1
|
Sayed SF, Dalai HG, Sharma M, Halawani R. Ecotoxicity, Health Risks and Contact Allergy Due to p-Phenylenediamine in Hair Dyes and Tattoos: Female Students' Perspectives. Cureus 2024; 16:e60984. [PMID: 38910695 PMCID: PMC11193909 DOI: 10.7759/cureus.60984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2024] [Indexed: 06/25/2024] Open
Abstract
While the financial advantages of hair coloring and tattooing are widely acknowledged, environmental hazards and health risks linked to this trend due to their p-phenylenediamine (PPD) content have received less attention. Health education on hair-dying products is warranted to enhance the public's awareness of hair-dying ingredients and their side effects. A cross-sectional study was therefore conducted with 319 students to assess knowledge of ecotoxicity, health risks, and practices of hair dyeing and tattooing among undergraduate students. A random sample of 59 students was checked for any allergic morphology in the scalp and exposed areas of skin near the neck, ears, palms, and nails. Responses collected were used for data analyses using IBM SPSS Statistics for Windows, Version 17 (Released 2008; IBM Corp., Armonk, New York, United States). Use of hair dye was significantly high among study participants 58.5% (n=187; p<0.05). However, their knowledge regarding the presence of PPD in hair dyes and associated environmental toxicity (37.8%, n=121) was very limited. The majority of participants did not do any allergy tests before applying hair dye (88.9%, n=283). The study revealed that the main reason for hair coloring was as a fashion statement (93.7%, n=299). Regarding tattooing practices, 96.9% (n=309) of study participants had never practiced tattoos, and hence, the prevalence of tattooing was 3.9% (n=12). These data confirmed that the practice of hair dyeing as a style statement was high among students. However, the majority were unaware of their PPD contents and their potential ecotoxicity and health risks.
Collapse
Affiliation(s)
| | - Hamad G Dalai
- Nursing, College of Nursing, Jazan University, Jazan, SAU
| | | | - Raneem Halawani
- Nursing, Farasan University College, Jazan University, Farasan Island, SAU
| |
Collapse
|
2
|
Matus CE, Ehrenfeld P, Figueroa CD. The family of kallikrein-related peptidases and kinin peptides as modulators of epidermal homeostasis. Am J Physiol Cell Physiol 2022; 323:C1070-C1087. [PMID: 35993513 DOI: 10.1152/ajpcell.00012.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The epidermis is the outermost skin layer and is part of one of the largest organs in the body; it is supported by the dermis, a network of fibrils, blood vessels, pilosebaceous units, sweat glands, nerves, and cells. The skin as a whole is a protective shield against numerous noxious agents, including microorganisms and chemical and physical factors. These functions rely on the activity of multiple growth factors, peptide hormones, proteases, and specific signaling pathways that are triggered by the activation of distinct types of receptors sited in the cell membranes of the various cell types present in the skin. The human kallikrein family comprises a large group of 15 serine proteases synthesized and secreted by different types of epithelial cells throughout the body, including the skin. At this site, they initiate a proteolytic cascade that generates the active forms of the proteases, some of which regulate skin desquamation, activation of cytokines, and antimicrobial peptides. Kinin peptides are formed by the action of plasma and tissue kallikreins on kininogens, two plasma proteins produced in the liver and other organs. Although kinins are well known for their proinflammatory abilities, in the skin they are also considered important modulators of keratinocyte differentiation. In this review, we summarize the contributions of the kallikreins and kallikrein-related peptidases family and those of kinins and their receptors in skin homeostasis, with special emphasis on their pathophysiological role.
Collapse
Affiliation(s)
- Carola E Matus
- Departament of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile.,Center of Molecular Biology and Pharmacogenetics, Universidad de La Frontera, Temuco, Chile.,Center of Biomedical and Morphofunctional Sciences, Universidad de La Frontera, Temuco, Chile
| | - Pamela Ehrenfeld
- Laboratory of Cellular Pathology, Institute of Anatomy, Histology and Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile.,Center for Interdisciplinary Studies on Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Carlos D Figueroa
- Laboratory of Cellular Pathology, Institute of Anatomy, Histology and Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile.,Center for Interdisciplinary Studies on Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
3
|
Podobas EI, Gutowska-Owsiak D, Moretti S, Poznański J, Kulińczak M, Grynberg M, Gruca A, Bonna A, Płonka D, Frączyk T, Ogg G, Bal W. Ni 2+-Assisted Hydrolysis May Affect the Human Proteome; Filaggrin Degradation Ex Vivo as an Example of Possible Consequences. Front Mol Biosci 2022; 9:828674. [PMID: 35359602 PMCID: PMC8960189 DOI: 10.3389/fmolb.2022.828674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/31/2022] [Indexed: 01/28/2023] Open
Abstract
Deficiency in a principal epidermal barrier protein, filaggrin (FLG), is associated with multiple allergic manifestations, including atopic dermatitis and contact allergy to nickel. Toxicity caused by dermal and respiratory exposures of the general population to nickel-containing objects and particles is a deleterious side effect of modern technologies. Its molecular mechanism may include the peptide bond hydrolysis in X1-S/T-c/p-H-c-X2 motifs by released Ni2+ ions. The goal of the study was to analyse the distribution of such cleavable motifs in the human proteome and examine FLG vulnerability of nickel hydrolysis. We performed a general bioinformatic study followed by biochemical and biological analysis of a single case, the FLG protein. FLG model peptides, the recombinant monomer domain human keratinocytes in vitro and human epidermis ex vivo were used. We also investigated if the products of filaggrin Ni2+-hydrolysis affect the activation profile of Langerhans cells. We found X1-S/T-c/p-H-c-X2 motifs in 40% of human proteins, with the highest abundance in those involved in the epidermal barrier function, including FLG. We confirmed the hydrolytic vulnerability and pH-dependent Ni2+-assisted cleavage of FLG-derived peptides and FLG monomer, using in vitro cell culture and ex-vivo epidermal sheets; the hydrolysis contributed to the pronounced reduction in FLG in all of the models studied. We also postulated that Ni-hydrolysis might dysregulate important immune responses. Ni2+-assisted cleavage of barrier proteins, including FLG, may contribute to clinical disease associated with nickel exposure.
Collapse
Affiliation(s)
- Ewa Izabela Podobas
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
- Medical Research Council Human Immunology Unit, National Institute for Health Research Oxford Biomedical Research Centre, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- Institute of Genetics and Biotechnology, University of Warsaw, Warsaw, Poland
| | - Danuta Gutowska-Owsiak
- Medical Research Council Human Immunology Unit, National Institute for Health Research Oxford Biomedical Research Centre, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- University of Gdansk, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Sébastien Moretti
- SIB Swiss Institute of Bioinformatics, Vital-IT Team, Lausanne, Switzerland
| | - Jarosław Poznański
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Mariusz Kulińczak
- The Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Marcin Grynberg
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Aleksandra Gruca
- Institute of Informatics, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, Gliwice, Poland
| | - Arkadiusz Bonna
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Dawid Płonka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Tomasz Frączyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Graham Ogg
- Medical Research Council Human Immunology Unit, National Institute for Health Research Oxford Biomedical Research Centre, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Wojciech Bal
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
4
|
Kobiela A, Frackowiak JE, Biernacka A, Hovhannisyan L, Bogucka AE, Panek K, Paul AA, Lukomska J, Wang X, Giannoulatou E, Krolicka A, Zielinski J, Deptula M, Pikula M, Gabrielsson S, Ogg GS, Gutowska-Owsiak D. Exposure of Keratinocytes to Candida Albicans in the Context of Atopic Milieu Induces Changes in the Surface Glycosylation Pattern of Small Extracellular Vesicles to Enhance Their Propensity to Interact With Inhibitory Siglec Receptors. Front Immunol 2022; 13:884530. [PMID: 35784319 PMCID: PMC9248261 DOI: 10.3389/fimmu.2022.884530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 05/02/2022] [Indexed: 12/13/2022] Open
Abstract
Candida albicans (C. albicans) infection is a potential complication in the individuals with atopic dermatitis (AD) and can affect clinical course of the disease. Here, using primary keratinocytes we determined that atopic milieu promotes changes in the interaction of small extracellular vesicles (sEVs) with dendritic cells and that this is further enhanced by the presence of C. albicans. sEV uptake is largely dependent on the expression of glycans on their surface; modelling of the protein interactions indicated that recognition of this pathogen through C. albicans-relevant pattern recognition receptors (PRRs) is linked to several glycosylation enzymes which may in turn affect the expression of sEV glycans. Here, significant changes in the surface glycosylation pattern, as determined by lectin array, could be observed in sEVs upon a combined exposure of keratinocytes to AD cytokines and C. albicans. This included enhanced expression of multiple types of glycans, for which several dendritic cell receptors could be proposed as binding partners. Blocking experiments showed predominant involvement of the inhibitory Siglec-7 and -9 receptors in the sEV-cell interaction and the engagement of sialic acid-containing carbohydrate moieties on the surface of sEVs. This pointed on ST6 β-Galactoside α-2,6-Sialyltransferase 1 (ST6GAL1) and Core 1 β,3-Galactosyltransferase 1 (C1GALT1) as potential enzymes involved in the process of remodelling of the sEV surface glycans upon C. albicans exposure. Our results suggest that, in combination with atopic dermatitis milieu, C. albicans promotes alterations in the glycosylation pattern of keratinocyte-derived sEVs to interact with inhibitory Siglecs on antigen presenting cells. Hence, a strategy aiming at this pathway to enhance antifungal responses and restrict pathogen spread could offer novel therapeutic options for skin candidiasis in AD.
Collapse
Affiliation(s)
- Adrian Kobiela
- Experimental and Translational Immunology Group, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| | - Joanna E Frackowiak
- Experimental and Translational Immunology Group, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| | - Anna Biernacka
- Experimental and Translational Immunology Group, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| | - Lilit Hovhannisyan
- Experimental and Translational Immunology Group, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| | - Aleksandra E Bogucka
- The Mass Spectrometry Laboratory, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Kinga Panek
- Experimental and Translational Immunology Group, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| | - Argho Aninda Paul
- Experimental and Translational Immunology Group, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| | - Joanna Lukomska
- Experimental and Translational Immunology Group, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| | - Xinwen Wang
- State Key Laboratory of Military Stomatology, Department of Oral Medicine, School of Stomatology, The Fourth Military Medical University, Xi'an, China.,Medical Research Council (MRC) Human Immunology Unit, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine, National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Eleni Giannoulatou
- Computational Biology Research Group, Weatherall Institute of Molecular Medicine (WIMM), University of Oxford, Oxford, United Kingdom
| | - Aleksandra Krolicka
- Laboratory of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| | - Jacek Zielinski
- Department of Surgical Oncology, Medical University of Gdansk, Gdansk, Poland
| | - Milena Deptula
- Experimental and Translational Immunology Group, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Gdansk, Poland.,Laboratory of Tissue Engineering and Regenerative Medicine, Department of Embryology, Medical University of Gdansk, Gdansk, Poland
| | - Michal Pikula
- Laboratory of Tissue Engineering and Regenerative Medicine, Department of Embryology, Medical University of Gdansk, Gdansk, Poland
| | - Susanne Gabrielsson
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Graham S Ogg
- Medical Research Council (MRC) Human Immunology Unit, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine, National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Danuta Gutowska-Owsiak
- Experimental and Translational Immunology Group, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Gdansk, Poland.,Medical Research Council (MRC) Human Immunology Unit, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine, National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
5
|
Jee MH, Mraz V, Geisler C, Bonefeld CM. γδ T cells and inflammatory skin diseases. Immunol Rev 2020; 298:61-73. [DOI: 10.1111/imr.12913] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/07/2020] [Accepted: 07/15/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Mia Hamilton Jee
- The LEO Foundation Skin Immunology Research Center Department of Immunology and Microbiology Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Veronika Mraz
- The LEO Foundation Skin Immunology Research Center Department of Immunology and Microbiology Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Carsten Geisler
- The LEO Foundation Skin Immunology Research Center Department of Immunology and Microbiology Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Charlotte Menné Bonefeld
- The LEO Foundation Skin Immunology Research Center Department of Immunology and Microbiology Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| |
Collapse
|
6
|
Kashiwagi S. Laser adjuvant for vaccination. FASEB J 2020; 34:3485-3500. [PMID: 31994227 DOI: 10.1096/fj.201902164r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 01/09/2020] [Accepted: 01/09/2020] [Indexed: 12/14/2022]
Abstract
The use of an immunologic adjuvant to augment the immune response is essential for modern vaccines which are relatively ineffective on their own. In the past decade, researchers have been consistently reporting that skin treatment with a physical parameter, namely laser light, augments the immune response to vaccine and functions as an immunologic adjuvant. This "laser adjuvant" has numerous advantages over the conventional chemical or biological agents; it is free from cold chain storage, hypodermic needles, biohazardous sharp waste, irreversible formulation with vaccine antigen, undesirable biodistribution in vital organs, or unknown long-term toxicity. Since vaccine formulations are given to healthy populations, these characteristics render the "laser adjuvant" significant advantages for clinical use and open a new developmental path for a safe and effective vaccine. In addition, laser technology has been used in the clinic for more than three decades and is therefore technically matured and has been proved to be safe. Currently, four classes of laser adjuvant have been reported; ultrashort pulsed, non-pulsed, non-ablative fractional, and ablative fractional lasers. Since each class of the laser adjuvant shows a distinct mechanism of action, a proper choice is necessary to craft an effective vaccine formulation toward a desired clinical benefit for a clinical vaccine to maximize protection. In addition, data also suggest that further improvement in the efficacy is possible when a laser adjuvant is combined with chemical or biological adjuvant(s). To realize these goals, further efforts to uncover the molecular mechanisms of action of the laser adjuvants is warranted. This review provides a summary and comments of the recent updates in the laser adjuvant technology.
Collapse
Affiliation(s)
- Satoshi Kashiwagi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| |
Collapse
|
7
|
Joubert IA, Kovacs D, Scheiblhofer S, Winter P, Korotchenko E, Strandt H, Weiss R. Mast cells and γδ T cells are largely dispensable for adaptive immune responses after laser-mediated epicutaneous immunization. Vaccine 2020; 38:1015-1024. [DOI: 10.1016/j.vaccine.2019.11.051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/06/2019] [Accepted: 11/19/2019] [Indexed: 12/21/2022]
|
8
|
Abels C, Soeberdt M. Can we teach old drugs new tricks?—Repurposing of neuropharmacological drugs for inflammatory skin diseases. Exp Dermatol 2019; 28:1002-1009. [DOI: 10.1111/exd.13987] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/14/2019] [Accepted: 06/03/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Christoph Abels
- Dr. August Wolff GmbH & Co. KG Arzneimittel Bielefeld Germany
| | | |
Collapse
|
9
|
Epidermal micro-perforation potentiates the efficacy of epicutaneous vaccination. J Control Release 2019; 298:12-26. [PMID: 30738084 DOI: 10.1016/j.jconrel.2019.02.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/28/2019] [Accepted: 02/02/2019] [Indexed: 01/03/2023]
Abstract
The skin is an immune organ comprised of a large network of antigen-presenting cells such as dendritic cells, making it an attractive target for the development of new vaccines and immunotherapies. Recently, we developed a new innovative and non-invasive vaccination method without adjuvant based on epicutaneous vaccine patches on which antigen forms a dry deposit. Here we describe in mice a method for potentiating the efficacy of our epicutaneous vaccination approach using a minimally invasive and epidermis-limited skin preparation based on laser-induced micro-perforation. Our results showed that epidermal micro-perforation increased trans-epidermal water loss, resulting in an enhancement of antigen solubilization from the surface of the patch, and increased the quantity of antigen delivered to the epidermis. Importantly, this was not associated with an increase in systemic passage of the antigen. Skin micro-perforation slightly activated keratinocytes without inducing an excessive level of local inflammation. Moreover, epidermal micro-perforation improved antigen capture by epidermal dendritic cells and specifically increased the level of Langerhans cells activation. Finally, we observed that epidermal micro-perforation significantly increased the level of the specific antibody response induced by our epicutaneous Pertussis vaccine candidate containing non-adsorbed recombinant Pertussis Toxin and reduced the amount of antigen dose required. Overall, these data confirm the benefit of a minimal and controlled epidermal preparation for improving the effectiveness of an epicutaneous patch-based vaccine, without adversely affecting the safety of the method.
Collapse
|
10
|
Engelke L, Winter G, Engert J. Application of water-soluble polyvinyl alcohol-based film patches on laser microporated skin facilitates intradermal macromolecule and nanoparticle delivery. Eur J Pharm Biopharm 2018; 128:119-130. [DOI: 10.1016/j.ejpb.2018.04.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 04/09/2018] [Accepted: 04/12/2018] [Indexed: 01/23/2023]
|
11
|
Petkov S, Starodubova E, Latanova A, Kilpeläinen A, Latyshev O, Svirskis S, Wahren B, Chiodi F, Gordeychuk I, Isaguliants M. DNA immunization site determines the level of gene expression and the magnitude, but not the type of the induced immune response. PLoS One 2018; 13:e0197902. [PMID: 29864114 PMCID: PMC5986124 DOI: 10.1371/journal.pone.0197902] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 05/10/2018] [Indexed: 12/19/2022] Open
Abstract
Optimization of DNA vaccine delivery improves the potency of the immune response and is crucial to clinical success. Here, we inquired how such optimization impacts the magnitude of the response, its specificity and type. BALB/c mice were DNA-immunized with two model immunogens, HIV-1 protease and reverse transcriptase by intramuscular or intradermal injections with electroporation. DNA immunogens were co-delivered with DNA encoding luciferase. Delivery and expression were monitored by in vivo bioluminescence imaging (BLI). The endpoint immune responses were assessed by IFN-γ/IL-2 FluoroSpot, multiparametric flow cytometry and antibody ELISA. Expression and immunogenicity were compared in relation to the delivery route. Regardless of the route, protease generated mainly IFN-γ, and reverse transcriptase, IL-2 and antibody response. BLI of mice immunized with protease- or reverse transcriptase/reporter plasmid mixtures, demonstrated significant loss of luminescence over time. The rate of decline of luminescence strongly correlated with the magnitude of immunogen-specific response, and depended on the immunogenicity profile and the immunization route. In vitro and in vivo BLI-based assays demonstrated that intradermal delivery strongly improved the immunogenicity of protease, and to a lesser extent, of reverse transcriptase. Immune response polarization and epitope hierarchy were not affected. Thus, by changing delivery/immunogen expression sites, it is possible to modulate the magnitude, but not the type or fine specificity of the induced immune response.
Collapse
Affiliation(s)
- Stefan Petkov
- Karolinska Institutet, Department of Microbiology, Tumor and Cell Biology, Stockholm, Sweden
| | - Elizaveta Starodubova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Chumakov Federal Scientific Center for Research and Development of Immune-and- Biological Products of the Russian Academy of Sciences, Moscow, Russia
| | - Anastasia Latanova
- Karolinska Institutet, Department of Microbiology, Tumor and Cell Biology, Stockholm, Sweden
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- NF Gamaleja Research Center of Epidemiology and Microbiology, Moscow, Russia
| | - Athina Kilpeläinen
- Karolinska Institutet, Department of Microbiology, Tumor and Cell Biology, Stockholm, Sweden
| | - Oleg Latyshev
- Chumakov Federal Scientific Center for Research and Development of Immune-and- Biological Products of the Russian Academy of Sciences, Moscow, Russia
- NF Gamaleja Research Center of Epidemiology and Microbiology, Moscow, Russia
| | | | - Britta Wahren
- Karolinska Institutet, Department of Microbiology, Tumor and Cell Biology, Stockholm, Sweden
| | - Francesca Chiodi
- Karolinska Institutet, Department of Microbiology, Tumor and Cell Biology, Stockholm, Sweden
| | - Ilya Gordeychuk
- Chumakov Federal Scientific Center for Research and Development of Immune-and- Biological Products of the Russian Academy of Sciences, Moscow, Russia
- Sechenov First Moscow State Medical University, Moscow, Russia
| | - Maria Isaguliants
- Karolinska Institutet, Department of Microbiology, Tumor and Cell Biology, Stockholm, Sweden
- Chumakov Federal Scientific Center for Research and Development of Immune-and- Biological Products of the Russian Academy of Sciences, Moscow, Russia
- NF Gamaleja Research Center of Epidemiology and Microbiology, Moscow, Russia
- Riga Stradins University, Riga, Latvia
| |
Collapse
|
12
|
Choi JK, Jang YH, Lee S, Lee SR, Choi YA, Jin M, Choi JH, Park JH, Park PH, Choi H, Kwon TK, Khang D, Kim SH. Chrysin attenuates atopic dermatitis by suppressing inflammation of keratinocytes. Food Chem Toxicol 2017; 110:142-150. [DOI: 10.1016/j.fct.2017.10.025] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 10/10/2017] [Accepted: 10/13/2017] [Indexed: 02/08/2023]
|
13
|
House Dust Mite Increases pro-Th2 Cytokines IL-25 and IL-33 via the Activation of TLR1/6 Signaling. J Invest Dermatol 2017; 137:2354-2361. [DOI: 10.1016/j.jid.2017.03.042] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 03/26/2017] [Accepted: 03/28/2017] [Indexed: 01/08/2023]
|
14
|
Gutowska-Owsiak D, Ogg GS. Therapeutic vaccines for allergic disease. NPJ Vaccines 2017; 2:12. [PMID: 29263869 PMCID: PMC5604746 DOI: 10.1038/s41541-017-0014-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/03/2017] [Accepted: 03/20/2017] [Indexed: 12/14/2022] Open
Abstract
Allergic diseases are highly prevalent worldwide and affect all age groups, contributing to a high personal and socioeconomic burden. Treatment with an “allergy vaccine” or allergen immunotherapy aims to provide long-lasting benefits by inducing unresponsiveness to the relevant antigen. The consequences of the therapy are considered disease modifying and range from dampening of the immediate immune responses to the reduction of secondary tissue remodeling. Furthermore, allergen immunotherapy interventions have a potential to slow or cease the development of additional allergic manifestations with a long-term overall effect on morbidity and quality of life. Here, we review proposed mechanisms underlying the therapeutic effects of immunotherapy for allergic diseases. Further, we discuss both standard and novel approaches and possible future directions in the development of allergen immunotherapy.
Collapse
Affiliation(s)
- Danuta Gutowska-Owsiak
- MRC Human Immunology Unit, NIHR Biomedical Research Centre, Radcliffe Department of Medicine, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Graham S Ogg
- MRC Human Immunology Unit, NIHR Biomedical Research Centre, Radcliffe Department of Medicine, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
15
|
Lee JH, Moon JH, Lee YJ, Park SY. SIRT1, a Class III Histone Deacetylase, Regulates LPS-Induced Inflammation in Human Keratinocytes and Mediates the Anti-Inflammatory Effects of Hinokitiol. J Invest Dermatol 2017; 137:1257-1266. [PMID: 28257794 DOI: 10.1016/j.jid.2016.11.044] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 11/09/2016] [Accepted: 11/18/2016] [Indexed: 12/11/2022]
Abstract
Skin inflammation is a response of the immune system to infection and injury. In this study, we report that hinokitiol, a tropolone-related natural compound that exhibits antioxidant, anti-inflammatory, and anticancer properties in various cell types, can modulate the inflammatory responses of primary human keratinocytes challenged with lipopolysaccharide (LPS). Hinokitiol treatment inhibited LPS-mediated up-regulation of proinflammatory factors including tumor necrosis factor alpha, IL-6, and prostaglandin E2 (PGE2). NF-κB activation and cell migration induced by LPS were blocked in keratinocytes treated with hinokitiol. Sirt1, a class Ⅲ histone deacetylase, was up-regulated by hinokitiol treatment, and the inhibition of Sirt1 activity using a pharmacological inhibitor or genetic silencing blocked hinokitiol-mediated anti-inflammatory effects. Further, hyperactivation of Sirt1 deacetylase using an adenoviral vector also attenuated LPS-induced inflammatory responses. We thus show that hinokitiol can attenuate LPS-mediated proinflammatory signals via Sirt1 histone deacetylase activation in primary human keratinocytes and suggest that hinokitiol may be a potential therapeutic agent in skin inflammatory diseases like psoriasis.
Collapse
Affiliation(s)
- Ju-Hee Lee
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, Jeonbuk, South Korea
| | - Ji-Hong Moon
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, Jeonbuk, South Korea
| | - You-Jin Lee
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, Jeonbuk, South Korea
| | - Sang-Youel Park
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, Jeonbuk, South Korea.
| |
Collapse
|
16
|
Scheiblhofer S, Strobl A, Hoepflinger V, Thalhamer T, Steiner M, Thalhamer J, Weiss R. Skin vaccination via fractional infrared laser ablation - Optimization of laser-parameters and adjuvantation. Vaccine 2017; 35:1802-1809. [PMID: 28117172 DOI: 10.1016/j.vaccine.2016.11.105] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 10/31/2016] [Accepted: 11/29/2016] [Indexed: 11/18/2022]
Abstract
BACKGROUND Methods to deliver an antigen into the skin in a painless, defined, and reproducible manner are essential for transcutaneous immunization (TCI). Here, we employed an ablative fractional infrared laser (P.L.E.A.S.E. Professional) to introduce clinically relevant vaccines into the skin. To elicit the highest possible antibody titers with this system, we optimized different laser parameters, such as fluence and pore number per area, and tested various adjuvants. METHODS BALB/c mice were immunized with Hepatitis B surface antigen (HBsAg) by laser-microporation. Adjuvants used were alum, CRM197, monophosphoryl lipid A, heat-labile enterotoxin subunit B of E. coli (LT-B), and CpG ODN1826. The influence of different fluences (2.1 to 16.8J/cm2) and pore densities (5-15%) was investigated. Furthermore, immunogenicity of HBsAg and the commercially available conjugate vaccines ActHIB® and Menveo® applied via TCI was compared to standard i.m. injection. Antigen-specific antibody titers were assessed by luminometric ELISA. RESULTS Antibody titers against HBsAg were dependent on pore depth and peaked at a fluence of 8.4J/cm2. Immunogenicity was independent of pore density. Adjuvantation with alum significantly reduced antibody titers after TCI, whereas other adjuvants only induced marginal changes in total IgG titers. LT-B and CpG shifted the polarization of the immune response as indicated by decreased IgG1/IgG2a ratios. HBsAg/LT-B applied via TCI induced similar antibody titers compared to i.m. injection of HBsAg/alum. In contrast to i.m. injection, we observed a dose response from 5 to 20μg after TCI. Both, ActHIB® and Menveo® induced high antibody titers after TCI, which were comparable to i.m. injection. CONCLUSIONS Alum, the most commonly used adjuvant, is contraindicated for transcutaneous vaccination via laser-generated micropores. TCI with optimized laser parameters induces high antibody titers, which cannot be significantly increased by the tested adjuvants. Commercially available vaccines formulated without alum have the potential for successful TCI via laser-generated micropores, without the need for reformulation.
Collapse
Affiliation(s)
- Sandra Scheiblhofer
- University of Salzburg, Department of Molecular Biology, Hellbrunnerstr. 34, Salzburg, Austria
| | - Anna Strobl
- University of Salzburg, Department of Molecular Biology, Hellbrunnerstr. 34, Salzburg, Austria
| | - Veronika Hoepflinger
- University of Salzburg, Department of Molecular Biology, Hellbrunnerstr. 34, Salzburg, Austria
| | - Theresa Thalhamer
- University of Salzburg, Department of Molecular Biology, Hellbrunnerstr. 34, Salzburg, Austria
| | - Martin Steiner
- Pantec Biosolutions AG, Industriering 21, Ruggell, Liechtenstein
| | - Josef Thalhamer
- University of Salzburg, Department of Molecular Biology, Hellbrunnerstr. 34, Salzburg, Austria
| | - Richard Weiss
- University of Salzburg, Department of Molecular Biology, Hellbrunnerstr. 34, Salzburg, Austria.
| |
Collapse
|
17
|
Chen RJ, Lee YH, Yeh YL, Wang YJ, Wang BJ. The Roles of Autophagy and the Inflammasome during Environmental Stress-Triggered Skin Inflammation. Int J Mol Sci 2016; 17:E2063. [PMID: 27941683 PMCID: PMC5187863 DOI: 10.3390/ijms17122063] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 11/29/2016] [Accepted: 12/05/2016] [Indexed: 02/07/2023] Open
Abstract
Inflammatory skin diseases are the most common problem in dermatology. The induction of skin inflammation by environmental stressors such as ultraviolet radiation (UVR), hexavalent chromium (Cr(VI)) and TiO₂/ZnO/Ag nanoparticles (NPs) has been demonstrated previously. Recent studies have indicated that the inflammasome is often wrongly activated by these environmental irritants, thus inducing massive inflammation and resulting in the development of inflammatory diseases. The regulation of the inflammasome with respect to skin inflammation is complex and is still not completely understood. Autophagy, an intracellular degradation system that is associated with the maintenance of cellular homeostasis, plays a key role in inflammasome inactivation. As a housekeeping pathway, cells utilize autophagy to maintain the homeostasis of the organ structure and function when exposed to environmental stressors. However, only a few studies have examined the effect of autophagy and/or the inflammasome on skin pathogenesis. Here we review recent findings regarding the involvement of autophagy and inflammasome activation during skin inflammation. We posit that autophagy induction is a novel mechanism inter-modulating environmental stressor-induced skin inflammation. We also attempt to highlight the role of the inflammasome and the possible underlying mechanisms and pathways reflecting the pathogenesis of skin inflammation induced by UVR, Cr(VI) and TiO₂/ZnO/Ag NPs. A more profound understanding about the crosstalk between autophagy and the inflammasome will contribute to the development of prevention and intervention strategies against human skin disease.
Collapse
Affiliation(s)
- Rong-Jane Chen
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan.
| | - Yu-Hsuan Lee
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan.
| | - Ya-Ling Yeh
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan.
| | - Ying-Jan Wang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan.
- Department of Biomedical Informatics, Asia University, Taichung 41354, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan.
- Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei 110, Taiwan.
| | - Bour-Jr Wang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan.
- Department of Occupational and Environmental Medicine, National Cheng Kung University Hospital, Tainan 70428, Taiwan.
- Department of Cosmetic Science and Institute of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan.
| |
Collapse
|
18
|
Aries MF, Hernandez-Pigeon H, Vaissière C, Delga H, Caruana A, Lévêque M, Bourrain M, Ravard Helffer K, Chol B, Nguyen T, Bessou-Touya S, Castex-Rizzi N. Anti-inflammatory and immunomodulatory effects of Aquaphilus dolomiae extract on in vitro models. Clin Cosmet Investig Dermatol 2016; 9:421-434. [PMID: 27877060 PMCID: PMC5108493 DOI: 10.2147/ccid.s113180] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background Atopic dermatitis (AD) is a common skin disease characterized by recurrent pruritic inflammatory skin lesions resulting from structural and immune defects of the skin barrier. Previous studies have shown the clinical efficacy of Avène thermal spring water in AD, and a new microorganism, Aquaphilus dolomiae was suspected to contribute to these unique properties. The present study evaluated the anti-inflammatory, antipruritic, and immunomodulatory properties of ES0, an original biological extract of A. dolomiae, in immune and inflammatory cell models in order to assess its potential use in the treatment of AD. Materials and methods An ES0 extract containing periplasmic and membrane proteins, peptides, lipopolysaccharides, and exopolysaccharides was obtained from A. dolomiae. The effects of the extract on pruritus and inflammatory mediators and immune mechanisms were evaluated by using various AD cell models and assays. Results In a keratinocyte model, ES0 inhibited the expression of the inflammatory mediators, thymic stromal lymphopoietin, interleukin (IL)-18, IL-4R, IL-8, monocyte chemoattractant protein-3, macrophage inflammatory protein-3α, and macrophage-derived chemokine and induced the expression of involucrin, which is involved in skin barrier keratinocyte terminal differentiation. In addition, ES0 inhibited protease-activated receptor-2 activation in HaCaT human keratinocytes stimulated by stratum corneum tryptic enzyme and T helper type (Th) 1, Th2, and Th17 cytokine production in Staphylococcal enterotoxin B–stimulated CD4+ lymphocytes. Lastly, ES0 markedly activated innate immunity through toll-like receptor (TLR) 2, TLR4, and TLR5 activation (in recombinant human embryonic kidney 293 cells) and through antimicrobial peptide induction (psoriasin, human beta-defensin-2, and cathelicidin), mainly through TLR5 activation (in normal human keratinocytes). Conclusion Overall, these in vitro results confirm the marked regulatory activity of this A. dolomiae extract on inflammatory and immune responses, which may be of value by virtue of its potential as an adjunctive treatment of AD inflammatory and pruritic lesions.
Collapse
Affiliation(s)
- Marie-Françoise Aries
- Pierre Fabre Dermo-Cosmétique, Centre de Recherche & Développement Pierre Fabre, Toulouse
| | | | - Clémence Vaissière
- Pierre Fabre Dermo-Cosmétique, Centre de Recherche & Développement Pierre Fabre, Toulouse
| | - Hélène Delga
- Pierre Fabre Dermo-Cosmétique, Centre de Recherche & Développement Pierre Fabre, Toulouse
| | - Antony Caruana
- Pierre Fabre Dermo-Cosmétique, Centre de Recherche & Développement Pierre Fabre, Toulouse
| | - Marguerite Lévêque
- Pierre Fabre Dermo-Cosmétique, Centre de Recherche & Développement Pierre Fabre, Toulouse
| | - Muriel Bourrain
- Pierre Fabre Dermo-Cosmétique, Centre de Recherche & Développement Pierre Fabre, Toulouse; Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM), Observatoire Océanologique, Banyuls/Mer, France
| | - Katia Ravard Helffer
- Pierre Fabre Dermo-Cosmétique, Centre de Recherche & Développement Pierre Fabre, Toulouse
| | - Bertrand Chol
- Centre d'Immunologie Pierre Fabre, Saint-Julien-en-Genevois, France
| | - Thien Nguyen
- Pierre Fabre Dermo-Cosmétique, Centre de Recherche & Développement Pierre Fabre, Toulouse
| | - Sandrine Bessou-Touya
- Pierre Fabre Dermo-Cosmétique, Centre de Recherche & Développement Pierre Fabre, Toulouse
| | - Nathalie Castex-Rizzi
- Pierre Fabre Dermo-Cosmétique, Centre de Recherche & Développement Pierre Fabre, Toulouse
| |
Collapse
|
19
|
Collinson-Pautz MR, Slawin KM, Levitt JM, Spencer DM. MyD88/CD40 Genetic Adjuvant Function in Cutaneous Atypical Antigen-Presenting Cells Contributes to DNA Vaccine Immunogenicity. PLoS One 2016; 11:e0164547. [PMID: 27741278 PMCID: PMC5065236 DOI: 10.1371/journal.pone.0164547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 09/27/2016] [Indexed: 12/28/2022] Open
Abstract
Therapeutic DNA-based vaccines aim to prime an adaptive host immune response against tumor-associated antigens, eliminating cancer cells primarily through CD8+ cytotoxic T cell-mediated destruction. To be optimally effective, immunological adjuvants are required for the activation of tumor-specific CD8+ T cells responses by DNA vaccination. Here, we describe enhanced anti-tumor efficacy of an in vivo electroporation-delivered DNA vaccine by inclusion of a genetically encoded chimeric MyD88/CD40 (MC) adjuvant, which integrates both innate and adaptive immune signaling pathways. When incorporated into a DNA vaccine, signaling by the MC adjuvant increased antigen-specific CD8+ T cells and promoted elimination of pre-established tumors. Interestingly, MC-enhanced vaccine efficacy did not require direct-expression of either antigen or adjuvant by local antigen-presenting cells, but rather our data supports a key role for MC function in "atypical" antigen-presenting cells of skin. In particular, MC adjuvant-modified keratinocytes increased inflammatory cytokine secretion, upregulated surface MHC class I, and were able to increase in vitro and in vivo priming of antigen-specific CD8+ T cells. Furthermore, in the absence of critical CD8α+/CD103+ cross-priming dendritic cells, MC was still able to promote immune priming in vivo, albeit at a reduced level. Altogether, our data support a mechanism by which MC signaling activates an inflammatory phenotype in atypical antigen-presenting cells within the cutaneous vaccination site, leading to an enhanced CD8+ T cell response against DNA vaccine-encoded antigens, through both CD8α+/CD103+ dendritic cell-dependent and independent pathways.
Collapse
Affiliation(s)
- Matthew R. Collinson-Pautz
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, United States of America
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States of America
| | - Kevin M. Slawin
- Bellicum Pharmaceuticals, Houston, TX, United States of America
| | - Jonathan M. Levitt
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, United States of America
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States of America
| | - David M. Spencer
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States of America
- Bellicum Pharmaceuticals, Houston, TX, United States of America
| |
Collapse
|
20
|
Li ZJ, Choi DK, Sohn KC, Lim SK, Im M, Lee Y, Seo YJ, Kim CD, Lee JH. Induction of Interleukin-22 (IL-22) production in CD4 + T Cells by IL-17A Secreted from CpG-Stimulated Keratinocytes. Ann Dermatol 2016; 28:579-585. [PMID: 27746637 PMCID: PMC5064187 DOI: 10.5021/ad.2016.28.5.579] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 12/02/2015] [Accepted: 12/23/2015] [Indexed: 01/07/2023] Open
Abstract
Background Interleukin-17A (IL-17A) is mainly secreted from Th17 cells that are activated by various stimuli including CpG oligodeoxynucleotide, a Toll-like receptor 9 (TLR9) ligand. Recently, it has been demonstrated that keratinocytes play an important role in the pathogenesis of psoriasis. Objective To investigate the potential role of keratinocytes, we examined whether TLR9 ligand CpG induces IL-17A expression in keratinocytes. Methods We used HaCaT keratinocytes as a model system, and determined CpG-induced IL-17A using enzyme-linked immunosorbent assay and Western blot. Results When HaCaT keratinocytes were treated with CpG, the expression of several cytokines including IL-17A, tumor necrosis factor-α and CCL20 was markedly increased. Treatment with nuclear factor (NF)-κB inhibitor significantly blocked the CpG-induced IL-17A production, indicating that CpG induced IL-17A expression through the NF-κB signaling pathway. In addition, IL-17A secreted from keratinocytes stimulated the CD4+ T cells, resulting in strong induction of IL-22 production. Conclusion Since IL-22 is an important mediator for psoriatic inflammation, our data suggest that keratinocytes can participate in the pathogenesis of psoriasis via the TLR9-dependent IL-17A production.
Collapse
Affiliation(s)
- Zheng Jun Li
- Department of Dermatology, Chungnam National University School of Medicine, Daejeon, Korea
| | - Dae-Kyoung Choi
- Department of Dermatology, Chungnam National University School of Medicine, Daejeon, Korea
| | - Kyung-Cheol Sohn
- Department of Dermatology, Chungnam National University School of Medicine, Daejeon, Korea
| | - Seul Ki Lim
- Department of Dermatology, Chungnam National University School of Medicine, Daejeon, Korea
| | - Myung Im
- Department of Dermatology, Chungnam National University School of Medicine, Daejeon, Korea
| | - Young Lee
- Department of Dermatology, Chungnam National University School of Medicine, Daejeon, Korea
| | - Young-Joon Seo
- Department of Dermatology, Chungnam National University School of Medicine, Daejeon, Korea
| | - Chang Deok Kim
- Department of Dermatology, Chungnam National University School of Medicine, Daejeon, Korea
| | - Jeung-Hoon Lee
- Department of Dermatology, Chungnam National University School of Medicine, Daejeon, Korea
| |
Collapse
|
21
|
Winge MCG, Ohyama B, Dey CN, Boxer LM, Li W, Ehsani-Chimeh N, Truong AK, Wu D, Armstrong AW, Makino T, Davidson M, Starcevic D, Kislat A, Nguyen NT, Hashimoto T, Homey B, Khavari PA, Bradley M, Waterman EA, Marinkovich MP. RAC1 activation drives pathologic interactions between the epidermis and immune cells. J Clin Invest 2016; 126:2661-77. [PMID: 27294528 DOI: 10.1172/jci85738] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 04/27/2016] [Indexed: 12/17/2022] Open
Abstract
Interactions between the epidermis and the immune system govern epidermal tissue homeostasis. These epidermis-immune interactions are altered in the inflammatory disease psoriasis; however, the pathways that underlie this aberrant immune response are not well understood. Here, we determined that Ras-related C3 botulinum toxin substrate 1 (RAC1) is a key mediator of epidermal dysfunction. RAC1 activation was consistently elevated in psoriatic epidermis and primary psoriatic human keratinocytes (PHKCs) exposed to psoriasis-related stimuli, but not in skin from patients with basal or squamous cell carcinoma. Expression of a constitutively active form of RAC1 (RACV12) in mice resulted in the development of lesions similar to those of human psoriasis that required the presence of an intact immune system. RAC1V12-expressing mice and human psoriatic skin showed similar RAC1-dependent signaling as well as transcriptional overlap of differentially expressed epidermal and immune pathways. Coculture of PHKCs with immunocytes resulted in the upregulation of RAC1-dependent proinflammatory cytokines, an effect that was reproduced by overexpressing RAC1 in normal human keratinocytes. In keratinocytes, modulating RAC1 activity altered differentiation, proliferation, and inflammatory pathways, including STAT3, NFκB, and zinc finger protein 750 (ZNF750). Finally, RAC1 inhibition in xenografts composed of human PHKCs and immunocytes abolished psoriasiform hyperplasia and inflammation in vivo. These studies implicate RAC1 as a potential therapeutic target for psoriasis and as a key orchestrator of pathologic epidermis-immune interactions.
Collapse
|
22
|
Tervaniemi MH, Katayama S, Skoog T, Siitonen HA, Vuola J, Nuutila K, Sormunen R, Johnsson A, Linnarsson S, Suomela S, Kankuri E, Kere J, Elomaa O. NOD-like receptor signaling and inflammasome-related pathways are highlighted in psoriatic epidermis. Sci Rep 2016; 6:22745. [PMID: 26976200 PMCID: PMC4792137 DOI: 10.1038/srep22745] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 02/19/2016] [Indexed: 02/08/2023] Open
Abstract
Psoriatic skin differs distinctly from normal skin by its thickened epidermis. Most gene expression comparisons utilize full-thickness biopsies, with substantial amount of dermis. We assayed the transcriptomes of normal, lesional, and non-lesional psoriatic epidermis, sampled as split-thickness skin grafts, with 5′-end RNA sequencing. We found that psoriatic epidermis contains more mRNA per total RNA than controls, and took this into account in the bioinformatic analysis. The approach highlighted innate immunity-related pathways in psoriasis, including NOD-like receptor (NLR) signaling and inflammasome activation. We demonstrated that the NLR signaling genes NOD2, PYCARD, CARD6, and IFI16 are upregulated in psoriatic epidermis, and strengthened these findings by protein expression. Interestingly, PYCARD, the key component of the inflammasome, showed an altered expression pattern in the lesional epidermis. The profiling of non-lesional skin highlighted PSORS4 and mitochondrially encoded transcripts, suggesting that their gene expression is altered already before the development of lesions. Our data suggest that all components needed for the active inflammasome are present in the keratinocytes of psoriatic skin. The characterization of inflammasome pathways provides further opportunities for therapy. Complementing previous transcriptome studies, our approach gives deeper insight into the gene regulation in psoriatic epidermis.
Collapse
Affiliation(s)
- Mari H Tervaniemi
- Folkhälsan Institute of Genetics, Helsinki, Finland.,Department of Medical and Clinical Genetics, Medicum and Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
| | - Shintaro Katayama
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.,Science for Life Laboratory, Solna, Sweden
| | - Tiina Skoog
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - H Annika Siitonen
- Folkhälsan Institute of Genetics, Helsinki, Finland.,Department of Medical and Clinical Genetics, Medicum and Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
| | - Jyrki Vuola
- Helsinki Burn Center, Department of Plastic Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Kristo Nuutila
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland
| | - Raija Sormunen
- Biocenter Oulu, Department of Pathology, University of Oulu, Oulu, Finland
| | - Anna Johnsson
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Sten Linnarsson
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Sari Suomela
- Department of Dermatology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Esko Kankuri
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland
| | - Juha Kere
- Folkhälsan Institute of Genetics, Helsinki, Finland.,Department of Medical and Clinical Genetics, Medicum and Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland.,Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.,Science for Life Laboratory, Solna, Sweden
| | - Outi Elomaa
- Folkhälsan Institute of Genetics, Helsinki, Finland.,Department of Medical and Clinical Genetics, Medicum and Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
23
|
Anti-Inflammatory Action of Keratinocyte-Derived Vaspin. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:639-51. [DOI: 10.1016/j.ajpath.2015.10.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 09/18/2015] [Accepted: 10/27/2015] [Indexed: 12/23/2022]
|
24
|
Vargas WA, Sanz-Martín JM, Rech GE, Armijos-Jaramillo VD, Rivera LP, Echeverria MM, Díaz-Mínguez JM, Thon MR, Sukno SA. A Fungal Effector With Host Nuclear Localization and DNA-Binding Properties Is Required for Maize Anthracnose Development. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:83-95. [PMID: 26554735 DOI: 10.1094/mpmi-09-15-0209-r] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Plant pathogens have the capacity to manipulate the host immune system through the secretion of effectors. We identified 27 putative effector proteins encoded in the genome of the maize anthracnose pathogen Colletotrichum graminicola that are likely to target the host's nucleus, as they simultaneously contain sequence signatures for secretion and nuclear localization. We functionally characterized one protein, identified as CgEP1. This protein is synthesized during the early stages of disease development and is necessary for anthracnose development in maize leaves, stems, and roots. Genetic, molecular, and biochemical studies confirmed that this effector targets the host's nucleus and defines a novel class of double-stranded DNA-binding protein. We show that CgEP1 arose from a gene duplication in an ancestor of a lineage of monocot-infecting Colletotrichum spp. and has undergone an intense evolution process, with evidence for episodes of positive selection. We detected CgEP1 homologs in several species of a grass-infecting lineage of Colletotrichum spp., suggesting that its function may be conserved across a large number of anthracnose pathogens. Our results demonstrate that effectors targeted to the host nucleus may be key elements for disease development and aid in the understanding of the genetic basis of anthracnose development in maize plants.
Collapse
Affiliation(s)
- Walter A Vargas
- 1 Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Departamento de Microbiología y Genética, Universidad de Salamanca, 37185 Villamayor, Spain
| | - José M Sanz-Martín
- 1 Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Departamento de Microbiología y Genética, Universidad de Salamanca, 37185 Villamayor, Spain
| | - Gabriel E Rech
- 1 Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Departamento de Microbiología y Genética, Universidad de Salamanca, 37185 Villamayor, Spain
| | - Vinicio D Armijos-Jaramillo
- 1 Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Departamento de Microbiología y Genética, Universidad de Salamanca, 37185 Villamayor, Spain
| | - Lina P Rivera
- 1 Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Departamento de Microbiología y Genética, Universidad de Salamanca, 37185 Villamayor, Spain
| | - María Mercedes Echeverria
- 2 Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata - C.C. 276 (7620) Balcarce, Buenos Aires, Argentina
| | - José M Díaz-Mínguez
- 1 Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Departamento de Microbiología y Genética, Universidad de Salamanca, 37185 Villamayor, Spain
| | - Michael R Thon
- 1 Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Departamento de Microbiología y Genética, Universidad de Salamanca, 37185 Villamayor, Spain
| | - Serenella A Sukno
- 1 Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Departamento de Microbiología y Genética, Universidad de Salamanca, 37185 Villamayor, Spain
| |
Collapse
|
25
|
Takeuchi A, Nomoto Y, Watanabe M, Kimura S, Morimoto Y, Ueda H. Application of Microneedles to Skin Induces Activation of Epidermal Langerhans Cells and Dermal Dendritic Cells in Mice. Biol Pharm Bull 2016; 39:1309-18. [DOI: 10.1248/bpb.b16-00113] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Asuka Takeuchi
- Central Research Laboratories, Zeria Pharmaceutical Co., Ltd
| | - Yusuke Nomoto
- Faculty of Pharmaceutical Sciences, Josai University
| | - Mai Watanabe
- Faculty of Pharmaceutical Sciences, Josai University
| | | | | | - Hideo Ueda
- Faculty of Pharmaceutical Sciences, Josai University
| |
Collapse
|
26
|
Zanoni TB, Hudari F, Munnia A, Peluso M, Godschalk RW, Zanoni MVB, den Hartog GJM, Bast A, Barros SBM, Maria-Engler SS, Hageman GJ, de Oliveira DP. The oxidation of p-phenylenediamine, an ingredient used for permanent hair dyeing purposes, leads to the formation of hydroxyl radicals: Oxidative stress and DNA damage in human immortalized keratinocytes. Toxicol Lett 2015; 239:194-204. [PMID: 26456176 DOI: 10.1016/j.toxlet.2015.09.026] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 09/14/2015] [Accepted: 09/29/2015] [Indexed: 02/02/2023]
Abstract
The hair-dyeing ingredient, p-phenylenediamine (PPD), was previously reported to be mutagenic, possibly by inducing oxidative stress. However, the exact mechanism of PPD in inducing oxidative stress upon skin exposure during hair-dyeing in human keratinocytes remains unknown. The aim of our studies was therefore to investigate the toxicity of PPD and its by-products in human immortalized keratinocytes (HaCaT) after auto-oxidation and after reaction with hydrogen peroxide (H2O2). We found that the PPD half maximal effective cytotoxic concentration (EC50) to HaCaT is 39.37 and 35.63 μg/mL after 24 and 48 h, respectively, without addition of H2O2 to induce oxidation. When PPD (10 or 100 μg/mL) is combined with 10.5 μg/mL of H2O2, intracellular ROS production by HaCaT after 1 h was significantly increased and enhanced levels of DNA damage were observed after 4 h of exposure. After 24 h incubations, 20 μg/mL of PPD increased the level of DNA oxidation in HaCaT. Also, we found that the in vitro reaction between PPD and H2O2, even below the maximum allowance by cosmetic industries, released hydroxyl radicals which can damage DNA. Taken together, we conclude that PPD alone and when combined with H2O2 increases the formation of reactive oxygen species in human keratinocytes, leading to oxidative stress and subsequent DNA damage. These alterations suggest that the mechanism by which PPD exposure, alone or combined with H2O2, damages keratinocytes by the formation of the high reactive HO∙ radicals.
Collapse
Affiliation(s)
- Thalita B Zanoni
- Department of Environmental Toxicology, School of Pharmaceutical Sciences, University of São Paulo (FCFRP/USP), Av. do Café, s/n, CEP 14040-903 Ribeirão Preto, SP, Brazil.
| | - Felipe Hudari
- Department of Analytical Chemistry, Institute of Chemistry, Univ. Estadual Paulista (UNESP), R. Prof. Francisco Degni, s/n, CEP 14801-970 Araraquara, SP, Brazil
| | - Armelle Munnia
- Cancer Risk Factor Branch, Cancer Prevention Laboratory, ISPO-Cancer Prevention and Research Institute, Via Cosimo il Vecchi 2, 500139 Florence, Italy
| | - Marco Peluso
- Cancer Risk Factor Branch, Cancer Prevention Laboratory, ISPO-Cancer Prevention and Research Institute, Via Cosimo il Vecchi 2, 500139 Florence, Italy
| | - Roger W Godschalk
- Department of Toxicology, Research Institute NUTRIM, School of Nutrition and Translational Research in Metabolism, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Maria Valnice B Zanoni
- Department of Analytical Chemistry, Institute of Chemistry, Univ. Estadual Paulista (UNESP), R. Prof. Francisco Degni, s/n, CEP 14801-970 Araraquara, SP, Brazil
| | - Gertjan J M den Hartog
- Department of Toxicology, Research Institute NUTRIM, School of Nutrition and Translational Research in Metabolism, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Aalt Bast
- Department of Toxicology, Research Institute NUTRIM, School of Nutrition and Translational Research in Metabolism, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Silvia B M Barros
- Department of Clinical Chemistry & Toxicology, School of Pharmaceutical Sciences, University of São Paulo (FCF/USP), Av. Lineu Prestes, 580, CEP 05508-900 São Paulo, Brazil
| | - Silvya S Maria-Engler
- Department of Clinical Chemistry & Toxicology, School of Pharmaceutical Sciences, University of São Paulo (FCF/USP), Av. Lineu Prestes, 580, CEP 05508-900 São Paulo, Brazil
| | - Geja J Hageman
- Department of Toxicology, Research Institute NUTRIM, School of Nutrition and Translational Research in Metabolism, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Danielle Palma de Oliveira
- Department of Environmental Toxicology, School of Pharmaceutical Sciences, University of São Paulo (FCFRP/USP), Av. do Café, s/n, CEP 14040-903 Ribeirão Preto, SP, Brazil
| |
Collapse
|
27
|
Garcin G, Guiraud I, Lacroix M, Genthon C, Rialle S, Joujoux JM, Meunier L, Lavabre-Bertrand T, Stoebner PE, Le Gallic L. AMPK/HuR-Driven IL-20 Post-Transcriptional Regulation in Psoriatic Skin. J Invest Dermatol 2015; 135:2732-2741. [PMID: 26176762 DOI: 10.1038/jid.2015.282] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 05/18/2015] [Accepted: 06/23/2015] [Indexed: 11/09/2022]
Abstract
IL-20 is involved in the development of skin psoriasis. The molecular mechanisms underlying IL-20 overexpression in psoriatic epidermis remain to be elucidated. We showed that IL-20 was primarily upregulated in psoriatic skin at the post-transcriptional level. The RNA-binding protein HuR relocalized to the cytoplasm of keratinocytes (KCs) of psoriatic patients, suggesting that it stabilizes numerous transcripts, as observed in the human KC cell lines used to assess IL-20 mRNA. We characterized epidermal HuR RNA targets in psoriatic skin using ribonucleoprotein immunoprecipitation analyzed via high-throughput sequencing. Numerous transcripts that are upregulated in psoriasis were targeted by HuR, supporting the participation of HuR in pathogenic processes such as morphological changes, innate and adaptive immune responses, and metabolic inflammatory responses. Finally, we identified the metabolic sensor AMP-activated protein kinase (AMPK) as being responsible for HuR cytoplasmic relocalization because its activity was severely impaired in human psoriatic epidermis, and in vivo drug-mediated AMPK inhibition in mouse epidermis promoted HuR cytoplasmic localization, IL-20 overproduction, acanthosis, and hyperkeratosis. These results provide insights into the molecular links between metabolism and post-transcriptional networks during chronic inflammation.
Collapse
Affiliation(s)
- Geneviève Garcin
- Dynamique des Interactions Membranaires Normales et Pathologiques (DIMNP), CNRS UMR 5235, Université de Montpellier, Montpellier, France
| | - Isabelle Guiraud
- Laboratoire d'Histologie-Embryologie-Cytogénétique, Institut des Biomolécules Max Mousseron (IBMM), CNRS UMR 5247, Faculté de Médecine Montpellier-Nîmes, Université de Montpellier, Nîmes, France
| | - Matthieu Lacroix
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Institut régional du Cancer Montpellier (ICM), INSERM U896, Université de Montpellier, Montpellier, France
| | - Clémence Genthon
- Montpellier Genomix (MGX), Institut de Génomique Fonctionnelle (IGF), CNRS INSERM UMS3426, Université de Montpellier, Montpellier, France
| | - Stéphanie Rialle
- Montpellier Genomix (MGX), Institut de Génomique Fonctionnelle (IGF), CNRS INSERM UMS3426, Université de Montpellier, Montpellier, France
| | - Jean-Marie Joujoux
- Service d'Anatomopathologie, Centre Hospitalier Universitaire de Nîmes, Nîmes, France
| | - Laurent Meunier
- Service de Dermatologie, Centre Hospitalier Universitaire de Nîmes, Nîmes, France
| | - Thierry Lavabre-Bertrand
- Laboratoire d'Histologie-Embryologie-Cytogénétique, Institut des Biomolécules Max Mousseron (IBMM), CNRS UMR 5247, Faculté de Médecine Montpellier-Nîmes, Université de Montpellier, Nîmes, France
| | | | - Lionel Le Gallic
- Laboratoire d'Histologie-Embryologie-Cytogénétique, Institut des Biomolécules Max Mousseron (IBMM), CNRS UMR 5247, Faculté de Médecine Montpellier-Nîmes, Université de Montpellier, Nîmes, France.
| |
Collapse
|
28
|
Colonization of epidermal tissue by Staphylococcus aureus produces localized hypoxia and stimulates secretion of antioxidant and caspase-14 proteins. Infect Immun 2015; 83:3026-34. [PMID: 25987705 DOI: 10.1128/iai.00175-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 05/07/2015] [Indexed: 11/20/2022] Open
Abstract
A partial-thickness epidermal explant model was colonized with green fluorescent protein (GFP)-expressing Staphylococcus aureus, and the pattern of S. aureus biofilm growth was characterized using electron and confocal laser scanning microscopy. The oxygen concentration in explants was quantified using microelectrodes. The relative effective diffusivity and porosity of the epidermis were determined using magnetic resonance imaging, while hydrogen peroxide (H2O2) concentration in explant media was measured by using microelectrodes. Secreted proteins were identified and quantified using elevated-energy mass spectrometry (MS(E)). S. aureus biofilm grows predominantly in lipid-rich areas around hair follicles and associated skin folds. Dissolved oxygen was selectively depleted (2- to 3-fold) in these locations, but the relative effective diffusivity and porosity did not change between colonized and control epidermis. Histological analysis revealed keratinocyte damage across all the layers of colonized epidermis after 4 days of culture. The colonized explants released significantly (P < 0.01) more antioxidant proteins of both epidermal and S. aureus origin, consistent with elevated H2O2 concentrations found in the media from the colonized explants (P< 0.001). Caspase-14 was also elevated significantly in the media from the colonized explants. While H2O2 induces primary keratinocyte differentiation, caspase-14 is required for terminal keratinocyte differentiation and desquamation. These results are consistent with a localized biological impact from S. aureus in response to colonization of the skin surface.
Collapse
|
29
|
Drummond PD, Dawson LF, Finch PM, Drummond ES, Wood FM, Fear MW. Up-regulation of cutaneous α1-adrenoceptors after a burn. Burns 2015; 41:1227-34. [PMID: 25630693 DOI: 10.1016/j.burns.2014.12.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 12/22/2014] [Accepted: 12/26/2014] [Indexed: 01/02/2023]
Abstract
Stimulation of α1-adrenoceptors evokes inflammatory cytokine production, boosts neurogenic inflammation and pain, and influences cellular migration and proliferation. As expression of α1-adrenoceptors increases on dermal nerves and keratinocytes after peripheral nerve injury, the aim of this study was to determine whether another form of tissue injury (a cutaneous burn) triggered a similar response. In particular, changes in expression of α1-adrenoceptors were investigated on dermal nerve fibres, keratinocytes and fibroblast-like cells using immunohistochemistry 2-12 weeks after a full thickness burn in Wistar rats. Within two weeks of the burn, local increases in α1-adrenoceptor expression were seen in the re-forming epidermis, in dense bands of spindle-shaped cells in the upper dermis (putatively infiltrating immune cells and fibroblasts), and on nerve fibres in the deep dermis. In addition, nerve fibre density increased approximately three-fold in the deep dermis, and this response persisted for several more weeks. In contrast, α1-adrenoceptor labelled cells and staining intensity in the upper dermis decreased contralateral to the burn, as did nerve fibre density in the deep dermis. These findings suggest that inflammatory mediators and/or growth factors at the site of a burn trigger the synthesis of α1-adrenoceptors on resident epidermal cells and nerve fibres, and an influx of α1-adrenoceptor labelled cells. The heightened expression of α1-adrenoceptors in injured tissue could shape inflammatory and wound healing responses.
Collapse
Affiliation(s)
- Peter D Drummond
- Centre for Research on Chronic Pain and Inflammatory Diseases, Murdoch University, Perth, Western Australia, Australia.
| | - Linda F Dawson
- Centre for Research on Chronic Pain and Inflammatory Diseases, Murdoch University, Perth, Western Australia, Australia
| | - Philip M Finch
- Centre for Research on Chronic Pain and Inflammatory Diseases, Murdoch University, Perth, Western Australia, Australia
| | - Eleanor S Drummond
- Centre for Research on Chronic Pain and Inflammatory Diseases, Murdoch University, Perth, Western Australia, Australia
| | - Fiona M Wood
- Burn Injury Research Unit, School of Surgery, University of Western Australia, Australia; The Fiona Wood Foundation, Perth, Western Australia, Australia; The Burns Service of Western Australia, WA Department of Health, Western Australia, Australia
| | - Mark W Fear
- Burn Injury Research Unit, School of Surgery, University of Western Australia, Australia; The Fiona Wood Foundation, Perth, Western Australia, Australia
| |
Collapse
|
30
|
Ruiz JN, Belum VR, Boers-Doets CB, Kamboj M, Babady NE, Tang YW, Valdez TA, Lacouture ME. Nasal vestibulitis due to targeted therapies in cancer patients. Support Care Cancer 2015; 23:2391-8. [PMID: 25876156 DOI: 10.1007/s00520-014-2580-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Accepted: 12/18/2014] [Indexed: 11/24/2022]
Abstract
BACKGROUND AND PURPOSE Cancer patients treated with targeted therapies (e.g., epidermal growth factor receptor inhibitors) are susceptible to dermatologic adverse events (AEs) including secondary skin infections. Whereas infections such as paronychia and cellulitis have been reported, nasal vestibulitis (NV) has not been described with the use of these agents. The aim of our study was to characterize NV in cancer patients treated with targeted therapies. METHODS We utilized a retrospective chart review of cancer patients who had been referred to dermatology and were diagnosed with NV. We recorded data including demographics, referral reason, underlying malignancy, targeted anticancer regimen, NV treatment, and nasal bacterial culture results. RESULTS One Hundred Fifteen patients were included in the analysis, of which 13 % experienced multiple NV episodes. Skin rash was the most common reason (90 %) for a dermatology referral. The most common underlying malignancies were lung (43 %), breast (19 %), and colorectal (10 %) cancer. Sixty-eight percent of patients had been treated with an EGFRI-based regimen. Nasal cultures were obtained in 60 % of episodes, of which 94 % were positive for one or more organisms. Staphylococcus aureus was the most commonly isolated organism [methicillin-sensitive S. aureus 43 %; methicillin-resistant S. aureus 3 %]. CONCLUSIONS We report the incidence and characteristics of an unreported, yet frequent dermatologic condition in cancer patients treated with targeted therapies. These findings provide the basis for additional studies to describe the incidence, treatment, and consequences of this event. A better understanding of NV would mitigate its impact on patients' quality of life and risk for additional dermatologic AEs.
Collapse
Affiliation(s)
- Janelle N Ruiz
- Dermatology Service, Memorial Sloan Kettering Cancer Center, 60th Street Outpatient Center, Suite 407, Room 4312, 16 East 60th St., New York, NY, 10022, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
DNA vaccination strategy targets epidermal dendritic cells, initiating their migration and induction of a host immune response. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2014; 1:14054. [PMID: 26052522 PMCID: PMC4448738 DOI: 10.1038/mtm.2014.54] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 10/10/2014] [Accepted: 10/19/2014] [Indexed: 01/17/2023]
Abstract
The immunocompetence and clinical accessibility of dermal tissue offers an appropriate and attractive target for vaccination. We previously demonstrated that pDNA injection into the skin in combination with surface electroporation (SEP), results in rapid and robust expression of the encoded antigen in the epidermis. Here, we demonstrate that intradermally EP-enhanced pDNA vaccination results in the rapid induction of a host humoral immune response. In the dermally relevant guinea pig model, we used high-resolution laser scanning confocal microscopy to observe direct dendritic cell (DC) transfections in the epidermis, to determine the migration kinetics of these cells from the epidermal layer into the dermis, and to follow them sequentially to the immediate draining lymph nodes. Furthermore, we delineate the relationship between the migration of directly transfected epidermal DCs and the generation of the host immune response. In summary, these data indicate that direct presentation of antigen to the immune system by DCs through SEP-based in vivo transfection in the epidermis, is related to the generation of a humoral immune response.
Collapse
|
32
|
Gutowska‐Owsiak D, Greenwald L, Watson C, Selvakumar T, Wang X, Ogg G. The histamine‐synthesizing enzyme histidine decarboxylase is upregulated by keratinocytes in atopic skin. Br J Dermatol 2014; 171:771-8. [DOI: 10.1111/bjd.13199] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2014] [Indexed: 11/30/2022]
Affiliation(s)
- D. Gutowska‐Owsiak
- MRC Human Immunology Unit NIHR Biomedical Research Centre University of Oxford John Radcliffe Hospital Weatherall Institute of Molecular Medicine Oxford OX3 9DS U.K
| | - L. Greenwald
- MRC Human Immunology Unit NIHR Biomedical Research Centre University of Oxford John Radcliffe Hospital Weatherall Institute of Molecular Medicine Oxford OX3 9DS U.K
| | - C. Watson
- MRC Human Immunology Unit NIHR Biomedical Research Centre University of Oxford John Radcliffe Hospital Weatherall Institute of Molecular Medicine Oxford OX3 9DS U.K
| | - T.A. Selvakumar
- MRC Human Immunology Unit NIHR Biomedical Research Centre University of Oxford John Radcliffe Hospital Weatherall Institute of Molecular Medicine Oxford OX3 9DS U.K
| | - X. Wang
- MRC Human Immunology Unit NIHR Biomedical Research Centre University of Oxford John Radcliffe Hospital Weatherall Institute of Molecular Medicine Oxford OX3 9DS U.K
- Department of Oral Medicine and Periodontology School of Stomatology the Fourth Military Medical University Xi'an China
| | - G.S. Ogg
- MRC Human Immunology Unit NIHR Biomedical Research Centre University of Oxford John Radcliffe Hospital Weatherall Institute of Molecular Medicine Oxford OX3 9DS U.K
| |
Collapse
|
33
|
Keane NM, Pavlos RK, McKinnon E, Lucas A, Rive C, Blyth CC, Dunn D, Lucas M, Mallal S, Phillips E. HLA Class I restricted CD8+ and Class II restricted CD4+ T cells are implicated in the pathogenesis of nevirapine hypersensitivity. AIDS 2014; 28:1891-901. [PMID: 24911354 DOI: 10.1097/qad.0000000000000345] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVES This study sought to examine nevirapine hypersensitivity (NVP HSR) phenotypes and their relationship with differing major histocompatibility complex (MHC) Class I and Class II alleles and the associated CD4 and CD8 T-cell NVP-specific responses and their durability over time. METHODS A retrospective cohort study compared HIV-positive patients with NVP HSR, defined by fever and hepatitis and/or rash, with those tolerant of NVP for more than 3 months. Covariates included class I (HLA-A, B, C) and class II (HLA-DR) alleles. Cellular studies examined NVP-specific CD4 and CD8 T-cell responses by interferon-gamma (IFNγ) ELISpot assay and intracellular cytokine staining (ICS). RESULTS NVP HSR occurred in 19 out of 451 (4%) NVP-exposed individuals between March 1993 and December 2011. HLA associations were phenotype dependent with HLA-DRB1*01 : 01 associated with hepatitis (P = 0.02); HLA-B*35 : 01 and HLA-Cw4 associated with cutaneous NVP HSR (P = 0.001, P = 0.01), and HLA-Cw*08 was associated with NVP HSR with eosinophilia (P = 0.04) and multisystemic NVP HSR (P = 0.02). NVP-specific INFγ responses waned significantly more than 3 months from the original reaction and were diminished or completely abrogated when either CD4 or CD8 T cells were depleted from the peripheral blood mononuclear cells culture. CONCLUSION The association of specific class I and II allele pairings with specific phenotypes of NVP HSR, and cellular studies showing both CD4 and CD8 T-cell NVP-specific responses suggest that specific combinations of NVP reactive class I restricted CD8 and class II restricted CD4 T cells contribute to the immunopathogenesis of NVP HSR.
Collapse
|
34
|
New approaches to transcutaneous immunotherapy: targeting dendritic cells with novel allergen conjugates. Curr Opin Allergy Clin Immunol 2014; 13:669-76. [PMID: 24169433 PMCID: PMC3814987 DOI: 10.1097/aci.0b013e328364f4df] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Purpose of review This review summarizes recent preclinical and human studies evaluating allergen-specific immunotherapy via the transcutaneous route, and provides a rationale for the application of modified allergens with reduced allergenicity. Furthermore, it covers approaches to generate hypoallergenic conjugates for specific dendritic cell targeting. Recent findings Efficacy and safety of specific immunotherapy by application of allergens to the skin have been demonstrated in both animal models as well as clinical trials. However, localized adverse events have been reported, and delivery of antigens via barrier-disrupted skin has been linked to the induction of unwanted T helper 2-biased immune responses and allergic sensitization. Coupling of carbohydrates to allergens has been shown to induce formation of nanoparticles, which can specifically target dendritic cells and potentiate immune responses, and by masking B-cell epitopes, can render the molecules hypoallergenic. Summary Due to its abundance of immunocompetent cells, the skin represents an attractive target tissue for novel and enhanced immunotherapeutic approaches. However, in order to avoid adverse events and therapy-induced sensitizations, transcutaneous immunotherapy requires the use of formulations with reduced allergenic potential. Combining novel hypoallergenic conjugates with painless transcutaneous immunization techniques may provide an efficient and patient-friendly alternative to the standard specific immunotherapy practices.
Collapse
|
35
|
Lorencini M, Brohem CA, Dieamant GC, Zanchin NI, Maibach HI. Active ingredients against human epidermal aging. Ageing Res Rev 2014; 15:100-15. [PMID: 24675046 DOI: 10.1016/j.arr.2014.03.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 03/10/2014] [Accepted: 03/17/2014] [Indexed: 02/07/2023]
Abstract
The decisive role of the epidermis in maintaining body homeostasis prompted studies to evaluate the changes in epidermal structure and functionality over the lifetime. This development, along with the identification of molecular mechanisms of epidermal signaling, maintenance, and differentiation, points to a need for new therapeutic alternatives to treat and prevent skin aging. In addition to recovering age- and sun-compromised functions, proper treatment of the epidermis has important esthetic implications. This study reviews active ingredients capable of counteracting symptoms of epidermal aging, organized according to the regulation of specific age-affected epidermal functions: (1) several compounds, other than retinoids and derivatives, act on the proliferation and differentiation of keratinocytes, supporting the protective barrier against mechanical and chemical insults; (2) natural lipidic compounds, as well as glycerol and urea, are described as agents for maintaining water-ion balance; (3) regulation of immunological pathogen defense can be reinforced by natural extracts and compounds, such as resveratrol; and (4) antioxidant exogenous sources enriched with flavonoids and vitamin C, for example, improve solar radiation protection and epidermal antioxidant activity. The main objective is to provide a functional classification of active ingredients as regulatory elements of epidermal homeostasis, with potential cosmetic and/or dermatological applications.
Collapse
|
36
|
Depelsenaire ACI, Meliga SC, McNeilly CL, Pearson FE, Coffey JW, Haigh OL, Flaim CJ, Frazer IH, Kendall MAF. Colocalization of cell death with antigen deposition in skin enhances vaccine immunogenicity. J Invest Dermatol 2014; 134:2361-2370. [PMID: 24714201 PMCID: PMC4216316 DOI: 10.1038/jid.2014.174] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 03/28/2014] [Accepted: 04/01/2014] [Indexed: 01/31/2023]
Abstract
Vaccines delivered to the skin by microneedles – with and without adjuvants – have increased immunogenicity with lower doses than standard vaccine delivery techniques such as intramuscular (i.m.) or intradermal (i.d.) injection. However, the mechanisms behind this skin-mediated ‘adjuvant’ effect are not clear. Here, we show that the dynamic application of a microprojection array (the Nanopatch) to skin generates localized transient stresses invoking cell death around each projection. Nanopatch application caused significantly higher levels (~65-fold) of cell death in murine ear skin than i.d. injection using a hypodermic needle. Measured skin cell death is associated with modeled stresses ~1–10 MPa. Nanopatch-immunized groups also yielded consistently higher anti-IgG endpoint titers (up to 50-fold higher) than i.d. groups after delivery of a split virion influenza vaccine. Importantly, co-localization of cell death with nearby live skin cells and delivered antigen was necessary for immunogenicity enhancement. These results suggest a correlation between cell death caused by the Nanopatch with increased immunogenicity. We propose that the localized cell death serves as a ‘physical immune enhancer’ for the adjacent viable skin cells, which also receive antigen from the projections. This natural immune enhancer effect has the potential to mitigate or replace chemical-based adjuvants in vaccines.
Collapse
Affiliation(s)
- Alexandra C I Depelsenaire
- D2G2, The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland, Australia
| | - Stefano C Meliga
- D2G2, The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland, Australia
| | - Celia L McNeilly
- D2G2, The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland, Australia
| | - Frances E Pearson
- D2G2, The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland, Australia
| | - Jacob W Coffey
- D2G2, The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland, Australia
| | - Oscar L Haigh
- D2G2, The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland, Australia
| | - Christopher J Flaim
- D2G2, The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland, Australia
| | - Ian H Frazer
- The University of Queensland, Diamantina Institute for Cancer, Brisbane, Queensland, Australia
| | - Mark A F Kendall
- D2G2, The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland, Australia; The University of Queensland, Diamantina Institute for Cancer, Brisbane, Queensland, Australia; Faculty of Medicine and Biomedical Sciences, The University of Queensland, Centre for Clinical Research, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia.
| |
Collapse
|
37
|
Gutowska-Owsiak D, Selvakumar TA, Salimi M, Taylor S, Ogg GS. Histamine enhances keratinocyte-mediated resolution of inflammation by promoting wound healing and response to infection. Clin Exp Dermatol 2014; 39:187-95. [PMID: 24450605 DOI: 10.1111/ced.12256] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2013] [Indexed: 11/27/2022]
Abstract
BACKGROUND The role of the epidermis in the immune response is well known. While multiple cytokines are implicated in keratinocyte-mediated infection clearance and wound healing, little is known about the involvement of keratinocytes in promoting resolution of inflammation. AIM To assess effects of histamine stimulation on keratinocyte function. METHODS We performed a combined microarray/Gene Ontology analysis of histamine-stimulated keratinocytes. Functional changes were tested by apoptosis assessment and scratch assays. Histamine receptor involvement was also assessed by blocking wound closure with specific antagonists. RESULTS Histamine treatment had extensive effects on keratinocytes, including effects on proinflammatory responses and cellular functions promoting wound healing. At the functional level, there was reduced apoptosis and enhancement of wound healing in vitro. At the receptor level, we identified involvement of all keratinocyte-expressed histamine receptors (HRHs), with HRH1 blockage resulting in the most prominent effect. CONCLUSIONS Histamine activates wound healing and infection clearance-related functions of keratinocytes. While enhancement of histamine-mediated wound healing is mediated predominantly via the HRH1 receptor, other keratinocyte-expressed receptors are also involved. These effects could promote resolution of skin inflammation caused by infection or superficial injury.
Collapse
Affiliation(s)
- D Gutowska-Owsiak
- MRC Human Immunology Unit, NIHR Biomedical Research Centre, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | | | | | | | | |
Collapse
|
38
|
Belum VR, Fontanilla Patel H, Lacouture ME, Rodeck U. Skin toxicity of targeted cancer agents: mechanisms and intervention. Future Oncol 2013; 9:1161-70. [PMID: 23902247 DOI: 10.2217/fon.13.62] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
In recent years, targeted agents have rapidly evolved as effective tools in the clinical management of a broad range of malignant diseases. These agents disrupt molecular mechanisms and signaling modules that drive the malignant phenotype in defined subsets of malignancies. Beyond the intended cellular targets crucial to tumor growth and progression, these agents also affect signal transduction in normal cells and tissues. The resulting adverse events and their clinical management continue to change, as newer agents with an ever-increasing target spectrum are developed. We provide a succinct overview of dermatologic toxicities arising from the targeting of receptor tyrosine kinases and downstream effectors. Emergent insights into the pathomechanisms involved and the use of this knowledge base to alleviate cutaneous adverse events are discussed.
Collapse
Affiliation(s)
- Viswanath Reddy Belum
- Dermatology Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, Rockefeller Outpatient Pavilion Suite 248, 160 East 53rd Street, New York, NY 10022, USA
| | | | | | | |
Collapse
|
39
|
Sharma AM, Uetrecht J. Bioactivation of drugs in the skin: relationship to cutaneous adverse drug reactions. Drug Metab Rev 2013; 46:1-18. [DOI: 10.3109/03602532.2013.848214] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
40
|
Guo S, Israel AL, Basu G, Donate A, Heller R. Topical gene electrotransfer to the epidermis of hairless guinea pig by non-invasive multielectrode array. PLoS One 2013; 8:e73423. [PMID: 24015305 PMCID: PMC3756005 DOI: 10.1371/journal.pone.0073423] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 07/20/2013] [Indexed: 11/18/2022] Open
Abstract
Topical gene delivery to the epidermis has the potential to be an effective therapy for skin disorders, cutaneous cancers, vaccinations and systemic metabolic diseases. Previously, we reported on a non-invasive multielectrode array (MEA) that efficiently delivered plasmid DNA and enhanced expression to the skin of several animal models by in vivo gene electrotransfer. Here, we characterized plasmid DNA delivery with the MEA in a hairless guinea pig model, which has a similar histology and structure to human skin. Significant elevation of gene expression up to 4 logs was achieved with intradermal DNA administration followed by topical non-invasive skin gene electrotransfer. This delivery produced gene expression in the skin of hairless guinea pig up to 12 to 15 days. Gene expression was observed exclusively in the epidermis. Skin gene electrotransfer with the MEA resulted in only minimal and mild skin changes. A low level of human Factor IX was detected in the plasma of hairless guinea pig after gene electrotransfer with the MEA, although a significant increase of Factor IX was obtained in the skin of animals. These results suggest gene electrotransfer with the MEA can be a safe, efficient, non-invasive skin delivery method for skin disorders, vaccinations and potential systemic diseases where low levels of gene products are sufficient.
Collapse
Affiliation(s)
- Siqi Guo
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, Virginia, United States of America
| | - Annelise L. Israel
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, Virginia, United States of America
| | - Gaurav Basu
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, Virginia, United States of America
| | - Amy Donate
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, Virginia, United States of America
| | - Richard Heller
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, Virginia, United States of America
- * E-mail:
| |
Collapse
|
41
|
Niebler M, Qian X, Höfler D, Kogosov V, Kaewprag J, Kaufmann AM, Ly R, Böhmer G, Zawatzky R, Rösl F, Rincon-Orozco B. Post-translational control of IL-1β via the human papillomavirus type 16 E6 oncoprotein: a novel mechanism of innate immune escape mediated by the E3-ubiquitin ligase E6-AP and p53. PLoS Pathog 2013; 9:e1003536. [PMID: 23935506 PMCID: PMC3731255 DOI: 10.1371/journal.ppat.1003536] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 06/18/2013] [Indexed: 12/20/2022] Open
Abstract
Infections with high-risk human papillomaviruses (HPVs) are causally involved in the development of anogenital cancer. HPVs apparently evade the innate immune response of their host cells by dysregulating immunomodulatory factors such as cytokines and chemokines, thereby creating a microenvironment that favors malignancy. One central key player in the immune surveillance interactome is interleukin-1 beta (IL-1β) which not only mediates inflammation, but also links innate and adaptive immunity. Because of its pleiotropic physiological effects, IL-1β production is tightly controlled on transcriptional, post-translational and secretory levels. Here, we describe a novel mechanism how the high-risk HPV16 E6 oncoprotein abrogates IL-1β processing and secretion in a NALP3 inflammasome-independent manner. We analyzed IL-1β regulation in immortalized keratinocytes that harbor the HPV16 E6 and/or E7 oncogenes as well as HPV-positive cervical tumor cells. While in primary and in E7-immortalized human keratinocytes the secretion of IL-1β was highly inducible upon inflammasome activation, E6-positive cells did not respond. Western blot analyses revealed a strong reduction of basal intracellular levels of pro-IL-1β that was independent of dysregulation of the NALP3 inflammasome, autophagy or lysosomal activity. Instead, we demonstrate that pro-IL-1β is degraded in a proteasome-dependent manner in E6-positive cells which is mediated via the ubiquitin ligase E6-AP and p53. Conversely, in E6- and E6/E7-immortalized cells pro-IL-1β levels were restored by siRNA knock-down of E6-AP and simultaneous recovery of functional p53. In the context of HPV-induced carcinogenesis, these data suggest a novel post-translational mechanism of pro-IL-1β regulation which ultimately inhibits the secretion of IL-1β in virus-infected keratinocytes. The clinical relevance of our results was further confirmed in HPV-positive tissue samples, where a gradual decrease of IL-1β towards cervical cancer could be discerned. Hence, attenuation of IL-1β by the HPV16 E6 oncoprotein in immortalized cells is apparently a crucial step in viral immune evasion and initiation of malignancy. Persistently high-risk HPV-infected individuals have an increased risk to develop anogenital cancer. HPV encodes the viral proteins E6 and E7 that interact with and induce the degradation of the cell cycle regulators p53 and pRb, respectively, priming immortalized keratinocytes towards malignant transformation. In early antiviral immune response, IL-1β is an important factor for the initiation of inflammation and activation of immune cells such as macrophages and T cells. Our study describes a post-translationally controlled pathway where E6 mediates proteasomal degradation of IL-1β in HPV16-immortalized human keratinocytes. This process depends on the cellular ubiquitin ligase E6-AP and p53 highlighting a novel molecular mechanism of a virus-host interaction that is critical for evading innate immune defense. IL-1β dysregulation is also found in tissue sections which represent different stages of virus-induced carcinogenesis, underlining the clinical relevance of our findings.
Collapse
Affiliation(s)
- Martina Niebler
- Division of Viral Transformation Mechanisms, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Xu Qian
- Gynecological Tumor-Immunology, Charité Campus Benjamin Franklin, Berlin, Germany
| | - Daniela Höfler
- Division of Genome Modifications and Carcinogenesis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Vlada Kogosov
- Division of Viral Transformation Mechanisms, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jittranan Kaewprag
- Division of Viral Transformation Mechanisms, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Molecular Medicine Program, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Andreas M. Kaufmann
- Gynecological Tumor-Immunology, Charité Campus Benjamin Franklin, Berlin, Germany
| | - Regina Ly
- Division of Viral Transformation Mechanisms, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Gerd Böhmer
- Deutsche Klinik Bad Münder, Hannover, Germany
| | - Rainer Zawatzky
- Division of Viral Transformation Mechanisms, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Frank Rösl
- Division of Viral Transformation Mechanisms, German Cancer Research Center (DKFZ), Heidelberg, Germany
- * E-mail: (FR); (BRO)
| | - Bladimiro Rincon-Orozco
- Division of Viral Transformation Mechanisms, German Cancer Research Center (DKFZ), Heidelberg, Germany
- * E-mail: (FR); (BRO)
| |
Collapse
|
42
|
Sprenger A, Weber S, Zarai M, Engelke R, Nascimento JM, Gretzmeier C, Hilpert M, Boerries M, Has C, Busch H, Bruckner-Tuderman L, Dengjel J. Consistency of the proteome in primary human keratinocytes with respect to gender, age, and skin localization. Mol Cell Proteomics 2013; 12:2509-21. [PMID: 23722187 DOI: 10.1074/mcp.m112.025478] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Keratinocytes account for 95% of all cells of the epidermis, the stratified squamous epithelium forming the outer layer of the skin, in which a significant number of skin diseases takes root. Immortalized keratinocyte cell lines are often used as research model systems providing standardized, reproducible, and homogenous biological material. Apart from that, primary human keratinocytes are frequently used for medical studies because the skin provides an important route for drug administration and is readily accessible for biopsies. However, comparability of these cell systems is not known. Cell lines may undergo phenotypic shifts and may differ from the in vivo situation in important aspects. Primary cells, on the other hand, may vary in biological functions depending on gender and age of the donor and localization of the biopsy specimen. Here we employed metabolic labeling in combination with quantitative mass spectrometry-based proteomics to assess A431 and HaCaT cell lines for their suitability as model systems. Compared with cell lines, comprehensive profiling of the primary human keratinocyte proteome with respect to gender, age, and skin localization identified an unexpected high proteomic consistency. The data were analyzed by an improved ontology enrichment analysis workflow designed for the study of global proteomics experiments. It enables a quick, comprehensive and unbiased overview of altered biological phenomena and links experimental data to literature. We guide through our workflow, point out its advantages compared with other methods and apply it to visualize differences of cell lines compared with primary human keratinocytes.
Collapse
Affiliation(s)
- Adrian Sprenger
- Freiburg Institute for Advanced Studies, School of Life Science-LifeNet, University of Freiburg, Albertstr. 19, 79104 Freiburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Sharma AM, Novalen M, Tanino T, Uetrecht JP. 12-OH-nevirapine sulfate, formed in the skin, is responsible for nevirapine-induced skin rash. Chem Res Toxicol 2013; 26:817-27. [PMID: 23590230 DOI: 10.1021/tx400098z] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nevirapine (NVP) treatment is associated with a significant incidence of skin rash in humans, and it also causes a similar immune-mediated skin rash in Brown Norway (BN) rats. We have shown that the sulfate of a major oxidative metabolite, 12-OH-NVP, covalently binds in the skin. The fact that the sulfate metabolite is responsible for covalent binding in the skin does not prove that it is responsible for the rash. We used various inhibitors of sulfation to test whether this reactive sulfate is responsible for the skin rash. Salicylamide (SA), which depletes 3'-phosphoadenosine-5'-phosphosulfate (PAPS) in the liver, significantly decreased 12-OH-NVP sulfate in the blood, but it did not prevent covalent binding in the skin or the rash. Topical application of 1-phenyl-1-hexanol, a sulfotransferase inhibitor, prevented covalent binding in the skin as well as the rash, but only where it was applied. In vitro incubations of 12-OH-NVP with PAPS and cytosolic fractions from the skin of rats or from human skin also led to covalent binding that was inhibited by 1-phenyl-1-hexanol. Incubation of 12-OH-NVP with PAPS and sulfotransferase 1A1*1, a human isoform that is present in the skin, also led to covalent binding, and this binding was also inhibited by 1-phenyl-1-hexanol. We conclude that salicylamide did not deplete PAPS in the skin and was unable to prevent covalent binding or the rash, while topical 1-phenyl-1-hexanol inhibited sulfation of 12-OH-NVP in the skin and did prevent covalent binding and the rash. These results provide definitive evidence that 12-OH-NVP sulfate formed in skin is responsible for NVP-induced skin rashes. Sulfotransferase is one of the few metabolic enzymes with significant activity in the skin, and it may be responsible for the bioactivation of other drugs that cause skin rashes.
Collapse
Affiliation(s)
- Amy M Sharma
- Leslie Dan Faculty of Pharmacy, University of Toronto , Toronto, Ontario M5S 3M2, Canada
| | | | | | | |
Collapse
|
44
|
Hiroike M, Sakabe JI, Kobayashi M, Shimauchi T, Ito T, Hirakawa S, Inoh A, Tokura Y. Acicular, but not globular, titanium dioxide nanoparticles stimulate keratinocytes to produce pro-inflammatory cytokines. J Dermatol 2013; 40:357-62. [DOI: 10.1111/1346-8138.12132] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 01/29/2013] [Indexed: 11/30/2022]
Affiliation(s)
| | - Jun-ichi Sakabe
- Department of Dermatology; Hamamatsu University School of Medicine; Hamamatsu; Japan
| | - Miwa Kobayashi
- Department of Dermatology; University of Occupational and Environmental Health; Kitakyushu; Japan
| | - Takatoshi Shimauchi
- Department of Dermatology; Hamamatsu University School of Medicine; Hamamatsu; Japan
| | - Taisuke Ito
- Department of Dermatology; Hamamatsu University School of Medicine; Hamamatsu; Japan
| | - Satoshi Hirakawa
- Department of Dermatology; Hamamatsu University School of Medicine; Hamamatsu; Japan
| | | | - Yoshiki Tokura
- Department of Dermatology; Hamamatsu University School of Medicine; Hamamatsu; Japan
| |
Collapse
|
45
|
Sharma AM, Klarskov K, Uetrecht J. Nevirapine bioactivation and covalent binding in the skin. Chem Res Toxicol 2013; 26:410-21. [PMID: 23387501 DOI: 10.1021/tx3004938] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Nevirapine (NVP) treatment is associated with serious skin rashes that appear to be immune-mediated. We previously developed a rat model of this skin rash that is immune-mediated and is very similar to the rash in humans. Treatment of rats with the major NVP metabolite, 12-OH-NVP, also caused the rash. Most idiosyncratic drug reactions are caused by reactive metabolites; 12-OH-NVP forms a benzylic sulfate, which was detected in the blood of animals treated with NVP or 12-OH-NVP. This sulfate is presumably formed in the liver; however, the skin also has significant sulfotransferase activity. In this study, we used a serum against NVP to detect covalent binding in the skin of rats. There was a large artifact band in immunoblots of whole skin homogenates that interfered with detection of covalent binding; however, when the skin was separated into dermal and epidermal fractions, covalent binding was clearly present in the epidermis, which is also the location of sulfotransferases. In contrast to rats, treatment of mice with NVP did not result in covalent binding in the skin or skin rash. Although the reaction of 12-OH-NVP sulfate with nucleophiles such as glutathione is slow, incubation of this sulfate with homogenized human and rat skin led to extensive covalent binding. Incubations of 12-OH-NVP with the soluble fraction from a 9,000g centrifugation (S9) of rat or human skin homogenate in the presence of 3'-phosphoadenosine-5'-phosphosulfate (PAPS) produced extensive covalent binding, but no covalent binding was detected with mouse skin S9, which suggests that the reason mice do not develop a rash is that they lack the required sulfotransferase. This is the first study to report covalent binding of NVP to rat and human skin. These data provide strong evidence that covalent binding of NVP in the skin is due to 12-OH-NVP sulfate, which is likely responsible for NVP-induced skin rash. Sulfation may represent a bioactivation pathway for other drugs that cause a skin rash.
Collapse
Affiliation(s)
- Amy M Sharma
- Leslie Dan Faculty of Pharmacy, University of Toronto, Ontario, Canada
| | | | | |
Collapse
|
46
|
Scheiblhofer S, Thalhamer J, Weiss R. Laser microporation of the skin: prospects for painless application of protective and therapeutic vaccines. Expert Opin Drug Deliv 2013; 10:761-73. [PMID: 23425032 PMCID: PMC3667678 DOI: 10.1517/17425247.2013.773970] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Introduction: In contrast to muscle and subcutaneous tissue, the skin is easily accessible and provides unique immunological properties. Increasing knowledge about the complex interplay of skin-associated cell types in the development of cutaneous immune responses has fueled efforts to target the skin for vaccination as well as for immunotherapy. Areas covered: This review provides an overview on skin layers and their resident immunocompetent cell types. Advantages and shortcomings of standard methods and innovative technologies to circumvent the outermost skin barrier are addressed. Studies employing fractional skin ablation by infrared lasers for cutaneous delivery of drugs, as well as high molecular weight molecules such as protein antigens or antibodies, are reviewed, and laserporation is introduced as a versatile transcutaneous vaccination platform. Specific targeting of the epidermis or the dermis by different laser settings, the resulting kinetics of uptake and transport and the immune response types elicited are discussed, and the potential of this transcutaneous delivery platform for allergen-specific immunotherapy is demonstrated. Expert opinion: Needle-free and painless vaccination approaches have the potential to replace standard methods due to their improved safety and optimal patient compliance. The use of fractional laser devices for stepwise ablation of skin layers might be advantageous for both vaccination against microbial pathogens, as well as immunotherapeutic approaches, such as allergen-specific immunotherapy. Thorough investigation of the underlying immunological mechanisms will help to provide the knowledge for a rational design of transcutaneous protective/therapeutic vaccines.
Collapse
Affiliation(s)
- Sandra Scheiblhofer
- University of Salzburg, Department of Molecular Biology, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
| | | | | |
Collapse
|
47
|
Abstract
EphA2 is a receptor tyrosine kinase (RTK) that triggers keratinocyte differentiation upon activation and subsequent downregulation by ephrin-A1 ligand. The objective of this study was to determine whether the EphA2/ephrin-A1 signaling axis was altered in psoriasis, an inflammatory skin condition in which keratinocyte differentiation is abnormal. Microarray analysis of skin biopsies from psoriasis patients revealed increased mRNA transcripts for several members of this RTK family in plaques, including the EphA1, EphA2, and EphA4 subtypes prominently expressed by keratinocytes. Of these, EphA2 showed the greatest upregulation, a finding that was confirmed by quantitative reverse-transcriptase-PCR, immunohistochemistry (IHC), and ELISA. In contrast, psoriatic lesions exhibited reduced ephrin-A ligand immunoreactivity. Exposure of primary keratinocytes induced to differentiate in high calcium or a three-dimensional (3D) raft culture of human epidermis to a combination of growth factors and cytokines elevated in psoriasis increased EphA2 mRNA and protein expression while inducing S100A7 and disrupting differentiation. Pharmacological delivery of a soluble ephrin-A1 peptidomimetic ligand led to a reduction in EphA2 expression and ameliorated proliferation and differentiation in raft cultures exposed to EGF and IL-1α. These findings suggest that ephrin-A1-mediated downregulation of EphA2 supports keratinocyte differentiation in the context of cytokine perturbation.
Collapse
|
48
|
Bach D, Weiss R, Hessenberger M, Kitzmueller S, Weinberger EE, Krautgartner WD, Hauser‐Kronberger C, Boehler C, Thalhamer J, Scheiblhofer S. Transcutaneous immunotherapy via laser-generated micropores efficiently alleviates allergic asthma in Phl p 5-sensitized mice. Allergy 2012; 67:1365-74. [PMID: 22947064 PMCID: PMC3532610 DOI: 10.1111/all.12005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2012] [Indexed: 12/24/2022]
Abstract
Background Specific immunotherapy via the subcutaneous or oral route is associated with local and, in some cases, systemic side effects and suffers from low patient compliance. Due to its unique immunological features, the skin represents a promising target tissue for effective and painless treatment of type I allergy. The current study was performed to compare the efficacy of transcutaneous immunotherapy via laser-generated micropores to subcutaneous injection. Methods BALB/c mice were sensitized by intraperitoneal injection of recombinant grass pollen allergen Phl p 5 together with alum. Subsequently, lung inflammation was induced by repeated intranasal challenge. During the treatment phase, adjuvant-free Phl p 5 was applied in solution to microporated skin or was subcutaneously injected. Lung function and cellular infiltration; Phl p 5–specific serum levels of IgG1, IgG2a, and IgE; and cytokine levels in bronchoalveolar lavage fluids as well as in supernatants of splenocyte cultures were assessed. Results Both therapeutic approaches reduced airway hyperresponsiveness and leukocyte infiltration into the lungs. Whereas subcutaneous immunotherapy induced a systemic increase in Th2-associated cytokine secretion, transcutaneous application revealed a general downregulation of Th1/Th2/Th17 responses. Successful therapy was associated with induction of IgG2a and an increase in FOXP3+ CD4+ T cells. Conclusions Transcutaneous immunotherapy via laser microporation is equally efficient compared with conventional subcutaneous treatment but avoids therapy-associated boosting of systemic Th2 immunity. Immunotherapy via laser-microporated skin combines a painless application route with the high efficacy known from subcutaneous injections and therefore represents a promising alternative to established forms of immunotherapy.
Collapse
Affiliation(s)
- D. Bach
- Division of Allergy and Immunology Department of Molecular Biology University of Salzburg Salzburg Austria
| | - R. Weiss
- Division of Allergy and Immunology Department of Molecular Biology University of Salzburg Salzburg Austria
| | - M. Hessenberger
- Division of Allergy and Immunology Department of Molecular Biology University of Salzburg Salzburg Austria
| | - S. Kitzmueller
- Division of Allergy and Immunology Department of Molecular Biology University of Salzburg Salzburg Austria
| | - E. E. Weinberger
- Division of Allergy and Immunology Department of Molecular Biology University of Salzburg Salzburg Austria
| | - W. D. Krautgartner
- Division of Light & Electron Microscopy Department of Organismic Biology University of Salzburg Salzburg Austria
| | - C. Hauser‐Kronberger
- Department of Pathology University Hospital Salzburg Paracelsus Medical University Salzburg Austria
| | - C. Boehler
- Pantec Biosolutions AG Ruggell Liechtenstein
| | - J. Thalhamer
- Division of Allergy and Immunology Department of Molecular Biology University of Salzburg Salzburg Austria
| | - S. Scheiblhofer
- Division of Allergy and Immunology Department of Molecular Biology University of Salzburg Salzburg Austria
| |
Collapse
|
49
|
Weiss R, Hessenberger M, Kitzmüller S, Bach D, Weinberger EE, Krautgartner WD, Hauser-Kronberger C, Malissen B, Boehler C, Kalia YN, Thalhamer J, Scheiblhofer S. Transcutaneous vaccination via laser microporation. J Control Release 2012; 162:391-9. [PMID: 22750193 PMCID: PMC3462999 DOI: 10.1016/j.jconrel.2012.06.031] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 06/16/2012] [Accepted: 06/23/2012] [Indexed: 01/15/2023]
Abstract
Driven by constantly increasing knowledge about skin immunology, vaccine delivery via the cutaneous route has recently gained renewed interest. Considering its richness in immunocompetent cells, targeting antigens to the skin is considered to be more effective than intramuscular or subcutaneous injections. However, circumvention of the superficial layer of the skin, the stratum corneum, represents the major challenge for cutaneous immunization. An optimal delivery method has to be effective and reliable, but also highly adaptable to specific demands, should avoid the use of hypodermic needles and the requirement of specially trained healthcare workers. The P.L.E.A.S.E.® (Precise Laser Epidermal System) device employed in this study for creation of aqueous micropores in the skin fulfills these prerequisites by combining the precision of its laser scanning technology with the flexibility to vary the number, density and the depth of the micropores in a user-friendly manner. We investigated the potential of transcutaneous immunization via laser-generated micropores for induction of specific immune responses and compared the outcomes to conventional subcutaneous injection. By targeting different layers of the skin we were able to bias polarization of T cells, which could be modulated by addition of adjuvants. The P.L.E.A.S.E.® device represents a highly effective and versatile platform for transcutaneous vaccination.
Collapse
Affiliation(s)
- Richard Weiss
- Department of Molecular Biology, University of Salzburg, 5020 Salzburg, Austria
| | | | - Sophie Kitzmüller
- Department of Molecular Biology, University of Salzburg, 5020 Salzburg, Austria
| | - Doris Bach
- Department of Molecular Biology, University of Salzburg, 5020 Salzburg, Austria
| | | | - Wolf D. Krautgartner
- Department of Light & Electron Microscopy, Organismic Biology, University of Salzburg, 5020 Salzburg, Austria
| | - Cornelia Hauser-Kronberger
- Department of Pathology, University Hospital Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Bernard Malissen
- Centre d'Immunologie de Marseille-Luminy, INSERM-CNRS-Aix-Marseille University, Campus de Luminy, Case 906, 13288 Marseille, France
| | | | - Yogeshvar N. Kalia
- School of Pharmaceutical Sciences, University of Geneva & University of Lausanne, 1211 Geneva, Switzerland
| | - Josef Thalhamer
- Department of Molecular Biology, University of Salzburg, 5020 Salzburg, Austria
- Corresponding author. Tel.: + 43 662 8044 5737; fax: 43 662 8044 5751.
| | - Sandra Scheiblhofer
- Department of Molecular Biology, University of Salzburg, 5020 Salzburg, Austria
| |
Collapse
|
50
|
|