1
|
Maded ZK, Lassoued MA, Taqa GAA, Fawzi HA, Abdulqader AA, Jabir MS, Mahal RK, Sfar S. Topical Application of Dipyridamole and Roflumilast Combination Nanoparticles Loaded Nanoemulgel for the Treatment of Psoriasis in Rats. Int J Nanomedicine 2024; 19:13113-13134. [PMID: 39679247 PMCID: PMC11638079 DOI: 10.2147/ijn.s492180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/26/2024] [Indexed: 12/17/2024] Open
Abstract
Background Phosphodiesterase-4 is an enzyme that regulates immune responses and contributes to the development of psoriasis. Dipyridamole and roflumilast function as phosphodiesterase-4 inhibitors, reducing pro-inflammatory cytokine expression. The aim was to evaluate the anti-psoriatic effect of the topical administration of dipyridamole and roflumilast nanoemulgel combination on imiquimod-induced psoriasiform skin inflammation in rats. Methods Dipyridamole and roflumilast were formulated into nanoemulgel to enhance skin penetration and retention. The production of nanoemulgels involves a two-part process. A nanoemulsion is created (the aqueous phase titration method was employed to create nanoemulsions), which is then incorporated into the gelling agent during the second phase. The new formula was then tested in rats. The rats were divided into seven groups; all animals were treated for 16 days. Induction was achieved by 120 mg of 5% imiquimod cream, which was applied daily for 8 days. After induction, groups received one of the following: 0.05% clobetasol ointment, 1% dipyridamole nanoemulgel (D-NEG), 0.3% roflumilast nanoemulgel (R-NEG), 1% dipyridamole and 0.3% roflumilast gel combination (DR-gel), and 1% dipyridamole and 0.3% roflumilast nanoemulgel combination (DR-NEG). At the end of the experiment, all animals were euthanized, and their blood and skin tissue samples were obtained. Inflammatory markers, immunohistochemistry, and histopathology were measured. Results The DR-NEG group showed significantly lower levels of IL17, IL23, and TNF-α, while TGF-β showed higher levels than the clobetasol group. The expression of CK16 was significantly lower compared to the clobetasol group. DR-NEG showed a significantly lower PASI and Baker score than the clobetasol group. Conclusion The new DR-NEG's topical combination administration showed better anti-inflammatory, tissue healing, and anti-psoriatic activity than each drug alone or topical clobetasol administration; this could be attributed to the possible synergic effects of both drugs and the enhanced skin penetration offered by the nanoemulgel formulation.
Collapse
Affiliation(s)
- Zeyad Khalaf Maded
- Laboratory of Pharmaceutical, Chemical, and Pharmacological Drug Development LR12ES09, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Mohamed Ali Lassoued
- Laboratory of Pharmaceutical, Chemical, and Pharmacological Drug Development LR12ES09, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Ghada Abd Alrhman Taqa
- Department of Dental Basic Sciences, College of Dentistry, University of Mosul, Mosul, Iraq
| | | | | | - Majid S Jabir
- Department of Applied Science, University of Technology, Baghdad, Iraq
| | - Raffah Khamis Mahal
- Department of Pharmaceutics, College of Pharmacy, The University of Mashreq, Baghdad, 10023, Iraq
| | - Souad Sfar
- Laboratory of Chemical, Galenic and Pharmacological Development of Medicines (LR12ES09), Faculty of Pharmacy of Monastir, University of Monastir, Monastir, Tunisia
| |
Collapse
|
2
|
Sun J, Yuan H, Yu Y, Li A, Zhao Z, Tang Y, Zheng F. Immunomodulatory potential of primary cilia in the skin. Front Immunol 2024; 15:1456875. [PMID: 39676858 PMCID: PMC11638010 DOI: 10.3389/fimmu.2024.1456875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 11/15/2024] [Indexed: 12/17/2024] Open
Abstract
Primary cilia (PC) are essential signaling hubs for proper epithelial formation and the maintenance of skin homeostasis. Found on most cells in the human body, including skin cells, PC facilitate signal transduction that allows ciliated cells to interact with the immune system via multiple pathways, helping to maintain immune system homeostasis. PC can be altered by various microenvironmental stimuli to develop corresponding regulatory functions. Both PC and ciliary signaling pathways have been shown to be involved in the immune processes of various skin lesions. However, the mechanisms by which PC regulate cellular functions and maintain immune homeostasis in tissues are highly complex, and our understanding of them in the skin remains limited. In this paper, we discuss key ciliary signaling pathways and ciliated cells in the skin, with a focus on their immunomodulatory functions. We have compiled evidence from various cells, tissues and disease models to help explore the potential immunomodulatory effects of PC in the skin and their molecular mechanisms.
Collapse
Affiliation(s)
- Jingwei Sun
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Huimin Yuan
- Department of Dermatology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Yanru Yu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Aorou Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zihe Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yang Tang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Fengjie Zheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
3
|
Daga N, Servaas NH, Kisand K, Moonen D, Arnold C, Reyes-Palomares A, Kaleviste E, Kingo K, Kuuse R, Ulst K, Steinmetz L, Peterson P, Nakic N, Zaugg JB. Integration of genetic and chromatin modification data pinpoints autoimmune-specific remodeling of enhancer landscape in CD4 + T cells. Cell Rep 2024; 43:114810. [PMID: 39388354 DOI: 10.1016/j.celrep.2024.114810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 07/16/2024] [Accepted: 09/16/2024] [Indexed: 10/12/2024] Open
Abstract
CD4+ T cells play a crucial role in adaptive immune responses and have been implicated in the pathogenesis of autoimmune diseases (ADs). Despite numerous studies, the molecular mechanisms underlying T cell dysregulation in ADs remain incompletely understood. Here, we used chromatin immunoprecipitation (ChIP)-sequencing of active chromatin and transcriptomic data from CD4+ T cells of healthy donors and patients with systemic lupus erythematosus (SLE), psoriasis, juvenile idiopathic arthritis (JIA), and Graves' disease to investigate the role of enhancers in AD pathogenesis. By generating enhancer-based gene regulatory networks (eGRNs), we identified disease-specific dysregulated pathways and potential downstream target genes of enhancers harboring AD-associated single-nucleotide polymorphisms (SNPs), which we also validated using chromatin-capture (HiC) data and CRISPR interference (CRISPRi) in primary CD4+ T cells. Our results suggest that alterations in the regulatory landscapes of CD4+ T cells, including enhancers, contribute to the development of ADs and provide a basis for developing new therapeutic approaches.
Collapse
Affiliation(s)
- Neha Daga
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Nila H Servaas
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Kai Kisand
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Dewi Moonen
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Christian Arnold
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Armando Reyes-Palomares
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Epp Kaleviste
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Külli Kingo
- Department of Dermatology and Venerology, Faculty of Medicine, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia and Dermatology Clinic, Tartu University Hospital, Tartu, Estonia
| | - Reet Kuuse
- Department of Internal Medicine, Tartu University Hospital, Tartu, Estonia
| | - Katrin Ulst
- Department of Internal Medicine, Tartu University Hospital, Tartu, Estonia
| | - Lars Steinmetz
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany; Department of Genetics, Stanford University, Stanford, CA, USA
| | - Pärt Peterson
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Nikolina Nakic
- Functional Genomics, Medicinal Science and Technology, GSK R&D, Stevenage, UK
| | - Judith B Zaugg
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
| |
Collapse
|
4
|
Li CC, Lin CC, Lee CY, Sheu ML, Tsai YC, Tsai CY, Wu HT, Wu RJ, Lai DW. Therapeutic Effect of Lecigel, Cetiol ®CC, Activonol-6, Activonol-M, 1,3-Propanediol, Soline, and Fucocert ® (LCAA-PSF) Treatment on Imiquimod-Induced Psoriasis-like Skin in Mice. Int J Mol Sci 2024; 25:7720. [PMID: 39062965 PMCID: PMC11276952 DOI: 10.3390/ijms25147720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
The individual ingredients of 1,3-Propanediol, Soline, and Fucocert® (PSF) are often used as cosmetic formulations in skin care. In addition, the mixture of Lecigel, Cetiol®CC, Activonol-6, and Activonol-M (LCAA) is often used as a cosmetic base. However, whether the combination of LCAA with PSF (LCAA-PSF) exerts a therapeutic effect on psoriasis remains unclear. In this study, mice induced with imiquimod (IMQ) were divided into three groups and administered 100 mg/day of LCAA, 100 mg/day of LCAA-PSF, or Vaseline on the dorsal skin of each mouse. Weight-matched mice treated with Vaseline alone were used as controls. Hematoxylin and eosin (H&E) staining and enzyme-linked immunosorbent assay(ELISA) were used to assess tissue morphology and inflammatory cytokines. RNA sequencing analysis was used to predict the mechanism underlying the action of LCAA-PSF against psoriasis, while immunohistochemical analysis validation was used to identify pertinent molecular pathways. The results demonstrated that LCAA-PSF alleviated IMQ-induced keratinocyte differentiation/ proliferation bydecreasingthe serum levels of inflammatory cytokines such as IL-6, TNF-α, IL-23, and IL-17A and the epidermisof TGFβ, Ki67, CK5/6, and VEGF expression, which is associated with angiogenesis and keratinocyte differentiation/ proliferation. These findings highlight the antipsoriatic activity of LCAA-PSF in a psoriasis-like mouse model and suggest this may occurvia the inhibition of inflammatory factor secretionand the TGFβ-related signal pathway.
Collapse
Affiliation(s)
- Chih-Ching Li
- Department of Applied Chemistry, Providence University, 200, Sec. 7, Taiwan Boulevard, Shalu Dist., Taichung 43301, Taiwan;
- Department of Pediatrics, Chang Bing Show Chwan Memorial Hospital, No. 6, Lugong Rd. Lugang Township, Changhua 505029, Taiwan;
| | - Chih-Chien Lin
- Department of Cosmetic Science, Providence University, 200, Sec. 7, Taiwan Boulevard, Shalu Dist., Taichung 43301, Taiwan;
| | - Chun-Yi Lee
- Department of Pediatrics, Chang Bing Show Chwan Memorial Hospital, No. 6, Lugong Rd. Lugang Township, Changhua 505029, Taiwan;
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 40227, Taiwan
| | - Meei-Ling Sheu
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 40227, Taiwan;
- Department of Medical Research, Taichung Veterans General Hospital, Taichung 40210, Taiwan
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 40227, Taiwan
| | - Yi-Ching Tsai
- Immunomedicine Group, Department of Molecular Biology and Cell Research, Chang Bing Show Chwan Memorial Hospital, Changhua 505029, Taiwan;
| | - Chia-Yun Tsai
- Experimental Animal Center, Department of Molecular Biology and Cell Research, Chang Bing Show Chwan Memorial Hospital, Changhua 505029, Taiwan; (C.-Y.T.); (H.-T.W.)
| | - Hao-Ting Wu
- Experimental Animal Center, Department of Molecular Biology and Cell Research, Chang Bing Show Chwan Memorial Hospital, Changhua 505029, Taiwan; (C.-Y.T.); (H.-T.W.)
| | - Ren-Jang Wu
- Department of Applied Chemistry, Providence University, 200, Sec. 7, Taiwan Boulevard, Shalu Dist., Taichung 43301, Taiwan;
| | - De-Wei Lai
- Department of Medical Research, Taichung Veterans General Hospital, Taichung 40210, Taiwan
- Experimental Animal Center, Department of Molecular Biology and Cell Research, Chang Bing Show Chwan Memorial Hospital, Changhua 505029, Taiwan; (C.-Y.T.); (H.-T.W.)
- Department of Pharmacy and Master Program, Tajen University, Pingtung 907101, Taiwan
| |
Collapse
|
5
|
Lin ZC, Hung CF, Aljuffali IA, Lin MH, Fang JY. RNA-Based Antipsoriatic Gene Therapy: An Updated Review Focusing on Evidence from Animal Models. Drug Des Devel Ther 2024; 18:1277-1296. [PMID: 38681207 PMCID: PMC11055533 DOI: 10.2147/dddt.s447780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/07/2024] [Indexed: 05/01/2024] Open
Abstract
Psoriasis presents as a complex genetic skin disorder, characterized by the interaction between infiltrated immune cells and keratinocytes. Substantial progress has been made in understanding the molecular mechanisms of both coding and non-coding genes, which has positively impacted clinical treatment approaches. Despite extensive research into the genetic aspects of psoriasis pathogenesis, fully grasping its epigenetic component remains a challenging endeavor. In response to the pressing demand for innovative treatments to alleviate inflammatory skin disorders, various novel strategies are under consideration. These include gene therapy employing antisense nucleotides, silencing RNA complexes, stem cell therapy, and antibody-based therapy. There is a pressing requirement for a psoriasis-like animal model that replicates human psoriasis to facilitate early preclinical evaluations of these novel treatments. The authors conduct a comprehensive review of various gene therapy in different psoriasis-like animal models utilized in psoriasis research. The animals included in the list underwent skin treatments such as imiquimod application, as well as genetic and biologic injections, and the results of these interventions are detailed. Animal models play a crucial role in translating drug discoveries from the laboratory to clinical practice, and these models aid in improving the reproducibility and clinical applicability of preclinical data. Numerous animal models with characteristics similar to those of human psoriasis have proven to be useful in understanding the development of psoriasis. In this review, the article focuses on RNA-based gene therapy exploration in different types of psoriasis-like animal models to improve the treatment of psoriasis.
Collapse
Affiliation(s)
- Zih-Chan Lin
- Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi, Chiayi, Taiwan
| | - Chi-Feng Hung
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
- Program in Pharmaceutical Biotechnology, Fu Jen Catholic University, New Taipei City, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ibrahim A Aljuffali
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ming-Hsien Lin
- Department of Dermatology, Chi Mei Medical Center, Tainan, Taiwan
| | - Jia-You Fang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan
- Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan
- Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan
| |
Collapse
|
6
|
Salman HR, Alzubaidy AA, Abbas AH, Mohammad HA. Attenuated effects of topical vinpocetine in an imiquimod-induced mouse model of psoriasis. J Taibah Univ Med Sci 2024; 19:35-53. [PMID: 37868105 PMCID: PMC10585306 DOI: 10.1016/j.jtumed.2023.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 08/11/2023] [Accepted: 09/09/2023] [Indexed: 10/24/2023] Open
Abstract
Psoriasis is an uncontrolled, long-lasting inflammatory dermatosis distinguished by thickened, erythematous, and flaky skin lesions. Massive amounts of inflammatory cytokines are produced when immune system imbalances are driven by genetic and environmental triggers. Vinpocetine (VNP), a man-made analogue of the compound vincamine found in the dwarf periwinkle herb, has robust anti-inflammatory, immunomodulatory, and anti-oxidative effects; alleviates the epidermal penetration of immune cells, such as eosinophils and neutrophils; and abolishes the generation of pro-inflammatory molecules. Objective This study was aimed at exploring the effects of long-term topical VNP, both alone and co-administered with clobetasol propionate, in an imiquimod-induced mouse model of psoriasiform dermatitis. Methods The study protocol consisted of 48 Swiss albino mice, randomly divided into six groups of eight mice each. In group I, petroleum jelly was administered daily for 8 days. In group II, imiquimod was administered topically at 62.5 mg daily for 8 days. In groups III, VI, V, and VI, 0.05% clobetasol propionate, 1% VNP, 3% VNP, and 3% VNP plus 0.05% clobetasol were administered topically for an additional 8 days after the induction, thus resulting in a total trial length of 16 days. Results Topical VNP at various doses alleviated the severity of imiquimod-induced psoriatic lesions-including erythema, silvery-white scaling, and thickening-and reversed the histopathological abnormalities. Moreover, imiquimod-exposed animals treated with VNP showed markedly diminished concentrations of inflammatory biomarkers, including tumour necrosis factor-α, interleukin (IL)-8, IL-17A, IL-23, IL-37, nuclear factor-kappa B (NF-κB), and transforming growth factor-β1. Conclusion This research provides new evidence that VNP, alone and in combination with clobetasol, may serve as a potential adjuvant for long-term management of autoimmune and autoinflammatory skin diseases, particularly psoriasis, by attenuating psoriatic lesion severity, suppressing cytokine generation, and limiting NF-κB-mediated inflammation.
Collapse
Affiliation(s)
- Hayder R. Salman
- Al-Mustaqbal University, College of Pharmacy, Department of Pharmacology, Hillah, Babylon, Iraq
- Al-Nahrain University, College of Medicine, Department of Pharmacology, Baghdad, Iraq
| | - Adeeb A. Alzubaidy
- University of Warith Al-Anbiyaa, College of Medicine, Department of Pharmacology, Karbala, Iraq
| | - Alaa H. Abbas
- Al-Nahrain University, College of Medicine, Department of Pharmacology, Baghdad, Iraq
| | - Hussein A. Mohammad
- University of Al-Qadisiyah, College of Pharmacy, Department of Pharmaceutics, Al Diwaniya, Al-Qadisiyah Province, Iraq
| |
Collapse
|
7
|
Boonpethkaew S, Meephansan J, Ponnikorn S, Jumlongpim O, Juntongjin P, Chakkavittumrong P, Wongpiyabovorn J, Morita A, Komine M. Exploring the role of growth factors as potential regulators in psoriatic plaque formation. Exp Dermatol 2023; 32:1924-1934. [PMID: 37665186 DOI: 10.1111/exd.14918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/05/2023]
Abstract
Psoriasis is a chronic inflammatory skin disease in which growth activity is more prominent than inflammatory activity at the centre of lesional skin (CE skin). This growth activity is partly influenced by growth factors (GFs) that play an important role in cell growth and inflammation during the plaque development. In this study, we identified potential GFs in CE skin and predicted their regulatory functions and biological activity in mediating transcripts in the plaques. Samples of uninvolved skin (UN skin) and CE skin were biopsied from patients with psoriasis vulgaris for RNA-sequencing analysis in order to identify differentially expressed genes (DEGs). Our finding revealed that epidermal growth factor (EGF), fibroblast growth factor (FGF), platelet-derived growth factor (PDGF) and hepatocyte growth factor (HGF) signalling were enriched by CE/UN skin-derived DEGs. Additionally, several EGFR ligands, namely EGF, heparin-binding EGF like growth factor (HB-EGF), amphiregulin (AREG) and transforming growth factor (TGF)-α, as well as TGF-β1, TGF-β2, vascular endothelial growth factor-A, FGFs, PDGF-B and HGF, were predicted to be GF regulators. The regulatory pattern and biological activity of these GF regulators on mediating the CE/UN skin-derived DEGs was demonstrated. This study provides a novel hypothesis regarding the overall regulatory function of GFs, which appear to modulate the expression of the transcripts involved in inflammation and growth in the CE skin. In addition, some GFs may exert anti-inflammatory effects. Further investigations on the mechanisms underlying this regulation may contribute to a deeper understanding of psoriasis and the identification of potential therapeutic targets for patients with psoriasis.
Collapse
Affiliation(s)
- Suphagan Boonpethkaew
- Division of Dermatology, Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, Thailand
- Thammasat University, Chonburi, Thailand
| | - Jitlada Meephansan
- Division of Dermatology, Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, Thailand
| | - Saranyoo Ponnikorn
- Division of Dermatology, Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, Thailand
- Thammasat University, Chonburi, Thailand
| | - Onjira Jumlongpim
- Division of Dermatology, Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, Thailand
| | - Premjit Juntongjin
- Division of Dermatology, Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, Thailand
| | - Panlop Chakkavittumrong
- Division of Dermatology, Department of Internal Medicine, Thammasat University, Pathum Thani, Thailand
| | - Jongkonnee Wongpiyabovorn
- Center of Excellence in Immunology and Immune-Mediated Disease, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Akimichi Morita
- Department of Geriatric and Environmental Dermatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Mayumi Komine
- Department of Dermatology, Jichi Medical University, Tochigi, Japan
| |
Collapse
|
8
|
Jiang X, Shi R, Ma R, Tang X, Gong Y, Yu Z, Shi Y. The role of microRNA in psoriasis: A review. Exp Dermatol 2023; 32:1598-1612. [PMID: 37382420 DOI: 10.1111/exd.14871] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/23/2023] [Accepted: 06/19/2023] [Indexed: 06/30/2023]
Abstract
Psoriasis is a chronic immune-mediated inflammatory skin disease that involves a complex interplay between infiltrated immune cells and keratinocytes. Great progress has been made in the research on the molecular mechanism of coding and non-coding genes, which has helped in clinical treatment. However, our understanding of this complex disease is far from clear. MicroRNAs (miRNAs) are small non-coding RNA molecules that are involved in post-transcriptional regulation, characterised by their role in mediating gene silencing. Recent studies on miRNAs have revealed their important role in the pathogenesis of psoriasis. We reviewed the current advances in the study of miRNAs in psoriasis; the existing research has found that dysregulated miRNAs in psoriasis notably affect keratinocyte proliferation and/or differentiation processes, as well as inflammation progress. In addition, miRNAs also influence the function of immune cells in psoriasis, including CD4+ T cells, dendritic cells, Langerhans cells and so on. In addition, we discuss possible miRNA-based therapy for psoriasis, such as the topical delivery of exogenous miRNAs, miRNA antagonists and miRNA mimics. Our review highlights the potential role of miRNAs in the pathogenesis of psoriasis, and we expect more research progress with miRNAs in the future, which will help us understand this complex skin disease more accurately.
Collapse
Affiliation(s)
- Xingyu Jiang
- Department of Dermatology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Dermatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Psoriasis, Tongji University School of Medicine, Shanghai, China
| | - Rongcan Shi
- Department of Dermatology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Dermatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Psoriasis, Tongji University School of Medicine, Shanghai, China
| | - Rui Ma
- Department of Dermatology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Psoriasis, Tongji University School of Medicine, Shanghai, China
| | - Xinyi Tang
- Department of Dermatology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Dermatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Psoriasis, Tongji University School of Medicine, Shanghai, China
| | - Yu Gong
- Department of Dermatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Psoriasis, Tongji University School of Medicine, Shanghai, China
| | - Zengyang Yu
- Department of Dermatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Psoriasis, Tongji University School of Medicine, Shanghai, China
| | - Yuling Shi
- Department of Dermatology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Dermatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Psoriasis, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Madaan P, Sharma U, Tyagi N, Brar BK, Bansal S, Kushwaha HR, Kapoor HS, Jain A, Jain M. A panel of blood-based circulatory miRNAs with diagnostic potential in patients with psoriasis. Front Med (Lausanne) 2023; 10:1207993. [PMID: 37700769 PMCID: PMC10493330 DOI: 10.3389/fmed.2023.1207993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/28/2023] [Indexed: 09/14/2023] Open
Abstract
Psoriasis is a chronic inflammatory skin disease with keratinocyte hyperproliferation and T cells as key mediators of lesional and systemic inflammatory changes. To date, no suitable differential biomarkers are available for the disease diagnosis. More recently, microRNAs have been identified as critical regulators of lesional and systemic immune changes in psoriasis with diagnostic potential. We have performed expression profiling of T cell-specific miRNAs in 38 plasma samples from psoriasis vulgaris patients and an equal number of age- and gender-matched healthy subjects. Our findings have identified a panel of five blood-based circulatory miRNAs with a significant change in their expression levels, comprising miR-215, miR-148a, miR-125b-5p, miR-223, and miR-142-3p, which can differentiate psoriasis vulgaris patients from healthy individuals. The receiver operating characteristic (ROC) curves for all five miRNAs individually and in combination exhibited a significant disease discriminatory area under the curve with an AUC of 0.762 and a p < 0.0001 for all the miRNAs together. Statistically, all five miRNAs in combination depicted the best-fit model in relation to disease severity (PASI) compared with individual miRNAs, with the highest R2 value of 0.94 and the lowest AIC score of 131.8. Each of the miRNAs also exhibited a significant association with at least one of the other miRNAs in the panel. Importantly, the five miRNAs in the panel regulate one or more immune-inflammation pathways based on target prediction, pathway network analysis, and validated roles in the literature. The miRNA panel provides a rationalized combination of biomarkers that can be tested further on an expanded cohort of patients for their diagnostic value.
Collapse
Affiliation(s)
- Priyanka Madaan
- Department of Biochemistry, Central University of Punjab, Bathinda, Punjab, India
| | - Uttam Sharma
- Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Nipanshi Tyagi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Balvinder Kaur Brar
- Department of Skin and VD, Guru Gobind Singh Medical College and Hospital, Faridkot, Punjab, India
| | - Shivani Bansal
- Department of Dermatology, All India Institute of Medical Sciences, Bathinda, Punjab, India
| | | | | | - Aklank Jain
- Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Manju Jain
- Department of Biochemistry, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
10
|
Malik B, Vokic I, Mohr T, Poppelaars M, Holcmann M, Novoszel P, Timelthaler G, Lendl T, Krauss D, Elling U, Mildner M, Penninger JM, Petzelbauer P, Sibilia M, Csiszar A. FAM3C/ILEI protein is elevated in psoriatic lesions and triggers psoriasiform hyperproliferation in mice. EMBO Mol Med 2023; 15:e16758. [PMID: 37226685 PMCID: PMC10331587 DOI: 10.15252/emmm.202216758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 05/26/2023] Open
Abstract
FAM3C/ILEI is an important cytokine for tumor progression and metastasis. However, its involvement in inflammation remains elusive. Here, we show that ILEI protein is highly expressed in psoriatic lesions. Inducible keratinocyte-specific ILEI overexpression in mice (K5-ILEIind ) recapitulates many aspects of psoriasis following TPA challenge, primarily manifested by impaired epidermal differentiation and increased neutrophil recruitment. Mechanistically, ILEI triggers Erk and Akt signaling, which then activates STAT3 via Ser727 phosphorylation. Keratinocyte-specific ILEI deletion ameliorates TPA-induced skin inflammation. A transcriptomic ILEI signature obtained from the K5-ILEIind model shows enrichment in several signaling pathways also found in psoriasis and identifies urokinase as a targetable enzyme to counteract ILEI activity. Pharmacological inhibition of urokinase in TPA-induced K5-ILEIind mice results in significant improvement of psoriasiform symptoms by reducing ILEI secretion. The ILEI signature distinguishes psoriasis from healthy skin with uPA ranking among the top "separator" genes. Our study identifies ILEI as a key driver in psoriasis, indicates the relevance of ILEI-regulated genes for disease manifestation, and shows the clinical impact of ILEI and urokinase as novel potential therapeutic targets in psoriasis.
Collapse
Affiliation(s)
- Barizah Malik
- Center for Cancer ResearchMedical University of Vienna, Comprehensive Cancer CenterViennaAustria
- Present address:
School of Biochemistry and Biotechnology, Quaid‐e‐Azam CampusUniversity of the PunjabLahorePakistan
| | - Iva Vokic
- Center for Cancer ResearchMedical University of Vienna, Comprehensive Cancer CenterViennaAustria
| | - Thomas Mohr
- Center for Cancer ResearchMedical University of Vienna, Comprehensive Cancer CenterViennaAustria
- Department of Analytical Chemistry, Faculty of ChemistryUniversity of ViennaViennaAustria
- Joint Metabolome FacilityUniversity of Vienna and Medical University ViennaViennaAustria
| | - Marle Poppelaars
- Center for Cancer ResearchMedical University of Vienna, Comprehensive Cancer CenterViennaAustria
| | - Martin Holcmann
- Center for Cancer ResearchMedical University of Vienna, Comprehensive Cancer CenterViennaAustria
| | - Philipp Novoszel
- Center for Cancer ResearchMedical University of Vienna, Comprehensive Cancer CenterViennaAustria
| | - Gerald Timelthaler
- Center for Cancer ResearchMedical University of Vienna, Comprehensive Cancer CenterViennaAustria
| | - Thomas Lendl
- Research Institute of Molecular PathologyViennaAustria
| | - Dana Krauss
- Center for Cancer ResearchMedical University of Vienna, Comprehensive Cancer CenterViennaAustria
| | - Ulrich Elling
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA)ViennaAustria
| | - Michael Mildner
- Department of DermatologyMedical University of ViennaViennaAustria
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA)ViennaAustria
- Department of Medical Genetics, Life Science InstituteUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | | | - Maria Sibilia
- Center for Cancer ResearchMedical University of Vienna, Comprehensive Cancer CenterViennaAustria
| | - Agnes Csiszar
- Center for Cancer ResearchMedical University of Vienna, Comprehensive Cancer CenterViennaAustria
| |
Collapse
|
11
|
Vitória Pupo Silvestrini A, Garcia Praça F, Nani Leite M, Carvalho de Abreu Fantini M, Andrey Cipriani Frade M, Vitória Lopes Badra Bentley M. Liquid crystalline nanoparticles enable a multifunctional approach for topical psoriasis therapy by co-delivering triptolide and siRNAs. Int J Pharm 2023; 640:123019. [PMID: 37149114 DOI: 10.1016/j.ijpharm.2023.123019] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/27/2023] [Accepted: 05/01/2023] [Indexed: 05/08/2023]
Abstract
Liquid crystalline nanoparticles (LCNs) are an attractive drugs topical delivery system due to the great internal ordering, wide interfacial area and structural similarities with the skin. In this work, LCNs were designed to encapsulate triptolide (TP) and to complex on its surface small interfering RNAs (siRNA) targeting TNF-α and IL-6, aiming at topical co-delivery and regulating multi-targets in psoriasis. These multifunctional LCNs showed appropriate physicochemical properties for topical application, such as a mean size of 150 nm, low polydispersion, TP encapsulation greater than 90% and efficient complexation with siRNA. The internal reverse hexagonal mesostructure of LCNs was confirmed by SAXS while their morphology was assessed by cryo-TEM. In vitro permeation studies revealed an increase of more than 20-fold in the distribution of TP through the porcine epidermis/dermis was achieved after the application of LCN-TP or LCN TP in hydrogel. In cell culture, LCNs showed good compatibility and rapid internalization, which was attributed to macropinocytosis and caveolin-mediated endocytosis. Anti-inflammatory potential of multifunctional LCNs was assessed by reducing of TNF-α, IL-6, IL-1β and TGF-β1 levels in LPS-stimulated macrophages. These results support the hypothesis that the co-delivery of TP and siRNAs by LCNs may be a new strategy for psoriasis topical therapy.
Collapse
Affiliation(s)
- Ana Vitória Pupo Silvestrini
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, 14040-903, Ribeirao Preto, SP, Brazil
| | - Fabíola Garcia Praça
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, 14040-903, Ribeirao Preto, SP, Brazil
| | - Marcel Nani Leite
- Division of Dermatology, Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Marco Andrey Cipriani Frade
- Division of Dermatology, Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | |
Collapse
|
12
|
Yadav K, Singh D, Singh MR, Minz S, Princely Ebenezer Gnanakani S, Sucheta, Yadav R, Vora L, Sahu KK, Bagchi A, Singh Chauhan N, Pradhan M. Preclinical study models of psoriasis: State-of-the-art techniques for testing pharmaceutical products in animal and nonanimal models. Int Immunopharmacol 2023; 117:109945. [PMID: 36871534 DOI: 10.1016/j.intimp.2023.109945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/18/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023]
Abstract
Local and systemic treatments exist for psoriasis, but none can do more than control its symptoms because of its numerous unknown mechanisms. The lack of validated testing models or a defined psoriatic phenotypic profile hinders antipsoriatic drug development. Despite their intricacy, immune-mediated diseases have no improved and precise treatment. The treatment actions may now be predicted for psoriasis and other chronic hyperproliferative skin illnesses using animal models. Their findings confirmed that a psoriasis animal model could mimic a few disease conditions. However, their ethical approval concerns and inability to resemble human psoriasis rightly offer to look for more alternatives. Hence, in this article, we have reported various cutting-edge techniques for the preclinical testing of pharmaceutical products for the treatment of psoriasis.
Collapse
Affiliation(s)
- Krishna Yadav
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh 492010, India; Raipur Institute of Pharmaceutical Education and Research, Sarona, Raipur, Chhattisgarh 492010, India
| | - Deependra Singh
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh 492010, India
| | - Manju Rawat Singh
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh 492010, India
| | - Sunita Minz
- Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, India
| | | | - Sucheta
- School of Medical and Allied Sciences, K. R. Mangalam University, Gurugram, Haryana 122103, India
| | - Renu Yadav
- School of Medical and Allied Sciences, K. R. Mangalam University, Gurugram, Haryana 122103, India
| | - Lalitkumar Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, BT9 7BL, UK
| | - Kantrol Kumar Sahu
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh 281406, India
| | - Anindya Bagchi
- Tumor Initiation & Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road La Jolla, CA 92037, USA
| | - Nagendra Singh Chauhan
- Drugs Testing Laboratory Avam Anusandhan Kendra (AYUSH), Government Ayurvedic College, Raipur, India
| | | |
Collapse
|
13
|
da Costa LCO, Gardinassi LG, Veras FP, Milanezi C, Ramalho LNZ, Benevides L, Alves-Filho JC, da Silva JS, da Silva Souza C. Expression of B lymphocyte-induced maturation protein 1 (Blimp-1) in keratinocyte and cytokine signalling drives human Th17 response in psoriasis. Arch Dermatol Res 2023; 315:481-490. [PMID: 36042041 DOI: 10.1007/s00403-022-02379-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 06/30/2022] [Accepted: 08/01/2022] [Indexed: 11/02/2022]
Abstract
Transcriptional factor B lymphocyte-induced maturation protein 1 (Blimp-1) is pivotally implicated in T helper 17 (Th17) cell differentiation. This study investigated expression of the Blimp-1 protein, positive regulatory domain 1 (PRDM1), and cytokine genes in psoriasis (PsO). Affected (AS-PsO) and non-affected skin (nAS-PsO) samples were used to assess gene and protein expressions by reverse transcription-quantitative PCR (RT-qPCR), and immunostaining and confocal microscopy, respectively; the normalised public transcriptomic data permitted differential gene expression analyses. On RT-qPCR, PRDM1 and IL17A transcripts showed higher expression in AS-PsO than in nAS-PsO (n = 34) (p < 0.001; p < 0.0001, respectively). Confocal microscopy showed Blimp-1 protein expression in epidermal layer keratinocytes in AS-PsO, but not in nAS-PsO. Bioinformatic analysis of the transcriptomic dataset GSE13355 corroborated the increased PRDM1, signal transducer and activator of transcription 3 (STAT3), IL12B, TNF, IL17A, IL6, IL1B, IL22, and IL10 gene expression in AS-PsO, when compared to normal skin and nAS-PsO (p < 0.001). PRDM1 expression correlated positively (p < 0.0001) with that of IL17A (r = 0.7), IL1B (r = 0.67), IL12B (r = 0.6), IL6 (r = 0.59), IL22 (r = 0.53), IL23A (r = 0.47), IL21 (r = 0.47), IL27 (r = 0.34), IL23R (r = 0.32), S100 calcium binding protein A9 (r = 0.63), and lipocalin 2 (r = 0.50), and negatively with that of TGFB1 (r = - 0.28) and RORC (r = - 0.60). Blimp-1 may be critical in the pathogenesis of PsO dysregulation involving the Th17 inflammatory pathway. This knowledge may accelerate the development of new treatments.
Collapse
Affiliation(s)
- Lorena Carla Oliveira da Costa
- Dermatology Division, Department of Internal Medicine, Ribeirão Preto Medical School, Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto, University of São Paulo, Av. Bandeirantes, 3900, Monte Alegre, Ribeirão Preto, São Paulo, 14048-900, Brazil
| | - Luiz Gustavo Gardinassi
- Department of Biosciences and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Flávio Protásio Veras
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Cristiane Milanezi
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | - Luciana Benevides
- Fiocruz-Bi-Institutional Translational Medicine Plataform, Ribeirão Preto, São Paulo, Brazil
| | - José Carlos Alves-Filho
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - João Santana da Silva
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Fiocruz-Bi-Institutional Translational Medicine Plataform, Ribeirão Preto, São Paulo, Brazil
| | - Cacilda da Silva Souza
- Dermatology Division, Department of Internal Medicine, Ribeirão Preto Medical School, Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto, University of São Paulo, Av. Bandeirantes, 3900, Monte Alegre, Ribeirão Preto, São Paulo, 14048-900, Brazil.
| |
Collapse
|
14
|
Liarte S, Bernabé-García Á, Rodríguez-Valiente M, Moraleda JM, Castellanos G, Nicolás FJ. Amniotic Membrane Restores Chronic Wound Features to Normal in a Keratinocyte TGF-β-Chronified Cell Model. Int J Mol Sci 2023; 24:ijms24076210. [PMID: 37047181 PMCID: PMC10094701 DOI: 10.3390/ijms24076210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/22/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Unsuccessful wound closure in chronic wounds can be linked to altered keratinocyte activation and their inability to re-epithelize. Suggested mechanisms driving this impairment involve unbalanced cytokine signaling. However, the molecular events leading to these aberrant responses are poorly understood. Among cytokines affecting keratinocyte responses, Transforming Growth Factor-β (TFG-β) is thought to have a great impact. In this study, we have used a previously characterized skin epidermal in vitro model, HaCaT cells continuously exposed to TGF-β1, to study the wound recovery capabilities of chronified/senescent keratinocytes. In this setting, chronified keratinocytes show decreased migration and reduced activation in response to injury. Amniotic membrane (AM) has been used successfully to manage unresponsive complicated wounds. In our in vitro setting, AM treatment of chronified keratinocytes re-enabled migration in the early stages of wound healing, also promoting proliferation at later stages. Interestingly, when checking the gene expression of markers known to be altered in TGF-β chronified cells and involved in cell cycle regulation, early migratory responses, senescence, and chronic inflammation, we discovered that AM treatment seemed to reset back to keratinocyte status. The analysis of the evolution of both the levels of keratinocyte activation marker cytokeratin 17 and the spatial-temporal expression pattern of the proliferation marker Ki-67 in human in vivo biopsy samples suggests that responses to AM recorded in TGF-β chronified HaCaT cells would be homologous to those of resident keratinocytes in chronic wounds. All these results provide further evidence that sustained TGF-β might play a key role in wound chronification and postulate the validity of our TGF-β chronified HaCaT in vitro model for the study of chronic wound physiology.
Collapse
|
15
|
Parab S, Doshi G. The Experimental Animal Models in Psoriasis Research: A Comprehensive Review. Int Immunopharmacol 2023; 117:109897. [PMID: 36822099 DOI: 10.1016/j.intimp.2023.109897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/31/2023] [Accepted: 02/11/2023] [Indexed: 02/23/2023]
Abstract
Psoriasis is an autoimmune, chronic, inflammatory skin condition mediated by T cells. It differs from other inflammatory conditions by causing significant alterations in epidermal cell proliferation and differentiation that are both complicated and prominent. The lack of an appropriate animal model has significantly hindered studies into the pathogenic mechanisms of psoriasis since animals other than humans typically do not exhibit the complex phenotypic features of human psoriasis. A variety of methods, including spontaneous mutations, drug-induced mutations, genetically engineered animals, xenotransplantation models, and immunological reconstitution approaches, have all been employed to study specific characteristics in the pathogenesis of psoriasis. Although some of these approaches have been used for more than 50 years and far more models have been introduced recently, they have surprisingly not yet undergone detailed validation. Despite their limitations, these models have shown a connection between keratinocyte hyperplasia, vascular hyperplasia, and a cell-mediated immune response in the skin. The xenotransplantation of diseased or unaffected human skin onto immune-compromised recipients has also significantly aided psoriasis research. This technique has been used in a variety of ways to investigate the function of T lymphocytes and other cells, including preclinical therapeutic studies. The design of pertinent in vivo and in vitro psoriasis models is currently of utmost concern and a crucial step toward its cure. This article outlines the general approach in the development of psoriasis-related animal models, aspects of some specific models, along with their strengths and limitations.
Collapse
Affiliation(s)
- Siddhi Parab
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V.M. Road, Vile Parle (W), Mumbai, India
| | - Gaurav Doshi
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V.M. Road, Vile Parle (W), Mumbai, India.
| |
Collapse
|
16
|
Liu S, Liu F, Zhang Z, Zhuang Z, Yuan X, Chen Y. The SELP, CD93, IL2RG, and VAV1 Genes Associated with Atherosclerosis May Be Potential Diagnostic Biomarkers for Psoriasis. J Inflamm Res 2023; 16:827-843. [PMID: 36876153 PMCID: PMC9983575 DOI: 10.2147/jir.s398862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/16/2023] [Indexed: 03/03/2023] Open
Abstract
Purpose Psoriasis and atherosclerosis are immunometabolic diseases. This study aimed to integrate bioinformatics and updated public resources to find potential biological markers associated with atherosclerosis that can cause psoriasis. Patients and Methods Microarray datasets were downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were screened, and functional enrichment analysis was performed. We identified psoriasis and atherosclerosis common immune-related genes (PA-IRGs) by overlapping immune-related genes (IRGs) with genes in the module most associated with psoriasis and atherosclerosis obtained by weighted gene co-expression network analysis (WGCNAs). Receiver operating characteristic (ROC) was conducted to evaluate the predictive ability. The skin expression levels of diagnostic biomarkers were further verified by immunohistochemical staining. CIBERSORT, single-sample gene set enrichment analysis (ssGSEA), and Pearson's correlation analysis were applied to evaluate immune and lipid metabolism relationships in psoriatic tissues. In addition, a lincRNA-miRNA-mRNA network was constructed to find the pathogenesis in which diagnostic markers may be involved. Results Four PA-IRGs (SELP, CD93, IL2RG, and VAV1) demonstrated the optimal diagnostic value, with an AUC above 0.8. The immune cell infiltration analysis showed that dendritic resting cells, NK cell activation, neutrophils, macrophages M2, macrophages M0, and B-cell memory were highly abundant in psoriasis. Immune response analysis showed that TNF family members, chemokine receptors, interferons, natural killer cells, and TGF-β family members might be involved in psoriasis. Diagnostic biomarkers are strongly associated with various infiltrating immune cells, immune responses, and lipid metabolism. A lincRNA-miRNA-mRNA regulatory network consisting of 31 lincRNAs and 23 miRNAs was constructed. LINC00662 is involved in modulating four diagnostic biomarkers. Conclusion This study identified atherosclerosis-related genes SELP, CD93, VAV1, and IL2RG as potential psoriasis diagnostic markers. Provide novel insights into the possible regulatory mechanisms involved in psoriasis.
Collapse
Affiliation(s)
- Shougang Liu
- Department of Dermatology, Dermatology Hospital of Southern Medical University, Guangzhou, People's Republic of China
| | - Fanghua Liu
- Department of Dermatology, Dermatology Hospital of Southern Medical University, Guangzhou, People's Republic of China.,Department of Dermatology, Guangdong Medical University, Zhanjiang, People's Republic of China
| | - Zeqiao Zhang
- Department of Dermatology, Dermatology Hospital of Southern Medical University, Guangzhou, People's Republic of China
| | - Zhe Zhuang
- Department of Dermatology, Dermatology Hospital of Southern Medical University, Guangzhou, People's Republic of China.,Department of Dermatology, Guangdong Medical University, Zhanjiang, People's Republic of China
| | - Xiuqing Yuan
- Department of Dermatology, Dermatology Hospital of Southern Medical University, Guangzhou, People's Republic of China
| | - Yongfeng Chen
- Department of Dermatology, Dermatology Hospital of Southern Medical University, Guangzhou, People's Republic of China.,Department of Dermatology, Guangdong Medical University, Zhanjiang, People's Republic of China
| |
Collapse
|
17
|
Wang K, Wen D, Xu X, Zhao R, Jiang F, Yuan S, Zhang Y, Gao Y, Li Q. Extracellular matrix stiffness-The central cue for skin fibrosis. Front Mol Biosci 2023; 10:1132353. [PMID: 36968277 PMCID: PMC10031116 DOI: 10.3389/fmolb.2023.1132353] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/20/2023] [Indexed: 03/29/2023] Open
Abstract
Skin fibrosis is a physiopathological process featuring the excessive deposition of extracellular matrix (ECM), which is the main architecture that provides structural support and constitutes the microenvironment for various cellular behaviors. Recently, increasing interest has been drawn to the relationship between the mechanical properties of the ECM and the initiation and modulation of skin fibrosis, with the engagement of a complex network of signaling pathways, the activation of mechanosensitive proteins, and changes in immunoregulation and metabolism. Simultaneous with the progression of skin fibrosis, the stiffness of ECM increases, which in turn perturbs mechanical and humoral homeostasis to drive cell fate toward an outcome that maintains and enhances the fibrosis process, thus forming a pro-fibrotic "positive feedback loop". In this review, we highlighted the central role of the ECM and its dynamic changes at both the molecular and cellular levels in skin fibrosis. We paid special attention to signaling pathways regulated by mechanical cues in ECM remodeling. We also systematically summarized antifibrotic interventions targeting the ECM, hopefully enlightening new strategies for fibrotic diseases.
Collapse
Affiliation(s)
- Kang Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dongsheng Wen
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuewen Xu
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Rui Zhao
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Feipeng Jiang
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Shengqin Yuan
- School of Public Administration, Sichuan University, Chengdu, Sichuan, China
| | - Yifan Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Yifan Zhang, ; Ya Gao, ; Qingfeng Li,
| | - Ya Gao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Yifan Zhang, ; Ya Gao, ; Qingfeng Li,
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Yifan Zhang, ; Ya Gao, ; Qingfeng Li,
| |
Collapse
|
18
|
Kim HB, Choi MG, Chung BY, Um JY, Kim JC, Park CW, Kim HO. Particulate matter 2.5 induces the skin barrier dysfunction and cutaneous inflammation via AhR- and T helper 17 cell-related genes in human skin tissue as identified via transcriptome analysis. Exp Dermatol 2022; 32:547-554. [PMID: 36471583 DOI: 10.1111/exd.14724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Particulate matter (PM2.5) is an environmental pollutant causing skin inflammatory diseases via epidermal barrier damage. However, the mechanism and related gene expression induced by PM2.5 remains unclear. Our aim was to determine the effect of PM2.5 on human skin tissue ex vivo, and elucidate the mechanism of T helper 17 cell-related inflammatory cytokine and skin barrier function. We verified the expression levels of gene in PM2.5-treated human skin tissue using Quantseq (3' mRNA-Seq), and Gene Ontology (GO) terms and protein-protein interaction (PPI) networks were performed. The PM2.5 treatment significantly enhanced the expression of Th 1, 2, 17 and 22 cell-related genes (cut-off value: │1.2 │ > fold change and p < 0.05). Most of all, Th17 cell-related genes are upregulated and those genes are associated with skin epidermal barrier function and Aryl hydrocarbon receptor (AhR), a xenobiotic receptor, pathway. In human keratinocyte cell lines, AhR-regulated genes (e.g. AhRR, CYP1A1, IL6 and IL36G), Th17 cell-related genes (e.g. IL17C) and epidermal barrier-related genes (e.g. SPRR2A and KRT71) are significantly increased after PM2.5. In the protein level, the secretion of IL-6 and IL-36G was increased in human skin tissue following PM2.5 treatment, and the expression of SPRR2A and KRT71 was significantly increased. PM2.5 exposure could ruin the skin epidermal barrier function via AhR- and Th17 cell-related inflammatory pathway.
Collapse
Affiliation(s)
- Han Bi Kim
- Department of Dermatology, College of Medicine, Hallym University, Kangnam Sacred Heart Hospital, Seoul, Korea
| | - Min Gyu Choi
- Department of Computer Science, Kwangwoon University, Seoul, Korea
| | - Bo Young Chung
- Department of Dermatology, College of Medicine, Hallym University, Kangnam Sacred Heart Hospital, Seoul, Korea
| | - Ji Young Um
- Department of Dermatology, College of Medicine, Hallym University, Kangnam Sacred Heart Hospital, Seoul, Korea
| | - Jin Cheol Kim
- Department of Dermatology, College of Medicine, Hallym University, Kangnam Sacred Heart Hospital, Seoul, Korea
| | - Chun Wook Park
- Department of Dermatology, College of Medicine, Hallym University, Kangnam Sacred Heart Hospital, Seoul, Korea
| | - Hye One Kim
- Department of Dermatology, College of Medicine, Hallym University, Kangnam Sacred Heart Hospital, Seoul, Korea
| |
Collapse
|
19
|
Henriet E, Abdallah F, Laurent Y, Guimpied C, Clement E, Simon M, Pichon C, Baril P. Targeting TGF-β1/miR-21 pathway in keratinocytes reveals protective effects of silymarin on imiquimod-induced psoriasis mouse model. JID INNOVATIONS 2022; 3:100175. [PMID: 36968096 PMCID: PMC10034514 DOI: 10.1016/j.xjidi.2022.100175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 12/23/2022] Open
Abstract
Epidermal cells integrate multiple signals that activate the signaling pathways involved in skin homeostasis. TGF-β1 signaling pathway upregulates microRNA (miR)-21-5p in keratinocytes and is often deregulated in skin diseases. To identify the bioactive compounds that enable to modulate the TGF-β1/miR-21-5p signaling pathway, we screened a library of medicinal plant extracts using our miR-ON RILES luciferase reporter system placed under the control of the miR-21-5p in keratinocytes treated with TGF-β1. We identified silymarin, a mixture of flavonolignans extracted from Silybum marianum (L.) Gaertn., as the most potent regulator of miR-21-5p expression. Using Argonaute 2 immunoprecipitation and RT-qPCR, we showed that silymarin regulates the expression of miR-21-5p through a noncanonical TGF-β1 signaling pathway, whereas RNA-sequencing analysis revealed three unexpected transcriptomic signatures associated with keratinocyte differentiation, cell cycle, and lipid metabolism. Mechanistically, we demonstrated that SM blocks cell cycle progression, inhibits keratinocyte differentiation through repression of Notch3 expression, stimulates lipid synthesis via activation of PPARγ signaling and inhibits inflammatory responses by suppressing the transcriptional activity of NF-κB. We finally showed that topical application of silymarin alleviates the development of imiquimod-induced psoriasiform lesions in mice by abrogating the altered expression levels of markers involved in inflammation, proliferation, differentiation, and lipid metabolism.
Collapse
|
20
|
Elbana AM, Elgamal E, Hashim O, Emran TM, Alkhrsawy AA. Pro-inflammatory versus anti-inflammatory cytokines in psoriatic patients (case-control study). J Cosmet Dermatol 2022; 21:6302-6307. [PMID: 35869799 DOI: 10.1111/jocd.15262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/23/2022] [Accepted: 07/19/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND Psoriasis (PsO) is a systemic autoimmune disease. Many pro-inflammatory and anti-inflammatory biomarkers have been associated with the pathogenetic process of psoriasis. IL-35 act as an anti-inflammatory cytokine through downregulation of TH-17 cell development and cytokine production. So, IL-35 might be utilized as potential future therapeutic agent for psoriasis. AIMS To investigate the association between inflammatory (IL-17, TNF-α, IFN-γ) and anti-inflammatory cytokines (IL-35, TGF-β) in psoriasis patients. PATIENTS AND METHODS A case-control study enrolled two groups: (Group I: 40 patients with psoriasis) and (Group II: 40 healthy age and sex-matched subjects). Full history was taken from all cases along with full dermatologic examination. The assessment of psoriasis severity was conducted by using PASI score. Assessment of inflammatory (IL-17, TNF-α, IFN-γ) and anti-inflammatory cytokines (IL-35, TGF-β) was performed by using ELISA technique. RESULTS There was a statistically significant increase of mean level of TNF-α, IL-17, and IFN-γ among psoriasis cases in comparison with controls. The mean level of TGF-β and IL-35 was statistically significantly reduced among the psoriasis cases in comparison with controls. TNF-α, IL-17, and IFN-γ showed a significant strong positive association in between and statistically significant strong negative relationship with IL-35 and TGF-β. CONCLUSION IL-35 has a significant role in the pathogenetic process of PsO, and it serves as a potential future therapeutic agent for psoriasis. The current results could be used as a clue for the utilization of inflammatory (IL-17, TNF-α, IFN-γ) versus anti-inflammatory cytokines (IL-35, TGF-β) in psoriasis patients as a diagnostic biomarker for severity of cases with psoriasis.
Collapse
Affiliation(s)
- Amaal Mohamed Elbana
- Damietta Dermatology and Leprosy Hospital, Ministry of Health and Population, Damietta, Egypt
| | - Emadeldin Elgamal
- Dermatology, Venereology and Andrology, Faculty of Medicine, Al-Azhar University, Damietta, Egypt
| | - Osama Hashim
- Dermatology, Venereology and Andrology, Faculty of Medicine, Al-Azhar University, Damietta, Egypt
| | - Tarek Mostafa Emran
- Clinical Pathology, Faculty of Medicine, Al-Azhar University, Damietta, Egypt
| | | |
Collapse
|
21
|
Xu J, Li J. Construction of a three commitment points for S phase entry cell cycle model and immune-related ceRNA network to explore novel therapeutic options for psoriasis. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:13483-13525. [PMID: 36654055 DOI: 10.3934/mbe.2022630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
While competing endogenous RNAs (ceRNAs) play pivotal roles in various diseases, the proliferation and differentiation of keratinocytes are becoming a research focus in psoriasis. Therefore, the three commitment points for S phase entry (CP1-3) cell cycle model has pointed to a new research direction in these areas. However, it is unclear what role ceRNA regulatory mechanisms play in the interaction between keratinocytes and the immune system in psoriasis. In addition, the ceRNA network-based screening of potential therapeutic agents for psoriasis has not been explored. Therefore, we used multiple bioinformatics approaches to construct a ceRNA network for psoriasis, identified CTGF as the hub gene, and constructed a ceRNA subnetwork, after which validation datasets authenticated the results' accuracy. Subsequently, we used multiple online databases and the single-sample gene-set enrichment analysis algorithm, including the CP1-3 cell cycle model, to explore the mechanisms accounting for the increased proliferation and differentiation of keratinocytes and the possible roles of the ceRNA subnetwork in psoriasis. Next, we performed cell cycle and cell trajectory analyses based on a single-cell RNA-seq dataset of psoriatic skin biopsies. We also used weighted gene co-expression network analysis and single-gene batch correlation analysis-based gene set enrichment analysis to explore the functions of CTGF. Finally, we used the Connectivity Map to identify MS-275 (entinostat) as a novel treatment for psoriasis, SwissTargetPrediction to predict drug targets, and molecular docking to investigate the minimum binding energy and binding sites of the drug to target proteins.
Collapse
Affiliation(s)
- Jingxi Xu
- North Sichuan Medical College, Nanchong 637000, China
- Department of Rheumatology and Immunology, The First People's Hospital of Yibin, Yibin 644000, China
| | - Jiangtao Li
- Department of Rheumatology and Immunology, The First People's Hospital of Yibin, Yibin 644000, China
| |
Collapse
|
22
|
Jiao J, Zhao X, Wang Y, Liang N, Li J, Yang X, Xing J, Zhou L, Li J, Hou R, Li X, Zhang K. Normal mesenchymal stem cells can improve the abnormal function of T cells in psoriasis via upregulating transforming growth factor-β receptor. J Dermatol 2022; 49:988-997. [PMID: 35766154 DOI: 10.1111/1346-8138.16490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/22/2022] [Accepted: 06/01/2022] [Indexed: 11/26/2022]
Abstract
Psoriasis, a chronic inflammatory skin disease, is a refractory disorder. Previous studies have shown that the imbalance of the T-helper (Th)17/regulatory T cells (Treg) results in the immune imbalance of T cells in psoriatic patients, and that mesenchymal stem cells display an immunosuppressive role by promoting the differentiation of T cells into Treg, leading to a reduction in the proportion of Th17/Treg. Utility of mesenchymal stem cells is becoming a new approach for the treatment of immune disorders. Following co-culture of dermal mesenchymal stromal cells (DMSC) and CD3+ T cells with or without transforming growth factor (TGF)-β receptor inhibitor, the biological function and relative signal pathway of CD3+ T cells were assessed by flow cytometry, transwell, real-time polymerase chain reaction and western blotting, respectively. Normal DMSC were more potent than psoriatic DMSC in inhibition of CD3+ T-cell proliferation, and stimulation of CD3+ T-cell apoptosis than psoriasis DMSC. Moreover, normal DMSC decreased the ratio of Th17/Treg, while enhancing the immunosuppressive effect of Tregs on effector T cells. However, TGF-β receptor (TGF-βR) inhibitor attenuated the effect of normal DMSC on CD3+ T cells and Th17/Treg ratio. Additionally, the normal DMSC were more potent than the psoriatic DMSC in increasing TGF-β receptors and activation of TGF-β/SMAD pathway in psoriatic CD3+ T cells. In conclusion, normal DMSC can partially improve the biological function and immunosuppressive ability of psoriatic CD3+ T cells, possibly via upregulating the TGF-β receptors.
Collapse
Affiliation(s)
- Juanjuan Jiao
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Xincheng Zhao
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Ying Wang
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Nannan Liang
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Juan Li
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaohong Yang
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Jianxiao Xing
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Ling Zhou
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Junqin Li
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Ruixia Hou
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Xinhua Li
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Kaiming Zhang
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
23
|
Karas A, Holmannova D, Borsky P, Fiala Z, Andrys C, Hamakova K, Svadlakova T, Palicka V, Krejsek J, Rehacek V, Esterkova M, Kovarikova H, Borska L. Significantly Altered Serum Levels of NAD, AGE, RAGE, CRP, and Elastin as Potential Biomarkers of Psoriasis and Aging—A Case-Control Study. Biomedicines 2022; 10:biomedicines10051133. [PMID: 35625870 PMCID: PMC9138308 DOI: 10.3390/biomedicines10051133] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/06/2022] [Accepted: 05/11/2022] [Indexed: 01/11/2023] Open
Abstract
Background: This study aims to investigate potential markers of psoriasis and aging, and to elucidate possible connections between these two processes. Methods: The serum samples of 60 psoriatic patients and 100 controls were analysed, and the levels of four selected parameters (AGEs, RAGE, NAD, and elastin) were determined using commercial ELISA kits. Serum C-reactive protein was assayed using an immune-nephelometry method. Findings: Among the patients, the levels of CRP, AGEs, and RAGE were all increased, while the levels of NAD were reduced when compared to the control group. A negative correlation between the levels of AGEs and NAD was found. A negative correlation between age and the NAD levels among the control group was observed, however among the patients the relationship was diminished. While there was no difference in the levels of native elastin between the patients and the controls, a positive correlation between the levels of native elastin and age and a negative correlation between the levels of native elastin and the severity of psoriasis were found. Conclusions: The results of our study support the notion of psoriasis and possibly other immune-mediated diseases accelerating the aging process through sustained systemic damage. The serum levels of CRP, NAD, AGEs, and RAGE appear to be promising potential biomarkers of psoriasis. The decrease in the serum levels of NAD is associated with (pro)inflammatory states. Our analysis indicates that the levels of native elastin might strongly reflect both the severity of psoriasis and the aging process.
Collapse
Affiliation(s)
- Adam Karas
- Institute of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (A.K.); (D.H.); (Z.F.); (T.S.); (M.E.); (L.B.)
| | - Drahomira Holmannova
- Institute of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (A.K.); (D.H.); (Z.F.); (T.S.); (M.E.); (L.B.)
| | - Pavel Borsky
- Institute of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (A.K.); (D.H.); (Z.F.); (T.S.); (M.E.); (L.B.)
- Correspondence: ; Tel.: +420-495-816-386
| | - Zdenek Fiala
- Institute of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (A.K.); (D.H.); (Z.F.); (T.S.); (M.E.); (L.B.)
| | - Ctirad Andrys
- Institute of Clinical Immunology and Allergology, University Hospital, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (C.A.); (J.K.)
| | - Kvetoslava Hamakova
- Clinic of Dermal and Venereal Diseases, University Hospital, 500 03 Hradec Kralove, Czech Republic;
| | - Tereza Svadlakova
- Institute of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (A.K.); (D.H.); (Z.F.); (T.S.); (M.E.); (L.B.)
- Institute of Clinical Immunology and Allergology, University Hospital, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (C.A.); (J.K.)
| | - Vladimir Palicka
- Institute of Clinical Biochemistry and Diagnostics, University Hospital, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (V.P.); (H.K.)
| | - Jan Krejsek
- Institute of Clinical Immunology and Allergology, University Hospital, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (C.A.); (J.K.)
| | - Vit Rehacek
- Transfusion Center, University Hospital, 500 03 Hradec Kralove, Czech Republic;
| | - Monika Esterkova
- Institute of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (A.K.); (D.H.); (Z.F.); (T.S.); (M.E.); (L.B.)
| | - Helena Kovarikova
- Institute of Clinical Biochemistry and Diagnostics, University Hospital, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (V.P.); (H.K.)
| | - Lenka Borska
- Institute of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (A.K.); (D.H.); (Z.F.); (T.S.); (M.E.); (L.B.)
| |
Collapse
|
24
|
Phenotypical Conversions of Dermal Adipocytes as Pathophysiological Steps in Inflammatory Cutaneous Disorders. Int J Mol Sci 2022; 23:ijms23073828. [PMID: 35409189 PMCID: PMC8998946 DOI: 10.3390/ijms23073828] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 02/01/2023] Open
Abstract
Adipocytes from the superficial layer of subcutaneous adipose tissue undergo cyclic de- and re-differentiation, which can significantly influence the development of skin inflammation under different cutaneous conditions. This inflammation can be connected with local loading of the reticular dermis with lipids released due to de-differentiation of adipocytes during the catagen phase of the hair follicle cycle. Alternatively, the inflammation parallels a widespread release of cathelicidin, which typically takes place in the anagen phase (especially in the presence of pathogens). Additionally, trans-differentiation of dermal adipocytes into myofibroblasts, which can occur under some pathological conditions, can be responsible for the development of collateral scarring in acne. Here, we provide an overview of such cellular conversions in the skin and discuss their possible involvement in the pathophysiology of inflammatory skin conditions, such as acne and psoriasis.
Collapse
|
25
|
Inhibition of CtBP-Regulated Proinflammatory Gene Transcription Attenuates Psoriatic Skin Inflammation. J Invest Dermatol 2022; 142:390-401. [PMID: 34293351 PMCID: PMC8770725 DOI: 10.1016/j.jid.2021.06.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/25/2021] [Accepted: 06/03/2021] [Indexed: 02/03/2023]
Abstract
Psoriasis is a chronic immune-mediated disease characterized by excessive proliferation of epidermal keratinocytes and increased immune cell infiltration to the skin. Although it is well-known that psoriasis pathogenesis is driven by aberrant production of proinflammatory cytokines, the mechanisms underlying the imbalance between proinflammatory and anti-inflammatory cytokine expression are incompletely understood. In this study, we report that the transcriptional coregulators CtBP1 and 2 can transactivate a common set of proinflammatory genes both in the skin of imiquimod-induced mouse psoriasis model and in human keratinocytes and macrophages stimulated by imiquimod. We find that mice overexpressing CtBP1 in epidermal keratinocytes display severe skin inflammation phenotypes with increased expression of T helper type 1 and T helper type 17 cytokines. We also find that the expression of CtBPs and CtBP-target genes is elevated both in human psoriatic lesions and in the mouse imiquimod psoriasis model. Moreover, we were able to show that topical treatment with a peptidic inhibitor of CtBP effectively suppresses the CtBP-regulated proinflammatory gene expression and thus attenuates psoriatic inflammation in the imiquimod mouse model. Together, our findings suggest to our knowledge previously unreported strategies for therapeutic modulation of the immune response in inflammatory skin diseases.
Collapse
|
26
|
Moreau JM, Dhariwala MO, Gouirand V, Boda DP, Boothby IC, Lowe MM, Cohen JN, Macon CE, Leech JM, Kalekar LA, Scharschmidt TC, Rosenblum MD. Regulatory T cells promote innate inflammation after skin barrier breach via TGF-β activation. Sci Immunol 2021; 6:6/62/eabg2329. [PMID: 34452925 DOI: 10.1126/sciimmunol.abg2329] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 06/08/2021] [Accepted: 07/12/2021] [Indexed: 01/04/2023]
Abstract
Regulatory T cells (Tregs) use multiple mechanisms to attenuate inflammation and prevent autoimmunity. Tregs residing in peripheral (i.e., nonlymphoid) tissues have specialized functions; specifically, skin Tregs promote wound healing, suppress dermal fibrosis, facilitate epidermal regeneration, and augment hair follicle cycling. Here, we demonstrated that skin Tregs were transcriptionally attuned to interact with their tissue environment through increased expression of integrin and TGF-β pathway genes that influence epithelial cell biology. We identified a molecular pathway where skin Tregs license keratinocytes to promote innate inflammation after skin barrier breach. Using a single-cell discovery approach, we identified preferential expression of the integrin αvβ8 on skin Tregs Upon skin injury, Tregs used this integrin to activate latent TGF-β, which acted directly on epithelial cells to promote CXCL5 production and neutrophil recruitment. Induction of this circuit delayed epidermal regeneration but provided protection from Staphylococcus aureus infection across a compromised barrier. Thus, αvβ8-expressing Tregs in the skin, somewhat paradoxical to their canonical immunosuppressive functions, facilitated inflammation acutely after loss of barrier integrity to promote host defense against infection.
Collapse
Affiliation(s)
- Joshua M Moreau
- Department of Dermatology, University of California at San Francisco, San Francisco, CA, USA
| | - Miqdad O Dhariwala
- Department of Dermatology, University of California at San Francisco, San Francisco, CA, USA
| | - Victoire Gouirand
- Department of Dermatology, University of California at San Francisco, San Francisco, CA, USA
| | - Devi P Boda
- Department of Dermatology, University of California at San Francisco, San Francisco, CA, USA
| | - Ian C Boothby
- Department of Dermatology, University of California at San Francisco, San Francisco, CA, USA.,Medical Scientist Training Program, University of California at San Francisco, San Francisco, CA
| | - Margaret M Lowe
- Department of Dermatology, University of California at San Francisco, San Francisco, CA, USA
| | - Jarish N Cohen
- Department of Pathology, University of California at San Francisco, San Francisco, CA, 94143, USA
| | - Courtney E Macon
- Department of Dermatology, University of California at San Francisco, San Francisco, CA, USA
| | - John M Leech
- Department of Dermatology, University of California at San Francisco, San Francisco, CA, USA
| | - Lokesh A Kalekar
- Department of Dermatology, University of California at San Francisco, San Francisco, CA, USA
| | - Tiffany C Scharschmidt
- Department of Dermatology, University of California at San Francisco, San Francisco, CA, USA
| | - Michael D Rosenblum
- Department of Dermatology, University of California at San Francisco, San Francisco, CA, USA.
| |
Collapse
|
27
|
Ye Y, Wang P, Zhou F. miR-489-3p inhibits TLR4/NF-κB signaling to prevent inflammation in psoriasis. Exp Ther Med 2021; 22:744. [PMID: 34055060 PMCID: PMC8138277 DOI: 10.3892/etm.2021.10176] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 03/08/2021] [Indexed: 02/07/2023] Open
Abstract
Psoriasis is a chronic inflammatory skin disease whose etiology has not yet been determined. MicroRNAs (miRs) regulate the early stages of psoriasis and are targets for therapeutic intervention. The present study aimed to investigate the functional role of miR-489-3p in psoriasis. The present study first assessed the expression levels of miR-489-3p and Toll-like receptor (TLR)4 mRNA using reverse transcription-quantitative PCR, and also detected the protein expression levels of TLR4 and NF-κB via western blot analysis. TargetScan and miRDB target gene prediction tools were used to confirm the regulation of Toll-like receptor (TLR)4 by miR-489-3p. Moreover, a Cell Counting Kit (CCK)-8 assay was conducted to evaluate cell viability, while cell cycle and colony formation assays were performed to evaluate cell proliferation. Human keratinocytes (HaCaT) were co-transfected with TLR4-small interfering RNA and miR-489-3p-inhibitor plasmids, and analysis of cell proliferation and inflammatory cytokine secretion was performed using CCK-8 assay and ELISA. It was found that miR-489-3p expression was downregulated in patients with psoriasis. Bioinformatics analysis identified that TLR4 was a direct target of miR-489-3p. This was confirmed via luciferase reporter assays in HaCaT cells. The overexpression of miR-489-3p inhibited the TLR4/NF-κB signaling pathway and reduced cell proliferation. TLR4 silencing alleviated the effects of miR-489-3p, and enhanced cell proliferation and inflammatory cytokine secretion. Taken together, these data suggested that miR-489-3p may be a key effector of psoriasis, which promotes inflammatory responses by direct targeting of TLR4. miR-489-3p therefore represents a promising prognostic biomarker and therapeutic target for psoriasis treatment.
Collapse
Affiliation(s)
- Yujian Ye
- Department of Dermatology, The Third People's Hospital of Hangzhou, Hangzhou, Zhejiang 310009, P.R. China
| | - Ping Wang
- Department of Dermatology, The Third People's Hospital of Hangzhou, Hangzhou, Zhejiang 310009, P.R. China
| | - Fangmei Zhou
- College of Medical Technology, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| |
Collapse
|
28
|
Gangadevi V, Thatikonda S, Pooladanda V, Devabattula G, Godugu C. Selenium nanoparticles produce a beneficial effect in psoriasis by reducing epidermal hyperproliferation and inflammation. J Nanobiotechnology 2021; 19:101. [PMID: 33849555 PMCID: PMC8042708 DOI: 10.1186/s12951-021-00842-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 03/24/2021] [Indexed: 11/17/2022] Open
Abstract
Background Psoriasis is a chronic autoimmune skin disease characterized by hyperproliferation of keratinocytes. Wide treatment options used to treat psoriasis is associated with various adverse effects. To overcome this nanoformulation is prepared. Selenium is an essential trace element and plays major role in oxidation reduction system. Toxicity and stability limits the applications of selenium. Toxicity can be reduced and stabilized upon preparation into nanoparticles. Results Selenium nanoparticles (SeNPs) exhibit potent apoptosis through the generation of reactive oxygen species (ROS) with cell cycle arrest. SeNPs topical gel application produced significant attenuation of psoriatic severity with the abrogation of acanthosis and splenomegaly. SeNPs reduced the phosphorylation and expressions of MAPKs, STAT3, GSK-3β, Akt along with PCNA, Ki67, and cyclin-D1. Conclusion SeNPs inhibit various inflammation and proliferation mediated pathways and could be an ideal candidate for psoriasis therapy. Materials and methods SeNPs were characterized and various techniques were used to determine apoptosis and other molecular mechanisms. In vivo studies were performed by inducing psoriasis with imiquimod (IMQ). SeNPs were administered via topical route.
Graphic Abstract ![]()
Collapse
Affiliation(s)
- Vinod Gangadevi
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India
| | - Sowjanya Thatikonda
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India
| | - Venkatesh Pooladanda
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India
| | - Geetanjali Devabattula
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India
| | - Chandraiah Godugu
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India.
| |
Collapse
|
29
|
Ahmed BT, Saeed MY, Noori SH, Amin DM. TGF-β1 Gene Polymorphism and Its Correlation with Serum Level of TGF-β1 in Psoriasis Vulgaris Among Iraqi People. CLINICAL, COSMETIC AND INVESTIGATIONAL DERMATOLOGY 2020; 13:889-896. [PMID: 33262631 PMCID: PMC7699994 DOI: 10.2147/ccid.s281585] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/18/2020] [Indexed: 12/21/2022]
Abstract
PURPOSE Many cytokines have been implicated in the pathogenesis of psoriasis, among these the transforming growth factor-beta 1 (TGF-β1) can be endorsed by different mechanisms besides inhibiting keratinocytes proliferation. The role of genetic polymorphisms of TGF-β1 has been studied in various inflammatory diseases. Our aim is to study the correlation of TGF-β1 gene polymorphism at codon 10 and 25 with the expression of serum level of TGF-β1 in a sample of Iraqi psoriatic patients compared to the control group. MATERIALS AND METHODS A cross-sectional study involved 100 patients with psoriasis vulgaris and 50 sex- and age-matched healthy volunteers as control group. Serum and genomic DNA were prepared from peripheral blood samples. Amplification refractory mutation system-polymerase chain reaction technique (ARMS-PCR) had been applied for genotyping TGF-β1 codon 10 [rs1982073] and codon 25 [rs1800471] genetic polymorphisms. Enzyme-linked immunosorbent assay technique (ELISA) based on the sandwich principle was used for quantification of serum TGF-β1 level. Psoriasis Area and Severity Index (PASI) scoring was applied for determining the severity in psoriatic patients and classified accordingly to mild (PASI<7), moderate (PASI 7-12), severe (PASI>12) groups. RESULTS Statistically significant difference was found in TGF-β1 gene polymorphism between psoriatic patients and control group at codon 10 (T869C) polymorphism (p=0.021) and codon 25 (G915C) polymorphism (p=0.040). No significant association was detected with the mean serum TGF-β1 level, severity of the disease, disease onset, gender, history of psoriatic arthritis, and smoking in both codons. Significant lower mean serum TGF-β1 level was found among psoriatic group (192.17 ± 531.12 ng/L) compared with controls (565.89 ± 1372.30 ng/L) (p = 0.018). Relation of mean serum TGF-β1 level with the onset of the disease was statistically significant (p = 0.004), early-onset disease group was lower (105.92 ± 68.02 ng/L) compared with the late-onset disease group (450.92 ±1027.79 ng/L). The mean serum TGF-β1 level showed no significant differences with the severity of psoriasis, gender, history of psoriatic arthritis, and smoking. CONCLUSION Iraqi population showed a significant association between TGF-β1 gene polymorphism at codon 10 and 25 were with psoriasis susceptibility, and a significantly lower mean serum TGF-β1 level was detected in psoriatic patients.
Collapse
Affiliation(s)
- Bryar T Ahmed
- Department of Medicine/Dermatology, College of Medicine, University of Sulaimani, Sulaimani City, Kurdistan, Iraq
| | - Mohammad Y Saeed
- Department of Medicine/Dermatology, College of Medicine, University of Sulaimani, Sulaimani City, Kurdistan, Iraq
| | - Saman H Noori
- Department of Biochemistry, College of Medicine, University of Sulaimani, Sulaimani City, Kurdistan, Iraq
| | - Dashty M Amin
- Medical Laboratory Sciences, Komar University of Science and Technology, Sulaimani City, Kurdistan, Iraq
| |
Collapse
|
30
|
Ampawong S, Kengkoom K, Sukphopetch P, Aramwit P, Muangkaew W, Kanjanapruthipong T, Buaban T. Evaluating the effect of rice (Oryza sativa L.: SRNC05053-6-2) crude extract on psoriasis using in vitro and in vivo models. Sci Rep 2020; 10:17618. [PMID: 33077734 PMCID: PMC7573619 DOI: 10.1038/s41598-020-74634-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 10/05/2020] [Indexed: 12/31/2022] Open
Abstract
Psoriasis is mainly caused because of inappropriate immune responses in the epidermis. Rice (Oryza sativa L.: SRNC05053-6-2) consists of anthocyanin, which exhibits strong antioxidative and anti-inflammatory properties. This study aimed to evaluate the role of this black-coloured rice crude extract in alleviating the symptoms of psoriasis using human psoriatic artificial skin and an imiquimod-induced rat psoriasis model. Psoriasis-related genes, cytokines and chemokines were examined; in addition, the antioxidative and anti-inflammatory properties and the immunohistopathological features of this condition were studied. The results showed that the rice extract reduced the severity of psoriasis by (1) decreasing the epidermal thickness, acanthosis, hyperkeratosis, epidermal inflammation and degree of apoptosis induction via caspase-3, (2) increasing the expression levels of anti-inflammatory cytokines (IL-10 and TGF-β), (3) reducing the levels of pro-inflammatory cytokines (IL-6, IL-8, IL-20, IL-22 and TNF-α), chemokines (CCL-20) and anti-microbial peptides (psoriasin and β-defensin), (4) enhancing the antioxidative property (Nrf-2), (5) downregulating the levels of psoriasis-associated genes (psoriasin, β-defensin, koebnerisin 15L and koebnerisin 15S) and (6) upregulating the levels of psoriasis-improving genes (caspase-14, involucrin and filaggrin). Thus, the extract appears to exert therapeutic effects on psoriasis through its antioxidative and immunomodulatory properties.
Collapse
Affiliation(s)
- Sumate Ampawong
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand.
| | - Kanchana Kengkoom
- Academic Service Division, National Laboratory Animal Center, Mahidol University, 999, Salaya, Puttamonthon, Nakorn Pathom, 73170, Thailand
| | - Passanesh Sukphopetch
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Pornanong Aramwit
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences and Center of Excellence in Bioactive Resources for Innovative Clinical Applications, Chulalongkorn University, PhayaThai Road, Phatumwan, Bangkok, 10330, Thailand.,The Academy of Science, The Royal Society of Thailand, Dusit, Bangkok, 10330, Thailand
| | - Watcharamat Muangkaew
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Tapanee Kanjanapruthipong
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Theerapong Buaban
- Academic Service Division, National Laboratory Animal Center, Mahidol University, 999, Salaya, Puttamonthon, Nakorn Pathom, 73170, Thailand
| |
Collapse
|
31
|
Zdanowska N, Owczarczyk-Saczonek A, Czerwińska J, Nowakowski JJ, Kozera-Żywczyk A, Owczarek W, Zdanowski W, Placek W. Adalimumab and methotrexate affect the concentrations of regulatory cytokines (interleukin-10, transforming growth factor-β1, and interleukin-35) in patients with plaque psoriasis. Dermatol Ther 2020; 33:e14153. [PMID: 32770629 DOI: 10.1111/dth.14153] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/01/2020] [Accepted: 08/04/2020] [Indexed: 12/19/2022]
Abstract
Dysfunctional regulatory T lymphocytes are important for the pathogenesis of psoriasis and atherosclerosis. We analyzed the severity of atherosclerosis and the concentration of regulatory cytokines in patients with psoriasis who were administered methotrexate or adalimumab for 12 weeks. We included 34 patients with psoriasis (17 each, administered methotrexate or adalimumab) and eight healthy volunteers. BMI, psoriasis area and severity index (PASI), body surface area (BSA), and at least 75% and 90% improvements in PASI were observed. The 10-year risk of fatal cardiovascular disease was estimated using Systematic Coronary Risk Evaluation charts. The plasma interleukin (IL)-10, IL-35, and transforming growth factor β1 (TGF-β1) levels were determined using enzyme-linked immunosorbent assay before and after the 12-week treatment regimen. PASI (P = .0006) and BSA (P = .0001) were positively correlated with the BMI, IL-35 (-0.38), and IL-10 (0.48) levels. Baseline IL-35 concentrations were the highest in healthy volunteers; the IL-10 and TGF-β1 level were the highest in the methotrexate group. IL-10 concentration decreased in both treatment groups (P = .02 for the methotrexate and P = .09 for adalimumab group), and IL-35 decreased in the adalimumab group (P = .019), consistent with skin lesion recovery. Thus, this study demonstrates the dysregulated secretion of regulatory cytokines in psoriatic patients under systemic treatment.
Collapse
Affiliation(s)
- Natalia Zdanowska
- Department of Dermatology, Sexually Transmitted Diseases and Clinical Immunology, University of Warmia and Mazury, Municipal Hospital, Olsztyn, Poland
| | - Agnieszka Owczarczyk-Saczonek
- Department of Dermatology, Sexually Transmitted Diseases and Clinical Immunology, University of Warmia and Mazury, Municipal Hospital, Olsztyn, Poland
| | - Joanna Czerwińska
- Department of Dermatology, Sexually Transmitted Diseases and Clinical Immunology, University of Warmia and Mazury, Municipal Hospital, Olsztyn, Poland
| | - Jacek J Nowakowski
- Department of Ecology and Environmental Protection, University of Warmia and Mazury, Olsztyn, Poland
| | - Anna Kozera-Żywczyk
- Department of Dermatology, Military Institute of the Health Services, Warsaw, Poland
| | - Witold Owczarek
- Department of Dermatology, Military Institute of the Health Services, Warsaw, Poland
| | - Wojciech Zdanowski
- Department of Gynecology and Obstetrics, University of Warmia and Mazury, Regional Hospital, Olsztyn, Poland
| | - Waldemar Placek
- Department of Dermatology, Sexually Transmitted Diseases and Clinical Immunology, University of Warmia and Mazury, Municipal Hospital, Olsztyn, Poland
| |
Collapse
|
32
|
Alvarez P, Augustín JJ, Tamayo E, Iglesias M, Acinas O, Mendiguren MA, Vázquez JA, Genre F, San Segundo D, Merino J, Merino R. Therapeutic Effects of Anti-Bone Morphogenetic Protein and Activin Membrane-Bound Inhibitor Treatment in Psoriasis and Arthritis. Arthritis Rheumatol 2020; 72:1547-1558. [PMID: 32249544 DOI: 10.1002/art.41272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 03/24/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The transforming growth factor β (TGFβ) inhibitor BAMBI (bone morphogenetic protein and activin membrane-bound inhibitor) has been shown to control differentiation of CD4+ T lymphocytes into either tolerogenic Treg cells or pathogenic Th17 cells, through the regulation of TGFβ and interleukin-2 (IL-2) signaling strength. The present study was undertaken to explore the potential beneficial effects of this strategy of pharmacologic inhibition using novel anti-BAMBI monoclonal antibodies (mAb) in different experimental murine models of chronic skin and joint inflammatory/autoimmune disease. METHODS Development of Saccharomyces cerevisiae mannan-induced psoriatic arthritis (MIP) (n = 18-30 mice per group), imiquimod-induced skin psoriasis (n = 20-30 mice per group), or type II collagen-induced arthritis (CIA) (n = 13-16 mice per group) was analyzed in a total of 2-5 different experiments with either wild-type (WT) or BAMBI-deficient B10.RIII mice that were left untreated or treated with mAb B101.37 (mouse IgG1 anti-BAMBI), a mouse IgG1 anti-TNP isotype control, anti-CD25, or anti-TGFβ mAb. RESULTS Treatment of normal mice with IgG1 anti-BAMBI mAb clone B101.37 led to expansion of Treg cells in vivo, and had both preventive and therapeutic effects in mice with MIP (each P < 0.05 versus controls). The conferred protection against disease progression was found to be mediated by Treg cells, which controlled the activation and expansion of pathogenic IL-17-producing cells, and was dependent on the level of TGFβ activity. Furthermore, treatment with B101.37 mAb blocked both the development of skin psoriasis induced by imiquimod and the development of CIA in mice (each P < 0.05 versus controls). Finally, pharmacologic inhibition of BAMBI with the IgM anti-BAMBI mAb B143.14 also potentiated the suppressive activity of Treg cells in vitro (P < 0.001 versus controls). CONCLUSION These results in murine models identify BAMBI as a promising new therapeutic target for chronic inflammatory diseases and other pathologic conditions modulated by Treg cells.
Collapse
Affiliation(s)
- Pilar Alvarez
- Instituto de Biomedicina y Biotecnología de Cantabria, CSIC-Universidad de Cantabria-SODERCAN, Santander, Spain
| | | | - Esther Tamayo
- IDIVAL and Universidad de Cantabria, Santander, Spain
| | | | - Olga Acinas
- Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | | | | | | | | | - Jesús Merino
- IDIVAL and Universidad de Cantabria, Santander, Spain
| | - Ramón Merino
- IDIVAL and Instituto de Biomedicina y Biotecnología de Cantabria, CSIC-Universidad de Cantabria-SODERCAN, Santander, Spain
| |
Collapse
|
33
|
Adwent I, Grabarek BO, Kojs-Mrożkiewicz M, Brus R, Staszkiewicz R, Plewka A, Stasiowski M, Lyssek-Boroń A. The Influence of Adalimumab and Cyclosporine A on the Expression Profile of the Genes Related to TGF β Signaling Pathways in Keratinocyte Cells Treated with Lipopolysaccharide A. Mediators Inflamm 2020; 2020:3821279. [PMID: 32774143 PMCID: PMC7399757 DOI: 10.1155/2020/3821279] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/13/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND In the treatment of moderate to severe psoriasis, cyclosporine A (CsA) conventional therapy is used and biological, anti-cytokine treatment using, for example, anti-TNF drug-adalimumab. AIM This study aimed at investigating the effect of CsA and adalimumab on the profile of mRNAs and protein expression associated with transforming growth factor β (TGFβ) pathways in human keratinocyte (HaCaT) culture previously exposed to lipopolysaccharide (LPS). MATERIALS AND METHODS HaCaT culture was exposed to 1 ng/ml LPS for 8 hours+8 μg/ml adalimumab for 2, 8, and 24 hours or 1 ng/ml LPS for 8 hours+100 ng/ml CsA for 2, 8, and 24 hours and compared to the control culture. Sulphorodamine B cytotoxicity assay was performed. The expression profile of mRNA related to TGFβ paths was indicated by microarray and RTqPCR analyses. The ELISA test was used to analyze changes on the proteome level. Statistical analysis consisted of ANOVA analysis and the post hoc Tukey test (p < 0.05). RESULTS The cytotoxicity test showed that LPS, adalimumab, and cyclosporine in the concentration used in this experiment did not have any cytotoxicity effect on HaCaT cells. The largest fold changes (FC) in expression in (∣FC | >4.00) was determined for TGFβ1-3, TGFβRI-III, SKIL, SMURF2, SMAD3, BMP2, BMP6, JAK2, UBE2D1, SKP2, EDN1, and PRKAR2B (p < 0.05). In addition, on the protein level, the direct changes observed at mRNA were the same. CONCLUSION Analysis of the microarray expression profile of genes associated with TGFβ signaling pathways has demonstrated the potential of cyclosporin A and adalimumab to induce changes in their transcriptional activity. The anti-TNF drug seems to affect TGFβ cascades to a greater extent than cyclosporin A. The obtained results suggest that the regularity of taking the drug is important for the efficacy of psoriasis therapy.
Collapse
Affiliation(s)
- Iwona Adwent
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine in Zabrze, University of Technology in Katowice, Poland
- Department of Dermatology, Andrzej Mielecki Memorial Independent Public Clinical Hospital, Medical University of Silesia, Katowice, Poland
| | - Beniamin Oskar Grabarek
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine in Zabrze, University of Technology in Katowice, Poland
- 5th Military Clinical Hospital with the SP ZOZ Polyclinic, Krakow, Poland
| | - Marta Kojs-Mrożkiewicz
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine in Zabrze, University of Technology in Katowice, Poland
| | - Ryszard Brus
- Department of Nurse, High School of Strategic Planning, Koscielna 6, 41-303 Dąbrowa Górnicza, Poland
| | - Rafał Staszkiewicz
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine in Zabrze, University of Technology in Katowice, Poland
- 5th Military Clinical Hospital with the SP ZOZ Polyclinic, Krakow, Poland
| | - Andrzej Plewka
- Institute of Health Sciences, University of Opole, Poland
| | - Michał Stasiowski
- Department of Anaesthesiology and Intensive Therapy, SMDZ in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Anita Lyssek-Boroń
- Department of Ophthalmology with Paediatric Unit, St. Barbara Hospital, Trauma Center, Sosnowiec, Poland
- Department of Ophtamology, Faculty of Medicine in Zabrze, University of Technology in Katowice, Poland
| |
Collapse
|
34
|
Strait AA, Wang XJ. The role of transforming growth factor-beta in immune suppression and chronic inflammation of squamous cell carcinomas. Mol Carcinog 2020; 59:745-753. [PMID: 32301180 DOI: 10.1002/mc.23196] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/18/2020] [Accepted: 03/25/2020] [Indexed: 12/14/2022]
Abstract
Despite a decline in the incidence of squamous cell carcinomas (SCCs) over the past 20 years, their survival rate has remained nearly the same, indicating that treatment options have not improved relative to other cancer types. Immunotherapies have a high potential for a sustained effect in SCC patients, but their response rate is low. Here, we review the suppressive role of transforming growth factor-beta (TGFβ) on the antitumor immune response in SCC and present its potential as a therapeutic target in combination with the current range of immunotherapies available for SCC patients. We conclude that SCCs are an optimal cancer type to study the effectiveness of TGFβ inhibition due to the prevalence of dysregulated TGFβ signaling in them.
Collapse
Affiliation(s)
- Alexander A Strait
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Xiao-Jing Wang
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado.,Research Service, Veterans Affairs Medical Center, VA Eastern Colorado Health Care System, Aurora, Colorado
| |
Collapse
|
35
|
Role of TGF-β in Skin Chronic Wounds: A Keratinocyte Perspective. Cells 2020; 9:cells9020306. [PMID: 32012802 PMCID: PMC7072438 DOI: 10.3390/cells9020306] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/17/2020] [Accepted: 01/27/2020] [Indexed: 12/19/2022] Open
Abstract
Chronic wounds are characterized for their incapacity to heal within an expected time frame. Potential mechanisms driving this impairment are poorly understood and current hypotheses point to the development of an unbalanced milieu of growth factor and cytokines. Among them, TGF-β is considered to promote the broadest spectrum of effects. Although it is known to contribute to healthy skin homeostasis, the highly context-dependent nature of TGF-β signaling restricts the understanding of its roles in healing and wound chronification. Historically, low TGF-β levels have been suggested as a pattern in chronic wounds. However, a revision of the available evidence in humans indicates that this could constitute a questionable argument. Thus, in chronic wounds, divergences regarding skin tissue compartments seem to be characterized by elevated TGF-β levels only in the epidermis. Understanding how this aspect affects keratinocyte activities and their capacity to re-epithelialize might offer an opportunity to gain comprehensive knowledge of the involvement of TGF-β in chronic wounds. In this review, we compile existing evidence on the roles played by TGF-β during skin wound healing, with special emphasis on keratinocyte responses. Current limitations and future perspectives of TGF-β research in chronic wounds are discussed.
Collapse
|
36
|
Liarte S, Bernabé-García Á, Nicolás FJ. Human Skin Keratinocytes on Sustained TGF-β Stimulation Reveal Partial EMT Features and Weaken Growth Arrest Responses. Cells 2020; 9:cells9010255. [PMID: 31968599 PMCID: PMC7017124 DOI: 10.3390/cells9010255] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/03/2020] [Accepted: 01/09/2020] [Indexed: 12/22/2022] Open
Abstract
Defects in wound closure can be related to the failure of keratinocytes to re-epithelize. Potential mechanisms driving this impairment comprise unbalanced cytokine signaling, including Transforming Growth Factor-β (TFG-β). Although the etiologies of chronic wound development are known, the relevant molecular events are poorly understood. This lack of insight is a consequence of ethical issues, which limit the available evidence to humans. In this work, we have used an in vitro model validated for the study of epidermal physiology and function, the HaCaT cells to provide a description of the impact of sustained exposure to TGF-β. Long term TGF-β1 treatment led to evident changes, HaCaT cells became spindle-shaped and increased in size. This phenotype change involved conformational re-arrangements for actin filaments and E-Cadherin cell-adhesion structures. Surprisingly, the signs of consolidated epithelial-to-mesenchymal transition were absent. At the molecular level, modified gene expression and altered protein contents were found. Non-canonical TGF-β pathway elements did not show relevant changes. However, R-Smads experienced alterations best characterized by decreased Smad3 levels. Functionally, HaCaT cells exposed to TGF-β1 for long periods showed cell-cycle arrest. Yet, the strength of this restraint weakens the longer the treatment, as revealed when challenged by pro-mitogenic factors. The proposed setting might offer a useful framework for future research on the mechanisms driving wound chronification.
Collapse
|
37
|
A vivid cytokines interaction model on psoriasis with the effect of impulse biologic (TNF−αinhibitor) therapy. J Theor Biol 2019; 474:63-77. [DOI: 10.1016/j.jtbi.2019.04.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 04/04/2019] [Accepted: 04/08/2019] [Indexed: 11/18/2022]
|
38
|
Rodríguez-Jiménez P, Chicharro P, Llamas-Velasco M, Cibrian D, Trigo-Torres L, Vara A, Jiménez-Fernández M, Sevilla-Montero J, Calzada MJ, Sánchez-Madrid F, de la Fuente H, Daudén E. Thrombospondin-1/CD47 Interaction Regulates Th17 and Treg Differentiation in Psoriasis. Front Immunol 2019; 10:1268. [PMID: 31214201 PMCID: PMC6558197 DOI: 10.3389/fimmu.2019.01268] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 05/17/2019] [Indexed: 12/16/2022] Open
Abstract
Accumulating evidence on the role of Thrombospondin-1 (TSP-1) in the immune response has emerged during the last years. In spite of the importance of TSP-1 not only as anti-angiogenic factor but also as an immunomodulatory molecule, studies on the role of TSP-1 in psoriasis have been neglected. TSP-1 and CD47 expression were analyzed in skin samples from psoriasis patients and control subjects using RT-PCR and immunofluorescence. Expression of these molecules was also evaluated in peripheral blood CD4+ T cells, moDCs, and circulating primary DCs. The functional role of TSP-1/CD47 signaling axis in psoriasis was assessed in Th17 and Treg differentiation assays. Additionally, small interfering RNA assays specific to TSP-1 were performed in CD4+ T cells and monocyte derived DC to specifically evaluate the function of this protein. Lesional skin of psoriasis patients expressed lower TSP-1 and CD47 mRNA levels compared to non-lesional skin or skin from controls. Immunofluorescence staining revealed decreased expression of CD47 in CD45+ dermal cells from psoriasis samples compared to control subjects. Peripheral CD4+ T cells and circulating primary DCs from psoriasis also expressed lower levels of CD47 compared to controls. Although no significant differences were detected in TSP-1 expression in CD4+ T cells and moDCs between patients and controls, TSP-1 expression in psoriasis patients inversely correlated with disease activity evaluated by the Psoriasis Area and Index Activity. Furthermore, exogenous TSP-1 inhibited Th17 differentiation and stimulated the differentiation of CD4+ T cells toward Treg cells. Furthermore, RNA interference specific for TSP-1 confirmed the role of this molecule as a negative regulator of T cell activation. Because of the impact of TSP-1/CD47 signaling axis in Th17 and Treg differentiation, a dysregulated expression of these molecules in the immune cells from psoriasis patients may favor the exacerbated inflammatory response in this disease.
Collapse
Affiliation(s)
- Pedro Rodríguez-Jiménez
- Department of Dermatology, Instituto de Investigación Sanitaria Princesa, Hospital Universitario la Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - Pablo Chicharro
- Department of Dermatology, Instituto de Investigación Sanitaria Princesa, Hospital Universitario la Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - Mar Llamas-Velasco
- Department of Dermatology, Instituto de Investigación Sanitaria Princesa, Hospital Universitario la Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - Danay Cibrian
- Department of Immunology, Instituto de Investigación Sanitaria Princesa, Hospital Universitario la Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - Laura Trigo-Torres
- Department of Immunology, Instituto de Investigación Sanitaria Princesa, Hospital Universitario la Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - Alicia Vara
- Department of Immunology, Instituto de Investigación Sanitaria Princesa, Hospital Universitario la Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - María Jiménez-Fernández
- Department of Immunology, Instituto de Investigación Sanitaria Princesa, Hospital Universitario la Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - Javier Sevilla-Montero
- Department of Immunology, Instituto de Investigación Sanitaria Princesa, Hospital Universitario la Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - Maria J Calzada
- Department of Immunology, Instituto de Investigación Sanitaria Princesa, Hospital Universitario la Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - Francisco Sánchez-Madrid
- Department of Immunology, Instituto de Investigación Sanitaria Princesa, Hospital Universitario la Princesa, Universidad Autónoma de Madrid, Madrid, Spain.,CIBER de Enfermedades Cardiovasculares, Institututo de Salud Carlos III, Madrid, Spain
| | - Hortensia de la Fuente
- Department of Immunology, Instituto de Investigación Sanitaria Princesa, Hospital Universitario la Princesa, Universidad Autónoma de Madrid, Madrid, Spain.,CIBER de Enfermedades Cardiovasculares, Institututo de Salud Carlos III, Madrid, Spain
| | - Esteban Daudén
- Department of Dermatology, Instituto de Investigación Sanitaria Princesa, Hospital Universitario la Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
39
|
Cataldi C, Mari NL, Lozovoy MAB, Martins LMM, Reiche EMV, Maes M, Dichi I, Simão ANC. Proinflammatory and anti-inflammatory cytokine profiles in psoriasis: use as laboratory biomarkers and disease predictors. Inflamm Res 2019; 68:557-567. [PMID: 31062065 DOI: 10.1007/s00011-019-01238-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/18/2019] [Accepted: 04/22/2019] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE The objectives of this study were to delineate the pro and anti-inflammatory cytokine profiles of psoriasis and cytokine profile models that externally validate the diagnosis. SUBJECTS AND METHODS This study recruited 70 patients with psoriasis and 76 healthy controls. Cytokine profiles were evaluated, including pro-inflammatory M1 (IL-1 + IL-6 + TNF-α), Th1 (IL-2 + IL-12 + IFN-γ), Th17 (IL-6 + IL-17), and immune-inflammatory response system (IRS = M1 + Th1 + Th17) profiles. Moreover, the anti-inflammatory potential included Th2 (IL-4), Th2 + T regulatory (Th2 + Treg, namely IL-4 + IL-10 + TGF-β), anti-inflammatory (Th2 + Treg + adiponectin), and the pro-inflammatory/anti-inflammatory index. RESULTS There was a highly significant association between psoriasis and cytokine levels with an effect size of 0.829 and a particularly strong impact on IL-2 (0.463), IL-12 (0.451), IL-10 (0.532) and adiponectin (0.401). TGF-β and adiponectin were significantly lower while all other cytokines (except IFN-γ) were significantly higher in psoriasis than in controls. In addition, M1, Th1, Th17, Th2 + Treg, and IRS/Anti-inflammatory index were significantly higher in psoriasis patients than in controls. The IRS index, Th2 + Treg, and adiponectin predicted psoriasis with 97.1% sensitivity and 94% specificity. CONCLUSION In conclusion, psoriasis is characterized by increased M1, Th1, Th2 and Th17 profiles together with lowered TGF-β and adiponectin. In addition, we propose a model based on a higher IRS and Th2 + Treg index coupled with lower adiponectin values, which may be used to externally validate the diagnosis of psoriasis. The most important single biomarker of psoriasis is adiponectin. Because the latter may play a role in the modulation of the chronic inflammatory response in psoriasis, adiponectin could be a new drug target to treat psoriasis.
Collapse
Affiliation(s)
- Camila Cataldi
- Laboratory of Research in Applied Immunology, University of Londrina, Londrina, PR, Brazil
| | - Naiara Lourenço Mari
- Laboratory of Research in Applied Immunology, University of Londrina, Londrina, PR, Brazil
| | - Marcell Alysson Batisti Lozovoy
- Laboratory of Research in Applied Immunology, Department of Pathology, Clinical Analysis and Toxicology, University of Londrina, Rua Robert Koch, n 60, Londrina, Paraná, 86038-440, Brazil
| | | | - Edna Maria Vissoci Reiche
- Laboratory of Research in Applied Immunology, Department of Pathology, Clinical Analysis and Toxicology, University of Londrina, Rua Robert Koch, n 60, Londrina, Paraná, 86038-440, Brazil
| | - Michael Maes
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, VIC, Australia.,Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Isaias Dichi
- Laboratory of Research in Applied Immunology, Department of Internal Medicine, University of Londrina, Londrina, PR, Brazil
| | - Andréa Name Colado Simão
- Laboratory of Research in Applied Immunology, Department of Pathology, Clinical Analysis and Toxicology, University of Londrina, Rua Robert Koch, n 60, Londrina, Paraná, 86038-440, Brazil.
| |
Collapse
|
40
|
Georgescu SR, Tampa M, Caruntu C, Sarbu MI, Mitran CI, Mitran MI, Matei C, Constantin C, Neagu M. Advances in Understanding the Immunological Pathways in Psoriasis. Int J Mol Sci 2019; 20:ijms20030739. [PMID: 30744173 PMCID: PMC6387410 DOI: 10.3390/ijms20030739] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 01/31/2019] [Accepted: 02/08/2019] [Indexed: 12/17/2022] Open
Abstract
Psoriasis vulgaris is a chronic, immune-mediated, inflammatory, polygenic skin disorder affecting approximately 2% of the population. It has a great impact on quality of life; patients often experience depression, anxiety, stigma as well as suicidal behavior. Even though psoriasis is one of the most studied dermatological conditions, the pathogenesis of the disease is still not completely elucidated. The complex interactions between keratinocytes, dendritic cells, T-lymphocytes, neutrophils and mast cells are responsible for the histopathological changes seen in psoriasis. The pathogenic model leading to the formation of psoriatic plaques has however evolved a lot over the years. There is now enough evidence to support the role of interleukin (IL) -23, IL-17, IL-22, T helper (Th) -17 cells, Th-22 cells, T regulatory cells, transforming growth factor (TGF)-β1 and IL-10 in the pathogenesis of the disease. Moreover, several inflammatory and anti-inflammatory molecules are currently being investigated, some of them showing promising results. The aim of this paper is to look over the most recent advances in the immunological pathways involved in the pathogenesis of psoriasis vulgaris.
Collapse
Affiliation(s)
- Simona-Roxana Georgescu
- Department of Dermatology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania.
- Department of Dermatology, Victor Babes Hospital of Infectious Diseases, 030303 Bucharest, Romania.
| | - Mircea Tampa
- Department of Dermatology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania.
- Department of Dermatology, Victor Babes Hospital of Infectious Diseases, 030303 Bucharest, Romania.
| | - Constantin Caruntu
- Department of Physiology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania.
- Department of Dermatology, Prof. N.C. Paulescu National Institute of Diabetes, Nutrition and Metabolic Diseases, 030167 Bucharest, Romania.
| | - Maria-Isabela Sarbu
- Department of Dermatology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania.
| | - Cristina-Iulia Mitran
- Department of Microbiology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania.
| | - Madalina-Irina Mitran
- Department of Microbiology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania.
| | - Clara Matei
- Department of Dermatology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania.
| | - Carolina Constantin
- Department of Immunology, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania.
- Department of Pathology, Colentina University Hospital, 020125 Bucharest, Romania.
| | - Monica Neagu
- Department of Immunology, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania.
- Department of Pathology, Colentina University Hospital, 020125 Bucharest, Romania.
- Faculty of Biology, University of Bucharest, 030018 Bucharest, Romania.
| |
Collapse
|
41
|
O'Rielly DD, Rahman P. A review of ixekizumab in the treatment of psoriatic arthritis. Expert Rev Clin Immunol 2018; 14:993-1002. [PMID: 30360663 DOI: 10.1080/1744666x.2018.1540931] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
INTRODUCTION Psoriatic arthritis (PsA) is a heterogeneous inflammatory disorder with articular, peri-articular, and extra-articular features along with selected co-morbidities as a sequela to chronic inflammation. There is accumulating evidence that the Th-17 signaling pathway is of critical importance in PsA pathogenesis. Areas covered: Ixekizumab (IXE) is a humanized immunoglobulin G subclass 4 (IgG4) monoclonal antibody directed against IL-17A. Two phase III randomized clinical trials, SPIRIT-P1 and SPIRIT-P2, unequivocally demonstrated superiority of IXE (80 mg every two or 4 weeks) dosing over placebo in moderate-to-severe PsA patients that failed either NSAIDs, conventional disease-modifying anti-rheumatic drugs (csDMARDs), or tumor necrosis factor-α inhibitors (TNFi) for numerous articular and cutaneous parameters. IXE also delayed structural progression of PsA. No new safety signals were identified as compared with chronic plaque psoriasis studies which included many more patients. Expert opinion: IXE is a highly effective treatment for moderate to severe PsA patients, including those that have been previously exposed to csDMARD and TNFi. Most domains of PsA significantly improved with IXE treatment and disease modification was achieved.
Collapse
Affiliation(s)
- Darren D O'Rielly
- a Faculty of Medicine , Memorial University of Newfoundland , St. John's , Newfoundland and Labrador , Canada
| | - Proton Rahman
- a Faculty of Medicine , Memorial University of Newfoundland , St. John's , Newfoundland and Labrador , Canada
| |
Collapse
|
42
|
Li R, Qiao M, Zhao X, Yan J, Wang X, Sun Q. MiR-20a-3p regulates TGF-β1/Survivin pathway to affect keratinocytes proliferation and apoptosis by targeting SFMBT1 in vitro. Cell Signal 2018; 49:95-104. [PMID: 29886071 DOI: 10.1016/j.cellsig.2018.06.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 05/21/2018] [Accepted: 06/05/2018] [Indexed: 12/18/2022]
Abstract
Psoriasis is a common immune-mediated chronic inflammatory skin disease characterized by abnormal keratinocyte proliferation, differentiation and apoptosis. However, the exact etiology and pathogenesis are still unclear. Evidence is rapidly accumulating for the role of microRNAs in psoriasis. It has been demonstrated that Interleukin-22 (IL-22) plays vital role in T cell-mediated immune response by interacting with keratinocytes in the pathogenesis of psoriasis. The aim of our study was to explore the possible functional role of miR-20a-3p in psoriasis and in IL-22 induced keratinocyte proliferation. Here, we found that miR-20a-3p was down-regulated in psoriatic lesions and in HaCaT cells (human keratinocyte cell line) treated by IL-22 stimulation. Functional experiments showed that overexpression of miR-20a-3p in HaCaT cells suppressed proliferation and induced apoptosis while its knockdown promoted cell proliferation and reduces cell apoptosis. Mechanistically, SFMBT1 was identified as the direct target of miR-20a-3p by dual luciferase reporter assay. SFMBT1 knockdown was demonstrated to inhibit cell growth and induced apoptosis, which was consistent with the function of miR-20a-3p upregulation in HaCaT cells. In addition, results of western blot analysis showed that miR-20a-3p upregulation or SFMBT1 knockdown changed the protein expression levels of TGF-β1 and survivin. Our findings suggest that miR-20a-3p play roles through targeting SFMBT1 and TGF-β1/Survivin pathway in HaCaT cells, and loss of miR-20a-3p in psoriasis may contribute to hyperproliferation and aberrant apoptosis of keratinocytes.
Collapse
Affiliation(s)
- Ronghua Li
- Department of Dermatology, Qilu Hospital, Shandong University, 107 West Wenhua Road, Jinan, Shandong, China
| | - Meng Qiao
- Department of Dermatology, Qilu Hospital, Shandong University, 107 West Wenhua Road, Jinan, Shandong, China
| | - Xintong Zhao
- Department of Dermatology, Qilu Hospital, Shandong University, 107 West Wenhua Road, Jinan, Shandong, China
| | - Jianjun Yan
- Department of Dermatology, Qilu Hospital, Shandong University, 107 West Wenhua Road, Jinan, Shandong, China
| | - Xiaoyan Wang
- Department of Dermatology, Qingdao Municipal Hospital (Group), No. 1, Jiaozhou Road, Qingdao, Shandong, China
| | - Qing Sun
- Department of Dermatology, Qilu Hospital, Shandong University, 107 West Wenhua Road, Jinan, Shandong, China.
| |
Collapse
|
43
|
El-Hadidi HH, Hassan AS, El-Hanafy G, Amr KS, Abdelmesih SF, Abdelhamid MF. Transforming growth factor-β1 gene polymorphism in psoriasis vulgaris. Clin Cosmet Investig Dermatol 2018; 11:415-419. [PMID: 30174452 PMCID: PMC6110268 DOI: 10.2147/ccid.s171403] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Background Increased transforming growth factor beta 1 (TGF-β1) in the epidermis and serum has been found in psoriatic patients. The mechanism for this increase remains unclear. Objective To study the TGF-β1 gene polymorphism at codon 10 and its relation to psoriasis susceptibility in a sample of Egyptian patients. Materials and methods This cross-sectional study involved 70 patients with psoriasis vulgaris and 100 age- and sex- comparable healthy volunteers as a control group. Genomic DNA was prepared from peripheral blood lymphocytes from all subjects using QIAamp DNA mini kit (QIAGEN Inc., Germany). The TGF-β1 polymorphism was genotyped by PCR-based restricted fragment length polymorphism (PCR-RFLP) analysis. Amplification of codon 10, located in exon 1 of TGFβ1 gene was done through PCR reaction using gene-specific primers. Results Statistically significant difference was found between psoriasis patient and controls as regards TGF-β1 (T869C) polymorphism (P=0.045). The presence of TT genotype was associated with a 3-fold risk of psoriasis compared to CC genotype (P=0.016, OR: 3.13 95% CI: 1.24–7.88). T allele was significantly more frequent in psoriasis patients (P=0.017). TGF-β1 gene mutation was significantly higher among psoriasis patients with positive family history (P=0.007). Conclusion TGF-β1 gene polymorphism at codon 10 (T869C) is significantly associated with susceptibility to psoriasis in Egyptian patients. This polymorphism is more common in patients with a positive family history of psoriasis.
Collapse
Affiliation(s)
- Heba H El-Hadidi
- Department of Dermatology, Kasr Al-Ainy University Hospitals, Cairo University, Giza, Egypt
| | - Akmal S Hassan
- Department of Dermatology, Kasr Al-Ainy University Hospitals, Cairo University, Giza, Egypt
| | - Ghada El-Hanafy
- Department of Dermatology, Kasr Al-Ainy University Hospitals, Cairo University, Giza, Egypt
| | - Khalda S Amr
- Department of Molecular Genetics, National Research Center, Cairo, Egypt
| | | | | |
Collapse
|
44
|
Masalha M, Sidi Y, Avni D. The contribution of feedback loops between miRNAs, cytokines and growth factors to the pathogenesis of psoriasis. Exp Dermatol 2018; 27:603-610. [DOI: 10.1111/exd.13520] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Moamen Masalha
- Laboratory of Molecular Cell Biology; Center for Cancer Research and Department of Medicine C; Sheba Medical Center; Tel Hashomer Israel
- Faculty of Medicine; Sackler School of Medicine; Tel Aviv University; Tel Aviv Israel
| | - Yechezkel Sidi
- Laboratory of Molecular Cell Biology; Center for Cancer Research and Department of Medicine C; Sheba Medical Center; Tel Hashomer Israel
- Faculty of Medicine; Sackler School of Medicine; Tel Aviv University; Tel Aviv Israel
| | - Dror Avni
- Laboratory of Molecular Cell Biology; Center for Cancer Research and Department of Medicine C; Sheba Medical Center; Tel Hashomer Israel
| |
Collapse
|
45
|
Owczarczyk-Saczonek A, Czerwińska J, Placek W. The role of regulatory T cells and anti-inflammatory cytokines in psoriasis. ACTA DERMATOVENEROLOGICA ALPINA PANNONICA ET ADRIATICA 2018. [DOI: 10.15570/actaapa.2018.4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
46
|
Owczarczyk-Saczonek A, Drozdowski M, Maciejewska-Radomska A, Choszcz D, Placek W. The effect of subcutaneous methotrexate on markers of metabolic syndrome in psoriatic patients - preliminary report. Postepy Dermatol Alergol 2018; 35:53-59. [PMID: 29599672 PMCID: PMC5872240 DOI: 10.5114/ada.2017.71358] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 08/05/2016] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION Methotrexate (MTX) has anti-proliferative and anti-inflammatory effects in psoriasis. Moreover, low doses can reduce the risk of developing cardiovascular diseases. It turns out that psoriasis and atherosclerosis have a similar pathogenetic mechanism: the same pro-inflammatory cytokines, Th1 and Th17, are involved in both diseases. AIM To evaluate the effects of metabolic markers, protective cytokines (interleukin 10 (IL-10), transforming growth factor β (TGF-β)) and a marker of endothelial damage (endocan) in patients with plaque psoriasis. MATERIAL AND METHODS The study included 24 patients aged 27-69 years (9 female, 15 male) with plaque psoriasis. The metabolic syndrome according to the International Diabetes Federation (IDF) was evaluated. The laboratory tests were performed under fasting conditions: C-reactive protein (CRP), glucose, total cholesterol, triglycerides, high-density lipoprotein (HDL), uric acid, endocan, IL-10, and TGF-β. After 12 weeks of treatment with MTX injections 15 mg/week, every patient was assessed with the same laboratory tests. RESULTS After treatment we observed a statistically significant increase of endocan and IL-10, but no significant differences in the titer of TGF-β. C-reactive protein was reduced by approximately 54.7%. No improvement of lipid profile was observed, and even a significant increase in triglycerides was noted. Similarly, no significant difference was seen in the case of glucose and uric acid prior to and after treatment. CONCLUSIONS Methotrexate in low doses in short-term treatment decreases CRP (anti-inflammatory effect) and increases endocan and IL-10 (potential protective role). Methotrexate is characterized by good efficacy and tolerability in therapy of patients with psoriasis.
Collapse
Affiliation(s)
- Agnieszka Owczarczyk-Saczonek
- Department of Dermatology, Sexually Transmitted Diseases and Clinical Immunology, University of Warmia and Mazury, Olsztyn, Poland
| | - Marek Drozdowski
- Department of Laboratory Medicine, University of Warmia and Mazury, Olsztyn, Poland
| | - Agata Maciejewska-Radomska
- Department of Dermatology, Sexually Transmitted Diseases and Clinical Immunology, University of Warmia and Mazury, Olsztyn, Poland
| | - Dariusz Choszcz
- Department of Machines and Research Methodology, Faculty of Technical Sciences, University of Warmia and Mazury, Olsztyn, Poland
| | - Waldemar Placek
- Department of Dermatology, Sexually Transmitted Diseases and Clinical Immunology, University of Warmia and Mazury, Olsztyn, Poland
| |
Collapse
|
47
|
The Pathophysiological Mechanisms and the Quest for Biomarkers in Psoriasis, a Stress-Related Skin Disease. DISEASE MARKERS 2018; 2018:5823684. [PMID: 29619128 PMCID: PMC5829341 DOI: 10.1155/2018/5823684] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 12/20/2017] [Accepted: 12/28/2017] [Indexed: 12/24/2022]
Abstract
Psoriasis is a physically, emotionally, and socially invalidating multifactorial disorder, with a significant impact on the patients' quality of life. Stress is one of the leading triggers for psoriasis and has been associated with disease onset and subsequent flare-ups, while the flare-ups by themselves often lead to psychological discomfort. The treatment of psoriasis is individualized, depending on the patients' measurable severity of illness, as well as the impact the skin condition has on patients' quality of life, as assessed by standardized questionnaires. The clinical scales used nowadays for measuring the severity of psoriasis are characterized by low reproducibility and high variability between examiners. Hence, there is a real need to identify objectively measurable biomarkers to standardize the assessment of the severity of psoriasis. We aim to review the pathophysiological mechanisms involved in psoriasis, focusing on the most critical advances in psoriasis biomarker discovery, pointing out those biomarkers which have also been studied in other stress-related conditions, thus emphasizing the relationship between psoriasis and stress.
Collapse
|
48
|
Affiliation(s)
- R M Gallucci
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, PO Box 26901, Oklahoma City, OK, 73126, U.S.A
| |
Collapse
|
49
|
Yang L, Guo W, Zhang S, Wang G. Ubiquitination-proteasome system: A new player in the pathogenesis of psoriasis and clinical implications. J Dermatol Sci 2017; 89:219-225. [PMID: 29279285 DOI: 10.1016/j.jdermsci.2017.12.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 12/11/2017] [Indexed: 12/13/2022]
Abstract
Ubiquitination is an important post-translational modification that regulates a myriad of biological processes such as inflammation, immune response, cell differentiation and proliferation. During the last decade, progress in proteomics contributed to the identification of new E3 ligases and their substrates. Hence, deregulated ubiquitination events are found to be involved in several inflammatory disorders, exemplifying by systemic lupus erythematosus (SLE), type 1 diabetes, rheumatoid arthritis (RA) and psoriasis. Psoriasis is a chronic inflammatory skin disease characterized by epidermal hyperproliferation and differentiation. Through regulation of key transcriptional factors or signaling members, ubiquitination is viewed as a key regulator in psoriasis. Thus, targeting ubiquitination pathway holds potential for the treatment of psoriasis. Herein, we summarize the current understanding of ubiquitination in psoriasis, and discuss the prospects for targeting ubiquitination in the treatment of psoriasis.
Collapse
Affiliation(s)
- Luting Yang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Weinan Guo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Shaolong Zhang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Gang Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
50
|
Models in the Research Process of Psoriasis. Int J Mol Sci 2017; 18:ijms18122514. [PMID: 29186769 PMCID: PMC5751117 DOI: 10.3390/ijms18122514] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/21/2017] [Accepted: 11/22/2017] [Indexed: 12/20/2022] Open
Abstract
Psoriasis is an ancient, universal chronic skin disease with a significant geographical variability, with the lowest incidence rate at the equator, increasing towards the poles. Insights into the mechanisms responsible for psoriasis have generated an increasing number of druggable targets and molecular drugs. The development of relevant in vitro and in vivo models of psoriasis is now a priority and an important step towards its cure. In this review, we summarize the current cellular and animal systems suited to the study of psoriasis. We discuss the strengths and limitations of the various models and the lessons learned. We conclude that, so far, there is no one model that can meet all of the research needs. Therefore, the choice model system will depend on the questions being addressed.
Collapse
|