1
|
Hasan SR, Manolis D, Stephenson E, Ryskiewicz-Sokalska OA, Maraveyas A, Nikitenko LL. Calcitonin gene-related peptide and intermedin induce phosphorylation of p44/42 MAPK in primary human lymphatic endothelial cells in vitro. Cell Signal 2024; 121:111261. [PMID: 38878805 DOI: 10.1016/j.cellsig.2024.111261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/07/2024] [Accepted: 06/12/2024] [Indexed: 07/29/2024]
Abstract
Calcitonin gene-related peptide (CGRP) and adrenomedullin 2/intermedin (AM2/IMD) play important roles in several pathologies, including cardiovascular disease, migraine and cancer. The efficacy of drugs targeting CGRP signalling axis for the treatment of migraine patients is sometimes offset by side effects (e.g. inflammation and microvascular complications, including aberrant neovascularisation in the skin). Recent studies using animal models implicate CGRP in lymphangiogenesis and lymphatic vessel function. However, whether CGRP or AM2/IMD can act directly on lymphatic endothelial cells is unknown. Here, we found that CGRP and AM2/IMD induced p44/42 MAPK phosphorylation in a time- and dose-dependent manner in primary human dermal lymphatic endothelial cells (HDLEC) in vitro, and thus directly affected these cells. These new findings reveal CGRP and AM2/IMD as novel regulators of LEC biology and warrant further investigation of their roles in the context of pathologies associated with lymphatic function in the skin and other organs, and therapies targeting CGRP signalling axis.
Collapse
Affiliation(s)
- Shirin R Hasan
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull, UK
| | - Dimitrios Manolis
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull, UK
| | - Ewan Stephenson
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull, UK
| | | | - Anthony Maraveyas
- Hull University Teaching Hospitals NHS Teaching Trust, Queens Centre for Oncology and Haematology, Castle Hill Hospital, Hull, UK
| | - Leonid L Nikitenko
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull, UK.
| |
Collapse
|
2
|
Fowler JWM, Song L, Tam K, Roth Flach RJ. Targeting lymphatic function in cardiovascular-kidney-metabolic syndrome: preclinical methods to analyze lymphatic function and therapeutic opportunities. Front Cardiovasc Med 2024; 11:1412857. [PMID: 38915742 PMCID: PMC11194411 DOI: 10.3389/fcvm.2024.1412857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 05/24/2024] [Indexed: 06/26/2024] Open
Abstract
The lymphatic vascular system spans nearly every organ in the body and serves as an important network that maintains fluid, metabolite, and immune cell homeostasis. Recently, there has been a growing interest in the role of lymphatic biology in chronic disorders outside the realm of lymphatic abnormalities, lymphedema, or oncology, such as cardiovascular-kidney-metabolic syndrome (CKM). We propose that enhancing lymphatic function pharmacologically may be a novel and effective way to improve quality of life in patients with CKM syndrome by engaging multiple pathologies at once throughout the body. Several promising therapeutic targets that enhance lymphatic function have already been reported and may have clinical benefit. However, much remains unclear of the discreet ways the lymphatic vasculature interacts with CKM pathogenesis, and translation of these therapeutic targets to clinical development is challenging. Thus, the field must improve characterization of lymphatic function in preclinical mouse models of CKM syndrome to better understand molecular mechanisms of disease and uncover effective therapies.
Collapse
Affiliation(s)
| | | | | | - Rachel J. Roth Flach
- Internal Medicine Research Unit, Pfizer Research and Development, Cambridge, MA, United States
| |
Collapse
|
3
|
Manolis D, Hasan S, Maraveyas A, O'Brien DP, Kessler BM, Kramer H, Nikitenko LL. Quantitative proteomics reveals CLR interactome in primary human cells. J Biol Chem 2024; 300:107399. [PMID: 38777147 PMCID: PMC11231609 DOI: 10.1016/j.jbc.2024.107399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/03/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
The G protein-coupled receptor (GPCR) calcitonin receptor-like receptor (CLR) mediates essential functions in several cell types and is implicated in cardiovascular pathologies, skin diseases, migraine, and cancer. To date, the network of proteins interacting with CLR ("CLR interactome") in primary cells, where this GPCR is expressed at endogenous (physiologically relevant) levels, remains unknown. To address this knowledge gap, we established a novel integrative methodological workflow/approach for conducting a comprehensive/proteome-wide analysis of Homo sapiens CLR interactome. We used primary human dermal lymphatic endothelial cells and combined immunoprecipitation utilizing anti-human CLR antibody with label-free quantitative nano LC-MS/MS and quantitative in situ proximity ligation assay. By using this workflow, we identified 37 proteins interacting with endogenously expressed CLR amongst 4902 detected members of the cellular proteome (by quantitative nano LC-MS/MS) and revealed direct interactions of two kinases and two transporters with this GPCR (by in situ proximity ligation assay). All identified interactors have not been previously reported as members of CLR interactome. Our approach and findings uncover the hitherto unrecognized compositional complexity of the interactome of endogenously expressed CLR and contribute to fundamental understanding of the biology of this GPCR. Collectively, our study provides a first-of-its-kind integrative methodological approach and datasets as valuable resources and robust platform/springboard for advancing the discovery and comprehensive characterization of physiologically relevant CLR interactome at a proteome-wide level in a range of cell types and diseases in future studies.
Collapse
Affiliation(s)
- Dimitrios Manolis
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull, UK
| | - Shirin Hasan
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull, UK
| | - Anthony Maraveyas
- Queens Centre for Oncology and Haematology, Castle Hill Hospital, Hull University Teaching Hospitals NHS Teaching Trust, Hull, UK
| | - Darragh P O'Brien
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Benedikt M Kessler
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Holger Kramer
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Leonid L Nikitenko
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull, UK.
| |
Collapse
|
4
|
Bálint L, Nelson-Maney N, Tian Y, Serafin DS, Caron KM. Clinical Potential of Adrenomedullin Signaling in the Cardiovascular System. Circ Res 2023; 132:1185-1202. [PMID: 37104556 PMCID: PMC10155262 DOI: 10.1161/circresaha.123.321673] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/16/2023] [Indexed: 04/29/2023]
Abstract
Numerous clinical studies have revealed the utility of circulating AM (adrenomedullin) or MR-proAM (mid-regional proAM 45-92) as an effective prognostic and diagnostic biomarker for a variety of cardiovascular-related pathophysiologies. Thus, there is strong supporting evidence encouraging the exploration of the AM-CLR (calcitonin receptor-like receptor) signaling pathway as a therapeutic target. This is further bolstered because several drugs targeting the shared CGRP (calcitonin gene-related peptide)-CLR pathway are already Food and Drug Administration-approved and on the market for the treatment of migraine. In this review, we summarize the AM-CLR signaling pathway and its modulatory mechanisms and provide an overview of the current understanding of the physiological and pathological roles of AM-CLR signaling and the yet untapped potentials of AM as a biomarker or therapeutic target in cardiac and vascular diseases and provide an outlook on the recently emerged strategies that may provide further boost to the possible clinical applications of AM signaling.
Collapse
Affiliation(s)
- László Bálint
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill; 111 Mason Farm Road, Chapel Hill, North Carolina, USA 27599
| | - Nathan Nelson-Maney
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill; 111 Mason Farm Road, Chapel Hill, North Carolina, USA 27599
| | - Yanna Tian
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill; 111 Mason Farm Road, Chapel Hill, North Carolina, USA 27599
| | - D. Stephen Serafin
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill; 111 Mason Farm Road, Chapel Hill, North Carolina, USA 27599
| | - Kathleen M. Caron
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill; 111 Mason Farm Road, Chapel Hill, North Carolina, USA 27599
| |
Collapse
|
5
|
Chang CL, Cai Z, Hsu SYT. Sustained Activation of CLR/RAMP Receptors by Gel-Forming Agonists. Int J Mol Sci 2022; 23:ijms232113408. [PMID: 36362188 PMCID: PMC9655119 DOI: 10.3390/ijms232113408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Background: Adrenomedullin (ADM), adrenomedullin 2 (ADM2), and CGRP family peptides are important regulators of vascular vasotone and integrity, neurotransmission, and fetoplacental development. These peptides signal through CLR/RAMP1, 2, and 3 receptors, and protect against endothelial dysfunction in disease models. As such, CLR/RAMP receptor agonists are considered important therapeutic candidates for various diseases. Methods and Results: Based on the screening of a series of palmitoylated chimeric ADM/ADM2 analogs, we demonstrated a combination of lipidation and accommodating motifs at the hinge region of select peptides is important for gaining an enhanced receptor-activation activity and improved stimulatory effects on the proliferation and survival of human lymphatic endothelial cells when compared to wild-type peptides. In addition, by serendipity, we found that select palmitoylated analogs self-assemble to form liquid gels, and subcutaneous administration of an analog gel led to the sustained presence of the peptide in the circulation for >2 days. Consistently, subcutaneous injection of the analog gel significantly reduced the blood pressure in SHR rats and increased vasodilation in the hindlimbs of adult rats for days. Conclusions: Together, these data suggest gel-forming adrenomedullin analogs may represent promising candidates for the treatment of various life-threatening endothelial dysfunction-associated diseases such as treatment-resistant hypertension and preeclampsia, which are in urgent need of an effective drug.
Collapse
Affiliation(s)
- Chia Lin Chang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center, Chang Gung University, Kweishan, Taoyuan 20878, Taiwan
| | - Zheqing Cai
- CL Laboratory LLC, Gaithersburg, MD 20878, USA
| | - Sheau Yu Teddy Hsu
- Adepthera LLC, San Jose, CA 95138, USA
- Correspondence: ; Tel.: +1-650-799-3496
| |
Collapse
|
6
|
Hsu JF, Yu RP, Stanton EW, Wang J, Wong AK. Current Advancements in Animal Models of Postsurgical Lymphedema: A Systematic Review. Adv Wound Care (New Rochelle) 2022; 11:399-418. [PMID: 34128396 PMCID: PMC9142133 DOI: 10.1089/wound.2021.0033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Significance: Secondary lymphedema is a debilitating disease caused by lymphatic dysfunction characterized by chronic swelling, dysregulated inflammation, disfigurement, and compromised wound healing. Since there is no effective cure, animal model systems that support basic science research into the mechanisms of secondary lymphedema are critical to advancing the field. Recent Advances: Over the last decade, lymphatic research has led to the improvement of existing animal lymphedema models and the establishment of new models. Although an ideal model does not exist, it is important to consider the strengths and limitations of currently available options. In a systematic review adhering to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we present recent developments in the field of animal lymphedema models and provide a concise comparison of ease, cost, reliability, and clinical translatability. Critical Issues: The incidence of secondary lymphedema is increasing, and there is no gold standard of treatment or cure for secondary lymphedema. Future Directions: As we iterate and create animal models that more closely characterize human lymphedema, we can achieve a deeper understanding of the pathophysiology and potentially develop effective therapeutics for patients.
Collapse
Affiliation(s)
- Jerry F. Hsu
- Division of Plastic and Reconstructive Surgery, Keck School of Medicine of USC, Los Angeles, California, USA.,Division of Plastic Surgery, City of Hope National Medical Center, Duarte, California, USA.,Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Roy P. Yu
- Division of Plastic and Reconstructive Surgery, Keck School of Medicine of USC, Los Angeles, California, USA
| | - Eloise W. Stanton
- Division of Plastic and Reconstructive Surgery, Keck School of Medicine of USC, Los Angeles, California, USA
| | - Jin Wang
- Division of Plastic and Reconstructive Surgery, Keck School of Medicine of USC, Los Angeles, California, USA.,Division of Plastic Surgery, City of Hope National Medical Center, Duarte, California, USA
| | - Alex K. Wong
- Division of Plastic and Reconstructive Surgery, Keck School of Medicine of USC, Los Angeles, California, USA.,Division of Plastic Surgery, City of Hope National Medical Center, Duarte, California, USA.,Correspondence: Division of Plastic Surgery, City of Hope National Medical Center, 1500 E. Duarte Road, Pavillion 2216, Duarte, CA 91010, USA.
| |
Collapse
|
7
|
Bonetti G, Paolacci S, Samaja M, Maltese PE, Michelini S, Michelini S, Michelini S, Ricci M, Cestari M, Dautaj A, Medori MC, Bertelli M. Low Efficacy of Genetic Tests for the Diagnosis of Primary Lymphedema Prompts Novel Insights into the Underlying Molecular Pathways. Int J Mol Sci 2022; 23:ijms23137414. [PMID: 35806420 PMCID: PMC9267137 DOI: 10.3390/ijms23137414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/16/2022] [Accepted: 06/29/2022] [Indexed: 02/07/2023] Open
Abstract
Lymphedema is a chronic inflammatory disorder caused by ineffective fluid uptake by the lymphatic system, with effects mainly on the lower limbs. Lymphedema is either primary, when caused by genetic mutations, or secondary, when it follows injury, infection, or surgery. In this study, we aim to assess to what extent the current genetic tests detect genetic variants of lymphedema, and to identify the major molecular pathways that underlie this rather unknown disease. We recruited 147 individuals with a clinical diagnosis of primary lymphedema and used established genetic tests on their blood or saliva specimens. Only 11 of these were positive, while other probands were either negative (63) or inconclusive (73). The low efficacy of such tests calls for greater insight into the underlying mechanisms to increase accuracy. For this purpose, we built a molecular pathways diagram based on a literature analysis (OMIM, Kegg, PubMed, Scopus) of candidate and diagnostic genes. The PI3K/AKT and the RAS/MAPK pathways emerged as primary candidates responsible for lymphedema diagnosis, while the Rho/ROCK pathway appeared less critical. The results of this study suggest the most important pathways involved in the pathogenesis of lymphedema, and outline the most promising diagnostic and candidate genes to diagnose this disease.
Collapse
Affiliation(s)
- Gabriele Bonetti
- MAGI’s LAB, 38068 Rovereto, Italy; (S.P.); (P.E.M.); (A.D.); (M.C.M.); (M.B.)
- Correspondence: ; Tel.: +39-0365-62-061
| | - Stefano Paolacci
- MAGI’s LAB, 38068 Rovereto, Italy; (S.P.); (P.E.M.); (A.D.); (M.C.M.); (M.B.)
| | | | | | - Sandro Michelini
- Vascular Diagnostics and Rehabilitation Service, Marino Hospital, ASL Roma 6, 00047 Marino, Italy;
| | - Serena Michelini
- Unit of Physical Medicine, “Sapienza” University of Rome, 00185 Rome, Italy;
| | | | - Maurizio Ricci
- Division of Rehabilitation Medicine, Azienda Ospedaliero-Universitaria, Ospedali Riuniti di Ancona, 60126 Ancona, Italy;
| | - Marina Cestari
- Study Centre Pianeta Linfedema, 05100 Terni, Italy;
- Lymphology Sector of the Rehabilitation Service, USLUmbria2, 05100 Terni, Italy
| | - Astrit Dautaj
- MAGI’s LAB, 38068 Rovereto, Italy; (S.P.); (P.E.M.); (A.D.); (M.C.M.); (M.B.)
| | - Maria Chiara Medori
- MAGI’s LAB, 38068 Rovereto, Italy; (S.P.); (P.E.M.); (A.D.); (M.C.M.); (M.B.)
| | - Matteo Bertelli
- MAGI’s LAB, 38068 Rovereto, Italy; (S.P.); (P.E.M.); (A.D.); (M.C.M.); (M.B.)
- MAGI Group, 25010 San Felice del Benaco, Italy;
- MAGI Euregio, 39100 Bolzano, Italy
| |
Collapse
|
8
|
Lymphatic Tissue Bioengineering for the Treatment of Postsurgical Lymphedema. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9040162. [PMID: 35447722 PMCID: PMC9025804 DOI: 10.3390/bioengineering9040162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/17/2022] [Accepted: 03/20/2022] [Indexed: 01/28/2023]
Abstract
Lymphedema is characterized by progressive and chronic tissue swelling and inflammation from local accumulation of interstitial fluid due to lymphatic injury or dysfunction. It is a debilitating condition that significantly impacts a patient's quality of life, and has limited treatment options. With better understanding of the molecular mechanisms and pathophysiology of lymphedema and advances in tissue engineering technologies, lymphatic tissue bioengineering and regeneration have emerged as a potential therapeutic option for postsurgical lymphedema. Various strategies involving stem cells, lymphangiogenic factors, bioengineered matrices and mechanical stimuli allow more precisely controlled regeneration of lymphatic tissue at the site of lymphedema without subjecting patients to complications or iatrogenic injuries associated with surgeries. This review provides an overview of current innovative approaches of lymphatic tissue bioengineering that represent a promising treatment option for postsurgical lymphedema.
Collapse
|
9
|
Vázquez R, Riveiro ME, Berenguer-Daizé C, O'Kane A, Gormley J, Touzelet O, Rezai K, Bekradda M, Ouafik L. Targeting Adrenomedullin in Oncology: A Feasible Strategy With Potential as Much More Than an Alternative Anti-Angiogenic Therapy. Front Oncol 2021; 10:589218. [PMID: 33489885 PMCID: PMC7815935 DOI: 10.3389/fonc.2020.589218] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/02/2020] [Indexed: 12/18/2022] Open
Abstract
The development, maintenance and metastasis of solid tumors are highly dependent on the formation of blood and lymphatic vessels from pre-existing ones through a series of processes that are respectively known as angiogenesis and lymphangiogenesis. Both are mediated by specific growth-stimulating molecules, such as the vascular endothelial growth factor (VEGF) and adrenomedullin (AM), secreted by diverse cell types which involve not only the cancerogenic ones, but also those constituting the tumor stroma (i.e., macrophages, pericytes, fibroblasts, and endothelial cells). In this sense, anti-angiogenic therapy represents a clinically-validated strategy in oncology. Current therapeutic approaches are mainly based on VEGF-targeting agents, which, unfortunately, are usually limited by toxicity and/or tumor-acquired resistance. AM is a ubiquitous peptide hormone mainly secreted in the endothelium with an important involvement in blood vessel development and cardiovascular homeostasis. In this review, we will introduce the state-of-the-art in terms of AM physiology, while putting a special focus on its pro-tumorigenic role, and discuss its potential as a therapeutic target in oncology. A large amount of research has evidenced AM overexpression in a vast majority of solid tumors and a correlation between AM levels and disease stage, progression and/or vascular density has been observed. The analysis presented here indicates that the involvement of AM in the pathogenesis of cancer arises from: 1) direct promotion of cell proliferation and survival; 2) increased vascularization and the subsequent supply of nutrients and oxygen to the tumor; 3) and/or alteration of the cell phenotype into a more aggressive one. Furthermore, we have performed a deep scrutiny of the pathophysiological prominence of each of the AM receptors (AM1 and AM2) in different cancers, highlighting their differential locations and functions, as well as regulatory mechanisms. From the therapeutic point of view, we summarize here an exhaustive series of preclinical studies showing a reduction of tumor angiogenesis, metastasis and growth following treatment with AM-neutralizing antibodies, AM receptor antagonists, or AM receptor interference. Anti-AM therapy is a promising strategy to be explored in oncology, not only as an anti-angiogenic alternative in the context of acquired resistance to VEGF treatment, but also as a potential anti-metastatic approach.
Collapse
Affiliation(s)
- Ramiro Vázquez
- Preclinical Department, Early Drug Development Group (E2DG), Boulogne-Billancourt, France.,Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - Maria E Riveiro
- Preclinical Department, Early Drug Development Group (E2DG), Boulogne-Billancourt, France
| | | | - Anthony O'Kane
- Discovery and Scientific Affairs Department, Fusion Antibodies plc., Belfast, United Kingdom
| | - Julie Gormley
- Discovery and Scientific Affairs Department, Fusion Antibodies plc., Belfast, United Kingdom
| | - Olivier Touzelet
- Discovery and Scientific Affairs Department, Fusion Antibodies plc., Belfast, United Kingdom
| | - Keyvan Rezai
- Department of Radio-Pharmacology, Institute Curie-René Huguenin Hospital, Saint-Cloud, France
| | - Mohamed Bekradda
- Preclinical Department, Early Drug Development Group (E2DG), Boulogne-Billancourt, France
| | - L'Houcine Ouafik
- Aix Marseille University, CNRS, INP, Institute of NeuroPhysiopathology, Marseille, France.,APHM, CHU Nord, Service de Transfert d'Oncologie Biologique, Marseille, France
| |
Collapse
|
10
|
Abstract
The lymphatic vasculature is a vital component of the vertebrate vascular system that mediates tissue fluid homeostasis, lipid uptake and immune surveillance. The development of the lymphatic vasculature starts in the early vertebrate embryo, when a subset of blood vascular endothelial cells of the cardinal veins acquires lymphatic endothelial cell fate. These cells sprout from the veins, migrate, proliferate and organize to give rise to a highly structured and unique vascular network. Cellular cross-talk, cell-cell communication and the interpretation of signals from surrounding tissues are all essential for coordinating these processes. In this chapter, we highlight new findings and review research progress with a particular focus on LEC migration and guidance, expansion of the LEC lineage, network remodeling and morphogenesis of the lymphatic vasculature.
Collapse
|
11
|
Endogenous Calcitonin Gene–Related Peptide Deficiency Exacerbates Postoperative Lymphedema by Suppressing Lymphatic Capillary Formation and M2 Macrophage Accumulation. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:2487-2502. [DOI: 10.1016/j.ajpath.2019.08.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/08/2019] [Accepted: 08/15/2019] [Indexed: 02/06/2023]
|
12
|
Shindo T, Tanaka M, Kamiyoshi A, Ichikawa-Shindo Y, Kawate H, Yamauchi A, Sakurai T. Regulation of cardiovascular development and homeostasis by the adrenomedullin-RAMP system. Peptides 2019; 111:55-61. [PMID: 29689347 DOI: 10.1016/j.peptides.2018.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/05/2018] [Accepted: 04/09/2018] [Indexed: 11/18/2022]
Abstract
Adrenomedullin (AM), a member of the calcitonin peptide superfamily, is a peptide involved in both the pathogenesis of cardiovascular diseases and circulatory homeostasis. Its receptor, calcitonin receptor-like receptor (CLR), associates with an accessory protein, receptor activity-modifying protein (RAMP). Depending upon which the three RAMP isoforms (RAMP1-3) it interacts with, CLR functions as a receptor for AM or other calcitonin family peptides. AM knockout mice (-/-) died mid-gestation due to abnormalities in vascular development. We found that phenotypes similar to AM-/- were reproduced only in RAMP2-/- mice. We generated endothelial cell-specific RAMP2 knockout mice (E-RAMP2-/-) and found most E-RAMP2-/- mice died perinatally. In surviving adults, vasculitis and organ fibrosis occurred spontaneously. We next generated drug-inducible cardiac myocyte-specific RAMP2-/- (DI-C-RAMP2-/-) mice, which exhibited dilated cardiomyopathy-like heart failure with cardiac dilatation and myofibril disruption. DI-C-RAMP2-/- hearts also showed changes in mitochondrial structure and downregulation of mitochondria-related genes involved in oxidative phosphorylation and β-oxidation. In contrast to RAMP2-/- mice, RAMP3-/- mice were born with no major abnormalities. In adult RAMP3-/- mice, postnatal angiogenesis was normal, but drainage of subcutaneous lymphatic vessels was delayed. RAMP3-/- mice also showed more severe interstitial edema than in wild-type mice in a tail lymphedema model. These findings show that the AM-RAMP system is a key determinant of cardiovascular integrity and homeostasis from prenatal stages through adulthood. The AM-RAMP2 system mainly regulates vascular development and homeostasis, while the AM-RAMP3 system mainly regulates lymphatic function in adults. The AM-RAMP system may thus have therapeutic potential for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Takayuki Shindo
- Department of Cardiovascular Research, Shinshu University Graduate School of Medicine, Nagano, Japan.
| | - Megumu Tanaka
- Department of Cardiovascular Research, Shinshu University Graduate School of Medicine, Nagano, Japan
| | - Akiko Kamiyoshi
- Department of Cardiovascular Research, Shinshu University Graduate School of Medicine, Nagano, Japan
| | - Yuka Ichikawa-Shindo
- Department of Cardiovascular Research, Shinshu University Graduate School of Medicine, Nagano, Japan
| | - Hisaka Kawate
- Department of Cardiovascular Research, Shinshu University Graduate School of Medicine, Nagano, Japan
| | - Akihiro Yamauchi
- Department of Cardiovascular Research, Shinshu University Graduate School of Medicine, Nagano, Japan; Japan Bio Products Co., Ltd., Tokyo, Japan
| | - Takayuki Sakurai
- Department of Cardiovascular Research, Shinshu University Graduate School of Medicine, Nagano, Japan
| |
Collapse
|
13
|
Lymphedema: Diagnostic workup and management. J Am Acad Dermatol 2017; 77:995-1006. [PMID: 29132859 DOI: 10.1016/j.jaad.2017.03.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 02/21/2017] [Accepted: 03/06/2017] [Indexed: 12/19/2022]
Abstract
Lymphedema is a localized form of tissue swelling resulting from excessive retention of lymphatic fluid in the interstitial compartment. It is caused by impaired lymphatic drainage. Lymphedema is a chronic progressive disease with serious physical and psychosocial implications. It can be challenging to diagnose, especially in obese patients and in those with coexisting venous disease. We performed PubMed and Google Scholar searches of the English-language literature (1966-2017) using the terms lymphedema, lymphedema management, and lymphatic complications. Relevant publications were manually reviewed for additional resources. There are currently no standard guidelines for the diagnosis of lymphedema. There is no cure yet for lymphedema, and the objective for management is to limit disease progression and prevent complications.
Collapse
|
14
|
Thomas CL, Mortimer PS, Larkin JM, Basu TN, Gore ME, Fearfield L. A mitogen-activated protein kinase kinase inhibitor induced compound skin toxicity with oedema in metastatic malignant melanoma. Clin Exp Dermatol 2015; 41:267-71. [PMID: 26411345 DOI: 10.1111/ced.12722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2015] [Indexed: 12/26/2022]
Abstract
We report three cases of skin toxicity associated with oral mitogen-activated protein kinase kinase (MEK) inhibitor treatment for metastatic malignant melanoma (MM). All three patients developed oedema, and a single patient experienced eyelash trichomegaly. This is the first known report of eyelash trichomegaly secondary to MEK inhibitor use. We also discuss possible mechanisms for MEK inhibitor-associated oedema development. This series supports the role of the dermatologist in the screening and management of patients in the rapidly developing oncology setting, as new targeted agents can give rise to marked skin toxicity.
Collapse
Affiliation(s)
- C L Thomas
- Department of Dermatology, St George's Hospital, London, UK
| | - P S Mortimer
- Department of Dermatology, St George's Hospital, London, UK.,Department of Dermatology, The Royal Marsden Hospital, London, UK
| | - J M Larkin
- Department of Oncology, The Royal Marsden Hospital, London, UK
| | - T N Basu
- Department of Dermatology, King's College Hospital, London, UK
| | - M E Gore
- Department of Oncology, The Royal Marsden Hospital, London, UK
| | - L Fearfield
- Department of Dermatology, The Royal Marsden Hospital, London, UK
| |
Collapse
|
15
|
Klein KR, Caron KM. Adrenomedullin in lymphangiogenesis: from development to disease. Cell Mol Life Sci 2015; 72:3115-26. [PMID: 25953627 PMCID: PMC11113374 DOI: 10.1007/s00018-015-1921-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 04/01/2015] [Accepted: 04/29/2015] [Indexed: 12/01/2022]
Abstract
Over the past decade, we have begun to appreciate that the lymphatic vascular system does more than simply return plasma back into the circulatory system and, in fact, contributes to a wide variety of normal and disease states. For this reason, much research has been devoted to understanding how lymphatic vessels form and function, with a particular interest in which molecules contribute to lymphatic vessel growth and maintenance. In the following review, we focus on a potent lymphangiogenic factor, adrenomedullin, and its known roles in lymphangiogenesis, lymphatic function, and human lymphatic disease. As one of the first, pharmacologically tractable G protein-coupled receptor pathways characterized in lymphatic endothelial cells, the continued study of adrenomedullin effects on the lymphatic system may open new avenues for the modulation of lymphatic growth and function in a variety of lymphatic-related diseases that currently have few treatments.
Collapse
Affiliation(s)
- Klara R. Klein
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, CB # 7545, 6312B MBRB, 111 Mason Farm Road, Chapel Hill, NC 27599 USA
| | - Kathleen M. Caron
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, CB # 7545, 6312B MBRB, 111 Mason Farm Road, Chapel Hill, NC 27599 USA
- Department of Genetics, The University of North Carolina, Chapel Hill, NC 27599 USA
| |
Collapse
|
16
|
Koyama T, Sakurai T, Kamiyoshi A, Ichikawa-Shindo Y, Kawate H, Shindo T. Adrenomedullin-RAMP2 System in Vascular Endothelial Cells. J Atheroscler Thromb 2015; 22:647-53. [DOI: 10.5551/jat.29967] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Teruhide Koyama
- Department of Epidemiology for Community Health and Medicine, Kyoto Prefectural University of Medicine Graduate School of Medical Science
- Department of Cardiovascular Research, Shinshu University Graduate School of Medicine
| | - Takayuki Sakurai
- Department of Cardiovascular Research, Shinshu University Graduate School of Medicine
| | - Akiko Kamiyoshi
- Department of Cardiovascular Research, Shinshu University Graduate School of Medicine
| | - Yuka Ichikawa-Shindo
- Department of Cardiovascular Research, Shinshu University Graduate School of Medicine
| | - Hisaka Kawate
- Department of Cardiovascular Research, Shinshu University Graduate School of Medicine
| | - Takayuki Shindo
- Department of Cardiovascular Research, Shinshu University Graduate School of Medicine
| |
Collapse
|
17
|
Yamauchi A, Sakurai T, Kamiyoshi A, Ichikawa-Shindo Y, Kawate H, Igarashi K, Toriyama Y, Tanaka M, Liu T, Xian X, Imai A, Zhai L, Owa S, Arai T, Shindo T. Functional differentiation of RAMP2 and RAMP3 in their regulation of the vascular system. J Mol Cell Cardiol 2014; 77:73-85. [DOI: 10.1016/j.yjmcc.2014.09.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 09/12/2014] [Accepted: 09/15/2014] [Indexed: 01/08/2023]
|
18
|
Klein KR, Karpinich NO, Espenschied ST, Willcockson HH, Dunworth WP, Hoopes SL, Kushner EJ, Bautch VL, Caron KM. Decoy receptor CXCR7 modulates adrenomedullin-mediated cardiac and lymphatic vascular development. Dev Cell 2014; 30:528-40. [PMID: 25203207 DOI: 10.1016/j.devcel.2014.07.012] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 06/06/2014] [Accepted: 07/14/2014] [Indexed: 01/08/2023]
Abstract
Atypical 7-transmembrane receptors, often called decoy receptors, act promiscuously as molecular sinks to regulate ligand bioavailability and consequently temper the signaling of canonical G protein-coupled receptor (GPCR) pathways. Loss of mammalian CXCR7, the most recently described decoy receptor, results in postnatal lethality due to aberrant cardiac development and myocyte hyperplasia. Here, we provide the molecular underpinning for this proliferative phenotype by demonstrating that the dosage and signaling of adrenomedullin (Adm, gene; AM, protein)-a mitogenic peptide hormone required for normal cardiovascular development-is tightly controlled by CXCR7. To this end, Cxcr7(-/-) mice exhibit gain-of-function cardiac and lymphatic vascular phenotypes that can be reversed upon genetic depletion of adrenomedullin ligand. In addition to identifying a biological ligand accountable for the phenotypes of Cxcr7(-/-) mice, these results reveal a previously underappreciated role for decoy receptors as molecular rheostats in controlling the timing and extent of GPCR-mediated cardiac and vascular development.
Collapse
Affiliation(s)
- Klara R Klein
- Department of Cell Biology and Physiology, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Natalie O Karpinich
- Department of Cell Biology and Physiology, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Scott T Espenschied
- Department of Cell Biology and Physiology, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Helen H Willcockson
- Department of Cell Biology and Physiology, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - William P Dunworth
- Department of Genetics, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Samantha L Hoopes
- Department of Cell Biology and Physiology, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Erich J Kushner
- Department of Biology, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Victoria L Bautch
- Department of Biology, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Kathleen M Caron
- Department of Cell Biology and Physiology, The University of North Carolina, Chapel Hill, NC 27599, USA; Department of Genetics, The University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
19
|
Nikitenko LL, Leek R, Henderson S, Pillay N, Turley H, Generali D, Gunningham S, Morrin HR, Pellagatti A, Rees MC, Harris AL, Fox SB. The G-protein-coupled receptor CLR is upregulated in an autocrine loop with adrenomedullin in clear cell renal cell carcinoma and associated with poor prognosis. Clin Cancer Res 2013; 19:5740-8. [PMID: 23969937 PMCID: PMC3836221 DOI: 10.1158/1078-0432.ccr-13-1712] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The G-protein-coupled receptor (GPCR) calcitonin receptor-like receptor (CLR) and its ligand peptide adrenomedullin (encoded by ADM gene) are implicated in tumor angiogenesis in mouse models but poorly defined in human cancers. We therefore investigated the diagnostic/prognostic use for CLR in human tumor types that may rely on adrenomedullin signaling and in clear cell renal cell carcinoma (RCC), a highly vascular tumor, in particular. EXPERIMENTAL DESIGN In silico gene expression mRNA profiling microarray study (n = 168 tumors) and cancer profiling cDNA array hybridization (n = 241 pairs of patient-matched tumor/normal tissue samples) were carried out to analyze ADM mRNA expression in 13 tumor types. Immunohistochemistry on tissue microarrays containing patient-matched renal tumor/normal tissues (n = 87 pairs) was conducted to study CLR expression and its association with clinicopathologic parameters and disease outcome. RESULTS ADM expression was significantly upregulated only in RCC and endometrial adenocarcinoma compared with normal tissue counterparts (P < 0.01). CLR was localized in tumor cells and vessels in RCC and upregulated as compared with patient-matched normal control kidney (P < 0.001). Higher CLR expression was found in advanced stages (P < 0.05), correlated with high tumor grade (P < 0.01) and conferred shorter overall survival (P < 0.01). CONCLUSIONS In human tissues ADM expression is upregulated in cancer type-specific manner, implicating potential role for adrenomedullin signaling in particular in RCC, where CLR localization suggests autocrine/paracrine mode for adrenomedullin action within the tumor microenvironment. Our findings reveal previously unrecognized CLR upregulation in an autocrine loop with adrenomedullin in RCC with potential application for this GPCR as a target for future functional studies and drug development.
Collapse
Affiliation(s)
- Leonid L. Nikitenko
- Cancer Research UK Viral Oncology Group, UCL Cancer Institute, University College London, London, United Kingdom
- Keble College, Oxford, United Kingdom
- Linacre College, Oxford, United Kingdom
- Scientific Centre of the Family Health and Human Reproduction Problems, Siberian Branch of Russian Academy of Medical Sciences, Irkutsk, Russia
| | - Russell Leek
- Nuffield Department of Clinical Laboratory Sciences, Weatherall Institute of Molecular Medicine
| | - Stephen Henderson
- Cancer Research UK Viral Oncology Group, UCL Cancer Institute, University College London, London, United Kingdom
| | - Nischalan Pillay
- Sarcoma Biology Group , UCL Cancer Institute, University College London, London, United Kingdom
| | - Helen Turley
- Nuffield Department of Clinical Laboratory Sciences, Weatherall Institute of Molecular Medicine
| | - Daniele Generali
- Cancer Research UK Oncology Laboratory, Weatherall Institute of Molecular Medicine
- Unità di Patologia Mammaria Senologia e Breast Unit Centro di Medicina Molecolare Istituti Ospitalieri di Cremona, Viale Concordia 1, 26100, Cremona, Italy
| | - Sarah Gunningham
- Department of Pathology, University of Otago, Christchurch 8140, New Zealand
| | - Helen R. Morrin
- Cancer Society Tissue Bank, University of Otago, Christchurch 8140, New Zealand
| | - Andrea Pellagatti
- Nuffield Department of Clinical Laboratory Sciences, Weatherall Institute of Molecular Medicine
| | - Margaret C.P. Rees
- Nuffield Department of Obstetrics and Gynaecology; University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Adrian L. Harris
- Cancer Research UK Oncology Laboratory, Weatherall Institute of Molecular Medicine
| | - Stephen B. Fox
- Department of Pathology, University of Melbourne, Parkville, VIC, 3010
- Department of Pathology, Peter MacCallum Cancer Centre, VIC, 3002, Melbourne, Australia
| |
Collapse
|