattan St., Parkville, Melbourne, VIC 3000, Australia; (A.M.L.); (B.J.S.); (D.R.)
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Annette M. Lim
- Department of Medical Oncology, Peter MacCallum Cancer Centre, 305 Grattan St., Parkville, Melbourne, VIC 3000, Australia; (A.M.L.); (B.J.S.); (D.R.)
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Benjamin J. Solomon
- Department of Medical Oncology, Peter MacCallum Cancer Centre, 305 Grattan St., Parkville, Melbourne, VIC 3000, Australia; (A.M.L.); (B.J.S.); (D.R.)
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Danny Rischin
- Department of Medical Oncology, Peter MacCallum Cancer Centre, 305 Grattan St., Parkville, Melbourne, VIC 3000, Australia; (A.M.L.); (B.J.S.); (D.R.)
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC 3000, Australia
| |
Collapse
|
2
|
Thet Z, Lam AK, Ranganathan D, Aung SY, Han T, Khoo TK. Reducing non-melanoma skin cancer risk in renal transplant recipients. Nephrology (Carlton) 2021; 26:907-919. [PMID: 34240786 DOI: 10.1111/nep.13939] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/11/2021] [Accepted: 07/05/2021] [Indexed: 12/19/2022]
Abstract
With an increasing number of renal transplant recipients (RTRs) and improving patient survival, a higher incidence of non-melanoma skin cancer (NMSC) has been observed. NMSC in RTRs are often more numerous and biologically more aggressive than the general population, thus contributing towards an increase in morbidity and to a lesser degree, mortality. The resultant cumulative health and financial burden is a recognized concern. Proposed strategies in mitigating risks of developing NMSC and early therapeutic options thereof include tailored modification of immunosuppressants in conjunction with sun protection in all transplant patients. This review highlights the clinical and financial burden of transplant-associated skin cancers, carcinogenic mechanisms in association with immunosuppression, importance of skin cancer awareness campaign and integrated transplant skin clinic, and the potential role of chemoprotective agents. A scheme is proposed for primary and secondary prevention of NMSC based on the available evidence.
Collapse
Affiliation(s)
- Zaw Thet
- School of Medicine & Dentistry, Griffith University, Gold Coast, Queensland, Australia.,Department of Nephrology, Central Queensland Hospital and Health Service, Rockhampton, Queensland, Australia
| | - Alfred K Lam
- School of Medicine & Dentistry, Griffith University, Gold Coast, Queensland, Australia.,Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia.,Pathology Queensland, Gold Coast University Hospital, Southport, Queensland, Australia
| | - Dwarakanathan Ranganathan
- School of Medicine & Dentistry, Griffith University, Gold Coast, Queensland, Australia.,Department of Nephrology, Metro North Hospital and Health Service, Herston, Queensland, Australia
| | - Soe Yu Aung
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia.,Department of Oncology, Central Queensland Hospital and Health Service, Rockhampton, Queensland, Australia
| | - Thin Han
- Department of Nephrology, Central Queensland Hospital and Health Service, Rockhampton, Queensland, Australia.,Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Tien K Khoo
- School of Medicine & Dentistry, Griffith University, Gold Coast, Queensland, Australia.,School of Medicine, University of Wollongong, Wollongong, New South Wales, Australia
| |
Collapse
|
3
|
Growth and Viability of Cutaneous Squamous Cell Carcinoma Cell Lines Display Different Sensitivities to Isoform-Specific Phosphoinositide 3-Kinase Inhibitors. Int J Mol Sci 2021; 22:ijms22073567. [PMID: 33808215 PMCID: PMC8036316 DOI: 10.3390/ijms22073567] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/19/2021] [Indexed: 12/20/2022] Open
Abstract
Cutaneous squamous cell carcinomas (cSCCs) account for about 20% of keratinocyte carcinomas, the most common cancer in the UK. Therapeutic options for cSCC patients who develop metastasis are limited and a better understanding of the biochemical pathways involved in cSCC development/progression is crucial to identify novel therapeutic targets. Evidence indicates that the phosphoinositide 3-kinases (PI3Ks)/Akt pathway plays an important role, in particular in advanced cSCC. Questions remain of whether all four PI3K isoforms able to activate Akt are involved and whether selective inhibition of specific isoform(s) might represent a more targeted strategy. Here we determined the sensitivity of four patient-derived cSCC cell lines to isoform-specific PI3K inhibitors to start investigating their potential therapeutic value in cSCC. Parallel experiments were performed in immortalized keratinocyte cell lines. We observed that pan PI3Ks inhibition reduced the growth/viability of all tested cell lines, confirming the crucial role of this pathway. Selective inhibition of the PI3K isoform p110α reduced growth/viability of keratinocytes and of two cSCC cell lines while affecting the other two only slightly. Importantly, p110α inhibition reduced Akt phosphorylation in all cSCC cell lines. These data indicate that growth and viability of the investigated cSCC cells display differential sensitivity to isoform-specific PI3K inhibitors.
Collapse
|
4
|
Leiter U, Gutzmer R, Alter M, Ulrich C, Meiwes A, Heppt MV, Steeb T, Berking C, Lonsdorf AS, Sachse MM, Garbe C, Hillen U. [Cutaneous squamous cell carcinoma]. Hautarzt 2020; 71:597-606. [PMID: 32583034 DOI: 10.1007/s00105-020-04620-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cutaneous squamous cell carcinoma (cSCC) is one of the most common cancers of the Caucasian population and accounts for 20% of all skin tumours. An S3 guideline of the German Guideline Program in Oncology has been available since 2019. The diagnosis is based on the clinical examination. Excision and histological confirmation is required for all clinically suspicious lesions to allow prognostic assessment and correct treatment. The therapy of first choice is complete excision with histological control of the surgical margin. In cSCC with risk factors such as tumor thickness >6 mm, sentinel lymph node biopsy may be discussed, but there is currently no clear evidence of its prognostic and therapeutic relevance. Adjuvant radiation therapy may be considered in cases of high risk of recurrence and should be tested in cases of inoperable tumors. The indication for electrochemotherapy should also be considered in the treatment of local or locoregional recurrence. The immune checkpoint inhibitor cemiplimab is approved for the treatment of inoperable or metastasized cSCC. In case of contraindications, chemotherapeutic agents, epidermal growth factor receptor (EGFR) inhibitors or palliative radiotherapy can be used. Since the evidence is low in these cases, a systemic therapy should be used preferentially within clinical studies. Follow-up care should be risk-adapted and includes a dermatological control, supplemented by ultrasound examinations in high-risk patients.
Collapse
Affiliation(s)
- U Leiter
- Zentrum für Dermato-Onkologie, Südwestdeutsches Tumorzentrum, Universitäts-Hautklinik, Eberhard-Karls-Universität, Liebermeisterstr. 25, 72076, Tübingen, Deutschland.
| | - R Gutzmer
- Hauttumorzentrum Hannover, Klinik für Dermatologie, Allergologie und Venerologie, Medizinische Hochschule Hannover, Hannover, Deutschland
| | - M Alter
- Universitätshautklinik, Otto-von-Guericke-Universität Magdeburg, Magdeburg, Deutschland
| | - C Ulrich
- Klinik für Dermatologie, Venerologie und Allergologie, Charité - Universitätsmedizin Berlin, Berlin, Deutschland
| | - A Meiwes
- Zentrum für Dermato-Onkologie, Südwestdeutsches Tumorzentrum, Universitäts-Hautklinik, Eberhard-Karls-Universität, Liebermeisterstr. 25, 72076, Tübingen, Deutschland
| | - M V Heppt
- Hautklinik, Universitätsklinikum Erlangen, Comprehensive Cancer Center Erlangen - Europäische Metropolregion Nürnberg, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Deutschland
| | - T Steeb
- Hautklinik, Universitätsklinikum Erlangen, Comprehensive Cancer Center Erlangen - Europäische Metropolregion Nürnberg, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Deutschland
| | - C Berking
- Hautklinik, Universitätsklinikum Erlangen, Comprehensive Cancer Center Erlangen - Europäische Metropolregion Nürnberg, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Deutschland
| | - A S Lonsdorf
- Universitäts-Hautklinik Heidelberg, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Deutschland
| | - M M Sachse
- Klinik für Dermatologie, Allergologie und Phlebologie, Klinikum Bremerhaven, Bremerhaven, Deutschland
| | - C Garbe
- Zentrum für Dermato-Onkologie, Südwestdeutsches Tumorzentrum, Universitäts-Hautklinik, Eberhard-Karls-Universität, Liebermeisterstr. 25, 72076, Tübingen, Deutschland
| | - U Hillen
- Klinik für Dermatologie und Venerologie, Vivantes Klinikum Neukölln, Berlin, Deutschland
| |
Collapse
|
5
|
Abstract
Posttransplant malignancy is a leading cause of death after solid organ transplantation (SOT). Recipients of SOT are at significantly higher risk of multiple cancers compared with the general population, most notably nonmelanoma skin cancer and posttransplant lymphoproliferative disorders. Risk factors for posttransplant malignancy include history of malignancy, immunosuppression, oncogenic viral infections, sun exposure, and disease-specific associations. Early detection and treatment of malignancies can improve survival.
Collapse
|
6
|
Schaper-Gerhardt K, Walter A, Schmitz-Rode C, Satzger I, Gutzmer R. The mTOR-inhibitor Sirolimus decreases the cyclosporine-induced expression of the oncogene ATF3 in human keratinocytes. J Dermatol Sci 2018; 92:172-180. [PMID: 30220530 DOI: 10.1016/j.jdermsci.2018.08.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/30/2018] [Accepted: 08/31/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Due to their immunosuppressive therapy, organtransplant recipients (OTRs) exhibit a high incidence for the development of cutaneous squamous cell carcinoma (cSCC). Randomized studies of kidney-transplanted patients indicate a significant lower susceptibility for cSCC among patients receiving the mTOR-inhibitor Sirolimus, compared to patients without mTOR-regimen. The exact mechanism, how mTOR inhibition affects keratinocyte carcinogenesis remains unclear. OBJECTIVE Our aim was to investigate the impact of Sirolimus on the expression level of the oncogene ATF3, which is involved in the development and progression of cSCC. METHODS We incubated human keratinocytes, cSSC cell lines and 3D skin equivalents with Sirolimus, exposed the cells to calcineurin inhibitors (CNI) and UVA-radiation and measured the expression level of ATF3 by real-time PCR and western blot. RESULTS We show that Sirolimus downregulates the expression of ATF3 induced by cyclosporine or cyclosporine plus UV-radiation in keratinocytes. In line with this we demonstrate a decrease in ATF3 expression, by incubating 3D skin equivalents with Sirolimus prior to cyclosporine and UV-light. However, Sirolimus has no significant impact on the ATF3 expression levels of cyclosporine stimulated cSCC cell lines. CONCLUSION Taken together, our study demonstrates that Sirolimus downregulates the CNI or UV-induced ATF3 expression in human keratinocytes, which could be a potential molecular mechanism how Sirolimus reduces cSCC in OTRs. The lack of ATF3 suppression by Sirolimus in cSCC cell lines fits to observations from clinical studies which demonstrated a clinical benefit from the switch to a mTOR-regimen in patients with low tumor burden in early stage of disease.
Collapse
Affiliation(s)
- Katrin Schaper-Gerhardt
- Skin Cancer Center Hannover, Department for Dermatology and Allergy, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany.
| | - Antje Walter
- Skin Cancer Center Hannover, Department for Dermatology and Allergy, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Christina Schmitz-Rode
- Skin Cancer Center Hannover, Department for Dermatology and Allergy, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Imke Satzger
- Skin Cancer Center Hannover, Department for Dermatology and Allergy, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Ralf Gutzmer
- Skin Cancer Center Hannover, Department for Dermatology and Allergy, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| |
Collapse
|
7
|
Jung JW, Veitch M, Bridge JA, Overgaard NH, Cruz JL, Linedale R, Franklin ME, Saunders NA, Simpson F, Frazer IH, Steptoe RJ, Wells JW. Clinically-Relevant Rapamycin Treatment Regimens Enhance CD8 + Effector Memory T Cell Function In The Skin and Allow their Infiltration into Cutaneous Squamous Cell Carcinoma. Oncoimmunology 2018; 7:e1479627. [PMID: 30228949 DOI: 10.1080/2162402x.2018.1479627] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 10/28/2022] Open
Abstract
Patients receiving immunosuppressive drugs to prevent organ transplant rejection exhibit a greatly increased risk of developing cutaneous squamous cell carcinoma (SCC). However, not all immunosuppressive drugs confer the same risk. Randomised, controlled trials demonstrate that switching renal transplant recipients receiving calcineurin inhibitor-based therapies to mammalian target of rapamycin (mTOR) inhibitors results in a reduced incidence of de novo SSC formation, and can even result in the regression of pre-existing premalignant lesions. However, the contribution played by residual immune function in this setting is unclear. We examined the hypotheses that mTOR inhibitors promote the enhanced differentiation and function of CD8+ memory T cells in the skin. Here, we demonstrate that the long-term oral administration of rapamycin to achieve clinically-relevant whole blood drug target thresholds, creates a "low rapamycin dose" environment in the skin. While both rapamycin and the calcineurin inhibitor tacrolimus elongated the survival of OVA-expressing skin grafts, and inhibited short-term antigen-specific CD8+ T cell responses, rapamycin but not tacrolimus permitted the statistically significant infiltration of CD8+ effector memory T cells into UV-induced SCC lesions. Furthermore, rapamycin uniquely enhanced the number and function of CD8+ effector and central memory T cells in a model of long-term contact hypersensitivity provided that rapamycin was present during the antigen sensitization phase. Thus, our findings suggest that patients switched to mTOR inhibitor regimens likely experience enhanced CD8+ memory T cell function to new antigen-challenges in their skin, which could contribute to their lower risk of de novo SSC formation and regression of pre-existing premalignant lesions.
Collapse
Affiliation(s)
- Ji-Won Jung
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD Australia
| | - Margaret Veitch
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD Australia
| | - Jennifer A Bridge
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD Australia
| | - Nana H Overgaard
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD Australia.,Division of Immunology & Vaccinology, National Veterinary Institute, Technical University of Denmark, Lyngby, Denmark
| | - Jazmina L Cruz
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD Australia
| | - Richard Linedale
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD Australia
| | - Michael E Franklin
- Department of Clinical Pharmacology, Princess Alexandra Hospital, Queensland Health, Brisbane, QLD, Australia
| | - Nicholas A Saunders
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD Australia
| | - Fiona Simpson
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD Australia
| | - Ian H Frazer
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD Australia
| | - Raymond J Steptoe
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD Australia
| | - James W Wells
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD Australia
| |
Collapse
|
8
|
Justiniano R, Perer J, Hua A, Fazel M, Krajisnik A, Cabello CM, Wondrak GT. A Topical Zinc Ionophore Blocks Tumorigenic Progression in UV-exposed SKH-1 High-risk Mouse Skin. Photochem Photobiol 2017; 93:1472-1482. [PMID: 28503778 DOI: 10.1111/php.12794] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 05/05/2017] [Indexed: 02/06/2023]
Abstract
Nonmelanoma skin cancer (NMSC) is the most common malignancy in the United States representing a considerable public health burden. Pharmacological suppression of skin photocarcinogenesis has shown promise in preclinical and clinical studies, but more efficacious photochemopreventive agents are needed. Here, we tested feasibility of harnessing pharmacological disruption of intracellular zinc homeostasis for photochemoprevention in vitro and in vivo. Employing the zinc ionophore and FDA-approved microbicidal agent zinc pyrithione (ZnPT), used worldwide in over-the-counter (OTC) topical consumer products, we first demonstrated feasibility of achieving ZnPT-based intracellular Zn2+ overload in cultured malignant keratinocytes (HaCaT-ras II-4; SCC-25) employing membrane-permeable fluorescent probes. Zinc overload was accompanied by induction of intracellular oxidative stress, associated with mitochondrial superoxide release as substantiated by MitoSOX Red™ fluorescence microscopy. ZnPT-induced cell death observable in malignant keratinocytes was preceded by induction of metal (MT2A), proteotoxic (HSPA6, HSPA1A, DDIT3, HMOX1) and genotoxic stress response (GADD45A, XRCC2) gene expression at the mRNA and protein levels. Comet analysis revealed introduction of formamidopyrimidine-DNA glycosylase (Fpg)-sensitive oxidative DNA lesions. In a photocarcinogenesis model (UV-exposed SKH-1 high-risk mouse skin), topical ZnPT administration post-UV caused epidermal zinc overload and stress response gene expression with pronounced blockade of tumorigenesis. Taken together, these data suggest feasibility of repurposing a topical OTC drug for zinc-directed photochemoprevention of solar UV-induced NMSC.
Collapse
Affiliation(s)
- Rebecca Justiniano
- Department of Pharmacology and Toxicology, College of Pharmacy and UA Cancer Center, University of Arizona, Tucson, AZ
| | - Jessica Perer
- Department of Pharmacology and Toxicology, College of Pharmacy and UA Cancer Center, University of Arizona, Tucson, AZ
| | - Anh Hua
- Department of Pharmacology and Toxicology, College of Pharmacy and UA Cancer Center, University of Arizona, Tucson, AZ
| | - Mohammad Fazel
- Department of Pharmacology and Toxicology, College of Pharmacy and UA Cancer Center, University of Arizona, Tucson, AZ
| | - Andrea Krajisnik
- Department of Pharmacology and Toxicology, College of Pharmacy and UA Cancer Center, University of Arizona, Tucson, AZ
| | - Christopher M Cabello
- Department of Pharmacology and Toxicology, College of Pharmacy and UA Cancer Center, University of Arizona, Tucson, AZ
| | - Georg T Wondrak
- Department of Pharmacology and Toxicology, College of Pharmacy and UA Cancer Center, University of Arizona, Tucson, AZ
| |
Collapse
|
9
|
Tomatoes protect against development of UV-induced keratinocyte carcinoma via metabolomic alterations. Sci Rep 2017; 7:5106. [PMID: 28698610 PMCID: PMC5506060 DOI: 10.1038/s41598-017-05568-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 05/30/2017] [Indexed: 12/27/2022] Open
Abstract
Prolonged tomato consumption can mitigate ultraviolet (UV) light induced sunburn via unknown mechanisms. Dietary carotenoids distributed to skin are hypothesized to protect skin against UV-induced damage, although other phytochemicals may play a role. We hypothesize that tomato consumption would protect against skin cancer. SKH-1 hairless and immunocompetent mice (n = 180) were fed AIN-93G or AIN-93G + 10% tangerine or red tomato powder for 35 weeks. From weeks 11-20, mice (n = 120) were exposed to 2240 J/m2 UV-B light, 3x/week, and tumors were tracked weekly. Control mice were fed the same diets but not exposed to UV. Tumor number was significantly lower in male mice consuming red tomato diets (1.73 ± 0.50, P = 0.015) or pooled tomato diets (2.03 ± 0.45, P = 0.017) compared to controls (4.04 ± 0.65). Carotenoid levels in plasma and skin were quantitated, with total lycopene higher in skin of tangerine fed animals despite a lower dose. Metabolomic analyses elucidated compounds derived from tomato glycoalkaloids (including tomatidine and hydroxylated-tomatidine) as significantly different metabolites in skin after tomato exposure. Here, we describe that tomato consumption can modulate risk for keratinocyte carcinomas; however, the role of the newly identified specific phytochemicals possibly responsible for this action require further investigation.
Collapse
|
10
|
Phosphoinositide 3-Kinase-Dependent Signalling Pathways in Cutaneous Squamous Cell Carcinomas. Cancers (Basel) 2017; 9:cancers9070086. [PMID: 28696382 PMCID: PMC5532622 DOI: 10.3390/cancers9070086] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/26/2017] [Accepted: 07/03/2017] [Indexed: 01/11/2023] Open
Abstract
Cutaneous squamous cell carcinoma (cSCC) derives from keratinocytes in the epidermis and accounts for 15–20% of all cutaneous malignancies. Although it is usually curable by surgery, 5% of these tumours metastasise leading to poor prognosis mostly because of a lack of therapies and validated biomarkers. As the incidence rate is rising worldwide it has become increasingly important to better understand the mechanisms involved in cSCC development and progression in order to develop therapeutic strategies. Here we discuss some of the evidence indicating that activation of phosphoinositide 3-kinases (PI3Ks)-dependent signalling pathways (in particular the PI3Ks targets Akt and mTOR) has a key role in cSCC. We further discuss available data suggesting that inhibition of these pathways can be beneficial to counteract the disease. With the growing number of different inhibitors currently available, it would be important to further investigate the specific contribution of distinct components of the PI3Ks/Akt/mTOR pathways in order to identify the most promising molecular targets and the best strategy to inhibit cSCC.
Collapse
|
11
|
Daunting but Worthy Goal: Reducing the De Novo Cancer Incidence After Transplantation. Transplantation 2017; 100:2569-2583. [PMID: 27861286 DOI: 10.1097/tp.0000000000001428] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Solid-organ transplant recipients are at increased risk of developing de novo malignancies compared with the general population, and malignancies become a major limitation in achieving optimal outcomes. The prevention and the management of posttransplant malignancies must be considered as a main goal in our transplant programs. For these patients, immunosuppression plays a major role in oncogenesis by both impairement of immunosurveillance, enhancement of chronic viral infection, and by direct prooncogenic effects. It is essential to manage the recipient with a long-term adapted screening program beginning before transplantation to use a prophylaxis to decrease infection-related cancer, to propose a viral monitoring, and to modulate the immunosuppression toward lower doses especially for calcineurin inhibitors. Indeed, strategies to induce tolerance or to allow a dramatic reduction of the immunosuppression burden are the more promising approaches for the reduction of the posttransplant malignancies.
Collapse
|
12
|
Leontieva OV, Blagosklonny MV. While reinforcing cell cycle arrest, rapamycin and Torins suppress senescence in UVA-irradiated fibroblasts. Oncotarget 2017; 8:109848-109856. [PMID: 29312653 PMCID: PMC5752566 DOI: 10.18632/oncotarget.17827] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 05/02/2017] [Indexed: 12/20/2022] Open
Abstract
Sunlight predisposes to skin cancer and melanomas. Ultraviolet A (UVA), a long wave component of sunlight, can reach dermal fibroblasts. Here we studied UVA-induced senescence in human fibroblasts in vitro. It is known that senescence occurs, when cell cycle is arrested, but mTOR is still active, thus converting arrest to senescence (geroconversion). We showed that, while arresting cell cycle, UVA did not inhibit mTOR, enabling geroconversion. In UVA-treated cells, mTOR remained fully active. Rapamycin and Torins 1/ 2 prevented UVA-induced senescent phenotype, although they further re-enforced cell cycle arrest. Given that senescent stromal fibroblasts support tumorigenesis, we envision that mTOR inhibitors may potentially be used to prevent sunlight-caused tumors as well as skin photo-aging.
Collapse
Affiliation(s)
- Olga V Leontieva
- Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | | |
Collapse
|
13
|
Abikhair M, Mitsui H, Yanofsky V, Roudiani N, Ovits C, Bryan T, Oberyszyn TM, Tober KL, Gonzalez J, Krueger JG, Felsen D, Carucci JA. Cyclosporine A immunosuppression drives catastrophic squamous cell carcinoma through IL-22. JCI Insight 2016; 1:e86434. [PMID: 27699266 PMCID: PMC5033893 DOI: 10.1172/jci.insight.86434] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 04/21/2016] [Indexed: 12/27/2022] Open
Abstract
Immune-suppressed organ transplant recipients (OTRs) can develop catastrophic squamous cell carcinoma (SCC), characterized by multiple primary tumors, extensive body surface area involvement, or metastases. There are currently no curative systemic therapies available. We previously showed that IL-22 enhances SCC proliferation. Herein, we examined links between cyclosporine (CSA), IL-22, and SCC in patients, cell lines, and mice with UV light-induced SCC. Eighteen of 114 OTRs developed catastrophic SCC, which was strongly associated with CSA treatment. We found that CSA drives T cell polarization toward IL-22-producing T22 cells, and CSA treatment increased IL-22 receptor in SCC cells. SCC tissue from OTRs showed increased expression of IL-22RA1. CSA potentiated rescue by IL-22 of serum-starved SCC cells; treatment of SCC cells with IL-22 and CSA increased both their migratory and invasive capacity. In a UV-induced model of SCC in SKH-1 immunocompetent mice, treatment with anti-IL-22 antibody reduced tumor number and tumor burden. We found that catastrophic SCC in OTRs is associated with CSA use, which may be acting by favoring T22 polarization. Since anti-IL-22 antibody administration decreased tumor number and tumor burden in vivo, blockade of the IL-22 axis may be developed as a viable therapeutic option for catastrophic SCC.
Collapse
Affiliation(s)
- Melody Abikhair
- Ronald O. Perelman Department of Dermatology, New York University (NYU) Langone Medical Center, New York, New York, USA
| | - Hiroshi Mitsui
- Laboratory for Investigative Dermatology, Rockefeller University, New York, New York, USA
| | - Valerie Yanofsky
- Ronald O. Perelman Department of Dermatology, New York University (NYU) Langone Medical Center, New York, New York, USA
| | - Nazanin Roudiani
- Ronald O. Perelman Department of Dermatology, New York University (NYU) Langone Medical Center, New York, New York, USA
| | - Channa Ovits
- Institute for Pediatric Urology, Department of Urology, Weill Cornell Medicine, New York, New York, USA
| | - Teddy Bryan
- Ronald O. Perelman Department of Dermatology, New York University (NYU) Langone Medical Center, New York, New York, USA
| | | | - Kathleen L. Tober
- Department of Pathology, The Ohio State University, Columbus, Ohio, USA
| | - Juana Gonzalez
- Translational Immunomonitoring Resource Center, Rockefeller University, New York, New York, USA
| | - James G. Krueger
- Laboratory for Investigative Dermatology, Rockefeller University, New York, New York, USA
| | - Diane Felsen
- Institute for Pediatric Urology, Department of Urology, Weill Cornell Medicine, New York, New York, USA
| | - John A. Carucci
- Ronald O. Perelman Department of Dermatology, New York University (NYU) Langone Medical Center, New York, New York, USA
| |
Collapse
|
14
|
Choi SR, Chung BY, Kim SW, Kim CD, Yun WJ, Lee MW, Choi JH, Chang SE. Activation of autophagic pathways is related to growth inhibition and senescence in cutaneous squamous cell carcinoma. Exp Dermatol 2016; 23:718-24. [PMID: 25046976 DOI: 10.1111/exd.12515] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2014] [Indexed: 12/21/2022]
Abstract
Cutaneous squamous cell carcinoma (SCC) is a very common resectable cancer; however, cutaneous SCC is highly resistant to chemotherapy if metastasis develops. Activating transcription factor 3 (ATF3) has been suggested as a marker of advanced or metastatic cutaneous SCC. Autophagy is one of the most important mechanisms in cancer biology and commonly induced by in vitro serum starvation. To investigate the role of autophagy activation in cutaneous SCC, we activated autophagic pathways by serum starvation in SCC13 and ATF3-overexpressing SCC13 (ATF3-SCC13) cell lines. ATF3-SCC13 cells demonstrated high proliferative capacity and low p53 and autophagy levels in comparison with control SCC13 cells under basal conditions. Intriguingly, autophagic stimulation via serum starvation resulted in growth inhibition and senescence in both cells, while ATF3-SCC13 cells further demonstrated growth inhibition and senescence. Apoptosis was not significantly induced by autophagy activation. Taken together, autophagy activation may be a promising antitumor approach for advanced cutaneous SCC.
Collapse
Affiliation(s)
- So Ra Choi
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Dickinson SE, Janda J, Criswell J, Blohm-Mangone K, Olson ER, Liu Z, Barber C, Petricoin EF, Calvert VS, Einspahr J, Dickinson JE, Stratton SP, Curiel-Lewandrowski C, Saboda K, Hu C, Bode AM, Dong Z, Alberts DS, Timothy Bowden G. Inhibition of Akt Enhances the Chemopreventive Effects of Topical Rapamycin in Mouse Skin. Cancer Prev Res (Phila) 2016; 9:215-24. [PMID: 26801880 DOI: 10.1158/1940-6207.capr-15-0419] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 01/01/2016] [Indexed: 11/16/2022]
Abstract
The PI3Kinase/Akt/mTOR pathway has important roles in cancer development for multiple tumor types, including UV-induced nonmelanoma skin cancer. Immunosuppressed populations are at increased risk of aggressive cutaneous squamous cell carcinoma (SCC). Individuals who are treated with rapamycin (sirolimus, a classical mTOR inhibitor) have significantly decreased rates of developing new cutaneous SCCs compared with those that receive traditional immunosuppression. However, systemic rapamycin use can lead to significant adverse events. Here, we explored the use of topical rapamycin as a chemopreventive agent in the context of solar-simulated light (SSL)-induced skin carcinogenesis. In SKH-1 mice, topical rapamycin treatment decreased tumor yields when applied after completion of 15 weeks of SSL exposure compared with controls. However, applying rapamycin during SSL exposure for 15 weeks, and continuing for 10 weeks after UV treatment, increased tumor yields. We also examined whether a combinatorial approach might result in more significant tumor suppression by rapamycin. We validated that rapamycin causes increased Akt (S473) phosphorylation in the epidermis after SSL, and show for the first time that this dysregulation can be inhibited in vivo by a selective PDK1/Akt inhibitor, PHT-427. Combining rapamycin with PHT-427 on tumor prone skin additively caused a significant reduction of tumor multiplicity compared with vehicle controls. Our findings indicate that patients taking rapamycin should avoid sun exposure, and that combining topical mTOR inhibitors and Akt inhibitors may be a viable chemoprevention option for individuals at high risk for cutaneous SCC.
Collapse
Affiliation(s)
- Sally E Dickinson
- The University of Arizona Cancer Center, Tucson, Arizona. Department of Pharmacology, The University of Arizona, Tucson, Arizona.
| | - Jaroslav Janda
- The University of Arizona Cancer Center, Tucson, Arizona
| | - Jane Criswell
- The University of Arizona Cancer Center, Tucson, Arizona
| | | | - Erik R Olson
- The University of Arizona Cancer Center, Tucson, Arizona
| | - Zhonglin Liu
- Department of Medical Imaging, The University of Arizona, Tucson, Arizona
| | - Christy Barber
- Department of Medical Imaging, The University of Arizona, Tucson, Arizona
| | - Emanuel F Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia
| | - Valerie S Calvert
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia
| | - Janine Einspahr
- The University of Arizona Cancer Center, Tucson, Arizona. Department of Medicine, The University of Arizona, Tucson, Arizona
| | - Jesse E Dickinson
- Arizona Water Science Center, U.S. Geological Survey, Tucson, Arizona
| | - Steven P Stratton
- The University of Arizona Cancer Center, Tucson, Arizona. Department of Medicine, The University of Arizona, Tucson, Arizona
| | - Clara Curiel-Lewandrowski
- The University of Arizona Cancer Center, Tucson, Arizona. Department of Medicine, The University of Arizona, Tucson, Arizona
| | | | - Chengcheng Hu
- The University of Arizona Cancer Center, Tucson, Arizona
| | - Ann M Bode
- Department of Molecular Medicine and Biopharmaceutical Sciences, The Hormel Institute, The University of Minnesota, Austin, Minnesota
| | - Zigang Dong
- Department of Molecular Medicine and Biopharmaceutical Sciences, The Hormel Institute, The University of Minnesota, Austin, Minnesota
| | - David S Alberts
- The University of Arizona Cancer Center, Tucson, Arizona. Department of Medicine, The University of Arizona, Tucson, Arizona
| | - G Timothy Bowden
- The University of Arizona Cancer Center, Tucson, Arizona. Department of Medicine, The University of Arizona, Tucson, Arizona. Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona
| |
Collapse
|
16
|
Balagula Y, Kang S, Patel MJ. Synergism between mTOR pathway and ultraviolet radiation in the pathogenesis of squamous cell carcinoma and its implication for solid-organ transplant recipients. PHOTODERMATOLOGY PHOTOIMMUNOLOGY & PHOTOMEDICINE 2014; 31:15-25. [PMID: 24517835 DOI: 10.1111/phpp.12115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/21/2014] [Indexed: 12/22/2022]
Abstract
Nonmelanoma skin cancers (NMSCs) are the most common malignancies in the United States in immunocompetent patients. Among the solid-organ transplant recipients, NMSCs represent a significant disease burden, and they tend to be multiple and more aggressive. While the precise mechanisms responsible for the higher risk of developing cutaneous squamous cell carcinomas (SCCs) have not been completely elucidated, ultraviolet (UV) light has been established to be critical in initiation and promotion of tumor development. More recently, significant emphasis has been placed on the role of the mammalian target of rapamycin (mTOR) pathway in SCC pathogenesis. Furthermore, some studies have demonstrated the ability of mTOR inhibitors to decrease the incidence of new SCCs in the immunosuppressed transplanted patient population. In this review, we will highlight and examine the most recent available data on the role of UV radiation and its interaction with mTOR pathway signaling in SCC pathogenesis.
Collapse
Affiliation(s)
- Yevgeniy Balagula
- Department of Dermatology, Johns Hopkins Medicine, Baltimore, MD, USA
| | | | | |
Collapse
|
17
|
No acceleration of UV-induced skin carcinogenesis from evenly spread dietary intake of cyclosporine in contrast to oral bolus dosages. Transplantation 2014; 96:871-6. [PMID: 23958926 DOI: 10.1097/tp.0b013e3182a3dfa3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Organ transplant recipients using the immunosuppressant cyclosporine have an increased risk for developing nonmelanoma skin cancer. Disparate effects of cyclosporine have, however, been reported on UV-induced skin carcinogenesis in mouse experiments. Therefore, we set out to compare three experimental protocols using mice, with the aim to emulate most closely the increased skin cancer risk in organ transplant recipients. METHODS UV carcinogenesis was performed in hairless SKH-1 mice by three protocols: dietary cyclosporine and daily UV exposures, dietary cyclosporine after a period of UV exposures, and bolus dosing cyclosporine by gavage and repeated UV exposures. RESULTS Using chronic UV exposure, continuous dietary administration of cyclosporine was shown to inhibit tumor formation. Dietary cyclosporine after a period of UV exposures did not affect ensuing UV carcinogenesis. However, in contrast with dietary cyclosporine, bolus dosages of cyclosporine by gavage, resulting in strongly varying blood levels of cyclosporine, increased tumor development in chronically UV-exposed mice. There was no difference in tumor development between mice UV-irradiated during peak or trough levels of cyclosporine in the blood. Time-averaged levels in these mice were similar to those with cyclosporine in the diet. CONCLUSIONS Cyclosporine in bolus doses appears to increase skin cancer development, whereas cyclosporine administration more evenly spread over time does not. Extrapolation to transplant patients suggests that the mode of administrating cyclosporine may be crucial for the increased skin cancer risk and that this risk might be lowered with a more steady release of cyclosporine in the body.
Collapse
|
18
|
|
19
|
Johnson KE, Wulff BC, Oberyszyn TM, Wilgus TA. Ultraviolet light exposure stimulates HMGB1 release by keratinocytes. Arch Dermatol Res 2013; 305:805-15. [PMID: 23942756 DOI: 10.1007/s00403-013-1401-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Revised: 07/23/2013] [Accepted: 07/31/2013] [Indexed: 01/31/2023]
Abstract
The primary cause of non-melanoma skin cancer is ultraviolet (UV) light from the sun. Many studies have demonstrated that cutaneous inflammation resulting from UV exposure is important for the development of skin cancer. In fact, anti-inflammatory drugs have been shown to be effective in preventing skin cancer in animal models and in clinical trials. One new class of inflammatory mediators that could regulate UV-induced inflammation and skin carcinogenesis is alarmins. Alarmins are endogenous molecules that act as potent pro-inflammatory mediators when they are released by cells or accumulate extracellularly. The purpose of the current studies was to examine the expression and release of the alarmin high mobility group box 1 (HMGB1) after acute and chronic UV irradiation. Acute UV exposure stimulated the release of HMGB1 in cultured human keratinocytes and epidermal keratinocytes in murine skin. HMGB1 release correlated with pro-inflammatory cytokine production in vitro and inflammatory cell infiltration in vivo. HMGB1 was also examined in tumors arising in chronically irradiated murine skin. HMGB1 protein expression in low grade, benign papillomas was similar to adjacent skin. However, HMGB1 staining was more widespread with a higher number of HMGB1-positive cells observed in high grade papillomas and malignant tumors. Overall, the data suggest that HMGB1 may be an important regulator of UV-induced cutaneous inflammation and tumor formation. Additional studies are needed to assess whether targeting HMGB1 would be a useful strategy to prevent tumors from developing in response to chronic UV exposure.
Collapse
Affiliation(s)
- Kelly E Johnson
- Department of Pathology, The Ohio State University, 1645 Neil Avenue, 129 Hamilton Hall, Columbus, OH, 43210, USA
| | | | | | | |
Collapse
|
20
|
Voskamp P, Bodmann CA, Koehl GE, Rebel HG, Van Olderen MGE, Gaumann A, El Ghalbzouri A, Tensen CP, Bavinck JNB, Willemze R, Geissler EK, De Gruijl FR. Dietary immunosuppressants do not enhance UV-induced skin carcinogenesis, and reveal discordance between p53-mutant early clones and carcinomas. Cancer Prev Res (Phila) 2012; 6:129-38. [PMID: 23233735 DOI: 10.1158/1940-6207.capr-12-0361] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Immunosuppressive drugs are thought to cause the dramatically increased risk of carcinomas in sun-exposed skin of organ transplant recipients. These drugs differ in local effects on skin. We investigated whether this local impact is predictive of skin cancer risk and may thus provide guidance on minimizing the risk. Immunosuppressants (azathioprine, cyclosporine, tacrolimus, mycophenolate mofetil, and rapamycin) were assessed on altering the UV induction of apoptosis in human skin models and of p53 mutant cell clones (putative tumor precursors) and ensuing skin carcinomas (with mutant p53) in the skin of hairless mice. Rapamycin was found to increase apoptosis (three-fold), whereas cyclosporine decreased apoptosis (three-fold). Correspondingly, a 1.5- to five-fold reduction (P = 0.07) or a two- to three-fold increase (P < 0.001) was found in cell clusters overexpressing mutant p53 in chronically UV-exposed skin of mice that had been fed rapamycin or cyclosporine, respectively. Deep sequencing showed, however, that the allelic frequency (∼5%) of the hotspot mutations in p53 (codons 270 and 275) remained unaffected. The majority of cells with mutated p53 seemed not to overexpress the mutated protein. Unexpectedly, none of the immunosuppressants admixed in high dosages to the diet accelerated tumor development, and cyclosporine even delayed tumor onset by approximately 15% (P < 0.01). Thus, in contrast to earlier findings, the frequency of p53-mutant cells was not predictive of the incidence of skin carcinoma. Moreover, the lack of any accelerative effect on tumor development suggests that immunosuppressive medication is not the sole cause of the dramatic increase in skin cancer risk in organ transplant recipients.
Collapse
Affiliation(s)
- Pieter Voskamp
- Department of Dermatology, Leiden University Medical Center, the Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Carr TD, DiGiovanni J, Lynch CJ, Shantz LM. Inhibition of mTOR suppresses UVB-induced keratinocyte proliferation and survival. Cancer Prev Res (Phila) 2012; 5:1394-404. [PMID: 23129577 DOI: 10.1158/1940-6207.capr-12-0272-t] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
UV radiation is the major risk factor for developing skin cancer, the most prevalent cancer worldwide. Several studies indicate that mTOR signaling is activated by UVB and may play an important role in skin tumorigenesis. mTOR exists in two functionally and compositionally distinct protein complexes: the rapamycin-sensitive mTOR complex 1 (mTORC1) and the rapamycin-resistant mTOR complex 2 (mTORC2). The purpose of these studies was to investigate the roles of the two mTOR complexes in UVB-mediated proliferation and apoptosis in the skin. We used rapamycin, a pharmacologic inhibitor of mTORC1, and an inducible mTOR-deficient (K5-CreER(T2);mTOR(fl/fl)) mouse model that allows epidermal-specific disruption of mTOR following topical treatment with 4-hydroxytamoxifen (4OHT). Rapamycin blocked UVB-induced phosphorylation of S6K, the downstream target of mTORC1, and significantly reduced UVB-stimulated epidermal proliferation and cell-cycle progression, but had no effect on cell death. In contrast, mTOR deletion, which attenuated UVB-induced phosphorylation of both S6K and the mTORC2 target AKT(Ser473), significantly increased apoptosis both in vivo and in keratinocyte cultures, in addition to reducing hyperproliferation following UVB irradiation. The role of mTORC2 in UVB-induced prosurvival signaling was verified in Rictor(-/-) mouse embryo fibroblasts, which lack functional mTORC2 and were more sensitive to UVB-induced apoptosis than controls. These studies show that mTORC1 and mTORC2 play unique but complementary roles in controlling proliferation and apoptosis in the skin. Our findings underscore the importance of both mTOR complexes in mediating UVB-induced signaling in keratinocytes and provide new insight into the pathogenesis of skin cancer.
Collapse
Affiliation(s)
- Theresa D Carr
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | | | | | | |
Collapse
|
22
|
The mTOR inhibitor rapamycin opposes carcinogenic changes to epidermal Akt1/PKBα isoform signaling. Oncogene 2012; 32:3254-62. [PMID: 22890326 DOI: 10.1038/onc.2012.338] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 05/17/2012] [Accepted: 06/24/2012] [Indexed: 01/09/2023]
Abstract
Epidermal squamous cell carcinoma (SCC) is the most aggressive non-melanoma skin cancer and is dramatically increased in patients undergoing immunosuppression following solid organ transplantation, contributing substantially to morbidity and mortality. Recent clinical studies show that use of the mammalian target of rapamycin (mTOR) inhibitor rapamycin as a post-transplantation immunosuppressive significantly reduces SCC occurrence compared with other immunosuppressives, though the mechanism is not fully understood. We show that rapamycin selectively upregulates epidermal Akt1, while failing to upregulate epidermal Akt2. Rapamycin increases epidermal Akt1 phosphorylation via inhibition of the mTOR complex 1-dependent regulation of insulin receptor substrate-1. Epidermal Akt1 is commonly downregulated in SCC while Akt2 is upregulated. We now demonstrate similar Akt1 downregulation and Akt2 upregulation by ultraviolet (UV) radiation, the most important skin carcinogen. Hence, rapamycin's upregulation of Akt1 signaling could potentially oppose the effects of UV radiation and/or tumor-associated changes on Akt1 signaling. We show in skin culture that rapamycin does enhance restoration of Akt1 phosphorylation in skin recovering from UV radiation, suggesting a mechanism for rapamycin's antitumor activity in epidermis in spite of its efficient immunosuppressive properties.
Collapse
|
23
|
Myakishev-Rempel M, Stadler I, Brondon P, Axe DR, Friedman M, Nardia FB, Lanzafame R. A preliminary study of the safety of red light phototherapy of tissues harboring cancer. Photomed Laser Surg 2012; 30:551-8. [PMID: 22853435 DOI: 10.1089/pho.2011.3186] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE Red light phototherapy is known to stimulate cell proliferation in wound healing. This study investigated whether low-level light therapy (LLLT) would promote tumor growth when pre-existing malignancy is present. BACKGROUND DATA LLLT has been increasingly used for numerous conditions, but its use in cancer patients, including the treatment of lymphedema or various unrelated comorbidities, has been withheld by practitioners because of the fear that LLLT might result in initiation or promotion of metastatic lesions or new primary tumors. There has been little scientific study of oncologic outcomes after use of LLLT in cancer patients. METHODS A standard SKH mouse nonmelanoma UV-induced skin cancer model was used after visible squamous cell carcinomas were present, to study the effects of LLLT on tumor growth. The red light group (n=8) received automated full body 670 nm LLLT delivered twice a day at 5 J/cm(2) using an LED source. The control group (n=8) was handled similarly, but did not receive LLLT. Measurements on 330 tumors were conducted for 37 consecutive days, while the animals received daily LLLT. RESULTS Daily tumor measurements demonstrated no measurable effect of LLLT on tumor growth. CONCLUSIONS This experiment suggests that LLLT at these parameters may be safe even when malignant lesions are present. Further studies on the effects of photoirradiation on neoplasms are warranted.
Collapse
|
24
|
Tessari G, Girolomoni G. Nonmelanoma skin cancer in solid organ transplant recipients: update on epidemiology, risk factors, and management. Dermatol Surg 2012; 38:1622-30. [PMID: 22805312 DOI: 10.1111/j.1524-4725.2012.02520.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Nonmelanoma skin cancers (NMSC) are the most frequently observed cancers in solid organ transplant recipients (SOTR) and may have a significant disease burden. OBJECTIVE To provide an update regarding the epidemiology and management of NMSC in SOTR. RESULTS Ten-year incidence rates range from 10% in Italy to 20% in Northern Europe to 70% in Australia. More than 50% of NMSC are located on sun-exposed areas (head, dorsum of hands). Many risk factors have been identified, including age at transplantation, fair skin, type of immunosuppressive drugs, cumulative sun exposure, viral infections, and various genetic markers. Patients with a first NMSC have a 49 times higher risk of developing a subsequent NMSC. Skin self-examination and photoprotection should be encouraged in all transplanted patients. Long-term skin surveillance, early diagnosis and aggressive treatment of any suspicious lesion, reduction of immunosuppressive therapy, and conversion to m-TOR inhibitors can be also effective measures for reduction of NMSC incidence. CONCLUSIONS NMSC is the most frequent cancer observed in SOTR. Early diagnosis, patient education, and modification of immunosuppression are effective measures for reduction of NMSC incidence.
Collapse
Affiliation(s)
- Gianpaolo Tessari
- Section of Dermatology, Department of Medicine, University of Verona, Verona, Italy.
| | | |
Collapse
|
25
|
Ritchie SA, Patel MJ, Miller SJ. Therapeutic options to decrease actinic keratosis and squamous cell carcinoma incidence and progression in solid organ transplant recipients: a practical approach. Dermatol Surg 2012; 38:1604-21. [PMID: 22646842 DOI: 10.1111/j.1524-4725.2012.02452.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND Solid organ transplant recipients (SOTRs) have a 50 to 250 times greater risk of squamous cell carcinoma (SCC) than the general population and experience higher rates of invasive and metastatic disease. These greater risks are a product of the tumorigenic effects of their immunosuppressive medications. As the number of transplantations and the life expectancy of SOTRs increase, SCCs are becoming a major source of morbidity and mortality. OBJECTIVE To present a practical approach for busy practicing clinicians to the care of SOTRs who are developing SCCs. Topics include assessment and treatment of new and neglected SOTRs; the dermatologist's role with the transplantation team; and practical considerations in the choice of topical agents, systemic agents, and immunosuppressive therapy manipulation. METHODS AND MATERIALS An extensive literature search of the understanding of SCC pathophysiology and treatment in SOTRs was conducted. RESULTS Presented here is a logical, concise guide to the care of SOTRs who are developing actinic keratoses and SCCs. CONCLUSION Proper assessment of patients, understanding therapeutic alternatives and their application, and early institution of preventative and adjuvant therapies can help to decrease skin cancer-related morbidity and mortality in SOTRs.
Collapse
Affiliation(s)
- Simon A Ritchie
- Department of Dermatology, School of Medicine, University of Maryland, Baltimore, Maryland 21201, USA.
| | | | | |
Collapse
|
26
|
Low dose rapamycin exacerbates autoimmune experimental uveitis. PLoS One 2012; 7:e36589. [PMID: 22574188 PMCID: PMC3344911 DOI: 10.1371/journal.pone.0036589] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 04/03/2012] [Indexed: 11/22/2022] Open
Abstract
Background Rapamycin, a potent immune modulator, is used to treat transplant rejection and some autoimmune diseases. Uveitis is a potentially severe inflammatory eye disease, and 2 clinical trials of treating uveitis with rapamycin are under way. Unexpectedly, recent research has demonstrated that low dose rapamycin enhances the memory T cell population and function. However, it is unclear how low dose rapamycin influences the immune response in the setting of uveitis. Design and Methods B10.RIII mice were immunized to induce experimental autoimmune uveitis (EAU). Ocular inflammation of control and rapamycin-treated mice was compared based on histological change. ELISPOT and T cell proliferation assays were performed to assess splenocyte response to ocular antigen. In addition, we examined the effect of rapamycin on activation-induced cell death (AICD) using the MitoCapture assay and Annexin V staining. Results Administration of low dose rapamycin exacerbated EAU, whereas treating mice with high dose rapamycin attenuated ocular inflammation. The progression of EAU by low dose rapamycin coincided with the increased frequency of antigen-reactive lymphocytes. Lastly, fewer rapamycin-treated T cells underwent AICD, which might contribute to exaggerated ocular inflammation and the uveitogenic immune response. Conclusion These data reveal a paradoxical role for rapamycin in uveitis in a dose-dependent manner. This study has a potentially important clinical implication as rapamycin might cause unwanted consequences dependent on dosing and pharmacokinetics. Thus, more research is needed to further define the mechanism by which low dose rapamycin augments the immune response.
Collapse
|
27
|
Abstract
Patients with autoimmune and inflammatory conditions often receive long-term immunosuppressive therapy. Some of the largest patient populations with iatrogenic immunosuppression include patients who have received solid-organ transplants or who have rheumatoid arthritis or psoriasis. Although treatments improve patient outcomes, individuals with immunosuppression subsequently may have an increased risk of skin cancer, including squamous cell carcinoma, basal cell carcinoma, and malignant melanoma.
Collapse
Affiliation(s)
- Jennifer L DePry
- Kansas City University of Medicine and Biosciences, 1750 Independence Ave, Kansas City, MO 64106, USA
| | | | | | | |
Collapse
|
28
|
Voskamp P, Bodmann C, Rebel H, Koehl G, Tensen C, Bouwes Bavinck J, El Ghalbzouri A, Van Kranen H, Willemze R, Geissler E, De Gruijl F. Rapamycin impairs UV induction of mutant-p53 overexpressing cell clusters without affecting tumor onset. Int J Cancer 2012; 131:1267-76. [DOI: 10.1002/ijc.27391] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 11/21/2011] [Indexed: 12/27/2022]
|
29
|
Athar M, Kopelovich L. Rapamycin and mTORC1 inhibition in the mouse: skin cancer prevention. Cancer Prev Res (Phila) 2011; 4:957-61. [PMID: 21733819 DOI: 10.1158/1940-6207.capr-11-0266] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Therapeutic and preventive effects of rapamycin include reduced risk of nonmelanoma skin cancer (NMSC). In this issue of the journal (beginning on page 1011), Checkley and colleagues report that rapamycin inhibits mTOR complex 1 in murine epidermis, thereby inhibiting tumor promotion mediated by tetradecanoyl phorbol-13 acetate in association with a strong anti-inflammatory effect. Rapamycin is an immunosuppressive drug for preventing graft rejection in organ transplant recipients and reduces the risk of NMSC and Kaposi's sarcoma in this population, albeit by mechanisms distinct from immunosuppression. Important future directions include identifying molecular predictors of rapamycin/rapalog sensitivity or resistance (potentially, for example, PI3K pathway alterations and KRAS mutations) and combined non-rapalog, mTOR-targeting approaches, all of which should increase efficacy and minimize toxicity.
Collapse
Affiliation(s)
- Mohammad Athar
- Department of Dermatology, Skin Diseases Research Center and UAB Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | |
Collapse
|
30
|
White AC, Lowry WE. Exploiting the origins of Ras mediated squamous cell carcinoma to develop novel therapeutic interventions. Small GTPases 2011; 2:318-321. [PMID: 22545230 PMCID: PMC3337161 DOI: 10.4161/sgtp.18088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The small GTPase Ras is activated in a high proportion of human cancers. Attempts to clinically block Ras activity through pharmacological means has proven largely ineffective thus far. We employed an inducible mouse model of squamous cell carcinoma (SCC) to study the effect of Ras activation and show that hair follicle stem cells (HFSCs) are a cell of origin for SCC, whereas their more restricted progeny cannot serve as cancer cells of origin and are refractory to Ras activation. We propose that by identifying the unique mechanisms by which HFSCs are mobilized to initiate Ras mediated tumorigenesis, the molecular process behind SCC can be more completely elucidated and context dependent activities for Ras more clearly defined. Here, we summarize our recent results and point to future experiments designed to create novel therapeutics by exploiting the differential sensitivities of various cells within the epidermis to Ras activation.
Collapse
Affiliation(s)
- Andrew C White
- Department of Molecular, Cell and Developmental Biology; Jonsson Comprehensive Cancer Center; Eli and Edythe Broad Center for Stem Cell Research; Molecular Biology Institute; University of California, Los Angeles; Los Angeles, CA USA
| | | |
Collapse
|
31
|
Thoms KM, Kuschal C, Oetjen E, Mori T, Kobayashi N, Laspe P, Boeckmann L, Schön MP, Emmert S. Cyclosporin A, but not everolimus, inhibits DNA repair mediated by calcineurin: implications for tumorigenesis under immunosuppression. Exp Dermatol 2011; 20:232-6. [PMID: 21323745 DOI: 10.1111/j.1600-0625.2010.01213.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Unlike other immunosuppressive drugs including everolimus, cyclosporin A causes a dramatic increase of UV-induced skin cancer, a feature that is reminiscent of xeroderma pigmentosum (XP), where defective nucleotide excision repair (NER) of UV-induced DNA damage results in cutaneous carcinogenesis. The molecular basis of the clinically important differential activities of cyclosporin A and everolimus is still unclear. We measured post-UV cell survival of cyclosporin A- and everolimus-treated human fibroblasts and lymphoblasts using a cell proliferation assay (MTT). The cellular NER capacity was assessed by host cell reactivation. Using an ELISA and specific antibodies, cyclobutane pyrimidine and pyrimidine-6,4-pyrimidone photoproduct removal from the cellular genome was measured. The effect of calcineurin on NER was investigated using a calcineurin A expression vector and specific RNAi. Cyclosporin A led to a dose dependent decrease in post-UV cell survival, inhibited NER and blocked photoproduct removal. In contrast, none of these effects where seen in everolimus-treated cells. Overexpression of calcineurin A resulted in increased NER and complemented the Cyclosporin A-induced reduction of NER. Downregulation of calcineurin using RNAi inhibited NER comparable to cyclosporin A-treatment. We conclude that cyclosporin A, but not everolimus, leads to an increased skin cancer risk via a calcineurin signalling-dependent impairment of NER.
Collapse
Affiliation(s)
- Kai-Martin Thoms
- Department of Dermatology, Venerology, and Allergology, Georg-August-University, Goettingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Athar M, Walsh SB, Kopelovich L, Elmets CA. Pathogenesis of nonmelanoma skin cancers in organ transplant recipients. Arch Biochem Biophys 2011; 508:159-63. [PMID: 21232524 DOI: 10.1016/j.abb.2011.01.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 01/05/2011] [Accepted: 01/06/2011] [Indexed: 02/08/2023]
Abstract
Nonmelanoma skin cancer (NMSC) is the most common human cancer, with an incidence of more than 1.2 million per year in the USA. The risk for the development of NMSCs increases by approximately 10-250 fold in chronically immune suppressed organ transplant recipients (OTRs). Solar UVB is the most common etiologic factor in the development of this neoplasm, both in immune competent and immune suppressed populations. This review provides a description of NMSC in OTRs. It also provides an account of the various immunologic and non-immune-dependent mechanisms involved in the pathogenesis and progression of NMSCs in OTRs. Finally, this review addresses possible strategies for the prevention of this cancer, particularly focusing on the aspects that may be incorporated to prevent negative effects of chemopreventive chemicals on graft survival.
Collapse
Affiliation(s)
- Mohammad Athar
- Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA.
| | | | | | | |
Collapse
|
33
|
Bugelski PJ, Volk A, Walker MR, Krayer JH, Martin P, Descotes J. Critical Review of Preclinical Approaches to Evaluate the Potential of Immunosuppressive Drugs to Influence Human Neoplasia. Int J Toxicol 2010; 29:435-66. [DOI: 10.1177/1091581810374654] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Many immunosuppressive drugs are associated with an increased risk of B-cell lymphoma, squamous cell carcinoma, and Kaposi sarcoma. Thirteen immunosuppressive drugs have been tested in 2-year carcinogenicity studies (abatacept; azathioprine; busulfan; cyclophosphamide; cyclosporine; dexamethasone; everolimus; leflunomide; methotrexate; mycophenolate mofetil; prednisone; sirolimus; and tacrolimus) and in additional models including neonatal and genetically modified mice; chemical, viral, ultraviolet, and ionizing radiation co-carcinogenesis, and in models with transplanted tumor cells. The purpose of this review is to outline the mechanisms by which immunosuppressive drugs can influence neoplasia, to summarize the available preclinical data on the 13 drugs, and to critically review the performance of the models. A combination of primary tumor and metastasis assays conducted with transplanted cells may provide the highest value for hazard identification and can be applied on a case-by-case basis. However, for both small molecules and therapeutic proteins, determining the relative risk to patients from preclinical data remains problematic. Classifying immunosuppressive drugs based on their mechanism of action and hazard identification from preclinical studies and a prospective pharmacovigilance program to monitor carcinogenic risk may be a feasible way to manage patient safety during the clinical development program and postmarketing.
Collapse
Affiliation(s)
| | - Amy Volk
- Biologics Toxicology, Centocor R&D, Radnor, PA, USA
| | | | | | | | - Jacques Descotes
- Centre Antipoison–Centre de Pharmacovigilance, Hôpital Edouard Herriot, Lyon, France
| |
Collapse
|
34
|
Toll-like receptors: role in dermatological disease. Mediators Inflamm 2010; 2010:437246. [PMID: 20847936 PMCID: PMC2933899 DOI: 10.1155/2010/437246] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Revised: 04/27/2010] [Accepted: 07/01/2010] [Indexed: 01/04/2023] Open
Abstract
Toll-like receptors (TLRs) are a class of conserved receptors that recognize pathogen-associated molecular patterns (PAMPs) present in microbes. In humans, at least ten TLRs have been identified, and their recognition targets range from bacterial endotoxins to lipopeptides, DNA, dsRNA, ssRNA, fungal products, and several host factors. Of dermatological interest, these receptors are expressed on several skin cells including keratinocytes, melanocytes, and Langerhans cells. TLRs are essential in identifying microbial products and are known to link the innate and adaptive immune systems. Over the years, there have been significant advances in our understanding of TLRs in skin inflammation, cutaneous malignancies, and defence mechanisms. In this paper, we will describe the association between TLRs and various skin pathologies and discuss proposed TLR therapeutics.
Collapse
|
35
|
de Gruijl FR, Koehl GE, Voskamp P, Strik A, Rebel HG, Gaumann A, de Fijter JW, Tensen CP, Bavinck JNB, Geissler EK. Early and late effects of the immunosuppressants rapamycin and mycophenolate mofetil on UV carcinogenesis. Int J Cancer 2010; 127:796-804. [PMID: 19998342 DOI: 10.1002/ijc.25097] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Increased skin cancer risk in organ transplant recipients has been experimentally emulated with enhanced UV carcinogenesis from administering conventional immunosuppressants. However, newer generation immunosuppressive drugs, rapamycin (Rapa) and mycophenolate mofetil (MMF), have been shown to impair angiogenesis and outgrowth of tumor implants. To ascertain the overall effect on UV carcinogenesis, Rapa and MMF were admixed into the food pellets of hairless SKH1 mice receiving daily sub-sunburn UV dosages. With immunosuppressive blood levels neither of the drugs affected onset of tumors (<2 mm), but in contrast to MMF, Rapa significantly increased latency of large tumors (>or=4 mm, medians of 190 vs 125 days) and reduced their multiplicity (1.6 vs 4.5 tumors per mouse at 200 days). Interestingly, tumors (>2 mm) from the Rapa-fed group showed a reduction in UV-signature p53 mutations (39% vs 90%) in favor of mutations from putative base oxidation. This shift in mutation spectrum was not essentially linked to the reduction in large tumors because it was absent in large tumors similarly reduced in number when feeding Rapa in combination with MMF, possibly owing to an antioxidant effect of MMF. Significantly fewer tumor cells were Vegf-positive in the Rapa-fed groups, but a correspondingly reduced expression of Hif1alpha target genes (Vegf, Ldha, Glut1, Pdk1) that would indicate altered glucose metabolism with increased oxidative stress was not found. Remarkably, we observed no effect of the immunosuppressants on UV-induced tumor onset, and with impaired tumor outgrowth Rapa could therefore strongly reduce skin carcinoma morbidity and mortality rates in organ transplant recipients.
Collapse
Affiliation(s)
- F R de Gruijl
- Department of Dermatology, Leiden University Medical Center, Leiden, the Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Bretagnol A, Halimi JM, Roland M, Barbet C, Machet L, Al Najjar A, Marlière JF, Badin J, Nivet H, Lebranchu Y, Büchler M. Autosomal dominant polycystic kidney disease: risk factor for nonmelanoma skin cancer following kidney transplantation. Transpl Int 2010; 23:878-86. [PMID: 20230542 DOI: 10.1111/j.1432-2277.2010.01070.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Nonmelanoma skin cancers (NMSC) are the most common malignant tumors following solid organ transplantation. Risk factors for NMSC mainly include immunosuppression, age, sun exposure and patient phototype. Recent findings have suggested that autosomal dominant polycystic kidney disease (ADPKD) may increase the risk of developing NMSC. We performed a monocenter retrospective study including all kidney recipients between 1985 and 2006 (n = 1019). We studied the incidence of NMSC, solid cancers and post-transplantation lymphoproliferative disease (PTLD), and analyzed the following parameters: age, gender, phototype, time on dialysis, graft rank, immunosuppressive regimen, history of cancer and kidney disease (ADPKD versus others). Median follow-up was 5.5 years (range: 0.02-20.6; 79 838 patient-years). The cumulated incidence of NMSC 10 years after transplantation was 12.7% (9.3% for solid cancers and 3.5% for PTLD). Autosomal dominant polycystic kidney disease and age were risk factors for NMSC (HR 2.63; P < 0.0001 and HR 2.21; P < 0.001, respectively) using univariate analysis. The association between ADPKD and NMSC remained significant after adjustments for age, gender and phototype using multivariate analysis (HR 1.71; P = 0.0145) and for immunosuppressive regimens (P < 0.0001). Autosomal dominant polycystic kidney disease was not a risk factor for the occurrence of solid cancers after transplantation (HR 0.96; P = 0.89). Our findings suggest that ADPKD is an independent risk factor for developing NMSC after kidney transplantation.
Collapse
Affiliation(s)
- Anne Bretagnol
- Department of Nephrology and Clinical Immunology, CHRU Tours, Université François Rabelais, Tours, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Han W, Ming M, He TC, He YY. Immunosuppressive cyclosporin A activates AKT in keratinocytes through PTEN suppression: implications in skin carcinogenesis. J Biol Chem 2010; 285:11369-77. [PMID: 20154081 DOI: 10.1074/jbc.m109.028142] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Non-melanoma skin cancer, the most common neoplasia after solid organ transplantation, causes serious morbidity and mortality and is related to sun exposure. Cyclosporin A (CsA) has been used widely to prevent rejection in organ transplantation. The mechanism of CsA action in causing cancer was thought to be well understood via immunosuppression. Here, we show that CsA promotes primary skin tumor growth in immune-deficient mice and keratinocyte growth in vitro. In addition, CsA enhances keratinocyte survival from removal of extracellular matrix or UVB radiation. At the molecular level, CsA increases AKT activation after serum treatment and UVB irradiation. Furthermore we found that expression of PTEN, the negative regulator of AKT activation, is significantly reduced post-CsA in human HaCaT and A431 cells and in mouse skin in vivo. CsA-induced PTEN down-regulation occurs at the transcription level and is epidermal growth factor receptor-dependent. Such PTEN suppression is required for increased AKT activation. Inhibition of AKT activation abolishes CsA-promoted growth and survival, indicating that AKT hyperactivation is essential for both growth and survival of CsA-treated cells. In addition, mTOR signaling as a known AKT downstream pathway is required for CsA-enhanced growth and survival. Taken together, we have identified the PTEN/AKT pathway as new molecular targets of CsA in epidermal keratinocytes, suggesting a previously unknown mechanism in CsA-enhanced skin carcinogenesis. Our findings challenge assumptions about how CsA-associated tumors arise in skin.
Collapse
Affiliation(s)
- Weinong Han
- Section of Dermatology, Department of Medicine, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | |
Collapse
|
38
|
Wulff BC, Thomas-Ahner JM, Schick JS, Oberyszyn TM. Celecoxib reduces the effects of acute and chronic UVB exposure in mice treated with therapeutically relevant immunosuppressive drugs. Int J Cancer 2009; 126:11-8. [PMID: 19609953 DOI: 10.1002/ijc.24749] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Solid organ transplant recipients have a greatly increased risk for the development of non-melanoma skin cancers. We have previously shown in our mouse model that sirolimus given in combination with cyclosporine A resulted in fewer and smaller tumors than cyclosporine A alone. In the current study, we tested the hypothesis that an anti-inflammatory agent celecoxib applied topically after UVB exposure would further reduce UVB induced skin cancer in mice treated with cyclosporine A and sirolimus. The effect of celecoxib treatment on acute inflammation, initiation/promotion and tumor development was examined through a set of four experiments. Delayed tumor onset was observed in both tumor development experiments. Reduced tumor size and number compared to vehicle was observed when CX was administered concurrently with UVB and when CX was administered after cessation of UVB treatments, respectively. Prostaglandin E2 was confirmed to be significantly reduced in the dorsal skin of mice concurrently treated with immunosuppressants, CX and UVB for 13 weeks, suggesting a reduction in the inflammatory response could be the mechanism by which CX reduced tumorigenesis. Furthermore, topical celecoxib treatment following acute UVB exposure reduced dermal neutrophil number and activity compared to vehicle. In all of these experiments, unirradiated and vehicle treated mice were utilized as controls. In conclusion, these data suggest that even in the presence of cyclosporine A and sirolimus, topical celecoxib treatment can result in reduced inflammation, tumor number and size; properties which may be beneficial in the therapeutic reduction of skin cancer development in solid organ transplant recipients.
Collapse
Affiliation(s)
- Brian C Wulff
- Department of Pathology, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | |
Collapse
|
39
|
Harradine KA, Ridd K, Saunier EF, Clermont FF, Perez-Losada J, Moore DH, Epstein EH, Bastian BC, Akhurst RJ. Elevated cutaneous Smad activation associates with enhanced skin tumor susceptibility in organ transplant recipients. Clin Cancer Res 2009; 15:5101-7. [PMID: 19671862 DOI: 10.1158/1078-0432.ccr-08-3286] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Nonmelanoma skin cancer incidence is enhanced >50-fold in patients taking antirejection drugs (ARD) following organ transplantation. Preclinical studies suggest that ARD treatment increases transforming growth factor-beta1 (TGF-beta1) levels, which contribute to enhanced tumor susceptibility independent of the immunosuppressive effects of ARDs. This study investigates whether TGF-beta signaling is elevated in transplant patients. EXPERIMENTAL DESIGN Immunohistochemical tissue microarray analysis was used to determine the levels of TGF-beta1, TGF-beta2, TGF-beta3, TbetaRII, and activated P-Smad2/3 and P-Smad1/5/8, which are phosphorylated directly by distinct TGF-beta/BMP receptor complexes. We analyzed >200 cutaneous lesions and adjacent nonlesional skin samples from 87 organ transplant recipients, and 184 cutaneous lesions and adjacent skin samples from 184 individuals who had never received ARDs. RESULTS We found significantly higher levels of P-Smad2 in both nonlesional and lesional tissue from transplant recipients compared with those not exposed to ARDs (P < or = 0.001). In contrast, P-Smad1/5/8, a marker of activation of the bone morphogenetic protein signaling pathway, was generally not expressed at higher levels in patients taking ARDs, including analysis of nonlesional skin, actinic keratoses, carcinoma in situ, or squamous cell carcinoma but was differentially expressed between keratoacanthoma from transplant recipients compared with those from non-transplant recipients (P < or = 0.005). CONCLUSIONS Observation of elevated P-Smad2 levels in transplant recipients is consistent with the notion that elevated TGF-beta signaling may contribute to malignancy in organ transplant recipients. Disparate P-Smad1/5/8 expression levels between keratoacanthoma from the two patient groups might reflect the distinct BMP-responsive cell of origin for this hair follicle-derived lesion.
Collapse
Affiliation(s)
- Kelly A Harradine
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, California, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
The development of malignancy in immunosuppressed organ transplant recipients has recently gained increasing attention. Increased awareness of this problem has come from recent data indicating that vascular disease and cancer are the leading causes of death in transplant recipients. Despite the realization of this fact, few efforts have been made to thwart deaths due to cancer in transplant recipients. However, now that many transplant recipients maintain their organ allografts for decades, the risk for cancer is increasing even more, exposing a need for possible solutions. Fundamentally, transplant recipients are at a high risk for cancer because the immunosuppressive drugs used in their treatment regimen suppress immune reactivity against arising cancer cells. Some of these drugs directly impede DNA repair, induce cancer cell aggressiveness, and promote tumor angiogenesis. In situations where cancer has developed in transplant recipients, one potential action is to reduce their daily immunosuppression. In some cases immunosuppression minimization can reduce tumor growth or even result in tumor regression, but the threat of rejection increases substantially. Another possible solution is to move toward mammalian target of rapamycin (mTOR)-based immunosuppression, use of which has been experimentally demonstrated to have both immunosuppressive and potent anticancer effects. Clinical studies are presently underway to test this idea, which could help to alleviate the problem of cancer in transplant recipients. In this overview, the topic of cancer in transplant recipients will be addressed, as well as new approaches to reduce this increasingly recognized problem in transplantation.
Collapse
Affiliation(s)
- E K Geissler
- Department of Surgery, University Hospital Regensburg, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
41
|
What types of cancers are associated with immune suppression in HIV? Lessons from solid organ transplant recipients. Curr Opin HIV AIDS 2009; 4:35-41. [PMID: 19343829 DOI: 10.1097/coh.0b013e328319bcd1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
PURPOSE OF REVIEW To examine recently published evidence of cancer risk after solid organ transplantation to gain insight into cancers that are associated with immune suppression in HIV. RECENT FINDINGS Data from several population-based studies comparing cancer risk in recipients of solid organ transplants with that in the general population have demonstrated increased risk for a broad range of cancers, predominantly those with a known or suspected infectious cause. This increase in risk is independent of cohort aging and probably independent of established behavioral and other risk factors for cancer. Epidemiological risk factor data are limited but appear to indicate a relationship with severity and duration of immune suppression. A recent meta-analysis indicates a striking similarity in the pattern of cancer occurrence in transplant recipients and people with HIV/AIDS. SUMMARY The similarity of the increased risk of cancer in these two immunosuppressed populations, who differ with respect to their underlying conditions and lifestyles, is compelling evidence that these cancers are associated with immune deficiency. The mechanisms are not fully understood but appear to be related to impaired immune surveillance. These data challenge the classification of only a narrow range of cancers as associated with immune suppression in people with HIV/AIDS.
Collapse
|
42
|
Watson A. IN OTHER JOURNALS. Australas J Dermatol 2009. [DOI: 10.1111/j.1440-0960.2009.00522.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
43
|
Dworkin AM, Tober KL, Duncan FJ, Yu L, VanBuskirk AM, Oberyszyn TM, Toland AE. Chromosomal aberrations in UVB-induced tumors of immunosuppressed mice. Genes Chromosomes Cancer 2009; 48:490-501. [PMID: 19296524 DOI: 10.1002/gcc.20657] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In immunocompromised individuals, such as organ transplant recipients, the risk of cutaneous squamous cell carcinoma (SCC) is increased 60-250 fold, and there is an increased likelihood to develop aggressive, metastatic SCC. An understanding of the genes involved in SCC tumorigenesis is critical to prevent SCC-associated morbidity and mortality. Mouse models show that different immunosuppressive drugs lead to SCCs varying in size, number, and malignant potential. In this study, we used mouse models that mimic adult transplant recipients to study the effect of immunosuppressive drugs and UV light on SCC development. UV-induced tumors from six treatment groups, control, tacrolimus (Tac), rapamycin (Rap), cyclosporin (CsA), mycophenolate mofetil (MMF), and Rap plus CsA, were evaluated by array comparative genomic hybridization. Mouse SCCs appear to show similar genomic aberrations as those reported in human SCCs and offer the ability to identify genomic changes associated with specific and combinatorial effects of drugs. Fewer aberrations were seen in tumors of mice treated with MMF or Rap. Tumors from Tac-treated animals showed the highest number of changes. Calcineurin inhibitors (Tac and CsA) did not cluster together by their genomic aberrations, indicating their contribution to UV mediated carcinogenesis may be through different pathways. The combination treatment (Rap plus CsA) did not cluster with either treatment individually, suggesting it may influence SCC tumorigenesis via a different mechanism. Future studies will identify specific genes mapping to regions of aberration that are different between treatment groups to identify target pathways that may be affected by these drugs.
Collapse
Affiliation(s)
- Amy M Dworkin
- Integrated Biomedical Science Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Ulrich C, Kanitakis J, Stockfleth E, Euvrard S. Skin cancer in organ transplant recipients--where do we stand today? Am J Transplant 2008; 8:2192-8. [PMID: 18782290 DOI: 10.1111/j.1600-6143.2008.02386.x] [Citation(s) in RCA: 166] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Skin cancers are the most frequent malignancies in organ transplant recipients (OTR), with 95% being nonmelanoma skin cancers (NMSC), especially squamous (SCC) and basal cell carcinomas. Most OTR with a first SCC subsequently develop multiple NMSC within 5 years, highlighting the concept of 'field cancerization', and are also at high risk for noncutaneous cancers. In order to reduce the tumor burden in these patients, their management requires an interdisciplinary approach including revision of immunosuppression, new dermatological treatments and adequate education about photoprotection in specialized dermatology clinics for OTR. Whereas surgery remains the gold-standard therapy for NMSC, noninvasive methods have shown promising results to treat superficial keratoses and subclinical lesions on large body areas. Although the threshold of skin cancer necessitating revision of immunosuppression is debated, this measure should be envisaged at the occurrence of the first SCC, or in case of multiple non-SCC NMSC. While the role of immunosuppressants in the occurrence of NMSC is widely recognized, the best immunosuppressive strategies remain to be defined. Presently, randomized prospective studies assess the burden of new skin tumors, as well as graft and patient survival, in patients with one or several NMSC after the introduction of mTOR (mammalian target of rapamycin) inhibitors.
Collapse
Affiliation(s)
- C Ulrich
- Department of Dermatology, Charité Universitätsmedizin, Berlin, Germany
| | | | | | | |
Collapse
|
45
|
Fernandez A, Hu S, Kirsner RS. Sirolimus: a potential chemopreventive agent. J Invest Dermatol 2008; 128:2352. [PMID: 18787541 DOI: 10.1038/jid.2008.260] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Anthony Fernandez
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | | | | |
Collapse
|