1
|
Hu M, Scheffel J, Elieh-Ali-Komi D, Maurer M, Hawro T, Metz M. An update on mechanisms of pruritus and their potential treatment in primary cutaneous T-cell lymphoma. Clin Exp Med 2023; 23:4177-4197. [PMID: 37555911 PMCID: PMC10725374 DOI: 10.1007/s10238-023-01141-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/12/2023] [Indexed: 08/10/2023]
Abstract
Primary cutaneous T-cell lymphomas (CTCL), which include mycosis fungoides (MF) and Sézary syndrome (SS), are a group of lymphoproliferative disorders characterized by clonal accumulation of neoplastic T-lymphocytes in the skin. Severe pruritus, one of the most common and distressing symptoms in primary CTCL, can significantly impair emotional well-being, physical functioning, and interpersonal relationships, thus greatly reducing quality of life. Unfortunately, effectively managing pruritus remains challenging in CTCL patients as the underlying mechanisms are, as of yet, not fully understood. Previous studies investigating the mechanisms of itch in CTCL have identified several mediators and their corresponding antagonists used for treatment. However, a comprehensive overview of the mediators and receptors contributing to pruritus in primary CTCL is lacking in the current literature. Here, we summarize and review the mediators and receptors that may contribute to pruritus in primary CTCL to explore the mechanisms of CTCL pruritus and identify effective therapeutic targets using the PubMed and Web of Science databases. Studies were included if they described itch mediators and receptors in MF and SS. Overall, the available data suggest that proteases (mainly tryptase), and neuropeptides (particularly Substance P) may be of greatest interest. At the receptor level, cytokine receptors, MRGPRs, and TRP channels are most likely important. Future drug development efforts should concentrate on targeting these mediators and receptors for the treatment of CTCL pruritus.
Collapse
Affiliation(s)
- Man Hu
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Hindenburgdamm 27, 12203, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - Jörg Scheffel
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Hindenburgdamm 27, 12203, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - Daniel Elieh-Ali-Komi
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Hindenburgdamm 27, 12203, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - Marcus Maurer
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Hindenburgdamm 27, 12203, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - Tomasz Hawro
- Department of Dermatology, Allergology and Venereology, Institute and Comprehensive Center for Inflammation Medicine, University Medical Center Schleswig-Holstein, Lübeck, Germany.
| | - Martin Metz
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Hindenburgdamm 27, 12203, Berlin, Germany.
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany.
| |
Collapse
|
2
|
Bénard A, Mittelstädt A, Klösch B, Glanz K, Müller J, Schoen J, Nüse B, Brunner M, Naschberger E, Stürzl M, Mattner J, Muñoz LE, Sohn K, Grützmann R, Weber GF. IL-3 orchestrates ulcerative colitis pathogenesis by controlling the development and the recruitment of splenic reservoir neutrophils. Cell Rep 2023; 42:112637. [PMID: 37300834 DOI: 10.1016/j.celrep.2023.112637] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/03/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Inflammatory bowel diseases (IBDs) are a global health issue with an increasing incidence. Although the pathogenesis of IBDs has been investigated intensively, the etiology of IBDs remains enigmatic. Here, we report that interleukin-3 (Il-3)-deficient mice are more susceptible and exhibit increased intestinal inflammation during the early stage of experimental colitis. IL-3 is locally expressed in the colon by cells harboring a mesenchymal stem cell phenotype and protects by promoting the early recruitment of splenic neutrophils with high microbicidal capability into the colon. Mechanistically, IL-3-dependent neutrophil recruitment involves CCL5+ PD-1high LAG-3high T cells, STAT5, and CCL20 and is sustained by extramedullary splenic hematopoiesis. During acute colitis, Il-3-/- show, however, increased resistance to the disease as well as reduced intestinal inflammation. Altogether, this study deepens our understanding of IBD pathogenesis, identifies IL-3 as an orchestrator of intestinal inflammation, and reveals the spleen as an emergency reservoir for neutrophils during colonic inflammation.
Collapse
Affiliation(s)
- Alan Bénard
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany.
| | - Anke Mittelstädt
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Bettina Klösch
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Karolina Glanz
- Fraunhofer Institute for Interfacial Engineering and Biotechnology, Stuttgart, Germany
| | - Jan Müller
- Fraunhofer Institute for Interfacial Engineering and Biotechnology, Stuttgart, Germany
| | - Janina Schoen
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Björn Nüse
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU), Erlangen, Germany
| | - Maximilian Brunner
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Elisabeth Naschberger
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Michael Stürzl
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jochen Mattner
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU), Erlangen, Germany
| | - Luis E Muñoz
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Kai Sohn
- Fraunhofer Institute for Interfacial Engineering and Biotechnology, Stuttgart, Germany
| | - Robert Grützmann
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Georg F Weber
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
3
|
Bénard A, Hansen FJ, Uhle F, Klösch B, Czubayko F, Mittelstädt A, Jacobsen A, David P, Podolska MJ, Anthuber A, Swierzy I, Schaack D, Mühl-Zürbes P, Steinkasserer A, Weyand M, Weigand MA, Brenner T, Krautz C, Grützmann R, Weber GF. Interleukin-3 protects against viral pneumonia in sepsis by enhancing plasmacytoid dendritic cell recruitment into the lungs and T cell priming. Front Immunol 2023; 14:1140630. [PMID: 36911737 PMCID: PMC9996195 DOI: 10.3389/fimmu.2023.1140630] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/02/2023] [Indexed: 02/25/2023] Open
Abstract
Rationale Sepsis, a global health burden, is often complicated by viral infections leading to increased long-term morbidity and mortality. Interleukin-3 (IL-3) has been identified as an important mediator amplifying acute inflammation in sepsis; however, its function in the host response to viral infections during sepsis remains elusive. Objectives To investigate the role of IL-3 during viral pneumonia in sepsis. Methods We included septic patients from two different cohorts and used in vitro and in vivo assays. The obtained data were substantiated using a second model (SARS-CoV-2 infections). Measurements and main results Low plasma IL-3 levels were associated with increased herpes simplex virus (HSV) airway infections in septic patients, resulting in reduced overall survival. Likewise, Il-3-deficient septic mice were more susceptible to pulmonary HSV-1 infection and exhibited higher pulmonary inflammation than control mice. Mechanistically, IL-3 increases innate antiviral immunity by promoting the recruitment of circulating plasmacytoid dendritic cells (pDCs) into the airways and by enhancing pDC-mediated T cell activation upon viral stimulation. Interestingly, the ability of IL-3 to improve adaptive immunity was confirmed in patients with SARS-CoV-2 infections. Conclusion Our study identifies IL-3 as a predictive disease marker for viral reactivation in sepsis and reveals that IL-3 improves antiviral immunity by enhancing the recruitment and the function of pDCs.
Collapse
Affiliation(s)
- Alan Bénard
- Department of Surgery, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Frederik J Hansen
- Department of Surgery, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Florian Uhle
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Bettina Klösch
- Department of Surgery, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Franziska Czubayko
- Department of Surgery, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Anke Mittelstädt
- Department of Surgery, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Anne Jacobsen
- Department of Surgery, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Paul David
- Department of Surgery, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Malgorzata J Podolska
- Department of Surgery, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Anna Anthuber
- Department of Surgery, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Izabela Swierzy
- Department of Surgery, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Dominik Schaack
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Petra Mühl-Zürbes
- Department of Immune Modulation, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Alexander Steinkasserer
- Department of Immune Modulation, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Michael Weyand
- Department of Cardiac Surgery, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Markus A Weigand
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Thorsten Brenner
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Christian Krautz
- Department of Surgery, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Robert Grützmann
- Department of Surgery, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Georg F Weber
- Department of Surgery, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
4
|
Bénard A, Podolska MJ, Czubayko F, Kutschick I, Klösch B, Jacobsen A, Naschberger E, Brunner M, Krautz C, Trufa DI, Sirbu H, Lang R, Grützmann R, Weber GF. Pleural Resident Macrophages and Pleural IRA B Cells Promote Efficient Immunity Against Pneumonia by Inducing Early Pleural Space Inflammation. Front Immunol 2022; 13:821480. [PMID: 35493510 PMCID: PMC9047739 DOI: 10.3389/fimmu.2022.821480] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
Airway infection is a major cause of mortality worldwide. The identification of new mechanisms aiding in effective host immune response is therefore required. Here, we show that the specific depletion of the pleural immune cell compartment during bacterial pneumonia resulted in a reduced pulmonary immune response and increased mortality in mice. Bacterial airway infection provoked early pleural space (PS) inflammation characterized by innate response activator (IRA) B cell development and pleural large resident macrophage (LRM) necroptosis, the repopulation of LRMs being driven by cellular proliferation in situ. Necroptotic LRMs amplified PS inflammation by stimulating pleural Mincle-expressing macrophages whereas IRA B cells contributed partially to GM-CSF-induced PS inflammation. Upon pulmonary infection, the induction of PS inflammation resulted in reduced bacterial burden whereas the specific depletion of pleural resident macrophages led to increased mortality and bacterial burden and reduced pulmonary immunity. Moreover, mice in which B cells were unable to produce GM-CSF exhibited reduced CD103+ dendritic cells and reduced CD4+ T cell numbers in the draining lymph node. Altogether, our results describe a previously unrecognized mechanism of pleural space inflammation necessary for effective protection against bacterial airway infection.
Collapse
Affiliation(s)
- Alan Bénard
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Malgorzata J. Podolska
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Franziska Czubayko
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Isabella Kutschick
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Bettina Klösch
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Anne Jacobsen
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Elisabeth Naschberger
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Maximilian Brunner
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christian Krautz
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Denis I. Trufa
- Department of Thoracic Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Horia Sirbu
- Department of Thoracic Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Roland Lang
- Institute of Clinical Microbiology, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Robert Grützmann
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Georg F. Weber
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
- *Correspondence: Georg F. Weber,
| |
Collapse
|
5
|
Ádám D, Arany J, Tóth KF, Tóth BI, Szöllősi AG, Oláh A. Opioidergic Signaling-A Neglected, Yet Potentially Important Player in Atopic Dermatitis. Int J Mol Sci 2022; 23:4140. [PMID: 35456955 PMCID: PMC9027603 DOI: 10.3390/ijms23084140] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 02/04/2023] Open
Abstract
Atopic dermatitis (AD) is one of the most common skin diseases, the prevalence of which is especially high among children. Although our understanding about its pathogenesis has substantially grown in recent years, and hence, several novel therapeutic targets have been successfully exploited in the management of the disease, we still lack curative treatments for it. Thus, there is an unmet societal demand to identify further details of its pathogenesis to thereby pave the way for novel therapeutic approaches with favorable side effect profiles. It is commonly accepted that dysfunction of the complex cutaneous barrier plays a central role in the development of AD; therefore, the signaling pathways involved in the regulation of this quite complex process are likely to be involved in the pathogenesis of the disease and can provide novel, promising, yet unexplored therapeutic targets. Thus, in the current review, we aim to summarize the available potentially AD-relevant data regarding one such signaling pathway, namely cutaneous opioidergic signaling.
Collapse
Affiliation(s)
- Dorottya Ádám
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (D.Á.); (J.A.); (K.F.T.); (B.I.T.)
- Doctoral School of Molecular Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - József Arany
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (D.Á.); (J.A.); (K.F.T.); (B.I.T.)
- Doctoral School of Molecular Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Kinga Fanni Tóth
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (D.Á.); (J.A.); (K.F.T.); (B.I.T.)
- Doctoral School of Molecular Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Balázs István Tóth
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (D.Á.); (J.A.); (K.F.T.); (B.I.T.)
| | - Attila Gábor Szöllősi
- Department of Immunology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - Attila Oláh
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (D.Á.); (J.A.); (K.F.T.); (B.I.T.)
| |
Collapse
|
6
|
Mas-Orea X, Sebert M, Benamar M, Petitfils C, Blanpied C, Saoudi A, Deraison C, Barreau F, Cenac N, Dietrich G. Peripheral Opioid Receptor Blockade Enhances Epithelial Damage in Piroxicam-Accelerated Colitis in IL-10-Deficient Mice. Int J Mol Sci 2021; 22:7387. [PMID: 34299013 PMCID: PMC8304158 DOI: 10.3390/ijms22147387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 01/02/2023] Open
Abstract
Mucosal CD4+ T lymphocytes display a potent opioid-mediated analgesic activity in interleukin (IL)-10 knockout mouse model of inflammatory bowel diseases (IBD). Considering that endogenous opioids may also exhibit anti-inflammatory activities in the periphery, we examined the consequences of a peripheral opioid receptor blockade by naloxone-methiodide, a general opioid receptor antagonist unable to cross the blood-brain barrier, on the development of piroxicam-accelerated colitis in IL-10-deficient (IL-10-/-) mice. Here, we show that IL-10-deficient mice treated with piroxicam exhibited significant alterations of the intestinal barrier function, including permeability, inflammation-related bioactive lipid mediators, and mucosal CD4+ T lymphocyte subsets. Opioid receptor antagonization in the periphery had virtually no effect on colitis severity but significantly worsened epithelial cell apoptosis and intestinal permeability. Thus, although the endogenous opioid tone is not sufficient to reduce the severity of colitis significantly, it substantially contributes to the protection of the physical integrity of the epithelial barrier.
Collapse
Affiliation(s)
- Xavier Mas-Orea
- IRSD, Université de Toulouse—Paul Sabatier, INSERM, INRAe, ENVT, UPS, 31000 Toulouse, France; (X.M.-O.); (M.S.); (C.P.); (C.B.); (C.D.); (F.B.); (N.C.)
| | - Morgane Sebert
- IRSD, Université de Toulouse—Paul Sabatier, INSERM, INRAe, ENVT, UPS, 31000 Toulouse, France; (X.M.-O.); (M.S.); (C.P.); (C.B.); (C.D.); (F.B.); (N.C.)
| | - Mehdi Benamar
- INFINITY, Université de Toulouse—Paul Sabatier, INSERM, CNRS, UPS, 31000 Toulouse, France; (M.B.); (A.S.)
| | - Camille Petitfils
- IRSD, Université de Toulouse—Paul Sabatier, INSERM, INRAe, ENVT, UPS, 31000 Toulouse, France; (X.M.-O.); (M.S.); (C.P.); (C.B.); (C.D.); (F.B.); (N.C.)
| | - Catherine Blanpied
- IRSD, Université de Toulouse—Paul Sabatier, INSERM, INRAe, ENVT, UPS, 31000 Toulouse, France; (X.M.-O.); (M.S.); (C.P.); (C.B.); (C.D.); (F.B.); (N.C.)
| | - Abdelhadi Saoudi
- INFINITY, Université de Toulouse—Paul Sabatier, INSERM, CNRS, UPS, 31000 Toulouse, France; (M.B.); (A.S.)
| | - Céline Deraison
- IRSD, Université de Toulouse—Paul Sabatier, INSERM, INRAe, ENVT, UPS, 31000 Toulouse, France; (X.M.-O.); (M.S.); (C.P.); (C.B.); (C.D.); (F.B.); (N.C.)
| | - Frederick Barreau
- IRSD, Université de Toulouse—Paul Sabatier, INSERM, INRAe, ENVT, UPS, 31000 Toulouse, France; (X.M.-O.); (M.S.); (C.P.); (C.B.); (C.D.); (F.B.); (N.C.)
| | - Nicolas Cenac
- IRSD, Université de Toulouse—Paul Sabatier, INSERM, INRAe, ENVT, UPS, 31000 Toulouse, France; (X.M.-O.); (M.S.); (C.P.); (C.B.); (C.D.); (F.B.); (N.C.)
| | - Gilles Dietrich
- IRSD, Université de Toulouse—Paul Sabatier, INSERM, INRAe, ENVT, UPS, 31000 Toulouse, France; (X.M.-O.); (M.S.); (C.P.); (C.B.); (C.D.); (F.B.); (N.C.)
| |
Collapse
|
7
|
Interleukin-3 is a predictive marker for severity and outcome during SARS-CoV-2 infections. Nat Commun 2021; 12:1112. [PMID: 33602937 PMCID: PMC7893044 DOI: 10.1038/s41467-021-21310-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 01/19/2021] [Indexed: 12/11/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a worldwide health threat. In a prospective multicentric study, we identify IL-3 as an independent prognostic marker for the outcome during SARS-CoV-2 infections. Specifically, low plasma IL-3 levels is associated with increased severity, viral load, and mortality during SARS-CoV-2 infections. Patients with severe COVID-19 exhibit also reduced circulating plasmacytoid dendritic cells (pDCs) and low plasma IFNα and IFNλ levels when compared to non-severe COVID-19 patients. In a mouse model of pulmonary HSV-1 infection, treatment with recombinant IL-3 reduces viral load and mortality. Mechanistically, IL-3 increases innate antiviral immunity by promoting the recruitment of circulating pDCs into the airways by stimulating CXCL12 secretion from pulmonary CD123+ epithelial cells, both, in mice and in COVID-19 negative patients exhibiting pulmonary diseases. This study identifies IL-3 as a predictive disease marker for SARS-CoV-2 infections and as a potential therapeutic target for pulmunory viral infections. Here, the authors identify interleukin-3 as a predictive marker for severity and outcome of SARS-CoV-2 infection in a multi-center, prospective study and find that patients with severe COVID-19 have reduced circulating plasmacytoid dendritic cell levels compared to non-severe COVID-19 patients.
Collapse
|
8
|
Tuo Y, Tian C, Lu L, Xiang M. The paradoxical role of methionine enkephalin in tumor responses. Eur J Pharmacol 2020; 882:173253. [PMID: 32535097 DOI: 10.1016/j.ejphar.2020.173253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 05/20/2020] [Accepted: 06/05/2020] [Indexed: 10/24/2022]
Abstract
Methionine enkephalin (MENK) is an opioid peptide composed of five amino acids with multiple biological activities. Since its discovery, MENK has become prominent in neuroregulation and immunoregulation. Tumors have increasingly been a spotlight because of their terrible trends and refractory characteristic. The therapeutic potential of MENK was investigated on a large scale, and there are numerous evidences that MENK exerts anti-tumor effects via two mechanisms. The first mechanism explains the enhanced anti-tumor immune effects of MENK. The second mechanism shows that MENK directly inhibits tumor cell proliferation. However, numerous reports have clarified the pro-tumor role of MENK by inhibiting T and B cell proliferation, promoting tumor cell growth by binding to opioid receptors, leading to desensitization of lymphocytes, and inducing tolerance. It is particularly intriguing that dual reactions are triggered when MENK combines with its opioid receptors; thus, anti-tumor response of the whole body is influenced. This review will expound the dual roles of MENK in tumor responses based on immune cells, cytokines, and tumor cells to provide better suggestions for its application in tumor treatment.
Collapse
Affiliation(s)
- Yali Tuo
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Cheng Tian
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Lili Lu
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Ming Xiang
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
9
|
Machelska H, Celik MÖ. Opioid Receptors in Immune and Glial Cells-Implications for Pain Control. Front Immunol 2020; 11:300. [PMID: 32194554 PMCID: PMC7064637 DOI: 10.3389/fimmu.2020.00300] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 02/06/2020] [Indexed: 11/23/2022] Open
Abstract
Opioid receptors comprise μ (MOP), δ (DOP), κ (KOP), and nociceptin/orphanin FQ (NOP) receptors. Opioids are agonists of MOP, DOP, and KOP receptors, whereas nociceptin/orphanin FQ (N/OFQ) is an agonist of NOP receptors. Activation of all four opioid receptors in neurons can induce analgesia in animal models, but the most clinically relevant are MOP receptor agonists (e.g., morphine, fentanyl). Opioids can also affect the function of immune cells, and their actions in relation to immunosuppression and infections have been widely discussed. Here, we analyze the expression and the role of opioid receptors in peripheral immune cells and glia in the modulation of pain. All four opioid receptors have been identified at the mRNA and protein levels in immune cells (lymphocytes, granulocytes, monocytes, macrophages) in humans, rhesus monkeys, rats or mice. Activation of leukocyte MOP, DOP, and KOP receptors was recently reported to attenuate pain after nerve injury in mice. This involved intracellular Ca2+-regulated release of opioid peptides from immune cells, which subsequently activated MOP, DOP, and KOP receptors on peripheral neurons. There is no evidence of pain modulation by leukocyte NOP receptors. More good quality studies are needed to verify the presence of DOP, KOP, and NOP receptors in native glia. Although still questioned, MOP receptors might be expressed in brain or spinal cord microglia and astrocytes in humans, mice, and rats. Morphine acting at spinal cord microglia is often reported to induce hyperalgesia in rodents. However, most studies used animals without pathological pain and/or unconventional paradigms (e.g., high or ultra-low doses, pain assessment after abrupt discontinuation of chronic morphine treatment). Therefore, the opioid-induced hyperalgesia can be viewed in the context of dependence/withdrawal rather than pain management, in line with clinical reports. There is convincing evidence of analgesic effects mediated by immune cell-derived opioid peptides in animal models and in humans. Together, MOP, DOP, and KOP receptors, and opioid peptides in immune cells can ameliorate pathological pain. The relevance of NOP receptors and N/OFQ in leukocytes, and of all opioid receptors, opioid peptides and N/OFQ in native glia for pain control is yet to be clarified.
Collapse
Affiliation(s)
- Halina Machelska
- Department of Experimental Anesthesiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Melih Ö Celik
- Department of Experimental Anesthesiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
10
|
Basso L, Benamar M, Mas-Orea X, Deraison C, Blanpied C, Cenac N, Saoudi A, Dietrich G. Endogenous control of inflammatory visceral pain by T cell-derived opioids in IL-10-deficient mice. Neurogastroenterol Motil 2020; 32:e13743. [PMID: 31588671 DOI: 10.1111/nmo.13743] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND The opioid-mediated analgesic activity of mucosal CD4+ T lymphocytes in colitis has been reported in immunocompetent mice so far. Here, we investigated whether CD4+ T lymphocytes alleviate from inflammation-induced abdominal pain in mice with defective immune regulation. METHODS Endogenous control of visceral pain by opioids locally produced in inflamed mucosa was assessed in IL-10-deficient mice. KEY RESULTS CD4+ T lymphocytes but not F4/80+ macrophages isolated from the lamina propria of IL-10-deficient mice with colitis express enkephalin-containing opioid peptides as assessed by cytofluorometry. Colitis in IL-10-/- mice was not associated with abdominal pain. Intraperitoneal injection of naloxone-methiodide, a peripheral opioid receptor antagonist, induced abdominal hypersensitivity in IL-10-/- mice with colitis. CONCLUSION AND INFERENCES Opioid-mediated analgesic activity of mucosal T lymphocytes remains operating in IL-10-/- mice with impaired immune regulation. The data suggest that endogenous T cell-derived opioids might reduce inflammation-induced abdominal pain in inflammatory bowel diseases associated with homozygous "loss of function mutations" in interleukin-10.
Collapse
Affiliation(s)
- Lilian Basso
- IRSD, INSERM, INRA, ENVT, UPS, Université de Toulouse, Toulouse, France
| | - Mehdi Benamar
- Centre de Physiopathologie de Toulouse Purpan (CPTP), UPS, INSERM, CNRS, Université de Toulouse, Toulouse, France
| | - Xavier Mas-Orea
- IRSD, INSERM, INRA, ENVT, UPS, Université de Toulouse, Toulouse, France
| | - Céline Deraison
- IRSD, INSERM, INRA, ENVT, UPS, Université de Toulouse, Toulouse, France
| | | | - Nicolas Cenac
- IRSD, INSERM, INRA, ENVT, UPS, Université de Toulouse, Toulouse, France
| | - Abdelhadi Saoudi
- Centre de Physiopathologie de Toulouse Purpan (CPTP), UPS, INSERM, CNRS, Université de Toulouse, Toulouse, France
| | - Gilles Dietrich
- IRSD, INSERM, INRA, ENVT, UPS, Université de Toulouse, Toulouse, France
| |
Collapse
|
11
|
Basso L, Garnier L, Bessac A, Boué J, Blanpied C, Cenac N, Laffont S, Dietrich G. T-lymphocyte-derived enkephalins reduce T h1/T h17 colitis and associated pain in mice. J Gastroenterol 2018; 53:215-226. [PMID: 28424989 DOI: 10.1007/s00535-017-1341-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 04/04/2017] [Indexed: 02/04/2023]
Abstract
BACKGROUND Endogenous opioids, including enkephalins, are fundamental regulators of pain. In inflammatory conditions, the local release of opioids by leukocytes at the inflammatory site inhibits nociceptor firing, thereby inducing analgesia. Accordingly, in chronic intestinal Th1/Th17-associated inflammation, enkephalins released by colitogenic CD4+ T lymphocytes relieve inflammation-induced visceral pain. The present study aims to investigate whether mucosal T-cell-derived enkephalins also exhibit a potent anti-inflammatory activity as described for exogenous opioid drugs in Th1/Th17-associated colitis. METHODS The anti-inflammatory effects of endogenous opioids were investigated in both Th1/Th17-associated (transfer of CD4+CD45RBhigh T lymphocytes) and Th2-associated (oxazolone) colitis models in mice. Inflammation-induced colonic damage and CD4+ T cell subsets were compared in mice treated or not treated with naloxone methiodide, a peripheral antagonist of opioid receptors. The anti-inflammatory activity of T-cell-derived enkephalins was further estimated by comparison of colitis severity in immunodeficient mice into which naïve CD4+CD45RBhigh T lymphocytes originating from wild-type or enkephalin-knockout mice had been transferred. RESULTS Peripheral opioid receptor blockade increases the severity of Th1/Th17-induced colitis and attenuates Th2 oxazolone colitis. The opposite effects of naloxone methiodide treatment in these two models of intestinal inflammation are dependent on the potency of endogenous opioids to promote a Th2-type immune response. Accordingly, the transfer of enkephalin-deficient CD4+CD45RBhigh T lymphocytes into immunodeficient mice exacerbates inflammation-induced colonic injury. CONCLUSIONS Endogenous opioids, including T-cell-derived enkephalins, promote a Th2-type immune response, which, depending on the context, may either attenuate (Th1/Th17-associated) or aggravate (Th2-associated) intestinal inflammation.
Collapse
Affiliation(s)
- Lilian Basso
- Institut de Recherche en Santé Digestive (IRSD), Université de Toulouse, Institut National de la Santé et de la Recherche Médicale (INSERM), Institut National de la Recherche Agronomique (INRA), Ecole Nationale Vétérinaire de Toulouse (ENVT), Université Paul Sabatier (UPS), Toulouse, France
| | - Laure Garnier
- Centre de Physiopathologie Toulouse-Purpan (CPTP), Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Université Paul Sabatier (UPS), Toulouse, France
| | - Arnaud Bessac
- Institut de Recherche en Santé Digestive (IRSD), Université de Toulouse, Institut National de la Santé et de la Recherche Médicale (INSERM), Institut National de la Recherche Agronomique (INRA), Ecole Nationale Vétérinaire de Toulouse (ENVT), Université Paul Sabatier (UPS), Toulouse, France
| | - Jérôme Boué
- Institut de Recherche en Santé Digestive (IRSD), Université de Toulouse, Institut National de la Santé et de la Recherche Médicale (INSERM), Institut National de la Recherche Agronomique (INRA), Ecole Nationale Vétérinaire de Toulouse (ENVT), Université Paul Sabatier (UPS), Toulouse, France
| | - Catherine Blanpied
- Institut de Recherche en Santé Digestive (IRSD), Université de Toulouse, Institut National de la Santé et de la Recherche Médicale (INSERM), Institut National de la Recherche Agronomique (INRA), Ecole Nationale Vétérinaire de Toulouse (ENVT), Université Paul Sabatier (UPS), Toulouse, France
| | - Nicolas Cenac
- Institut de Recherche en Santé Digestive (IRSD), Université de Toulouse, Institut National de la Santé et de la Recherche Médicale (INSERM), Institut National de la Recherche Agronomique (INRA), Ecole Nationale Vétérinaire de Toulouse (ENVT), Université Paul Sabatier (UPS), Toulouse, France
| | - Sophie Laffont
- Centre de Physiopathologie Toulouse-Purpan (CPTP), Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Université Paul Sabatier (UPS), Toulouse, France
| | - Gilles Dietrich
- Institut de Recherche en Santé Digestive (IRSD), Université de Toulouse, Institut National de la Santé et de la Recherche Médicale (INSERM), Institut National de la Recherche Agronomique (INRA), Ecole Nationale Vétérinaire de Toulouse (ENVT), Université Paul Sabatier (UPS), Toulouse, France.
| |
Collapse
|
12
|
Basso L, Boué J, Mahiddine K, Blanpied C, Robiou-du-Pont S, Vergnolle N, Deraison C, Dietrich G. Endogenous analgesia mediated by CD4(+) T lymphocytes is dependent on enkephalins in mice. J Neuroinflammation 2016; 13:132. [PMID: 27245576 PMCID: PMC4888630 DOI: 10.1186/s12974-016-0591-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 05/20/2016] [Indexed: 12/31/2022] Open
Abstract
Background T cell-derived opioids play a key role in the control of inflammatory pain. However, the nature of opioids produced by T cells is still matter of debate in mice. Whereas β-endorphin has been found in T lymphocytes by using antibody-based methods, messenger RNA (mRNA) quantification shows mainly mRNA encoding for enkephalins. The objective of the study is to elucidate the nature of T cell-derived opioids responsible for analgesia and clarify discrepancy of the results at the protein and genetic levels. Methods CD4+ T lymphocytes were isolated from wild-type and enkephalin-deficient mice. mRNA encoding for β-endorphin and enkephalin was quantified by RT-qPCR. The binding of commercially available polyclonal anti-endorphin antibodies to lymphocytes from wild-type or enkephalin knockout mice was assessed by cytofluorometry. Opioid-mediated analgesic properties of T lymphocytes from wild-type and enkephalin-deficient mice were compared in a model of inflammation-induced somatic pain by measuring sensitivity to mechanical stimuli using calibrated von Frey filaments. Results CD4+ T lymphocytes expressed high level of mRNA encoding for enkephalins but not for β-endorphin in mice. Anti-β-endorphin polyclonal IgG antibodies are specific for β-endorphin but cross-react with enkephalins. Anti-β-endorphin polyclonal antibodies bound to wild-type but not enkephalin-deficient CD4+ T lymphocytes. Endogenous regulation of inflammatory pain by wild-type T lymphocytes was completely abolished when T lymphocytes were deficient in enkephalins. Pain behavior of immune-deficient (i.e., without B and T lymphocytes) mice was superimposable to that of mice transferred with enkephalin-deficient lymphocytes. Conclusions Rabbit polyclonal anti-β-endorphin serum IgG bind to CD4+ T lymphocytes because of their cross-reactivity towards enkephalins. Thus, staining of T lymphocytes by anti-β-endorphin polyclonal IgG reported in most of studies in mice is because of their binding to enkephalins. In mice, CD4+ T lymphocytes completely lose their analgesic opioid-mediated activity when lacking enkephalins.
Collapse
Affiliation(s)
- Lilian Basso
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Jérôme Boué
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Karim Mahiddine
- CPTP, Université de Toulouse, CNRS, INSERM, UPS, Toulouse, France
| | | | | | | | - Céline Deraison
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Gilles Dietrich
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France.
| |
Collapse
|
13
|
Boué J, Basso L, Cenac N, Blanpied C, Rolli-Derkinderen M, Neunlist M, Vergnolle N, Dietrich G. Endogenous regulation of visceral pain via production of opioids by colitogenic CD4(+) T cells in mice. Gastroenterology 2014; 146:166-75. [PMID: 24055279 DOI: 10.1053/j.gastro.2013.09.020] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 09/06/2013] [Accepted: 09/09/2013] [Indexed: 01/16/2023]
Abstract
BACKGROUND & AIMS A dysregulated response of CD4(+) T cells against the microbiota contributes to the development of inflammatory bowel disease. Effector CD4(+) T cells, generated in response to microbe-derived antigens, can reduce somatic inflammatory pain through the local release of opioids. We investigated whether colitogenic CD4(+) T cells that accumulate in the inflamed colon also produce opioids and are able to counteract inflammation-induced visceral pain in mice. METHODS Colitis was induced via transfer of naive CD4(+)CD45RB(high) T cells to immune-deficient mice or by administration of dextran sulfate sodium. Mice without colitis were used as controls. Samples of colon tissue were collected, and production of opioids by immune cells from inflamed intestine was assessed by quantitative polymerase chain reaction and cytofluorometry analyses. The role of intestinal opioid tone in inflammation-induced visceral hypersensitivity was assessed by colorectal distention. RESULTS In mice with T cell- or dextran sulfate sodium-induced colitis, colitogenic CD4(+) T cells (T-helper 1 and Th17 cells) accumulated in the inflamed intestine and expressed a high level of endogenous opioids. In contrast, macrophages and epithelial cells did not express opioids; opioid synthesis in the myenteric plexus was not altered on induction of inflammation. In mice with colitis, the local release of opioids by colitogenic CD4(+) T cells led to significant reduction of inflammation-associated visceral hypersensitivity. CONCLUSIONS In mice, colitogenic Th1 and Th17 cells promote intestinal inflammation and colonic tissue damage but have simultaneous opioid-mediated analgesic activity, thereby reducing abdominal pain.
Collapse
Affiliation(s)
- Jérôme Boué
- INSERM Unité 1043, Toulouse, France; CNRS, U5282, Toulouse, France; Centre de Physiopathologie de Toulouse Purpan, Université de Toulouse UPS, Toulouse, France
| | - Lilian Basso
- INSERM Unité 1043, Toulouse, France; CNRS, U5282, Toulouse, France; Centre de Physiopathologie de Toulouse Purpan, Université de Toulouse UPS, Toulouse, France
| | - Nicolas Cenac
- INSERM Unité 1043, Toulouse, France; CNRS, U5282, Toulouse, France; Centre de Physiopathologie de Toulouse Purpan, Université de Toulouse UPS, Toulouse, France
| | - Catherine Blanpied
- INSERM Unité 1043, Toulouse, France; CNRS, U5282, Toulouse, France; Centre de Physiopathologie de Toulouse Purpan, Université de Toulouse UPS, Toulouse, France
| | - Malvyne Rolli-Derkinderen
- INSERM Unité 913, Nantes, France; Institut des Maladies de l'Appareil Digestif, Université de Nantes, Nantes, France
| | - Michel Neunlist
- INSERM Unité 913, Nantes, France; Institut des Maladies de l'Appareil Digestif, Université de Nantes, Nantes, France
| | - Nathalie Vergnolle
- INSERM Unité 1043, Toulouse, France; CNRS, U5282, Toulouse, France; Centre de Physiopathologie de Toulouse Purpan, Université de Toulouse UPS, Toulouse, France; Department of Pharmacology and Physiology, University of Calgary, Calgary, Alberta, Canada
| | - Gilles Dietrich
- INSERM Unité 1043, Toulouse, France; CNRS, U5282, Toulouse, France; Centre de Physiopathologie de Toulouse Purpan, Université de Toulouse UPS, Toulouse, France.
| |
Collapse
|
14
|
Olin MR, Oh S, Roy S, Peterson PK, Molitor T. Morphine induces splenocyte trafficking into the CNS. J Neuroimmune Pharmacol 2012; 7:436-43. [PMID: 21858458 PMCID: PMC3570027 DOI: 10.1007/s11481-011-9307-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 08/03/2011] [Indexed: 10/17/2022]
Abstract
Opioids significantly alter functional responses of lymphocytes following activation. The opiate Morphine, alters the Th1 to Th2 response and modulates functional responses such as cytolytic activity and T-cell proliferation. Although there has been extensive research involving morphine's effects on lymphocytes, little is known about the effects morphine has on lymphocyte trafficking. The objective of the study was to use in vivo bioluminescent imaging to determine morphine's effect on the trafficking pattern of splenocytes systemically and into the CNS either in a naïve state or following a neuroinflammatory stimulus. A neuroinflammatory response was induced by intracerebrally administering a DNA IFN-γ DNA plasmid into morphine-dependent or placebo wildtype mice. Mice with or without a neurostimulus received adoptively transferred firefly luciferase transgenic splenocytes and imaged. Morphine dependence significantly altered the inherent ability of splenocytes to traffic into the spleen, and lead to non-directed chaotic trafficking throughout the animal, including into the CNS. The morphine-mediated effects on trafficking were blocked by the antagonist naltrexone. Morphine dependence intensified splenocyte infiltration into the CNS following neuroinflammation induced by IFN-γ gene transfer. The study precented determined that morphine severely altered the ability of non-activated splenocytes to home to the spleen, inducing extrasplenic trafficking thoughout the animal. In addition to altering the ability of naive splenocyte to traffic to the spleen, this study demonstrated that morphine profoundly exacerbated lymphocyte infiltration into the CNS following a neurostimulus.
Collapse
Affiliation(s)
- Michael R Olin
- University of Minnesota. Department of pediatrics, Minneapolis, MN 55455, 612-616-2246
| | - Seunguk Oh
- University of Minnesota. McGuire Translational Research Facility, Minneapolis, MN 55455, 612-624-1195
| | - Sabita Roy
- University of Minnesota, Department of Pharmacology and Surgery, Minneapolis, MN 55455, 612-624-4615
| | - Phillip K Peterson
- University of Minnesota Medical School. Center for Infectious Diseases and Translational Research, Minneapolis, Minnesota 55415, 612 626-9923
| | - Thomas Molitor
- University of Minnesota, Department of Veterinary Population Medicine, 225 Veterinary Teaching Hospital, 1365 Gortner Ave., St. Paul, MN 55108, 612-625-5295
| |
Collapse
|
15
|
Boué J, Blanpied C, Djata-Cabral M, Pelletier L, Vergnolle N, Dietrich G. Immune conditions associated with CD4+ T effector-induced opioid release and analgesia. Pain 2011; 153:485-493. [PMID: 22188867 DOI: 10.1016/j.pain.2011.11.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 10/20/2011] [Accepted: 11/14/2011] [Indexed: 12/24/2022]
Abstract
Effector CD4(+) T lymphocytes generated in response to antigens produce endogenous opioids. Thus, in addition to their critical role in host defenses against pathogens, effector CD4(+) T lymphocytes contribute to relieving inflammatory pain. In this study, we investigated mechanisms of opioid release by antigen-experienced effector CD4(+) T cells that leave draining lymph nodes and come back into the inflammatory site. Effector antigen-primed CD4(+) T lymphocytes generated in vitro were intravenously injected into nude mice previously immunized with either cognate or irrelevant antigens in complete Freund adjuvant (CFA). CFA-induced mechanical hyperalgesia was only reduced in mice immunized with cognate antigen. Thus, antinociceptive activity of effector CD4(+) T cells requires the presence of the antigen for which they are specific within the inflammatory site. Accordingly, analgesia was inhibited by neutralizing cognate T cell receptor-mediated interaction between effector CD4(+) T lymphocytes and antigen-presenting cells at the site of inflammation. Analgesia was observed by transferring effector CD4(+) T lymphocytes with Th1 or Th2 phenotype, suggesting that antinociceptive activity is a fundamental property of effector CD4(+) T lymphocytes irrespective of their effector functions. Based on the use of agonists and antagonists selective for each of the opioid receptor subclasses, we showed that analgesia induced by T cell-derived opioids is elicited via activation of δ-type opioid receptors in the periphery. Thus, the antinociceptive activity is a fundamental property associated with the effector phase of adaptive immunity, which is driven by recognition of the cognate antigen by effector CD4(+) T lymphocytes at the inflammatory site.
Collapse
Affiliation(s)
- Jérôme Boué
- INSERM, U1043, Toulouse, France CNRS, U5282, Toulouse, France Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, France
| | | | | | | | | | | |
Collapse
|
16
|
Abstract
This paper is the thirty-third consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2010 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, USA.
| |
Collapse
|
17
|
Boué J, Blanpied C, Brousset P, Vergnolle N, Dietrich G. Endogenous Opioid-Mediated Analgesia Is Dependent on Adaptive T Cell Response in Mice. THE JOURNAL OF IMMUNOLOGY 2011; 186:5078-84. [DOI: 10.4049/jimmunol.1003335] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|