1
|
Barna M, Dunovska K, Cepova J, Werle J, Prusa R, Bjørklud G, Melichercik P, Kizek R, Klapkova E. Short-term impact of vitamin K2 supplementation on biochemical parameters and lipoprotein fractions. Electrophoresis 2024. [PMID: 39091191 DOI: 10.1002/elps.202400058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/29/2024] [Accepted: 07/14/2024] [Indexed: 08/04/2024]
Abstract
This study explored the short-term effects of vitamin K2 (VK2) supplementation on biochemical parameters (vitamin D, vitamin E, vitamin A, alkaline phosphatase, calcium, phosphorus (P), magnesium, metallothionein, triglycerides, cholesterol, high-density lipoprotein (HDL), low-density lipoprotein (LDL), and lipoprotein fractions (albumin, HDL, very low-density lipoprotein (VLDL), LDL, and chylomicrons). A short-term experiment (24 h, six probands) was performed to track changes in VK2 levels after a single-dose intake (360 µg/day). Liquid chromatography-tandem mass spectrometry was used to monitor vitamin K levels (menaquinone-4 (MK-4), menaquinone-7 (MK-7), and vitamin K1 [VK1]) with a limit of detection of 1.9 pg/mL for VK1 and 3.8 pg/mL for the two forms of VK2. Results showed that MK-7 levels significantly increased within 2-6 h post-administration and then gradually declined. MK-4 levels were initially low, showing a slight increase, whereas VK1 levels rose initially and then decreased. Biochemical analyses indicated no significant changes in sodium, chloride, potassium, calcium, magnesium, albumin, or total protein levels. A transient increase in P was observed, peaking at 12 h before returning to baseline. Agarose gel electrophoresis of lipoprotein fractions revealed distinct chylomicron bands and variations in VLDL and HDL mobility, influenced by dietary lipids and VK2 supplementation. These findings suggest effective absorption and metabolism of MK-7 with potential implications for bone metabolism and cardiovascular health.
Collapse
Affiliation(s)
- Milos Barna
- Department of Medical Chemistry and Clinical Biochemistry, Second Faculty of Medicine, Charles University in Prague, Motol University Hospital, Prague, Czechia
- First Department of Orthopaedics, First Faculty of Medicine, Charles University in Prague, Motol University Hospital, Prague, Czechia
| | - Katerina Dunovska
- Department of Medical Chemistry and Clinical Biochemistry, Second Faculty of Medicine, Charles University in Prague, Motol University Hospital, Prague, Czechia
| | - Jana Cepova
- Department of Medical Chemistry and Clinical Biochemistry, Second Faculty of Medicine, Charles University in Prague, Motol University Hospital, Prague, Czechia
| | - Julia Werle
- Department of Medical Chemistry and Clinical Biochemistry, Second Faculty of Medicine, Charles University in Prague, Motol University Hospital, Prague, Czechia
| | - Richard Prusa
- Department of Medical Chemistry and Clinical Biochemistry, Second Faculty of Medicine, Charles University in Prague, Motol University Hospital, Prague, Czechia
| | - Geir Bjørklud
- Council for Nutritional and Environmental Medicine, Mo i Rana, Norway
| | - Pavel Melichercik
- First Department of Orthopaedics, First Faculty of Medicine, Charles University in Prague, Motol University Hospital, Prague, Czechia
| | - Rene Kizek
- Department of Medical Chemistry and Clinical Biochemistry, Second Faculty of Medicine, Charles University in Prague, Motol University Hospital, Prague, Czechia
| | - Eva Klapkova
- Department of Medical Chemistry and Clinical Biochemistry, Second Faculty of Medicine, Charles University in Prague, Motol University Hospital, Prague, Czechia
| |
Collapse
|
2
|
Inorganic Pyrophosphate Plasma Levels Are Decreased in Pseudoxanthoma Elasticum Patients and Heterozygous Carriers but Do Not Correlate with the Genotype or Phenotype. J Clin Med 2023; 12:jcm12051893. [PMID: 36902680 PMCID: PMC10003929 DOI: 10.3390/jcm12051893] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/29/2023] [Accepted: 02/10/2023] [Indexed: 03/08/2023] Open
Abstract
Pseudoxanthoma elasticum (PXE) is a rare ectopic calcification disorder affecting soft connective tissues that is caused by biallelic ABCC6 mutations. While the underlying pathomechanisms are incompletely understood, reduced circulatory levels of inorganic pyrophosphate (PPi)-a potent mineralization inhibitor-have been reported in PXE patients and were suggested to be useful as a disease biomarker. In this study, we explored the relation between PPi, the ABCC6 genotype and the PXE phenotype. For this, we optimized and validated a PPi measurement protocol with internal calibration that can be used in a clinical setting. An analysis of 78 PXE patients, 69 heterozygous carriers and 14 control samples revealed significant differences in the measured PPi levels between all three cohorts, although there was overlap between all groups. PXE patients had a ±50% reduction in PPi levels compared to controls. Similarly, we found a ±28% reduction in carriers. PPi levels were found to correlate with age in PXE patients and carriers, independent of the ABCC6 genotype. No correlations were found between PPi levels and the Phenodex scores. Our results suggest that other factors besides PPi are at play in ectopic mineralization, which limits the use of PPi as a predictive biomarker for severity and disease progression.
Collapse
|
3
|
Mitochondrial Dysfunction and Oxidative Stress in Hereditary Ectopic Calcification Diseases. Int J Mol Sci 2022; 23:ijms232315288. [PMID: 36499615 PMCID: PMC9738718 DOI: 10.3390/ijms232315288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 11/26/2022] [Accepted: 12/01/2022] [Indexed: 12/08/2022] Open
Abstract
Ectopic calcification (EC) is characterized by an abnormal deposition of calcium phosphate crystals in soft tissues such as blood vessels, skin, and brain parenchyma. EC contributes to significant morbidity and mortality and is considered a major health problem for which no effective treatments currently exist. In recent years, growing emphasis has been placed on the role of mitochondrial dysfunction and oxidative stress in the pathogenesis of EC. Impaired mitochondrial respiration and increased levels of reactive oxygen species can be directly linked to key molecular pathways involved in EC such as adenosine triphosphate homeostasis, DNA damage signaling, and apoptosis. While EC is mainly encountered in common diseases such as diabetes mellitus and chronic kidney disease, studies in rare hereditary EC disorders such as pseudoxanthoma elasticum or Hutchinson-Gilford progeria syndrome have been instrumental in identifying the precise etiopathogenetic mechanisms leading to EC. In this narrative review, we describe the current state of the art regarding the role of mitochondrial dysfunction and oxidative stress in hereditary EC diseases. In-depth knowledge of aberrant mitochondrial metabolism and its local and systemic consequences will benefit the research into novel therapies for both rare and common EC disorders.
Collapse
|
4
|
Bouderlique E, Nollet L, Letavernier E, Vanakker OM. Minocycline Counteracts Ectopic Calcification in a Murine Model of Pseudoxanthoma Elasticum: A Proof-of-Concept Study. Int J Mol Sci 2022; 23:ijms23031838. [PMID: 35163765 PMCID: PMC8837001 DOI: 10.3390/ijms23031838] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 02/06/2023] Open
Abstract
Pseudoxanthoma elasticum (PXE) is an intractable Mendelian disease characterized by ectopic calcification in skin, eyes and blood vessels. Recently, increased activation of the DNA damage response (DDR) was shown to be involved in PXE pathogenesis, while the DDR/PARP1 inhibitor minocycline was found to attenuate aberrant mineralization in PXE cells and zebrafish. In this proof-of-concept study, we evaluated the anticalcifying properties of minocycline in Abcc6−/− mice, an established mammalian PXE model. Abcc6−/− mice received oral minocycline supplementation (40 mg/kg/day) from 12 to 36 weeks of age and were compared to untreated Abcc6−/− and Abcc6+/+ siblings. Ectopic calcification was evaluated using X-ray microtomography with three-dimensional reconstruction of calcium deposits in muzzle skin and Yasue’s calcium staining. Immunohistochemistry for the key DDR marker H2AX was also performed. Following minocycline treatment, ectopic calcification in Abcc6−/− mice was significantly reduced (−43.4%, p < 0.0001) compared to untreated Abcc6−/− littermates. H2AX immunostaining revealed activation of the DDR at sites of aberrant mineralization in untreated Abcc6−/− animals. In conclusion, we validated the anticalcifying effect of minocycline in Abcc6−/− mice for the first time. Considering its favorable safety profile in humans and low cost as a generic drug, minocycline may be a promising therapeutic compound for PXE patients.
Collapse
Affiliation(s)
- Elise Bouderlique
- UMR S 1155, Institut National de la Santé et de la Recherche Médicale (INSERM), Sorbonne Université, 75020 Paris, France; (E.B.); (E.L.)
| | - Lukas Nollet
- Center for Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium;
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Ectopic Mineralization Research Group, 9000 Ghent, Belgium
| | - Emmanuel Letavernier
- UMR S 1155, Institut National de la Santé et de la Recherche Médicale (INSERM), Sorbonne Université, 75020 Paris, France; (E.B.); (E.L.)
| | - Olivier M. Vanakker
- Center for Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium;
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Ectopic Mineralization Research Group, 9000 Ghent, Belgium
- Correspondence:
| |
Collapse
|
5
|
Nollet L, Van Gils M, Willaert A, Coucke PJ, Vanakker OM. Minocycline attenuates excessive DNA damage response and reduces ectopic calcification in pseudoxanthoma elasticum. J Invest Dermatol 2021; 142:1629-1638.e6. [PMID: 34742705 DOI: 10.1016/j.jid.2021.10.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 09/27/2021] [Accepted: 10/19/2021] [Indexed: 12/25/2022]
Abstract
Pseudoxanthoma elasticum (PXE) is a hereditary ectopic calcification disorder affecting the skin, eyes and blood vessels. Recently, the DNA damage response (DDR), in particular poly(ADP-ribose) polymerase 1 (PARP1), was shown to be involved in aberrant mineralization raising the hypothesis that excessive DDR/PARP1 signaling also contributes to PXE pathogenesis. Using PXE patient and control fibroblasts, (lesional) skin tissue and abcc6a-/- zebrafish, we performed expression analysis of DDR/PARP1 targets with QRT-PCR, western blot, immunohistochemistry and enzyme activity assays; before and after treatment with the PARP1 inhibitor minocycline. PARP1 and the ATM-p21-p53 axis was found to be significantly increased in PXE. Additionally, PARP1 downstream targets IL-6, STAT1/3, TET1 and RUNX2 were upregulated while the RUNX2-antagonist microRNA-204 was decreased. In PXE fibroblasts, DDR/PARP1 signaling increased with advancing ectopic calcification. Minocycline treatment attenuated DDR/PARP1 overexpression and reduced aberrant mineralization in PXE fibroblasts and abcc6a-/- zebrafish. In summary, we demonstrated the involvement of excessive DDR/PARP1 signaling in PXE pathophysiology, identifying a STAT-driven cascade resulting in increased expression of the epigenetic modifier TET1 and pro-calcifying transcription factor RUNX2. Minocycline attenuated this deleterious molecular mechanism and reduced ectopic calcification both in vitro and in vivo, fueling the exciting prospect of a novel therapeutic compound for PXE.
Collapse
Affiliation(s)
- Lukas Nollet
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Ectopic Mineralization Research Group Ghent, Ghent, Belgium
| | - Matthias Van Gils
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Ectopic Mineralization Research Group Ghent, Ghent, Belgium
| | - Andy Willaert
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Paul J Coucke
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Olivier M Vanakker
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Ectopic Mineralization Research Group Ghent, Ghent, Belgium.
| |
Collapse
|
6
|
Statins as a Therapeutic Approach for the Treatment of Pseudoxanthoma Elasticum Patients: Evaluation of the Spectrum Efficacy of Atorvastatin In Vitro. Cells 2021; 10:cells10020442. [PMID: 33669724 PMCID: PMC7923120 DOI: 10.3390/cells10020442] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/02/2021] [Accepted: 02/16/2021] [Indexed: 12/24/2022] Open
Abstract
Pseudoxanthoma elasticum (PXE) is an autosomal recessive disorder caused by mutations in the ATP-binding cassette sub-family C member 6 gene. Our previous studies revealed that PXE might be associated with premature aging. Treatment with statins showed positive effects not only for PXE but also for other diseases associated with premature aging like Hutchinson–Gilford progeria syndrome. Nevertheless, the molecular mechanisms in the case of PXE remain unclear. Thus, this study was performed to evaluate the efficiency of atorvastatin by analyzing key characteristics of the PXE phenotype in primary human dermal fibroblasts of PXE patients. Our data indicate that an atorvastatin treatment has a positive effect, especially on factors associated with cholesterol biosynthesis and prenylation processes, whereas the effect on age- and calcification-related factors was less pronounced.
Collapse
|
7
|
Boraldi F, Lofaro FD, Losi L, Quaglino D. Dermal Alterations in Clinically Unaffected Skin of Pseudoxanthoma elasticum Patients. J Clin Med 2021; 10:jcm10030500. [PMID: 33535391 PMCID: PMC7867076 DOI: 10.3390/jcm10030500] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 12/17/2022] Open
Abstract
Background: Pseudoxanthoma elasticum (PXE), due to rare sequence variants in the ABCC6 gene, is characterized by calcification of elastic fibers in several tissues/organs; however, the pathomechanisms have not been completely clarified. Although it is a systemic disorder on a genetic basis, it is not known why not all elastic fibers are calcified in the same patient and even in the same tissue. At present, data on soft connective tissue mineralization derive from studies performed on vascular tissues and/or on clinically affected skin, but there is no information on patients’ clinically unaffected skin. Methods: Skin biopsies from clinically unaffected and affected areas of the same PXE patient (n = 6) and from healthy subjects were investigated by electron microscopy. Immunohistochemistry was performed to evaluate p-SMAD 1/5/8 and p-SMAD 2/3 expression and localization. Results: In clinically unaffected skin, fragmented elastic fibers were prevalent, whereas calcified fibers were only rarely observed at the ultrastructural level. p-SMAD1/5/8 and p-SMAD2/3 were activated in both affected and unaffected skin. Conclusion: These findings further support the concept that fragmentation/degradation is necessary but not sufficient to cause calcification of elastic fibers and that additional local factors (e.g., matrix composition, mechanical forces and mesenchymal cells) contribute to create the pro-osteogenic environment.
Collapse
|
8
|
Tiemann J, Wagner T, Lindenkamp C, Plümers R, Faust I, Knabbe C, Hendig D. Linking ABCC6 Deficiency in Primary Human Dermal Fibroblasts of PXE Patients to p21-Mediated Premature Cellular Senescence and the Development of a Proinflammatory Secretory Phenotype. Int J Mol Sci 2020; 21:E9665. [PMID: 33352936 PMCID: PMC7766446 DOI: 10.3390/ijms21249665] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 12/22/2022] Open
Abstract
Pseudoxanthoma elasticum (PXE) is a rare autosomal-recessive disorder that is mainly caused by mutations in the ATP-binding cassette sub-family C member 6 (ABCC6) gene. Clinically PXE is characterized by a loss of skin elasticity, arteriosclerosis or visual impairments. It also shares some molecular characteristics with known premature aging syndromes like the Hutchinson-Gilford progeria syndrome (HGPS). However, little is known about accelerated aging processes, especially on a cellular level for PXE now. Therefore, this study was performed to reveal a potential connection between premature cellular aging and PXE pathogenesis by analyzing cellular senescence, a corresponding secretory phenotype and relevant factors of the cell cycle control in primary human dermal fibroblasts of PXE patients. Here, we could show an increased senescence-associated β-galactosidase (SA-β-Gal) activity as well as an increased expression of proinflammatory factors of a senescence-associated secretory phenotype (SASP) like interleukin 6 (IL6) and monocyte chemoattractant protein-1 (MCP1). We further observed an increased gene expression of the cyclin-dependent kinase inhibitor (CDKI) p21, but no simultaneous induction of p53 gene expression. These data indicate that PXE is associated with premature cellular senescence, which is possibly triggered by a p53-independent p21-mediated mechanism leading to a proinflammatory secretory phenotype.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Doris Hendig
- Institut für Laboratoriums-und Transfusionsmedizin, Herz-und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, 32545 Bad Oeynhausen, Germany; (J.T.); (T.W.); (C.L.); (R.P.); (I.F.); (C.K.)
| |
Collapse
|
9
|
Lofaro FD, Boraldi F, Garcia-Fernandez M, Estrella L, Valdivielso P, Quaglino D. Relationship Between Mitochondrial Structure and Bioenergetics in Pseudoxanthoma elasticum Dermal Fibroblasts. Front Cell Dev Biol 2020; 8:610266. [PMID: 33392199 PMCID: PMC7773789 DOI: 10.3389/fcell.2020.610266] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022] Open
Abstract
Pseudoxanthoma elasticum (PXE) is a genetic disease considered as a paradigm of ectopic mineralization disorders, being characterized by multisystem clinical manifestations due to progressive calcification of skin, eyes, and the cardiovascular system, resembling an age-related phenotype. Although fibroblasts do not express the pathogenic ABCC6 gene, nevertheless these cells are still under investigation because they regulate connective tissue homeostasis, generating the "arena" where cells and extracellular matrix components can promote pathologic calcification and where activation of pro-osteogenic factors can be associated to pathways involving mitochondrial metabolism. The aim of the present study was to integrate structural and bioenergenetic features to deeply investigate mitochondria from control and from PXE fibroblasts cultured in standard conditions and to explore the role of mitochondria in the development of the PXE fibroblasts' pathologic phenotype. Proteomic, biochemical, and morphological data provide new evidence that in basal culture conditions (1) the protein profile of PXE mitochondria reveals a number of differentially expressed proteins, suggesting changes in redox balance, oxidative phosphorylation, and calcium homeostasis in addition to modified structure and organization, (2) measure of oxygen consumption indicates that the PXE mitochondria have a low ability to cope with a sudden increased need for ATP via oxidative phosphorylation, (3) mitochondrial membranes are highly polarized in PXE fibroblasts, and this condition contributes to increased reactive oxygen species levels, (4) ultrastructural alterations in PXE mitochondria are associated with functional changes, and (5) PXE fibroblasts exhibit a more abundant, branched, and interconnected mitochondrial network compared to control cells, indicating that fusion prevail over fission events. In summary, the present study demonstrates that mitochondria are modified in PXE fibroblasts. Since mitochondria are key players in the development of the aging process, fibroblasts cultured from aged individuals or aged in vitro are more prone to calcify, and in PXE, calcified tissues remind features of premature aging syndromes; it can be hypothesized that mitochondria represent a common link contributing to the development of ectopic calcification in aging and in diseases. Therefore, ameliorating mitochondrial functions and cell metabolism could open new strategies to positively regulate a number of signaling pathways associated to pathologic calcification.
Collapse
Affiliation(s)
| | - Federica Boraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Maria Garcia-Fernandez
- Department of Human Physiology, Biomedical Research Institute of Málaga, University of Malaga, Málaga, Spain
| | - Lara Estrella
- Department of Human Physiology, Biomedical Research Institute of Málaga, University of Malaga, Málaga, Spain
| | - Pedro Valdivielso
- Department of Medicine and Dermatology, Instituto de Investigación Biomédica de Málaga, University of Malaga, Málaga, Spain
- Internal Medicine Unit, Hospital Virgen de la Victoria, Málaga, Spain
| | - Daniela Quaglino
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
10
|
Quaglino D, Boraldi F, Lofaro FD. The biology of vascular calcification. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 354:261-353. [PMID: 32475476 DOI: 10.1016/bs.ircmb.2020.02.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Vascular calcification (VC), characterized by different mineral deposits (i.e., carbonate apatite, whitlockite and hydroxyapatite) accumulating in blood vessels and valves, represents a relevant pathological process for the aging population and a life-threatening complication in acquired and in genetic diseases. Similarly to bone remodeling, VC is an actively regulated process in which many cells and molecules play a pivotal role. This review aims at: (i) describing the role of resident and circulating cells, of the extracellular environment and of positive and negative factors in driving the mineralization process; (ii) detailing the types of VC (i.e., intimal, medial and cardiac valve calcification); (iii) analyzing rare genetic diseases underlining the importance of altered pyrophosphate-dependent regulatory mechanisms; (iv) providing therapeutic options and perspectives.
Collapse
Affiliation(s)
- Daniela Quaglino
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| | - Federica Boraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | |
Collapse
|
11
|
Bjørklund G, Svanberg E, Dadar M, Card DJ, Chirumbolo S, Harrington DJ, Aaseth J. The Role of Matrix Gla Protein (MGP) in Vascular Calcification. Curr Med Chem 2020; 27:1647-1660. [PMID: 30009696 DOI: 10.2174/0929867325666180716104159] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/22/2018] [Accepted: 07/02/2018] [Indexed: 01/07/2023]
Abstract
Matrix Gla protein (MGP) is a vitamin K-dependent protein, which is synthesized in bone and many other mesenchymal cells, which is also highly expressed by vascular smooth muscle cells (VSMCs) and chondrocytes. Numerous studies have confirmed that MGP acts as a calcification-inhibitor although the mechanism of action is still not fully understood. The modulation of tissue calcification by MGP is potentially regulated in several ways including direct inhibition of calcium-phosphate precipitation, the formation of matrix vesicles (MVs), the formation of apoptotic bodies (ABs), and trans-differentiation of VSMCs. MGP occurs as four species, i.e. fully carboxylated (cMGP), under-carboxylated, i.e. poorly carboxylated (ucMGP), phosphorylated (pMGP), and non-phosphorylated (desphospho, dpMGP). ELISA methods are currently available that can detect the different species of MGP. The expression of the MGP gene can be regulated via various mechanisms that have the potential to become genomic biomarkers for the prediction of vascular calcification (VC) progression. VC is an established risk factor for cardiovascular disease and is particularly prevalent in those with chronic kidney disease (CKD). The specific action of MGP is not yet clearly understood but could be involved with the functional inhibition of BMP-2 and BMP-4, by blocking calcium crystal deposition and shielding the nidus from calcification.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Mo i Rana, Norway
| | - Erik Svanberg
- Department of Medicine, Solleftea Hospital, Solleftea, Sweden
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - David J Card
- Human Nutristasis Unit, Viapath, Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom
| | - Salvatore Chirumbolo
- Department of Neurological and Movement Sciences, University of Verona, Verona, Italy
| | - Dominic J Harrington
- Human Nutristasis Unit, Viapath, Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom
| | - Jan Aaseth
- Faculty of Health and Social Sciences, Inland Norway University of Applied Sciences, Elverum, Norway
- Department of Research, Innlandet Hospital Trust, Brumunddal, Norway
| |
Collapse
|
12
|
Sánchez-Tévar AM, García-Fernández M, Murcia-Casas B, Rioja-Villodres J, Carrillo JL, Camacho M, Van Gils M, Sánchez-Chaparro MA, Vanakker O, Valdivielso P. Plasma inorganic pyrophosphate and alkaline phosphatase in patients with pseudoxanthoma elasticum. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:798. [PMID: 32042814 DOI: 10.21037/atm.2019.12.73] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Background Inorganic pyrophosphate (PPi) plays a major role inhibiting dystrophic calcification. The aim was to analyze levels of PPi in patients having pseudoxanthoma elasticum (PXE), and controls as well as the enzymes who regulate the PPi plasma concentration. Methods We collected fasting blood samples from PXE patients and age- and sex-matched controls in ethylenediamine tetraacetic acid (EDTA) and citrate-theophylline-adenosine-dipyridamole (CTAD) containing tubes. We measured PPi, ENPP1 mass and activity, alkaline phosphatase (AP) and tissue non-specific alkaline phosphatase (TNAP), CD73 and Human Platelet Factor-4 (CXCL4). Results PPi in EDTA and CTAD samples were lower in PXE subjects than in controls (1.11±0.26 vs. 1.43±0.41 µM/L and 0.35±0.15 vs. 0.61±0.18 µM/L respectively, P<0.05). TNAP and liver TNAP activities were also higher in PXE than in controls (80.3±27.0 vs. 63.3±16.4 UI/L and 25.6±14.9 vs. 12.9±9.2 UI/L respectively, P<0.05). ENPP1 mass and activity as well as CD73 were almost identical. There was a weak but significant inverse correlation between TNAP activity and PPi levels (Pearson correlation -0.379, P<0.05) in both groups. Conclusions High TNAP activity seems to contribute to low plasma levels of PPi in subjects with PXE, reinforcing the idea that pharmacological reduction of TNAP activity may help to reduce dystrophic calcification in PXE patients.
Collapse
Affiliation(s)
- Ana María Sánchez-Tévar
- Lipid and Arteriosclerosis Laboratory, Centro de Investigaciones Médico-Sanitarias (CIMES), University of Málaga, Málaga, Spain
| | - María García-Fernández
- Department of Physiology, Instituto de Investigación Biomédica de Málaga (IBIMA), University of Málaga, Málaga, Spain
| | | | - José Rioja-Villodres
- Lipid and Arteriosclerosis Laboratory, Centro de Investigaciones Médico-Sanitarias (CIMES), University of Málaga, Málaga, Spain.,Department of Medicine and Dermatology, Instituto de Investigación Biomédica de Málaga (IBIMA), University of Málaga, Málaga, Spain
| | | | - Marta Camacho
- Obstetric and Gynecology Department, Hospital Virgen de la Victoria, Málaga, Spain
| | - Matthias Van Gils
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Miguel Angel Sánchez-Chaparro
- Lipid and Arteriosclerosis Laboratory, Centro de Investigaciones Médico-Sanitarias (CIMES), University of Málaga, Málaga, Spain.,Internal Medicine Unit, Hospital Virgen de la Victoria, Málaga, Spain.,Department of Medicine and Dermatology, Instituto de Investigación Biomédica de Málaga (IBIMA), University of Málaga, Málaga, Spain
| | - Olivier Vanakker
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Pedro Valdivielso
- Lipid and Arteriosclerosis Laboratory, Centro de Investigaciones Médico-Sanitarias (CIMES), University of Málaga, Málaga, Spain.,Internal Medicine Unit, Hospital Virgen de la Victoria, Málaga, Spain.,Department of Medicine and Dermatology, Instituto de Investigación Biomédica de Málaga (IBIMA), University of Málaga, Málaga, Spain
| |
Collapse
|
13
|
Beaudin S, Kokabee L, Welsh J. Divergent effects of vitamins K1 and K2 on triple negative breast cancer cells. Oncotarget 2019; 10:2292-2305. [PMID: 31040920 PMCID: PMC6481349 DOI: 10.18632/oncotarget.26765] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 02/15/2019] [Indexed: 02/06/2023] Open
Abstract
Vitamin K serves as an essential co-factor in the γ-carboxylation of glutamate to γ-carboxyglutamate (GLA), a post-translational modification mediated by gamma-glutamyl carboxylase (GGCX) and vitamin K oxidoreductases (VKORC1 or VKORC1L1). While both phylloquinone (K1) and menaquinone (K2) support the synthesis of GLA-modified proteins, studies assessing K1 and/or K2 effects in cancer cells have reported minimal effects of K1 and anti-proliferative or pro-apoptotic effects of K2. qPCR results indicated highest expression of GGCX, VKORC1, and VKORC1L1 in triple negative breast cancer (TNBC) cell lines, Hs578T, MDA-MB-231 and SUM159PT, and in advanced stage disease. To assess differential effects of vitamin K, TNBC cells were cultured in media supplemented with K1 or K2. K1 treatment increased cell growth, and enhanced stemness and GLA-modified protein expression in TNBC lysates. Alternatively, lysates from cells exposed to vehicle, K2, or the VKOR antagonist, warfarin, did not express GLA-modified proteins. Further, K2 exposure reduced stemness and elicited anti-proliferative effects. These studies show that TNBC cells express a functional vitamin K pathway and that K1 and K2 exert distinct phenotypic effects. Clarification of the mechanisms by which K1 and K2 induce these effects may lead to relevant therapeutic strategies for manipulating this pathway in TNBC patients.
Collapse
Affiliation(s)
- Sarah Beaudin
- Cancer Research Center and Department of Environmental Health Sciences, University at Albany, Rensselaer, NY 12144, USA
| | - Leila Kokabee
- Cancer Research Center and Department of Environmental Health Sciences, University at Albany, Rensselaer, NY 12144, USA
| | - JoEllen Welsh
- Cancer Research Center and Department of Environmental Health Sciences, University at Albany, Rensselaer, NY 12144, USA
| |
Collapse
|
14
|
Van Gils M, Nollet L, Verly E, Deianova N, Vanakker OM. Cellular signaling in pseudoxanthoma elasticum: an update. Cell Signal 2019; 55:119-129. [PMID: 30615970 DOI: 10.1016/j.cellsig.2018.12.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/20/2018] [Accepted: 12/20/2018] [Indexed: 12/27/2022]
Abstract
Pseudoxanthoma elasticum is an autosomal recessive genodermatosis with variable expression, due to mutations in the ABCC6 or ENPP1 gene. It is characterized by elastic fiber mineralization and fragmentation, resulting in skin, eye and cardiovascular symptoms. Significant advances have been made in the last 20 years with respect to the phenotypic characterization and pathophysiological mechanisms leading to elastic fiber mineralization. Nonetheless, the substrates of the ABCC6 transporter - the main cause of PXE - remain currently unknown. Though the precise mechanisms linking the ABCC6 transporter to mineralization of the extracellular matrix are unclear, several studies have looked into the cellular consequences of ABCC6 deficiency in PXE patients and/or animal models. In this paper, we compile the evidence on cellular signaling in PXE, which seems to revolve mainly around TGF-βs, BMPs and inorganic pyrophosphate signaling cascades. Where conflicting results or fragmented data are present, we address these with novel signaling data. This way, we aim to better understand the up- and down-stream signaling of TGF-βs and BMPs in PXE and we demonstrate that ANKH deficiency can be an additional mechanism contributing to decreased serum PPi levels in PXE patients.
Collapse
Affiliation(s)
- M Van Gils
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Belgium
| | - L Nollet
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - E Verly
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - N Deianova
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - O M Vanakker
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Belgium.
| |
Collapse
|
15
|
Carrillo-Linares JL, García-Fernández MI, Morillo MJ, Sánchez P, Rioja J, Barón FJ, Ariza MJ, Harrington DJ, Card D, Boraldi F, Quaglino D, Valdivielso P. The Effects of Parenteral K1 Administration in Pseudoxanthoma Elasticum Patients Versus Controls. A Pilot Study. Front Med (Lausanne) 2018; 5:86. [PMID: 29713628 PMCID: PMC5911498 DOI: 10.3389/fmed.2018.00086] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 03/20/2018] [Indexed: 01/07/2023] Open
Abstract
Introduction Pseudoxanthoma elasticum (PXE) is a rare disease caused by mutations in the ABCC6 gene. Vitamin K1 is involved in the posttranslational carboxylation of some proteins related to inhibition of the calcification process. Our aim was to investigate, in patients affected by PXE, baseline levels of vitamin K1-dependent proteins and -metabolites and whether parenteral administration of phytomenadione was effective in modulating their levels. Methods We included eight PXE patients with typical clinical symptoms (skin, retina, and vascular calcification) and two ABCC6 causative mutations; 13 clinically unaffected first-degree patients’ relatives (9 carrying one ABCC6 mutation and 4 non-carriers). We assessed urinary vitamin K1 metabolites and serum Glu- and Gla-OC, Gas6 and undercaboxylated prothrombin (PIVKA-II), at baseline and after 1 and 6 weeks after a single intramuscular injection of 10 mg vitamin K1. Results Comparison of PXE patients, heterozygous, and non-carriers revealed differences in baseline levels of serum MK-4 and of urinary vitamin K metabolites. The response to phytomenadione administration on vitamin K-dependent proteins was similar in all groups. Conclusion The physiological axis between vitamin K1 and vitamin K-dependent proteins is preserved; however, differences in the concentration of vitamin K metabolites and of MK-4 suggest that vitamin K1 metabolism/catabolism could be altered in PXE patients.
Collapse
Affiliation(s)
| | | | - María José Morillo
- Ophtalmology, Hospital Clínico Universitario Virgen de la Victoria, Málaga, Spain
| | - Purificación Sánchez
- Department of Medicine and Dermatology and Instituto de Biomedicina (IBIMA), University of Malaga, Málaga, Spain
| | - José Rioja
- Department of Medicine and Dermatology and Instituto de Biomedicina (IBIMA), University of Malaga, Málaga, Spain
| | - Francisco Javier Barón
- Department of Preventive Medicine, Public Health and Science History, University of Málaga, Málaga, Spain
| | - María José Ariza
- Department of Medicine and Dermatology and Instituto de Biomedicina (IBIMA), University of Malaga, Málaga, Spain
| | - Dominic J Harrington
- The Nutristasis Unit, Viapath, King's Healthcare Partners, St. Thomas' Hospital, London, United Kingdom
| | - David Card
- The Nutristasis Unit, Viapath, King's Healthcare Partners, St. Thomas' Hospital, London, United Kingdom
| | - Federica Boraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Daniela Quaglino
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Pedro Valdivielso
- Internal Medicine, Hospital Clínico Universitario Virgen de la Victoria, Málaga, Spain.,Department of Medicine and Dermatology and Instituto de Biomedicina (IBIMA), University of Malaga, Málaga, Spain
| |
Collapse
|
16
|
Boraldi F, Burns JS, Bartolomeo A, Dominici M, Quaglino D. Mineralization by mesenchymal stromal cells is variously modulated depending on commercial platelet lysate preparations. Cytotherapy 2017; 20:335-342. [PMID: 29289444 DOI: 10.1016/j.jcyt.2017.11.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/13/2017] [Accepted: 11/22/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND AIMS Numerous cellular models have been developed to investigate calcification for regenerative medicine applications and for the identification of therapeutic targets in various complications associated with age-related diseases. However, results have often been contradictory due to specific culture conditions, cell type ontogeny and aging status. Human platelet lysate (hPL) has been recently investigated as valuable alternative to fetal bovine serum (FBS) in cell culture and bone regeneration. A parallel comparison of how all these multiple factors may converge to influence mineralization has yet to be reported. METHODS To compare mineralization of human mesenchymal cell types known to differ in extracellular matrix calcification potency, bone marrow-derived mesenchymal stromal cells and dermal fibroblasts from neonatal and adult donors, at both low and high passages, were investigated in an ex vivo experimental model by supplementing the osteogenic induction medium with FBS or with hPL. Four commercial hPL preparations were profiled by liquid chromatography/electrospray ionization quadrupole time-of-flight spectrometry, and mineralization was visualized by von Kossa staining and quantified by morphometric evaluations after 9, 14 and 21 days of culture. RESULTS Data demonstrate that (i) commercial hPL preparations differ according to mass spectra profiles, (ii) hPL variously influences mineral deposition depending on cell line and possibly on platelet product preparation methods, (iii) donor age modifies mineral deposition in the presence of the same hPL and (iv) reduced in vitro proliferative capacity affects osteogenic induction and response to hPL. CONCLUSION Despite the standardized procedures applied to obtain commercial hPL, this study highlights the divergent effects of different preparations and emphasizes the importance of cellular ontology, donor age and cell proliferative capacity to optimize the osteogenic induction capabilities of mesenchymal stromal cells and design more effective cell-based therapeutic protocols.
Collapse
Affiliation(s)
- Federica Boraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Jorge S Burns
- Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, Modena, Italy; Fondazione Democenter-Sipe, Tecnopolo Mirandola-TPM, Science and Technology Park for Medicine, Modena, Italy
| | - Angelica Bartolomeo
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Massimo Dominici
- Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, Modena, Italy; Fondazione Democenter-Sipe, Tecnopolo Mirandola-TPM, Science and Technology Park for Medicine, Modena, Italy
| | - Daniela Quaglino
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| |
Collapse
|
17
|
Ziegler SG, Ferreira CR, MacFarlane EG, Riddle RC, Tomlinson RE, Chew EY, Martin L, Ma CT, Sergienko E, Pinkerton AB, Millán JL, Gahl WA, Dietz HC. Ectopic calcification in pseudoxanthoma elasticum responds to inhibition of tissue-nonspecific alkaline phosphatase. Sci Transl Med 2017; 9:eaal1669. [PMID: 28592560 PMCID: PMC5606141 DOI: 10.1126/scitranslmed.aal1669] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 01/10/2017] [Accepted: 04/25/2017] [Indexed: 12/26/2022]
Abstract
Biallelic mutations in ABCC6 cause pseudoxanthoma elasticum (PXE), a disease characterized by calcification in the skin, eyes, and blood vessels. The function of ATP-binding cassette C6 (ABCC6) and the pathogenesis of PXE remain unclear. We used mouse models and patient fibroblasts to demonstrate genetic interaction and shared biochemical and cellular mechanisms underlying ectopic calcification in PXE and related disorders caused by defined perturbations in extracellular adenosine 5'-triphosphate catabolism. Under osteogenic culture conditions, ABCC6 mutant cells calcified, suggesting a provoked cell-autonomous defect. Using a conditional Abcc6 knockout mouse model, we excluded the prevailing pathogenic hypothesis that singularly invokes failure of hepatic secretion of an endocrine inhibitor of calcification. Instead, deficiency of Abcc6 in both local and distant cells was necessary to achieve the early onset and penetrant ectopic calcification observed upon constitutive gene targeting. ABCC6 mutant cells additionally had increased expression and activity of tissue-nonspecific alkaline phosphatase (TNAP), an enzyme that degrades pyrophosphate, a major inhibitor of calcification. A selective and orally bioavailable TNAP inhibitor prevented calcification in ABCC6 mutant cells in vitro and attenuated both the development and progression of calcification in Abcc6-/- mice in vivo, without the deleterious effects on bone associated with other proposed treatment strategies.
Collapse
Affiliation(s)
- Shira G Ziegler
- Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Carlos R Ferreira
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20814, USA
| | - Elena Gallo MacFarlane
- Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ryan C Riddle
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Baltimore Veterans Administrations Medical Center, Baltimore, MD 21201, USA
| | - Ryan E Tomlinson
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Emily Y Chew
- National Eye Institute, National Institutes of Health, Bethesda, MD 20814, USA
| | - Ludovic Martin
- PXE Reference Center and MitoVasc Institute, Angers University Hospital, Angers, France
| | - Chen-Ting Ma
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Eduard Sergienko
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | | | - José Luis Millán
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - William A Gahl
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20814, USA
| | - Harry C Dietz
- Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|
18
|
Okubo Y, Masuyama R, Iwanaga A, Koike Y, Kuwatsuka Y, Ogi T, Yamamoto Y, Endo Y, Tamura H, Utani A. Calcification in dermal fibroblasts from a patient with GGCX syndrome accompanied by upregulation of osteogenic molecules. PLoS One 2017; 12:e0177375. [PMID: 28494010 PMCID: PMC5426700 DOI: 10.1371/journal.pone.0177375] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 04/26/2017] [Indexed: 12/21/2022] Open
Abstract
Gamma-glutamyl carboxylase (GGCX) gene mutation causes GGCX syndrome (OMIM: 137167), which is characterized by pseudoxanthoma elasticum (PXE)-like symptoms and coagulation impairment. Here, we present a 55-year-old male with a novel homozygous deletion mutation, c.2,221delT, p.S741LfsX100, in the GGCX gene. Histopathological examination revealed calcium deposits in elastic fibers and vessel walls, and collagen accumulation in the mid-dermis. Studies of dermal fibroblasts from the patient (GGCX dermal fibroblasts) demonstrated that the mutated GGCX protein was larger, but its expression level and intracellular distribution were indistinguishable from those of the wild-type GGCX protein. Immunostaining and an enzyme-linked immunosorbent assay showed an increase in undercarboxylated matrix gamma-carboxyglutamic acid protein (ucMGP), a representative substrate of GGCX and a potent calcification inhibitor, indicating that mutated GGCX was enzymatically inactive. Under osteogenic conditions, calcium deposition was exclusively observed in GGCX dermal fibroblasts. Furthermore, GGCX dermal fibroblast cultures contained 23- and 7.7-fold more alkaline phosphatase (ALP)-positive cells than normal dermal fibroblast cultures (n = 3), without and with osteogenic induction, respectively. Expression and activity of ALP were higher in GGCX dermal fibroblasts than in normal dermal fibroblasts upon osteogenic induction. mRNA levels of other osteogenic markers were also higher in GGCX dermal fibroblasts than in normal dermal fibroblasts, which including bone morphogenetic protein 6, runt-related transcription factor 2, and periostin (POSTN) without osteogenic induction; and osterix, collagen type I alpha 2, and POSTN with osteogenic induction. Together, these data indicate that GGCX dermal fibroblasts trans-differentiate into the osteogenic lineage. This study proposes another mechanism underlying aberrant calcification in patients with GGCX syndrome.
Collapse
Affiliation(s)
- Yumi Okubo
- Department of Dermatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Research and Clinical Center for Yusho and Dioxin (ReCYD), Kyushu University Hospital, Fukuoka, Japan
| | - Ritsuko Masuyama
- Department of Molecular Bone Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Akira Iwanaga
- Department of Dermatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yuta Koike
- Department of Dermatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yutaka Kuwatsuka
- Department of Dermatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tomoo Ogi
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Aichi, Japan
| | - Yosuke Yamamoto
- Department of Healthcare Epidemiology Research, Graduate School of Medicine Kyoto University, Kyoto, Japan
- Department of Dermatology, Graduate School of Medicine Kyoto University, Kyoto, Japan
| | - Yuichiro Endo
- Department of Dermatology, Graduate School of Medicine Kyoto University, Kyoto, Japan
| | - Hiroshi Tamura
- Department of Ophthalmology and Visual Sciences, Graduate School of Medicine Kyoto University, Kyoto, Japan
| | - Atsushi Utani
- Department of Dermatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
19
|
Magnesium Modifies the Structural Features of Enzymatically Mineralized Collagen Gels Affecting the Retraction Capabilities of Human Dermal Fibroblasts Embedded within This 3D System. MATERIALS 2016; 9:ma9060477. [PMID: 28773595 PMCID: PMC5456744 DOI: 10.3390/ma9060477] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 06/07/2016] [Accepted: 06/08/2016] [Indexed: 12/22/2022]
Abstract
Mineralized collagen gels have been developed as in vitro models to better understand the mechanisms regulating the calcification process and the behavior of a variety of cell types. The vast majority of data are related to stem cells and to osteoblast-like cells, whereas little information is available for dermal fibroblasts, although these cells have been associated with ectopic calcification and consequently to a number of pathological conditions. Therefore, we developed and characterized an enzymatically mineralized collagen gel in which fibroblasts were encapsulated within the 3D structure. MgCl2 was also added during gel polymerization, given its role as (i) modulator of ectopic calcification; (ii) component of biomaterials used for bone replacement; and (iii) constituent of pathological mineral deposits. Results demonstrate that, in a short time, an enzymatically mineralized collagen gel can be prepared in which mineral deposits and viable cells are homogeneously distributed. MgCl2 is present in mineral deposits and significantly affects collagen fibril assembly and organization. Consequently, cell shape and the ability of fibroblasts to retract collagen gels were modified. The development of three-dimensional (3D) mineralized collagen matrices with both different structural features and mineral composition together with the use of fibroblasts, as a prototype of soft connective tissue mesenchymal cells, may pave new ways for the study of ectopic calcification.
Collapse
|
20
|
Venardos N, Bennett D, Weyant MJ, Reece TB, Meng X, Fullerton DA. Matrix Gla protein regulates calcification of the aortic valve. J Surg Res 2015; 199:1-6. [PMID: 25990696 PMCID: PMC4604002 DOI: 10.1016/j.jss.2015.04.076] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Revised: 04/17/2015] [Accepted: 04/21/2015] [Indexed: 01/14/2023]
Abstract
BACKGROUND The aortic valve interstitial cell (AVIC) has been implicated in the pathogenesis of aortic stenosis. In response to proinflammatory stimulation, the AVIC undergoes a phenotypic change from that of a myofibroblast phenotype to that of osteoblast-like cell. Matrix Gla-protein (MGP) has been identified as an important inhibitor of vascular calcification. We therefore hypothesized that MGP expression is reduced in diseased AVICs, and loss of this protective protein contributes to calcification of the aortic valve. Our purpose was to compare MGP expression in normal versus diseased AVICs. MATERIALS AND METHODS Human AVICs were isolated from normal aortic valves from explanted hearts (n = 6) at the time of heart transplantation. AVICs were also isolated from calcified, diseased valves of patients (n = 6) undergoing aortic valve replacement. AVICs were grown in culture until they reached passages 2-6 before experimentation. Immunofluorescent staining, reverse transcriptase-polymerase chain reaction, immunoblotting, and enzyme-linked immunosorbent assay were used to compare levels of MGP in normal and diseased AVICs. Statistics were performed using the Mann-Whitney U test (P < 0.05). RESULTS MGP expression was significantly decreased in diseased AVICs relative to normal AVICs by immunofluorescent staining, reverse transcriptase-polymerase chain reaction, immunoblotting, and enzyme-linked immunosorbent assay. CONCLUSIONS An important anti-calcification defense mechanism is deficient in calcified aortic valves. MGP expression is significantly lower in diseased relative to normal AVICs. Lack of this important "anti-calcification" protein may contribute to calcification of the aortic valve.
Collapse
Affiliation(s)
- Neil Venardos
- Department of Surgery, Division of Cardiothoracic Surgery, University of Colorado School of Medicine, Aurora, Colorado.
| | - Daine Bennett
- Department of Surgery, Division of Cardiothoracic Surgery, University of Colorado School of Medicine, Aurora, Colorado
| | - Michael J Weyant
- Department of Surgery, Division of Cardiothoracic Surgery, University of Colorado School of Medicine, Aurora, Colorado
| | - Thomas Brett Reece
- Department of Surgery, Division of Cardiothoracic Surgery, University of Colorado School of Medicine, Aurora, Colorado
| | - Xianzhong Meng
- Department of Surgery, Division of Cardiothoracic Surgery, University of Colorado School of Medicine, Aurora, Colorado
| | - David A Fullerton
- Department of Surgery, Division of Cardiothoracic Surgery, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
21
|
Boraldi F, Bartolomeo A, Di Bari C, Cocconi A, Quaglino D. Donor's age and replicative senescence favour the in-vitro mineralization potential of human fibroblasts. Exp Gerontol 2015; 72:218-26. [PMID: 26494600 DOI: 10.1016/j.exger.2015.10.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 10/16/2015] [Accepted: 10/19/2015] [Indexed: 11/30/2022]
Abstract
Aberrant mineralization of soft connective tissues (ectopic calcification) may occur as a frequent age-related complication. Still, it remains unclear the role of mesenchymal cell donor's age and of replicative senescence on ectopic calcification. Therefore, the ability of cells to deposit in-vitro hydroxyapatite crystals and the expression of progressive ankylosis protein homolog (ANKH), ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1), tissue non specific alkaline phosphatase (TNAP) and osteopontin (OPN) have been evaluated in human dermal fibroblasts derived from neonatal (nHDF) and adult (aHDF) donors (ex-vivo ageing model) or at low and high cumulative population doublings (CPD) up to replicative senescence (in-vitro ageing model). This study demonstrates that: 1) replicative senescence favours hydroxyapatite formation in cultured fibroblasts; 2) donor's age acts as a major modulator of the mineralizing potential of HDF, since nHDF are less prone than aHDF to induce calcification; 3) donor's age and replicative senescence play in concert synergistically increasing the calcification process; 4) the ANKH+ENPP1/TNAP ratio, being crucial for pyrophosphate/inorganic phosphate balance, is greatly influenced by donor's age, as well as by replicative senescence, and regulates mineral deposition; 5) OPN is only modulated by replicative senescence.
Collapse
Affiliation(s)
- Federica Boraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Angelica Bartolomeo
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Caterina Di Bari
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Andrea Cocconi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Daniela Quaglino
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| |
Collapse
|
22
|
Boraldi F, Costa S, Rabacchi C, Ciani M, Vanakker O, Quaglino D. Can APOE and MTHFR polymorphisms have an influence on the severity of cardiovascular manifestations in Italian Pseudoxanthoma elasticum affected patients? Mol Genet Metab Rep 2014; 1:477-482. [PMID: 27896127 PMCID: PMC5121367 DOI: 10.1016/j.ymgmr.2014.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 11/03/2014] [Indexed: 11/26/2022] Open
Abstract
Background The clinical phenotype of Pseudoxanthoma elasticum (PXE) affected patients, although progressive with age, is very heterogeneous, even in the presence of identical ABCC6 mutations, thus suggesting the occurrence of modifier genes. Beside typical skin manifestations, the cardiovascular (CV) system, and especially the peripheral vasculature, is frequently and prematurely compromised. Methods and results A cohort of 119 Italian PXE patients has been characterized for apolipoprotein E (APOE) and methylenetetrahydrofolate reductase (MTHFR) gene polymorphisms by PCR. The severity of the clinical phenotype has been quantified according to the Phenodex PXE International score system. Statistical analysis (chi2 test, odd ratio, regression analysis, analysis of variance) were done by GraphPad. Data demonstrate that the frequency of APOE alleles is similar in PXE patients and in healthy subjects and that the allelic variant E2 confers a protection against the age-related increase of CV manifestations. By contrast, PXE patients are characterized by high frequency of the MTHFR-T677T polymorphism. With age, CV manifestations in T677T, but also in C677T, patients are more severe than those associated with the C677C genotype. Interestingly, compound heterozygosity for C677T and A1298C polymorphisms is present in 70% of PXE patients. Conclusions PXE patients may be screened for these polymorphisms in order to support clinicians for a better management of disease-associated CV complications.
Collapse
Affiliation(s)
- Federica Boraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Sonia Costa
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Claudio Rabacchi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Miriam Ciani
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Olivier Vanakker
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Daniela Quaglino
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
23
|
Dabisch-Ruthe M, Brock A, Kuzaj P, Charbel Issa P, Szliska C, Knabbe C, Hendig D. Variants in genes encoding pyrophosphate metabolizing enzymes are associated with Pseudoxanthoma elasticum. Clin Biochem 2014; 47:60-7. [DOI: 10.1016/j.clinbiochem.2014.07.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 06/30/2014] [Accepted: 07/03/2014] [Indexed: 10/25/2022]
|
24
|
Kuzaj P, Kuhn J, Michalek RD, Karoly ED, Faust I, Dabisch-Ruthe M, Knabbe C, Hendig D. Large-scaled metabolic profiling of human dermal fibroblasts derived from pseudoxanthoma elasticum patients and healthy controls. PLoS One 2014; 9:e108336. [PMID: 25265166 PMCID: PMC4181624 DOI: 10.1371/journal.pone.0108336] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 08/29/2014] [Indexed: 12/18/2022] Open
Abstract
Mutations in the ABC transporter ABCC6 were recently identified as cause of Pseudoxanthoma elasticum (PXE), a rare genetic disorder characterized by progressive mineralization of elastic fibers. We used an untargeted metabolic approach to identify biochemical differences between human dermal fibroblasts from healthy controls and PXE patients in an attempt to find a link between ABCC6 deficiency, cellular metabolic alterations and disease pathogenesis. 358 compounds were identified by mass spectrometry covering lipids, amino acids, peptides, carbohydrates, nucleotides, vitamins and cofactors, xenobiotics and energy metabolites. We found substantial differences in glycerophospholipid composition, leucine dipeptides, and polypeptides as well as alterations in pantothenate and guanine metabolism to be significantly associated with PXE pathogenesis. These findings can be linked to extracellular matrix remodeling and increased oxidative stress, which reflect characteristic hallmarks of PXE. Our study could facilitate a better understanding of biochemical pathways involved in soft tissue mineralization.
Collapse
Affiliation(s)
- Patricia Kuzaj
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Joachim Kuhn
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Ryan D. Michalek
- Metabolon, Inc., Durham, North Carolina, United States of America
| | - Edward D. Karoly
- Metabolon, Inc., Durham, North Carolina, United States of America
| | - Isabel Faust
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Mareike Dabisch-Ruthe
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Cornelius Knabbe
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Doris Hendig
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| |
Collapse
|
25
|
Kuzaj P, Kuhn J, Dabisch-Ruthe M, Faust I, Götting C, Knabbe C, Hendig D. ABCC6- a new player in cellular cholesterol and lipoprotein metabolism? Lipids Health Dis 2014; 13:118. [PMID: 25064003 PMCID: PMC4124508 DOI: 10.1186/1476-511x-13-118] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 07/17/2014] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Dysregulations in cholesterol and lipid metabolism have been linked to human diseases like hypercholesterolemia, atherosclerosis or the metabolic syndrome. Many ABC transporters are involved in trafficking of metabolites derived from these pathways. Pseudoxanthoma elasticum (PXE), an autosomal-recessive disease caused by ABCC6 mutations, is characterized by atherogenesis and soft tissue calcification. METHODS In this study we investigated the regulation of cholesterol biosynthesis in human dermal fibroblasts from PXE patients and healthy controls. RESULTS Gene expression analysis of 84 targets indicated dysregulations in cholesterol metabolism in PXE fibroblasts. Transcript levels of ABCC6 were strongly increased in lipoprotein-deficient serum (LPDS) and under serum starvation in healthy controls. For the first time, increased HMG CoA reductase activities were found in PXE fibroblasts. We further observed strongly elevated transcript and protein levels for the proprotein convertase subtilisin/kexin type 9 (PCSK9), as well as a significant reduction in APOE mRNA expression in PXE. CONCLUSION Increased cholesterol biosynthesis, elevated PCSK9 levels and reduced APOE mRNA expression newly found in PXE fibroblasts could enforce atherogenesis and cardiovascular risk in PXE patients. Moreover, the increase in ABCC6 expression accompanied by the induction of cholesterol biosynthesis supposes a functional role for ABCC6 in human lipoprotein and cholesterol homeostasis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Doris Hendig
- Herz- und Diabeteszentrum NRW, Institut für Laboratoriums- und Transfusionsmedizin, Universitätsklinik der Ruhr-Universität Bochum, Georgstraße 11, 32 545 Bad Oeynhausen, Germany.
| |
Collapse
|
26
|
Boraldi F, Annovi G, Bartolomeo A, Quaglino D. Fibroblasts from patients affected by Pseudoxanthoma elasticum exhibit an altered PPi metabolism and are more responsive to pro-calcifying stimuli. J Dermatol Sci 2014; 74:72-80. [PMID: 24461675 DOI: 10.1016/j.jdermsci.2013.12.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 12/13/2013] [Accepted: 12/19/2013] [Indexed: 01/31/2023]
Abstract
BACKGROUND Pseudoxanthoma elasticum (PXE) is a genetic disorder characterized by progressive calcification of soft connective tissues. The pathogenesis is still hard to pin down. In PXE dermal fibroblasts, in addition to impaired carboxylation of the vitamin K-dependent inhibitor matrix Gla protein (MGP), we have also demonstrated an up-regulation of alkaline phosphatase activity. In the light of these data we have suggested that both calcium and phosphate metabolism might be locally altered, both pathways acting in synergy on the occurrence of matrix calcification. OBJECTIVE This study aims to better explore if cultured PXE fibroblasts, compared to control cells, exhibit a modified inorganic pyrophosphate (PPi) metabolism and are more responsive to pro-calcifying stimuli. METHODS Primary human dermal fibroblasts isolated from healthy individuals and from PXE patients were cultured for different time points in standard and in pro-calcifying media. The expression of ANKH/ANKH, ENPP1/PC1, ALPL/TNAP, SPP1/OPN was evaluated by qRT-PCR and Western blot, respectively. TNAP activity was measured by spectrophotometric analyses, whereas calcification was investigated by light and electron microscopy as well as by micro-analytical techniques. RESULTS In the presence of pro-calcifying stimuli, dermal fibroblasts alter their phenotype favouring matrix mineralization. In particular, ENPP1/PC1 and SPP1/OPN expression, as well as TNAP activity, was differently expressed in control and in PXE fibroblasts. Moreover, in pathologic cells the ratio between factors favouring and reducing PPi availability exhibits a more pronounced shift towards a pro-calcifying balance. CONCLUSION PXE fibroblasts are more susceptible to pro-calcifying stimuli and in these cells an altered PPi metabolism contributes to matrix calcification.
Collapse
Affiliation(s)
- Federica Boraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Giulia Annovi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Angelica Bartolomeo
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Daniela Quaglino
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| |
Collapse
|
27
|
Boraldi F, Bartolomeo A, Li Q, Uitto J, Quaglino D. Changes in dermal fibroblasts from Abcc6(-/-) mice are present before and after the onset of ectopic tissue mineralization. J Invest Dermatol 2014; 134:1855-1861. [PMID: 24670382 PMCID: PMC4057957 DOI: 10.1038/jid.2014.88] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 01/22/2014] [Accepted: 01/27/2014] [Indexed: 12/15/2022]
Abstract
Pseudoxanthoma elasticum (PXE), a rare genetic disease caused by mutations in the ABCC6 gene, is characterized by progressive calcification of elastic fibers in the skin, eyes and the cardiovascular system. The pathomechanisms of the mineralization is still obscure. Several hypotheses have been proposed, one of them suggesting a role for fibroblasts in controlling the amount and the quality of the calcified extracellular matrix. This hypothesis raises the question whether changes in mesenchymal cells are the cause and/or the consequences of the calcification process. In this study, fibroblasts were isolated and cultured from Abcc6+/+ and Abcc6−/− mice of different ages in order to investigate parameters known to be associated with the phenotype of fibroblasts from PXE patients. Results demonstrate few changes (Ank and Opn down-regulation) are already present before the occurrence of calcification. By contrast, a modification of other parameters (intracellular O2− content, Tnap activity and Bmp2 up-regulation) can be observed in Abcc6−/− mice after the onset of tissue mineralization. These data suggest that in the Abcc6−/− genotype, dermal fibroblasts actively contribute to changes that promote matrix calcification and that these cells can be further modulated with time by the calcified environment, thus contributing to the age-dependent progression of the disease.
Collapse
Affiliation(s)
- Federica Boraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Angelica Bartolomeo
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Qiaoli Li
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Jouni Uitto
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Daniela Quaglino
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| |
Collapse
|
28
|
ABCC6 prevents ectopic mineralization seen in pseudoxanthoma elasticum by inducing cellular nucleotide release. Proc Natl Acad Sci U S A 2013; 110:20206-11. [PMID: 24277820 DOI: 10.1073/pnas.1319582110] [Citation(s) in RCA: 195] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Pseudoxanthoma elasticum (PXE) is an autosomal recessive disease characterized by progressive ectopic mineralization of the skin, eyes, and arteries, for which no effective treatment exists. PXE is caused by inactivating mutations in the gene encoding ATP-binding cassette sub-family C member 6 (ABCC6), an ATP-dependent efflux transporter present mainly in the liver. Abcc6(-/-) mice have been instrumental in demonstrating that PXE is a metabolic disease caused by the absence of an unknown factor in the circulation, the presence of which depends on ABCC6 in the liver. Why absence of this factor results in PXE has remained a mystery. Here we report that medium from HEK293 cells overexpressing either human or rat ABCC6 potently inhibits mineralization in vitro, whereas medium from HEK293 control cells does not. Untargeted metabolomics revealed that cells expressing ABCC6 excrete large amounts of nucleoside triphosphates, even though ABCC6 itself does not transport nucleoside triphosphates. Extracellularly, ectonucleotidases hydrolyze the excreted nucleoside triphosphates to nucleoside monophosphates and inorganic pyrophosphate (PPi), a strong inhibitor of mineralization that plays a pivotal role in several mineralization disorders similar to PXE. The in vivo relevance of our data are demonstrated in Abcc6(-/-) mice, which had plasma PPi levels <40% of those found in WT mice. This study provides insight into how ABCC6 affects PXE. Our data indicate that the factor that normally prevents PXE is PPi, which is provided to the circulation in the form of nucleoside triphosphates via an as-yet unidentified but ABCC6-dependent mechanism.
Collapse
|
29
|
Ronchetti I, Boraldi F, Annovi G, Cianciulli P, Quaglino D. Fibroblast involvement in soft connective tissue calcification. Front Genet 2013; 4:22. [PMID: 23467434 PMCID: PMC3588566 DOI: 10.3389/fgene.2013.00022] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 02/11/2013] [Indexed: 12/19/2022] Open
Abstract
Soft connective tissue calcification is not a passive process, but the consequence of metabolic changes of local mesenchymal cells that, depending on both genetic and environmental factors, alter the balance between pro- and anti-calcifying pathways. While the role of smooth muscle cells and pericytes in ectopic calcifications has been widely investigated, the involvement of fibroblasts is still elusive. Fibroblasts isolated from the dermis of pseudoxanthoma elasticum (PXE) patients and of patients exhibiting PXE-like clinical and histopathological findings offer an attractive model to investigate the mechanisms leading to the precipitation of mineral deposits within elastic fibers and to explore the influence of the genetic background and of the extracellular environment on fibroblast-associated calcifications, thus improving the knowledge on the role of mesenchymal cells on pathologic mineralization.
Collapse
Affiliation(s)
| | - Federica Boraldi
- PXELab, University of Modena and Reggio EmiliaModena, Italy
- Department of Life Science, University of Modena and Reggio EmiliaModena, Italy
| | - Giulia Annovi
- PXELab, University of Modena and Reggio EmiliaModena, Italy
- Department of Life Science, University of Modena and Reggio EmiliaModena, Italy
| | | | - Daniela Quaglino
- PXELab, University of Modena and Reggio EmiliaModena, Italy
- Department of Life Science, University of Modena and Reggio EmiliaModena, Italy
| |
Collapse
|
30
|
Le Saux O, Martin L, Aherrahrou Z, Leftheriotis G, Váradi A, Brampton CN. The molecular and physiological roles of ABCC6: more than meets the eye. Front Genet 2012; 3:289. [PMID: 23248644 PMCID: PMC3520154 DOI: 10.3389/fgene.2012.00289] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 11/23/2012] [Indexed: 12/30/2022] Open
Abstract
Abnormal mineralization occurs in the context of several common conditions, including advanced age, diabetes, hypercholesterolemia, chronic renal failure, and certain genetic conditions. Metabolic, mechanical, infectious, and inflammatory injuries promote ectopic mineralization through overlapping yet distinct molecular mechanisms of initiation and progression. The ABCC6 protein is an ATP-dependent transporter primarily found in the plasma membrane of hepatocytes. ABCC6 exports unknown substrates from the liver presumably for systemic circulation. ABCC6 deficiency is the primary cause for chronic and acute forms of ectopic mineralization described in diseases such as pseudoxanthoma elasticum (PXE), β-thalassemia, and generalized arterial calcification of infancy (GACI) in humans and dystrophic cardiac calcification (DCC) in mice. These pathologies are characterized by mineralization of cardiovascular, ocular, and dermal tissues. PXE and to an extent GACI are caused by inactivating ABCC6 mutations, whereas the mineralization associated with β-thalassemia patients derives from a liver-specific change in ABCC6 expression. DCC is an acquired phenotype resulting from cardiovascular insults (ischemic injury or hyperlipidemia) and secondary to ABCC6 insufficiency. Abcc6-deficient mice develop ectopic calcifications similar to both the human PXE and mouse DCC phenotypes. The precise molecular and cellular mechanism linking deficient hepatic ABCC6 function to distal ectopic mineral deposition is not understood and has captured the attention of many research groups. Our previously published work along with that of others show that ABCC6 influences other modulators of calcification and that it plays a much greater physiological role than originally thought.
Collapse
Affiliation(s)
- Olivier Le Saux
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii Honolulu, HI, USA
| | | | | | | | | | | |
Collapse
|