1
|
Rhodes LE. Vitamin D status in patients with erythropoietic protoporphyria taking the systemic photoprotective agent afamelanotide. Br J Dermatol 2024; 191:317-318. [PMID: 38736212 DOI: 10.1093/bjd/ljae191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 05/14/2024]
Affiliation(s)
- Lesley E Rhodes
- Dermatology Centre, School of Biological Sciences, Faculty of Biology Medicine & Health, The University of Manchester, Manchester, UK
- Salford Royal Hospital, Northern Care Alliance NHS Foundation Trust, Greater Manchester, UK
| |
Collapse
|
2
|
Yuan XC, Tao YX. Ligands for Melanocortin Receptors: Beyond Melanocyte-Stimulating Hormones and Adrenocorticotropin. Biomolecules 2022; 12:biom12101407. [PMID: 36291616 PMCID: PMC9599618 DOI: 10.3390/biom12101407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/25/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
The discovery of melanocortins in 1916 has resulted in more than 100 years of research focused on these peptides. Extensive studies have elucidated well-established functions of melanocortins mediated by cell surface receptors, including MSHR (melanocyte-stimulating hormone receptor) and ACTHR (adrenocorticotropin receptor). Subsequently, three additional melanocortin receptors (MCRs) were identified. Among these five MCRs, MC3R and MC4R are expressed primarily in the central nervous system, and are therefore referred to as the neural MCRs. Since the central melanocortin system plays important roles in regulating energy homeostasis, targeting neural MCRs is emerging as a therapeutic approach for treating metabolic conditions such as obesity and cachexia. Early efforts modifying endogenous ligands resulted in the development of many potent and selective ligands. This review focuses on the ligands for neural MCRs, including classical ligands (MSH and agouti-related peptide), nonclassical ligands (lipocalin 2, β-defensin, small molecules, and pharmacoperones), and clinically approved ligands (ACTH, setmelanotide, bremelanotide, and several repurposed drugs).
Collapse
Affiliation(s)
- Xiao-Chen Yuan
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230061, China
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
- Correspondence:
| |
Collapse
|
3
|
Obi CD, Bhuiyan T, Dailey HA, Medlock AE. Ferrochelatase: Mapping the Intersection of Iron and Porphyrin Metabolism in the Mitochondria. Front Cell Dev Biol 2022; 10:894591. [PMID: 35646904 PMCID: PMC9133952 DOI: 10.3389/fcell.2022.894591] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/14/2022] [Indexed: 12/29/2022] Open
Abstract
Porphyrin and iron are ubiquitous and essential for sustaining life in virtually all living organisms. Unlike iron, which exists in many forms, porphyrin macrocycles are mostly functional as metal complexes. The iron-containing porphyrin, heme, serves as a prosthetic group in a wide array of metabolic pathways; including respiratory cytochromes, hemoglobin, cytochrome P450s, catalases, and other hemoproteins. Despite playing crucial roles in many biological processes, heme, iron, and porphyrin intermediates are potentially cytotoxic. Thus, the intersection of porphyrin and iron metabolism at heme synthesis, and intracellular trafficking of heme and its porphyrin precursors are tightly regulated processes. In this review, we discuss recent advances in understanding the physiological dynamics of eukaryotic ferrochelatase, a mitochondrially localized metalloenzyme. Ferrochelatase catalyzes the terminal step of heme biosynthesis, the insertion of ferrous iron into protoporphyrin IX to produce heme. In most eukaryotes, except plants, ferrochelatase is localized to the mitochondrial matrix, where substrates are delivered and heme is synthesized for trafficking to multiple cellular locales. Herein, we delve into the structural and functional features of ferrochelatase, as well as its metabolic regulation in the mitochondria. We discuss the regulation of ferrochelatase via post-translational modifications, transportation of substrates and product across the mitochondrial membrane, protein-protein interactions, inhibition by small-molecule inhibitors, and ferrochelatase in protozoal parasites. Overall, this review presents insight on mitochondrial heme homeostasis from the perspective of ferrochelatase.
Collapse
Affiliation(s)
- Chibuike David Obi
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Tawhid Bhuiyan
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Harry A. Dailey
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
- Department of Microbiology, University of Georgia, Athens, GA, United States
| | - Amy E. Medlock
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
- Augusta University/University of Georgia Medical Partnership, University of Georgia, Athens, GA, United States
| |
Collapse
|
4
|
Böhm M, Schunter JA, Fritz K, Salavastru C, Dargatz S, Augustin M, Tanew A. S1-Leitlinie: Diagnostik und Therapie der Vitiligo. J Dtsch Dermatol Ges 2022; 20:365-379. [PMID: 35304960 DOI: 10.1111/ddg.14713_g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/01/2021] [Indexed: 11/28/2022]
Affiliation(s)
- Markus Böhm
- Klinik für Hautkrankheiten, Universitätsklinikum Münster, Münster, Deutschland
| | - Jo Ana Schunter
- Klinik für Hautkrankheiten, Universitätsklinikum Münster, Münster, Deutschland
| | - Klaus Fritz
- Hautarztpraxis und Laserzentrum Landau, Landau, Deutschland
| | - Carmen Salavastru
- Universität Carol Davila, Pädiatrische Dermatologie, Bukarest, Rumänien
| | | | - Matthias Augustin
- Institut für Versorgungsforschung in der Dermatologie und bei Pflegeberufen, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Deutschland
| | - Adrian Tanew
- Universitätsklinik für Dermatologie, Medizinische Universität Wien, Wien, Österreich
| |
Collapse
|
5
|
Datta D, Madke B, Das A. Skin as an endocrine organ: A narrative review. Indian J Dermatol Venereol Leprol 2022; 88:590-597. [PMID: 35389023 DOI: 10.25259/ijdvl_533_2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 11/01/2021] [Indexed: 12/21/2022]
Abstract
Skin being the largest organ of the body, is equipped with numerous functional properties. Over the past few years, intricate research into the biology of skin has led to a gamut of discoveries. Skin is now regarded as one of the most vital endocrine organs. The skin contains equivalents of the hypothalamo-pituitary-adrenal axis, hypothalamo-pituitary-thyroid axis and the appendages produce multiple hormones such as Vitamin D, sex steroids, retinoids and opioids. In this article, we will explore the role of skin as a target and source of some of the hormones of the human body, and briefly touch on the clinical applications.
Collapse
Affiliation(s)
- Debatri Datta
- Oliva Skin and Hair Clinic, Kolkata, West Bengal, India
| | - Bhushan Madke
- Department of Dermatology, Jawaharlal Nehru Medical College and AVBR Hospital, Wardha, Maharashtra, India
| | - Anupam Das
- Department of Dermatology, KPC Medical College and Hospital, Kolkata, West Bengal, India
| |
Collapse
|
6
|
Böhm M, Schunter JA, Fritz K, Salavastru C, Dargatz S, Augustin M, Tanew A. S1 Guideline: Diagnosis and therapy of vitiligo. J Dtsch Dermatol Ges 2022; 20:365-378. [PMID: 35246935 DOI: 10.1111/ddg.14713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/01/2021] [Indexed: 01/01/2023]
Abstract
Vitiligo is a common skin disorder characterized by immune-mediated destruction of melanocytes. Non-segmental vitiligo, the most common clinical subtype, has usually a chronic course and often results in significant psychosocial consequences for the affected patient. Early recognition, awareness of comorbidity, precise assessment of disease extent and activity, evaluation of impairment of quality of life as well as rapid initiation of treatment based on currently available evidence-based therapies are crucial cornerstones in the management of vitiligo. This S1 guideline helps German dermatologists to better diagnose and treat vitiligo.
Collapse
Affiliation(s)
- Markus Böhm
- Department of Dermatology, University Hospital Münster, Münster, Germany
| | - Jo Ana Schunter
- Department of Dermatology, University Hospital Münster, Münster, Germany
| | - Klaus Fritz
- Dermatology Office and Laser Center Landau, Landau, Germany
| | - Carmen Salavastru
- Department of Pediatric Dermatology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | | | - Matthias Augustin
- Institute for Health Services Research in Dermatology and Nursing, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Adrian Tanew
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
7
|
Structural mechanism of calcium-mediated hormone recognition and Gβ interaction by the human melanocortin-1 receptor. Cell Res 2021; 31:1061-1071. [PMID: 34453129 PMCID: PMC8486761 DOI: 10.1038/s41422-021-00557-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/30/2021] [Indexed: 02/07/2023] Open
Abstract
Melanocortins are peptide hormones critical for the regulation of stress response, energy homeostasis, inflammation, and skin pigmentation. Their functions are mediated by five G protein-coupled receptors (MC1R-MC5R), predominately through the stimulatory G protein (Gs). MC1R, the founding member of melanocortin receptors, is mainly expressed in melanocytes and is involved in melanogenesis. Dysfunction of MC1R is associated with the development of melanoma and skin cancer. Here we present three cryo-electron microscopy structures of the MC1R-Gs complexes bound to endogenous hormone α-MSH, a marketed drug afamelanotide, and a synthetic agonist SHU9119. These structures reveal the orthosteric binding pocket for the conserved HFRW motif among melanocortins and the crucial role of calcium ion in ligand binding. They also demonstrate the basis of differential activities among different ligands. In addition, unexpected interactions between MC1R and the Gβ subunit were discovered from these structures. Together, our results elucidate a conserved mechanism of calcium-mediated ligand recognition, a specific mode of G protein coupling, and a universal activation pathway of melanocortin receptors.
Collapse
|
8
|
Yeo GSH, Chao DHM, Siegert AM, Koerperich ZM, Ericson MD, Simonds SE, Larson CM, Luquet S, Clarke I, Sharma S, Clément K, Cowley MA, Haskell-Luevano C, Van Der Ploeg L, Adan RAH. The melanocortin pathway and energy homeostasis: From discovery to obesity therapy. Mol Metab 2021; 48:101206. [PMID: 33684608 PMCID: PMC8050006 DOI: 10.1016/j.molmet.2021.101206] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 02/28/2021] [Accepted: 03/03/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Over the past 20 years, insights from human and mouse genetics have illuminated the central role of the brain leptin-melanocortin pathway in controlling mammalian food intake, with genetic disruption resulting in extreme obesity, and more subtle polymorphic variations influencing the population distribution of body weight. At the end of 2020, the U.S. Food and Drug Administration (FDA) approved setmelanotide, a melanocortin 4 receptor agonist, for use in individuals with severe obesity due to either pro-opiomelanocortin (POMC), proprotein convertase subtilisin/kexin type 1 (PCSK1), or leptin receptor (LEPR) deficiency. SCOPE OF REVIEW Herein, we chart the melanocortin pathway's history, explore its pharmacology, genetics, and physiology, and describe how a neuropeptidergic circuit became an important druggable obesity target. MAJOR CONCLUSIONS Unravelling the genetics of the subset of severe obesity has revealed the importance of the melanocortin pathway in appetitive control; coupling this with studying the molecular pharmacology of compounds that bind melanocortin receptors has brought a new obesity drug to the market. This process provides a drug discovery template for complex disorders, which for setmelanotide took 25 years to transform from a single gene into an approved drug.
Collapse
Affiliation(s)
- Giles S H Yeo
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK.
| | | | - Anna-Maria Siegert
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK.
| | - Zoe M Koerperich
- Department of Medicinal Chemistry and Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, USA 55455.
| | - Mark D Ericson
- Department of Medicinal Chemistry and Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, USA 55455.
| | - Stephanie E Simonds
- Metabolism, Diabetes, and Obesity Programme, Monash Biomedicine Discovery Institute, and Department of Physiology, Monash University, Clayton, Victoria, Australia.
| | - Courtney M Larson
- Department of Medicinal Chemistry and Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, USA 55455.
| | - Serge Luquet
- Université de Paris, BFA, UMR 8251, CNRS, Paris, France.
| | - Iain Clarke
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC 3010, Australia.
| | | | - Karine Clément
- Assistance Publique Hôpitaux de Paris, Nutrition Department, Pitié-Salpêtrière Hospital, Paris, France, Sorbonne Université, INSERM, Nutrition and Obesity: Systemic Approaches (NutriOmics) Research Unit, Paris, France.
| | - Michael A Cowley
- Metabolism, Diabetes, and Obesity Programme, Monash Biomedicine Discovery Institute, and Department of Physiology, Monash University, Clayton, Victoria, Australia.
| | - Carrie Haskell-Luevano
- Department of Medicinal Chemistry and Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, USA 55455.
| | | | - Roger A H Adan
- Department of Translational Neuroscience, UMCU Brain Centre, University Medical Centre Utrecht, Utrecht University, the Netherlands; Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Sweden.
| |
Collapse
|
9
|
Böhm M, Paus R. Towards a renaissance of dermatoendocrinology: Selected current frontiers. Exp Dermatol 2020; 29:786-789. [PMID: 33319935 DOI: 10.1111/exd.14177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Markus Böhm
- Department of Dermatology, University of Münster, Münster, Germany
| | - Ralf Paus
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.,Centre for Dermatology Research, University of Manchester and NIHR Biomedical Research Centre, Manchester, UK.,Monasterium Laboratory, Münster, Germany
| |
Collapse
|
10
|
Ramot Y, Böhm M, Paus R. Translational Neuroendocrinology of Human Skin: Concepts and Perspectives. Trends Mol Med 2020; 27:60-74. [PMID: 32981840 DOI: 10.1016/j.molmed.2020.09.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 08/28/2020] [Accepted: 09/01/2020] [Indexed: 12/19/2022]
Abstract
Human skin responds to numerous neurohormones, neuropeptides, and neurotransmitters that reach it via the vasculature or skin nerves, and/or are generated intracutaneously, thus acting in a para- and autocrine manner. This review focuses on how neurohormones impact on human skin physiology and pathology. We highlight basic concepts, major open questions, and translational research perspectives in cutaneous neuroendocrinology and argue that greater emphasis on neuroendocrine human skin research will foster the development of novel dermatological therapies. Furthermore, human skin and its appendages can be used as highly accessible and clinically relevant model systems for probing nonclassical, ancestral neurohormone functions. This calls for close interdisciplinary collaboration between dermatologists, skin biologists, neuroendocrinologists, and neuropharmacologists.
Collapse
Affiliation(s)
- Yuval Ramot
- Department of Dermatology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| | - Markus Böhm
- Department of Dermatology, University of Münster, Münster, Germany
| | - Ralf Paus
- Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA; Monasterium Laboratory, Münster, Germany; Centre for Dermatology Research, University of Manchester, Manchester, UK.
| |
Collapse
|
11
|
Stegemann A, Böhm M. Targeting the α7 nicotinic acetylcholine receptor-A novel road towards the future treatment of skin diseases. Exp Dermatol 2020; 29:924-931. [PMID: 32780438 DOI: 10.1111/exd.14173] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 12/11/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are members of the superfamily of neurotransmitter-gated ion channels. The natural ligand for nAChRs is the endogenous neurotransmitter acetylcholine. Among the nAChRs is the α7nAChR. It is not only expressed by neural tissues but also in the skin. A number of different resident cutaneous cell types including epidermal keratinocytes, sebocytes and dermal fibroblasts express functional α7nAChR. Moreover, cells of the immune system such as lymphocytes, macrophages and monocytes, playing an important role in skin homeostasis, also express α7nAChR. Translational research focusing on the exploitation of the α7nAChR in dermatology has revealed that this neuroendocrine receptor could be promising target for the treatment of inflammatory skin diseases. For example, α7nAChR agonists can counteract transforming growth factor-β1-mediated responses in dermal fibroblasts, key effector cells in scleroderma. In accordance with this α7nAChR, agonists are effective in both inflammation and non-inflammation-driven models of experimentally induced skin fibrosis. Moreover, α7nAChR agonists can modulate expression of proinflammatory cytokines in epidermal keratinocytes that are crucially involved in the pathogenesis of psoriasis and other inflammatory skin diseases. Finally, the capability of α7nAChR agonists to suppress ultraviolet light A/B-induced responses, for example production of proinflammatory cytokines and oxidative stress, the latter crucially involved in dermal photoageing, points to a potential of such agents in the prevention of extrinsic skin ageing. Therefore, emphasis on translational research targeting the α7nAChR in skin may lead to the development of new treatment and prevention modalities against fibrosclerotic skin diseases, psoriasis vulgaris, atopic dermatitis, acne, photodermatoses and extrinsic skin ageing.
Collapse
Affiliation(s)
| | - Markus Böhm
- Dept. of Dermatology, University of Münster, Germany
| |
Collapse
|
12
|
|
13
|
Kühnen P, Wiegand S, Biebermann H. Pharmacological treatment strategies for patients with monogenic obesity. J Pediatr Endocrinol Metab 2020; 33:/j/jpem.ahead-of-print/jpem-2020-0129/jpem-2020-0129.xml. [PMID: 32619193 DOI: 10.1515/jpem-2020-0129] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 04/04/2020] [Indexed: 12/29/2022]
Abstract
The leptin melanocortin signaling pathway is playing a pivotal role for body weight regulation. Genetic defects within this cascade are leading to severe hyperphagia and early onset obesity. In most cases, due to persistent hyperphagia the affected patients are not able to stabilize body weight for a longer period of time with conservative treatment strategies based on lifestyle interventions. Therefore, it is of importance to implement alternative treatment options for these patients. This review provides an overview about the published pharmacological treatment attempts in respect to monogenic forms of obesity and summarizes recent research progress about the role of MC4R signaling and POMC derivatives for body weight regulation.
Collapse
Affiliation(s)
- Peter Kühnen
- Institute for Experimental Pediatric Endocrinology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Susanna Wiegand
- Berlin Institute of Health, Augustenburger Platz 1, 13353 Berlin, Germany
- Center for Social-Pediatric Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Heike Biebermann
- Institute for Experimental Pediatric Endocrinology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Augustenburger Platz 1, 13353 Berlin, Germany
| |
Collapse
|
14
|
Böhm M, Luger T. Are melanocortin peptides future therapeutics for cutaneous wound healing? Exp Dermatol 2019; 28:219-224. [PMID: 30661264 DOI: 10.1111/exd.13887] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 10/29/2018] [Accepted: 11/20/2018] [Indexed: 12/11/2022]
Abstract
Cutaneous wound healing is a complex process divided into different phases, that is an inflammatory, proliferative and remodelling phase. During these phases, a variety of resident skin cell types but also cells of the immune system orchestrate the healing process. In the last year, it has been shown that the majority of cutaneous cell types express the melanocortin 1 receptor (MC1R) that binds α-melanocyte-stimulating hormone (α-MSH) with high affinity and elicits pleiotropic biological effects, for example modulation of inflammation and immune responses, cytoprotection, antioxidative defense and collagen turnover. Truncated α-MSH peptides such as Lys-Pro-Val (KPV) as well as derivatives like Lys-d-Pro-Thr (KdPT), the latter containing the amino acid sequence 193-195 of interleukin-1β, have been found to possess anti-inflammatory effects but to lack the pigment-inducing activity of α-MSH. We propose here that such peptides are promising future candidates for the treatment of cutaneous wounds and skin ulcers. Experimental approaches in silico, in vitro, ex vivo and in animal models are outlined. This is followed by an unbiased discussion of the pro and contra arguments of such peptides as future candidates for the therapeutic management of cutaneous wounds and a review of the so-far available data on melanocortin peptides and derivatives in wound healing.
Collapse
Affiliation(s)
- Markus Böhm
- Department of Dermatology, Laboratory for Neuroendocrinology of the Skin and Interdisciplinary Endocrinology, University of Münster, Münster, Germany
| | - Thomas Luger
- Department of Dermatology, Laboratory for Neuroendocrinology of the Skin and Interdisciplinary Endocrinology, University of Münster, Münster, Germany
| |
Collapse
|
15
|
Ericson MD, Lensing CJ, Fleming KA, Schlasner KN, Doering SR, Haskell-Luevano C. Bench-top to clinical therapies: A review of melanocortin ligands from 1954 to 2016. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2414-2435. [PMID: 28363699 PMCID: PMC5600687 DOI: 10.1016/j.bbadis.2017.03.020] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/21/2017] [Accepted: 03/27/2017] [Indexed: 10/19/2022]
Abstract
The discovery of the endogenous melanocortin agonists in the 1950s have resulted in sixty years of melanocortin ligand research. Early efforts involved truncations or select modifications of the naturally occurring agonists leading to the development of many potent and selective ligands. With the identification and cloning of the five known melanocortin receptors, many ligands were improved upon through bench-top in vitro assays. Optimization of select properties resulted in ligands adopted as clinical candidates. A summary of every melanocortin ligand is outside the scope of this review. Instead, this review will focus on the following topics: classic melanocortin ligands, selective ligands, small molecule (non-peptide) ligands, ligands with sex-specific effects, bivalent and multivalent ligands, and ligands advanced to clinical trials. Each topic area will be summarized with current references to update the melanocortin field on recent progress. This article is part of a Special Issue entitled: Melanocortin Receptors - edited by Ya-Xiong Tao.
Collapse
Affiliation(s)
- Mark D Ericson
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Cody J Lensing
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Katlyn A Fleming
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Katherine N Schlasner
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Skye R Doering
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | | |
Collapse
|
16
|
Lane AM, McKay JT, Bonkovsky HL. Advances in the management of erythropoietic protoporphyria - role of afamelanotide. Appl Clin Genet 2016; 9:179-189. [PMID: 28003770 PMCID: PMC5161401 DOI: 10.2147/tacg.s122030] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Erythropoietic protoporphyria (EPP) and the phenotypically similar disease X-linked protoporphyria (XLPP) are inherited cutaneous porphyrias characterized clinically by acute non-blistering photosensitivity, intolerance to sunlight, and significantly reduced quality of life. They are due to marked overproduction of protoporphyrin (PP) chiefly by erythroblasts and reticulocytes. In EPP, the underlying genetic defect is in the ferrochelatase gene, which encodes the final enzyme in the heme synthetic pathway. In XLPP, the genetic defect is a gain-of-function mutation, usually a four-base deletion, in the gene that encodes the enzyme 5-aminolevulinic acid synthase-2, the first and rate-controlling enzyme of heme synthesis in developing red blood cells. The excess PP causes acute and painful photosensitivity, being activated by light in the long ultraviolet to blue spectrum (380-420 nm, the Soret band). Although several treatments have been proposed, presently no very effective treatment exists for EPP or XLPP. Afamelanotide (Scenesse®) is a first-in-class synthetic analog of α-melanocyte stimulating hormone. Afamelanotide mimics the naturally occurring hormone to increase skin pigmentation by increasing melanin production in melanocytes, resulting in increased sunlight tolerance in those with EPP/XLPP. Afamelanotide is currently approved for use in the European Union and Switzerland, and it is under review in the United States by the Food and Drug Administration for use in patients with EPP/XLPP. This paper provides a review of the clinical characteristics and current therapies for EPP/XLPP. We discuss the pharmacology, clinical efficacy, safety, and tolerability of afamelanotide and summarize the results of several key Phase II and III clinical trials. These data indicate that afamelanotide is a promising therapy for those with these debilitating diseases.
Collapse
Affiliation(s)
- Ashley M Lane
- Department of Internal Medicine, Section on Gastroenterology
| | - Jerome T McKay
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | | |
Collapse
|
17
|
Böhm M, Jagirdar K, Sturm RA, König S, Bauer J, Metze D, Luger TA, Weishaupt C. Lack of protection from development of multiple melanomas by an injected melanocortin analogue in a combined high-risk MC1R/CDKN2A genotype patient. J Eur Acad Dermatol Venereol 2016; 30:e65-e67. [PMID: 26333485 DOI: 10.1111/jdv.13310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- M Böhm
- Department of Dermatology, University of Münster, Münster, Germany.
| | - K Jagirdar
- Dermatology Research Centre, School of Medicine, Translational Research Institute, The University of Queensland, Brisbane, Qld, Australia
| | - R A Sturm
- Dermatology Research Centre, School of Medicine, Translational Research Institute, The University of Queensland, Brisbane, Qld, Australia
| | - S König
- Proteomics Unit, Interdisciplinary Center for Clinical Research, University of Münster, Münster, Germany
| | - J Bauer
- Department of Dermatology, University of Tübingen, Tübingen, Germany
| | - D Metze
- Department of Dermatology, University of Münster, Münster, Germany
| | - T A Luger
- Department of Dermatology, University of Münster, Münster, Germany
| | - C Weishaupt
- Department of Dermatology, University of Münster, Münster, Germany
| |
Collapse
|
18
|
Todorovic A, Ericson MD, Palusak RD, Sorensen NB, Wood MS, Xiang Z, Haskell-Luevano C. Comparative Functional Alanine Positional Scanning of the α-Melanocyte Stimulating Hormone and NDP-Melanocyte Stimulating Hormone Demonstrates Differential Structure-Activity Relationships at the Mouse Melanocortin Receptors. ACS Chem Neurosci 2016; 7:984-94. [PMID: 27135265 PMCID: PMC5596636 DOI: 10.1021/acschemneuro.6b00098] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The melanocortin system has been implicated in the regulation of various physiological functions including melanogenesis, steroidogenesis, energy homeostasis, and feeding behavior. Five melanocortin receptors have been identified to date and belong to the family of G protein-coupled receptors (GPCR). Post-translational modification of the proopiomelanocortin (POMC) prohormone leads to the biosynthesis of the endogenous melanocortin agonists, including α-melanocyte stimulating hormone (α-MSH), β-MSH, γ-MSH, and adrenocorticotropic hormone (ACTH). All the melanocortin agonists derived from the POMC prohormone contain a His-Phe-Arg-Trp tetrapeptide sequence that has been implicated in eliciting the pharmacological responses at the melanocortin receptors. Herein, an alanine (Ala) positional scan is reported for the endogenous α-MSH ligand and the synthetic, more potent, NDP-MSH peptide (Ac-Ser(1)-Tyr(2)-Ser(3)-Nle(4)-Glu(5)-His(6)-DPhe(7)-Arg(8)-Trp(9)-Gly(10)-Lys(11)-Pro(12)-Val(13)-NH2) at the cloned mouse melanocortin receptors to test the assumption that the structure-activity relationships of one ligand would apply to the other. Several residues outside of the postulated pharmacophore altered potency at the melanocortin receptors, most notably the 1560-, 37-, and 15-fold potency loss when the Glu(5) position of α-MSH was substituted with Ala at the mMC1R, mMC3R, and mMC4R, respectively. Importantly, the altered potencies due to Ala substitutions in α-MSH did not necessarily correlate with equivalent Ala substitutions in NDP-MSH, indicating that structural modifications and corresponding biological activities in one of these melanocortin ligands may not be predictive for the other agonist.
Collapse
Affiliation(s)
- Aleksandar Todorovic
- Department of Medicinal Chemistry, University of Florida, Gainesville, Florida 32610
| | - Mark D. Ericson
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455
| | - Ryan D. Palusak
- Department of Medicinal Chemistry, University of Florida, Gainesville, Florida 32610
| | - Nicholas B. Sorensen
- Department of Medicinal Chemistry, University of Florida, Gainesville, Florida 32610
| | - Michael S. Wood
- Department of Medicinal Chemistry, University of Florida, Gainesville, Florida 32610
| | - Zhimin Xiang
- Department of Medicinal Chemistry, University of Florida, Gainesville, Florida 32610
| | - Carrie Haskell-Luevano
- Department of Medicinal Chemistry, University of Florida, Gainesville, Florida 32610
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
19
|
de Bataille S, Dutartre H, Puy H, Deybach JC, Gouya L, Raffray E, Pithon M, Stalder JF, Nguyen JM, Barbarot S. Influence of meteorological data on sun tolerance in patients with erythropoietic protoporphyria in France. Br J Dermatol 2016; 175:768-75. [PMID: 27030101 DOI: 10.1111/bjd.14600] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2016] [Indexed: 11/28/2022]
Abstract
BACKGROUND Erythropoietic protoporphyria (EPP) is a rare metabolic disorder, characterized by photosensitivity, caused by errors of the haem biosynthetic pathway. Avoidance of sun exposure is recommended; however, some patients suggested a paradoxical improvement of symptoms when they move to sunny areas. OBJECTIVES In a national French study, we sought to investigate the influence of sun exposure on EPP symptoms. MATERIALS AND METHODS We used a national transversal observational study by questionnaire. Patients were selected from the national record of the Centre Français des Porphyries (French Porphyrias referral centre). Sun exposure level by geographic area was assessed using climate data provided by the French national meteorological service (Météo France). RESULTS Eighty-nine patients were included. We notably observed that 40% of patients declared an improvement in their tolerance of sun exposure after repeated sun exposures. In the more sunny areas, the intensity of the pain was lower (r = -0·26) and the duration of the sun exposure responsible for flares was longer (r = 0·39) than in the areas that were less sunny (P < 0·05). CONCLUSIONS This study proposes a benefit of natural progressive sun exposure for patients with EPP.
Collapse
Affiliation(s)
- S de Bataille
- Department of Dermatology, Centre Hospitalier Universitaire (CHU) Hôtel-Dieu, 1, place Alexis-Ricordeau, 44093, Nantes Cedex 1, France
| | - H Dutartre
- Department of Dermatology, Centre Hospitalier Universitaire (CHU) Hôtel-Dieu, 1, place Alexis-Ricordeau, 44093, Nantes Cedex 1, France
| | - H Puy
- Centre Français des Porphyries, Hôpital Louis-Mourier Assistance Publique Hôpitaux de Paris, Colombes, France.,INSERM U1149, Centre de Recherche sur l'inflammation, 16 rue Henri Huchard, 75018, Paris, France.,Laboratory of Excellence, GR-Ex, Paris, France
| | - J-C Deybach
- Centre Français des Porphyries, Hôpital Louis-Mourier Assistance Publique Hôpitaux de Paris, Colombes, France
| | - L Gouya
- Centre Français des Porphyries, Hôpital Louis-Mourier Assistance Publique Hôpitaux de Paris, Colombes, France.,INSERM U1149, Centre de Recherche sur l'inflammation, 16 rue Henri Huchard, 75018, Paris, France.,Laboratory of Excellence, GR-Ex, Paris, France
| | - E Raffray
- Department of Biostatistics, CHU Nantes, Nantes, France
| | - M Pithon
- French national meteorological service, Météo France, Toulouse, France
| | - J-F Stalder
- Department of Dermatology, Centre Hospitalier Universitaire (CHU) Hôtel-Dieu, 1, place Alexis-Ricordeau, 44093, Nantes Cedex 1, France
| | - J-M Nguyen
- Department of Biostatistics, CHU Nantes, Nantes, France
| | - S Barbarot
- Department of Dermatology, Centre Hospitalier Universitaire (CHU) Hôtel-Dieu, 1, place Alexis-Ricordeau, 44093, Nantes Cedex 1, France.
| |
Collapse
|
20
|
Abstract
Hypomelanoses of the skin encompass a wide spectrum of congenital and acquired alterations in melanin pigmentation. These diseases can be localized or universal. The pathobiology of cutaneous hypomelanoses is heterogeneous and includes defects in melanoblast migration from the neural crest to the epidermis, alterations in melanogenesis and melanin transfer to keratinocytes, and destruction of pigment cells by autoimmune and inflammatory processes. Importantly, some congenital forms of universal hypomelanoses are associated with involvement of internal organs (e.g., Hermansky-Pudlack or Chédiak-Higashi syndrome) and require interdisciplinary patient management. In recent years, significant progress has been made in our current understanding of the pathophysiology especially of vitiligo, thus, resulting in promising new treatment strategies. This disease being one of the most common forms of acquired hypomelanoses of the skin can now be treated in a guideline-oriented and evidence-based manner.
Collapse
Affiliation(s)
- M Böhm
- Klinik für Hautkrankheiten, Universitätsklinikum Münster, Von-Esmarch-Str. 58, 48149, Münster, Deutschland.
| |
Collapse
|
21
|
Perretti M, Leroy X, Bland EJ, Montero-Melendez T. Resolution Pharmacology: Opportunities for Therapeutic Innovation in Inflammation. Trends Pharmacol Sci 2015; 36:737-755. [PMID: 26478210 DOI: 10.1016/j.tips.2015.07.007] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/22/2015] [Accepted: 07/27/2015] [Indexed: 12/31/2022]
Abstract
Current medicines for the clinical management of inflammatory diseases act by inhibiting specific enzymes or antagonising specific receptors or blocking their ligands. In the past decade, a new paradigm in our understanding of the inflammatory process has emerged with the appreciation of genetic, molecular, and cellular mechanisms that are engaged to actively resolve inflammation. The 'resolution of acute inflammation' is enabled by counter-regulatory checkpoints to terminate the inflammatory reaction, promoting healing and repair. It may be possible to harness this knowledge for innovative approaches to the treatment of inflammatory pathologies. Here we discuss current translational attempts to develop agonists at proresolving targets as a strategy to rectify chronic inflammatory status. We reason this new approach will lead to the identification of better drugs that will establish a new branch of pharmacology, 'resolution pharmacology'.
Collapse
Affiliation(s)
- Mauro Perretti
- William Harvey Research Institute, Queen Mary University of London, London, UK.
| | - Xavier Leroy
- Drug Discovery Biology, Actelion Pharmaceuticals Ltd, Allschwil, Switzerland
| | | | | |
Collapse
|