1
|
Gan L, Shi H, Zhang Y, Sun J, Chen H. Proteomic Screening and Verification of Biomarkers in Different Stages of Mycosis Fungoides: A pilot Study. Front Cell Dev Biol 2021; 9:747017. [PMID: 34966737 PMCID: PMC8711087 DOI: 10.3389/fcell.2021.747017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 11/04/2021] [Indexed: 11/18/2022] Open
Abstract
Mycosis fungoides (MF) is the most common cutaneous T-cell lymphoma; in advanced stages, it can involve multiple organs and has a poor prognosis. Early detection of the disease is still urgent, but there is no optimal therapy for advanced MF. In the present study, quantitative proteomic analyses (label-free quantitation, LFQ) were applied to tissue samples of different stages of MF and tissue samples from controls (eczema patients and healthy donors) to conduct preliminary molecular analysis to clarify the pathogenesis of the disease. Differential protein expression analysis demonstrated that 113 and 305 proteins were associated with the early and advanced stages of MF, respectively. Gene ontology (GO) enrichment analysis was conducted to determine the potential functions of the proteins, which could be classified into three categories: biological process, cellular component, and molecular function. The results revealed that a series of biological processes, including “initiation of DNA replication” and “nucleosome assembly,” were involved in the disease. Moreover, cellular components, including the “desmosome” and “integrin complex,” may affect the invasion and metastasis of MF via molecular functions, including “integrin binding” and “cadherin binding”. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis demonstrated that “focal adhesion DNA replication,” “Toll-like receptor signalling pathway” and other pathways were also involved. A parallel reaction monitoring (PRM) assay was applied to validate the identified differentially expressed proteins. In conclusion, the above proteomic findings may have great diagnostic and prognostic value in diverse malignancies, especially MF. Nevertheless, further studies are still needed to explore the precise mechanisms of MF.
Collapse
Affiliation(s)
- Lu Gan
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Haoze Shi
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Ying Zhang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Jianfang Sun
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Hao Chen
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| |
Collapse
|
2
|
Ni X, Austin M, Langridge T, Bojaxhi P, Bijani P, Wang X, Duvic M. CD209 + monocyte-derived myeloid dendritic cells were increased in patients with leukemic cutaneous T-cell lymphoma undergoing extracorporeal photopheresis via the CELLEX TM system. PHOTODERMATOLOGY PHOTOIMMUNOLOGY & PHOTOMEDICINE 2020; 36:290-298. [PMID: 32187738 DOI: 10.1111/phpp.12552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/21/2020] [Accepted: 03/13/2020] [Indexed: 01/17/2023]
Abstract
BACKGROUND/PURPOSE We previously reported that myeloid dendritic cells (mDC) were increased in patients with leukemic cutaneous T-cell lymphoma (L-CTCL) following extracorporeal photopheresis (ECP) using the Therakos UVAR XTS™ system. We now assessed monocyte-derived mDCs (Mo-DCs) in L-CTCL patients treated with the CELLEXTM photopheresis system. CD209, a transmembrane receptor, was used to define Mo-DCs. METHODS Peripheral blood samples from baseline pre-ECP and at Day 2, 1 month, 3 months, and 6 months post-ECP were analyzed by flow cytometry for Lin- HLA-DR+ CD123+ plasmacytoid dendritic cells (pDCs), Lin- HLA-DR+ CD11c+ mDCs, and CD209+ mDCs. The expression of CD209 mRNA was assessed by real-time PCR. RESULTS At baseline, 7 of 19 patients had lower than normal mDCs, and all patients had lower than normal CD209+ mDCs in peripheral blood mononuclear cells (0.005% in patients, n = 19, vs 0.50% in healthy donors, n = 7, P < .0001). The CD209+ mDC numbers only accounted for 3.28% out of total mDCs in patients compared with 66.51% in healthy donors. After treatment, the CD209+ mDC numbers showed increasing trends in patients. The average absolute numbers of CD209+ mDCs went up by 4.8-fold at 3 months (n = 10, P = .103) and by 6.4-fold at 6 months (n = 9, P = .100). CD209 mRNA expression went up in two patients responsive to therapy, parallel to CD209+ mDC numbers. L-CTCL patients achieved 70% overall clinical response rate (7/10) following ECP therapy with the CELLEXTM system. CONCLUSIONS Our results suggest that the CELLEXTM photopheresis system is effective for treating L-CTCL patients like the UVAR XTS™ system, and in vivo-generated Mo-DCs increase following ECP.
Collapse
Affiliation(s)
- Xiao Ni
- Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael Austin
- Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Timothy Langridge
- Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pierr Bojaxhi
- Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pedram Bijani
- Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaohong Wang
- Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Madeleine Duvic
- Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
3
|
Abstract
Lymphoid malignancies typically promote an infiltrate of immune cells at sites involved by the disease. While some of the immune cells present in lymphoma have effector function, the immune system is unable to eradicate the malignant clone. Therapies that optimize immune function therefore have the potential to improve the outcome of lymphoma patients. In this Review, we discuss immunologic approaches that directly target the malignant cell as well as approaches to optimize both the innate and adaptive immune response to the tumor. While many of these therapies have shown single-agent activity, the future will clearly require thoughtful combinations of these approaches.
Collapse
|
4
|
Abstract
The development of immunotherapies for lymphoma has undergone a revolutionary evolution over the past decades. Since the advent of rituximab as the first successful immunotherapy for B-cell non-Hodgkin lymphoma over two decades ago, a plethora of new immunotherapeutic approaches to treat lymphoma has ensued. Four of the most exciting classes of immunotherapies include: chimeric antigen receptor T-cells, bispecific antibodies, immune checkpoint inhibitors, and vaccines. However, with addition of these novel therapies the appropriate timing of treatment, optimal patient population, duration of therapy, toxicity, and cost must be considered. In this review, we describe the most-promising immunotherapeutic approaches for the treatment of lymphoma in clinical development, specifically focusing on clinical trials performed to date and strategies for improvement.
Collapse
Affiliation(s)
- Benjamin Heyman
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine
| | - Yiping Yang
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine.,Department of Immunology, Duke University, Durham, North Carolina 27710, USA
| |
Collapse
|
5
|
Marron TU, Ronner L, Martin PE, Flowers CR, Brody JD. Vaccine strategies for the treatment of lymphoma: preclinical progress and clinical trial update. Immunotherapy 2017; 8:1335-1346. [PMID: 27993085 DOI: 10.2217/imt-2016-0080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The clonal B-cell immunoglobulin idiotype found on the surface of lymphomas was the first targeted tumor-specific antigen, and combinations of idiotype with classical and novel adjuvants were shown to stimulate robust humoral and cellular responses, though clinical efficacy was more variable. Cellular and in situ vaccination to help target a wider array of tumor-specific antigens have also been able to stimulate tumor-specific cellular responses, though their clinical success has also been limited. Our growing understanding of the role of regulatory cells and the immunosuppressive tumor microenvironment, along with a wide variety of immunomodulatory agents developed as of late, offer promising adjuvants to potentiate the immune responses elicited by these vaccine protocols and to achieve durable remissions.
Collapse
Affiliation(s)
- Thomas U Marron
- Division of Hematology & Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lukas Ronner
- Division of Hematology & Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Peter E Martin
- Division of Hematology & Medical Oncology, Meyer Cancer Center, Weill Cornell Medical College, New York, NY, USA
| | | | - Joshua D Brody
- Division of Hematology & Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
6
|
Zappasodi R, de Braud F, Di Nicola M. Lymphoma Immunotherapy: Current Status. Front Immunol 2015; 6:448. [PMID: 26388871 PMCID: PMC4555084 DOI: 10.3389/fimmu.2015.00448] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 08/17/2015] [Indexed: 11/13/2022] Open
Abstract
The rationale to treat lymphomas with immunotherapy comes from long-standing evidence on their distinctive immune responsiveness. Indolent B-cell non-Hodgkin lymphomas, in particular, establish key interactions with the immune microenvironment to ensure prosurvival signals and prevent antitumor immune activation. However, reports of spontaneous regressions indicate that, under certain circumstances, patients develop therapeutic antitumor immunity. Several immunotherapeutic approaches have been thus developed to boost these effects in all patients. To date, targeting CD20 on malignant B cells with the antibody rituximab has been the most clinically effective strategy. However, relapse and resistance prevent to cure approximately half of B-NHL patients, underscoring the need of more effective therapies. The recognition of B-cell receptor variable regions as B-NHL unique antigens promoted the development of specific vaccines to immunize patients against their own tumor. Despite initial promising results, this strategy has not yet demonstrated a sufficient clinical benefit to reach the regulatory approval. Several novel agents are now available to stimulate immune effector functions or counteract immunosuppressive mechanisms, such as engineered antitumor T cells, co-stimulatory receptor agonist, and immune checkpoint-blocking antibodies. Thus, multiple elements can now be exploited in more effective combinations to break the barriers for the induction of anti-lymphoma immunity.
Collapse
Affiliation(s)
- Roberta Zappasodi
- Ludwig Collaborative and Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center , New York, NY , USA
| | - Filippo de Braud
- Unit of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori , Milan , Italy
| | - Massimo Di Nicola
- Unit of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori , Milan , Italy ; Unit of Immunotherapy and Anticancer Innovative Therapeutics, Fondazione IRCCS Istituto Nazionale dei Tumori , Milan , Italy
| |
Collapse
|
7
|
Allegra A, Russo S, Gerace D, Calabrò L, Maisano V, Innao V, Musolino C. Vaccination strategies in lymphoproliferative disorders: Failures and successes. Leuk Res 2015; 39:1006-19. [PMID: 26298174 DOI: 10.1016/j.leukres.2015.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 08/02/2015] [Accepted: 08/03/2015] [Indexed: 01/24/2023]
Abstract
Anti-tumor vaccines in lymphoproliferative disorders hold out the prospect of effective tumor therapies with minimal side effects. The addition of immunotherapy to old and new chemotherapy regimens has improved both response rates and disease-free survival, leading in many cases to an extended overall survival. Ideally, an antigen that is used for vaccination would be specifically expressed in the tumor; it must have an important, causal part in the multifactorial process that leads to cancer, and it must be expressed stably even after it is attacked by the immune system. Immunotherapies, which aim to activate the immune system to kill cancer cells, include strategies to increase the frequency or potency of antitumor T cells, to overcome suppressive factors in the tumor microenvironment, and to reduce T-cell suppression systemically. In this review, we focus on the results of clinical trials of vaccination in lymphoma, and discuss potential strategies to enhance the efficacy of immunotherapy in the future.
Collapse
Affiliation(s)
- A Allegra
- Division of Hematology, Department of General Surgery, Oncology and Pathological Anatomy, University of Messina, Messina, Italy.
| | - S Russo
- Division of Hematology, Department of General Surgery, Oncology and Pathological Anatomy, University of Messina, Messina, Italy
| | - D Gerace
- Division of Hematology, Department of General Surgery, Oncology and Pathological Anatomy, University of Messina, Messina, Italy
| | - L Calabrò
- Division of Hematology, Department of General Surgery, Oncology and Pathological Anatomy, University of Messina, Messina, Italy
| | - V Maisano
- Division of Hematology, Department of General Surgery, Oncology and Pathological Anatomy, University of Messina, Messina, Italy
| | - V Innao
- Division of Hematology, Department of General Surgery, Oncology and Pathological Anatomy, University of Messina, Messina, Italy
| | - C Musolino
- Division of Hematology, Department of General Surgery, Oncology and Pathological Anatomy, University of Messina, Messina, Italy
| |
Collapse
|
8
|
Barten MJ, Dieterlen MT. Extracorporeal photopheresis after heart transplantation. Immunotherapy 2015; 6:927-44. [PMID: 25313571 DOI: 10.2217/imt.14.69] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The addition of extracorporeal photopheresis (ECP) to a standard immunosuppressive drug therapy after heart transplantation in clinical studies has shown to be beneficial, for example, by reducing acute rejection, allograft vasculopathy or CMV infection. However, the protocols varied considerably, have a predetermined finite number of ECP treatments and adjuvant immunosuppressive regimens used in combination with ECP have differed significantly. Furthermore, there are scarce data to guide which patients should be treated with ECP and when or who would benefit further if ECP were to be continued long term to increase the safety by reducing immunosuppressive drug toxicities without losing efficacy. The knowledge of the tolerance-inducing effects of ECP-like upregulation of regulatory T cells and of dendritic cells may allow to develop a strategy to monitor immunomodulation effects of ECP to further identify ECP responders, the optimal individual ECP schedule and whether ECP therapy can replace or reduce immunosuppressive drug therapy.
Collapse
Affiliation(s)
- Markus J Barten
- University Heart Center Hamburg, Department of Cardiovascular Surgery, Hamburg, Germany
| | | |
Collapse
|
9
|
Shiue LH, Couturier J, Lewis DE, Wei C, Ni X, Duvic M. The effect of extracorporeal photopheresis alone or in combination therapy on circulating CD4(+) Foxp3(+) CD25(-) T cells in patients with leukemic cutaneous T-cell lymphoma. PHOTODERMATOLOGY PHOTOIMMUNOLOGY & PHOTOMEDICINE 2015; 31:184-94. [PMID: 25772268 DOI: 10.1111/phpp.12175] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/08/2015] [Indexed: 01/04/2023]
Abstract
PURPOSE Extracorporeal photopheresis (ECP) alone or in combination therapy is effective for treatment of leukemic cutaneous T-cell lymphoma (L-CTCL), but its mechanism(s) of action remain unclear. This study was designed to investigate the effect of ECP on regulatory T cells and CD8(+) T cells in L-CTCL patients. EXPERIMENTAL DESIGN Peripheral blood from 18 L-CTCL patients at baseline, Day 2, 1 month, 3 month, and 6 month post-ECP therapy was analyzed by flow cytometry for CD4(+) CD25(+/high) , CD4(+) Foxp3(+) CD25(+/-) , CD3(+) CD8(+) , CD3(+) CD8(+) CD69(+) , and CD3(+) CD8(+) IFN-γ(+) T cells. Clinical responses were assessed and correlated with changes in these T-cell subsets. RESULTS Twelve of 18 patients achieved clinical responses. The average baseline number of CD4(+) CD25(+/high) T cells of PBMCs in L-CTCL patients was normal (2.2%), but increased at 6-month post-therapy (4.3%, P < 0.01). The average baseline number of CD4(+) Foxp3(+) T cells out of CD4(+) T cells in nine evaluable patients was high (66.8 ± 13.7%), mostly CD25 negative. The levels of CD4(+) Foxp3(+) T cells in responders were higher (n = 6, 93.1 ± 5.7%) than nonresponders (n = 3, 14.2 ± 16.0%, P < 0.01), and they declined in parallel with malignant T cells. The numbers of CD3(+) CD8(+) CD69(+) and CD3(+) CD8(+) IFN-γ(+) T cells increased at 3-month post-therapy in five of six patients studied. CONCLUSIONS Extracorporeal photopheresis alone or in combination therapy might be effective in L-CTCL patients whose malignant T cells have a CD4(+) Foxp3(+) CD25(-) phenotype.
Collapse
Affiliation(s)
- Lisa H Shiue
- Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Graduate Program in Immunology, Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jacob Couturier
- Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA.,Graduate Program in Virology, Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Dorothy E Lewis
- Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA.,Graduate Program in Virology, Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Caimiao Wei
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiao Ni
- Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Graduate Program in Immunology, Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Madeleine Duvic
- Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Graduate Program in Immunology, Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
10
|
Ni X, Langridge T, Duvic M. Depletion of regulatory T cells by targeting CC chemokine receptor type 4 with mogamulizumab. Oncoimmunology 2015; 4:e1011524. [PMID: 26140234 DOI: 10.1080/2162402x.2015.1011524] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Revised: 01/20/2015] [Accepted: 01/21/2015] [Indexed: 10/23/2022] Open
Abstract
The CC chemokine receptor 4 (CCR4) is highly expressed on type 2 helper T cells and regulatory T (Treg) cells. Mogamulizumab, an anti-CCR4 antibody, reduces the numbers of CCR4+ malignant T cells and CCR4+ Treg cells in cutaneous T-cell lymphoma. Depleting Treg cells by targeting CCR4 has great potential in cancer immunotherapies.
Collapse
Affiliation(s)
- Xiao Ni
- Department of Dermatology; The University of Texas MD Anderson Cancer Center ; Houston, TX USA
| | - Timothy Langridge
- Department of Dermatology; The University of Texas MD Anderson Cancer Center ; Houston, TX USA
| | - Madeleine Duvic
- Department of Dermatology; The University of Texas MD Anderson Cancer Center ; Houston, TX USA
| |
Collapse
|
11
|
Ni X, Jorgensen JL, Goswami M, Challagundla P, Decker WK, Kim YH, Duvic MA. Reduction of Regulatory T Cells by Mogamulizumab, a Defucosylated Anti-CC Chemokine Receptor 4 Antibody, in Patients with Aggressive/Refractory Mycosis Fungoides and Sézary Syndrome. Clin Cancer Res 2014; 21:274-85. [DOI: 10.1158/1078-0432.ccr-14-0830] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Dulmage BO, Geskin LJ. Lessons learned from gene expression profiling of cutaneous T-cell lymphoma. Br J Dermatol 2014; 169:1188-97. [PMID: 23937674 DOI: 10.1111/bjd.12578] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2013] [Indexed: 12/14/2022]
Abstract
Gene expression studies of cutaneous T-cell lymphoma (CTCL) span a decade, yet the pathogenesis is poorly understood and diagnosis remains a challenge. This review examines the varied approaches to gene expression analysis of CTCL, with emphasis on cell populations, control selection and expression data collection. Despite discordant results, several dysregulated genes have been identified across multiple studies, including PLS3, KIR3DL2, TWIST1 and STAT4. Here, we provide an overview of the most consistently expressed genes across different studies and bring them together through common pathways biologically relevant to CTCL. Four pathways - evasion of activation-induced cell death, T helper 2 lymphocyte differentiation, transforming growth factor-β receptor expression, and tumour necrosis factor receptor ligands - appear to encompass the most frequently affected genes, hypothetically providing insight into the disease pathogenesis.
Collapse
Affiliation(s)
- B O Dulmage
- Department of Dermatology, University of Pittsburgh, 200 Lothrop St, Pittsburgh, PA, 15213, U.S.A
| | | |
Collapse
|
13
|
Merindol N, Riquet A, Szablewski V, Eliaou JF, Puisieux A, Bonnefoy N. The emerging role of Twist proteins in hematopoietic cells and hematological malignancies. Blood Cancer J 2014; 4:e206. [PMID: 24769647 PMCID: PMC4003416 DOI: 10.1038/bcj.2014.22] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 03/17/2014] [Indexed: 02/03/2023] Open
Abstract
Twist1 and Twist2 (Twist1–2) are two transcription factors, members of the basic helix-loop-helix family, that have been well established as master transcriptional regulators of embryogenesis and developmental programs of mesenchymal cell lineages. Their role in oncogenesis in epithelium-derived cancer and in epithelial-to-mesenchymal transition has also been thoroughly characterized. Recently, emerging evidence also suggests a key role for Twist1–2 in the function and development of hematopoietic cells, as well as in survival and development of numerous hematological malignancies. In this review, we summarize the latest data that depict the role of Twist1–2 in monocytes, T cells and B lymphocyte activation, and in associated hematological malignancies.
Collapse
Affiliation(s)
- N Merindol
- Université de Lyon and INSERM U1111, Lyon, France
| | - A Riquet
- Université de Lyon and INSERM U1111, Lyon, France
| | - V Szablewski
- 1] IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U896, Université Montpellier 1, Montpellier, France [2] Département de Biopathologie, Centre Hospitalier Régional Universitaire de Montpellier et Faculté de Médecine, Université Montpellier 1, Montpellier, France
| | - J-F Eliaou
- 1] IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U896, Université Montpellier 1, Montpellier, France [2] Département d'Immunologie, Centre Hospitalier Régional Universitaire de Montpellier et Faculté de Médecine, Université Montpellier 1, Montpellier, France
| | - A Puisieux
- Centre de Receherche en Cancérologie de Lyon, INSERM UMR-S1052, Centre Léon Bérard, Lyon, France
| | - N Bonnefoy
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U896, Université Montpellier 1, Montpellier, France
| |
Collapse
|
14
|
Decker WK, Safdar A. Dendritic cell vaccines for the immunocompromised patient: prevention of influenza virus infection. Expert Rev Vaccines 2014; 9:721-30. [DOI: 10.1586/erv.10.68] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
15
|
Shiue LH, Ni X, Prieto VG, Jorgensen JL, Curry JL, Goswami M, Sweeney SA, Duvic M. A case of invisible leukemic cutaneous T cell lymphoma with a regulatory T cell clone. Int J Dermatol 2013; 52:1111-4. [PMID: 22257096 DOI: 10.1111/j.1365-4632.2011.05351.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Lisa H Shiue
- Department of Dermatology, University of Texas Health Science Center, Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Augmentation of blood dendritic cells by extracorporeal photopheresis in patients with leukemic cutaneous T-cell lymphoma and graft-versus-host disease. J Invest Dermatol 2013; 133:2098-100. [PMID: 23519332 DOI: 10.1038/jid.2013.142] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
17
|
Palomba ML. Active immunotherapy: current state of the art in vaccine approaches for NHL. Curr Oncol Rep 2013; 14:433-40. [PMID: 22843515 DOI: 10.1007/s11912-012-0255-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Immune therapy of cancer is a rapidly evolving field, with long-deserved successes now finally achieved. As new pathways triggered by the immune synapsis are elucidated, and new molecules responsible for immune checkpoints are being discovered, it is becoming clear that vaccination against a single antigen aided by non-specific immune stimulation is not sufficient for an efficient, long term, immune response. Though lymphoma is a highly curable malignancy, there is still a subset of patients that is at very high risk of disease relapse even after successfully completing chemotherapy or a stem cell transplant. Patients with minimal residual disease are particularly suitable for vaccination. Over the past 3 decades, the classic model of lymphoma-specific idiotype vaccine has evolved and recent data on vaccination with nonspecific oligodeoxynucleotides has provided very encouraging results. Furthermore, the introduction of checkpoint blockade via agonist or antagonist monoclonal antibodies holds the promise of significant improvement in the efficacy of future vaccines. What follows is a brief summary of the historical highlights in lymphoma immunotherapy as well as an update on the most recently published clinical trials and a look at future developments.
Collapse
Affiliation(s)
- M Lia Palomba
- Lymphoma Service, Memorial Sloan-Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
18
|
Goswami M, Duvic M, Dougherty A, Ni X. Increased Twist expression in advanced stage of mycosis fungoides and Sézary syndrome. J Cutan Pathol 2012; 39:500-7. [PMID: 22515221 DOI: 10.1111/j.1600-0560.2012.01883.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND The mechanisms of tumor progression in mycosis fungoides (MF) and Sézary syndrome (SS) are poorly understood. Twist, a transcription factor, is thought to promote solid tumor progression by blocking p53 and inhibiting c-myc-induced apoptosis. Whether Twist expression is correlated to MF/SS stages remains unknown. METHODS Twist, c-myc and p53 proteins in 68 MF/SS lesions across all T stages were examined by immunohistochemistry, and mRNA levels in peripheral blood CD4+ T-cells from SS patients were measured by real-time quantitative polymerase chain reaction. RESULTS Positive staining for Twist was found in 12.5% (2/16) of T1 and 33.3% (7/21) of T2 early stage patches/plaques compared to 50.0% (9/18) of T3 tumors and 84.6% (11/13) of T4 erythroderma. Most T4 erythroderma were positive for Twist in dermal lymphocytes, with the strongest staining. Positive staining for c-myc was higher in T3/T4 lesions (29/31, 93.5%) than T1/T2 lesions (25/37, 67.6%, p < 0.05), with strongest staining in T3 tumors. Aberrant p53 expression was more common in T3/T4 lesions (8/31, 25.8%) than in T1/T2 lesions (2/37, 5.4%, p < 0.05). Twist mRNA was detected in all CD4+ T cells from SS patients but not in normal donors. CONCLUSIONS Increased Twist protein expression in advanced MF/SS lesions suggests that Twist expression may correlate with MF/SS stages.
Collapse
Affiliation(s)
- Meghali Goswami
- Department of Dermatology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | |
Collapse
|
19
|
Yu Z, Qian J, Wu J, Gao J, Zhang M. Allogeneic mRNA-based electrotransfection of autologous dendritic cells and specific antitumor effects against osteosarcoma in rats. Med Oncol 2012; 29:3440-8. [PMID: 22843292 DOI: 10.1007/s12032-012-0312-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 07/16/2012] [Indexed: 10/28/2022]
Abstract
Vaccination with dendritic cells (DCs) transfected with tumor-derived mRNA antigen has emerged as a promising strategy for generating protective immunity in mammals. However, the integration of allogeneic osteosarcoma mRNA and autologous DCs has not been fully examined. This study was designed to investigate the antitumor effects of tumor vaccine produced by autologous DCs transfected of allogeneic osteosarcoma mRNA through electroporation in tumor-bearing rats model. In the present study, extraction of Wistar rat tumor mRNA was performed as a two-step procedure. First, total RNA was extracted by use of Trizol; then, mRNA purification was performed by use of polyT-coated magnetic beads. Then, we transfected the allogeneic-derived tumor mRNA to Sprague-Dawley (SD) rat bone marrow-derived DCs through electroporation. The tumor vaccine was applied to tumor-bearing rats model, and the specific antitumor effects of the tumor vaccine were observed. The immunization using autologous DCs electrotransfected with allogeneic osteosarcoma total RNA induced specific CTL responses, which were statistically significant (P < 0.05), and the cytotoxic activity was confirmed in cold target inhibition assays and using mAbs blocking MHC class I molecules. In in vivo experiments, 70 % of the rats immunized with allogeneic osteosarcoma RNA transfected to DCs were typically able to reject tumor challenge and remained tumor-free. Vaccinated survivors developed long immunological memory and were able to reject a subsequent rechallenge with the same tumor cells but not a syngeneic unrelated tumor line. In the present study, we demonstrated that allogeneic tumor mRNA isolated from rat osteosarcoma cell line could be applied to produce tumor vaccine inducing specific antitumor effects, especially in DC-based immunotherapy strategy. This study also provides the foundations for an effective and broadly applicable treatment to a wide range of cancer indications for which tumor-associated antigens have not been identified.
Collapse
Affiliation(s)
- Zhe Yu
- Center of Orthopedic Surgery, Orthopedics Oncology Institute of Chinese PLA, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi, People's Republic of China.
| | | | | | | | | |
Collapse
|
20
|
Zhang J, Wang P, Wu F, Li M, Sharon D, Ingham RJ, Hitt M, McMullen TP, Lai R. Aberrant expression of the transcriptional factor Twist1 promotes invasiveness in ALK-positive anaplastic large cell lymphoma. Cell Signal 2012; 24:852-8. [DOI: 10.1016/j.cellsig.2011.11.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 11/14/2011] [Accepted: 11/24/2011] [Indexed: 10/14/2022]
|
21
|
Yoo C, Hong YS, Cho BK, Kim SH, Shim SI, Kang CS. Distribution of Dendritic Cells and Regulatory T-Cells in Cutaneous Lymphomas. KOREAN JOURNAL OF PATHOLOGY 2010. [DOI: 10.4132/koreanjpathol.2010.44.6.581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Changyoung Yoo
- Department of Hospital Pathology, St. Vincent's Hospital, Suwon, Korea
| | - Young Seon Hong
- Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Baik Kee Cho
- Department of Dermatology, Yeouido St. Mary's Hospital, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Sang Ho Kim
- Department of Pathology, Songeui Campus, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Sang In Shim
- Department of Hospital Pathology, Yeouido St. Mary's Hospital, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Chang Suk Kang
- Department of Hospital Pathology, Yeouido St. Mary's Hospital, The Catholic University of Korea College of Medicine, Seoul, Korea
| |
Collapse
|