1
|
Liu D, Liu L, Li X, Wang S, Wu G, Che X. Advancements and Challenges in Peptide-Based Cancer Vaccination: A Multidisciplinary Perspective. Vaccines (Basel) 2024; 12:950. [PMID: 39204073 PMCID: PMC11359700 DOI: 10.3390/vaccines12080950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/09/2024] [Accepted: 08/21/2024] [Indexed: 09/03/2024] Open
Abstract
With the continuous advancements in tumor immunotherapy, researchers are actively exploring new treatment methods. Peptide therapeutic cancer vaccines have garnered significant attention for their potential in improving patient outcomes. Despite its potential, only a single peptide-based cancer vaccine has been approved by the U.S. Food and Drug Administration (FDA). A comprehensive understanding of the underlying mechanisms and current development status is crucial for advancing these vaccines. This review provides an in-depth analysis of the production principles and therapeutic mechanisms of peptide-based cancer vaccines, highlights the commonly used peptide-based cancer vaccines, and examines the synergistic effects of combining these vaccines with immunotherapy, targeted therapy, radiotherapy, and chemotherapy. While some studies have yielded suboptimal results, the potential of combination therapies remains substantial. Additionally, we addressed the management and adverse events associated with peptide-based cancer vaccines, noting their relatively higher safety profile compared to traditional radiotherapy and chemotherapy. Lastly, we also discussed the roles of adjuvants and targeted delivery systems in enhancing vaccine efficacy. In conclusion, this review comprehensively outlines the current landscape of peptide-based cancer vaccination and underscores its potential as a pivotal immunotherapy approach.
Collapse
Affiliation(s)
- Dequan Liu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (D.L.); (L.L.); (S.W.)
| | - Lei Liu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (D.L.); (L.L.); (S.W.)
| | - Xinghan Li
- Department of Stomatology, General Hospital of Northern Theater Command, Shenyang 110016, China;
| | - Shijin Wang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (D.L.); (L.L.); (S.W.)
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (D.L.); (L.L.); (S.W.)
| | - Xiangyu Che
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (D.L.); (L.L.); (S.W.)
| |
Collapse
|
2
|
Go S, Jung M, Lee S, Moon S, Hong J, Kim C, Chung Y, Kim BS. A Personalized Cancer Nanovaccine that Enhances T-Cell Responses and Efficacy Through Dual Interactions with Dendritic Cells and T Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303979. [PMID: 37515819 DOI: 10.1002/adma.202303979] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/28/2023] [Indexed: 07/31/2023]
Abstract
Conventional approaches to developing therapeutic cancer vaccines that primarily activate tumor-specific T cells via dendritic cells (DCs) often demonstrate limited efficacy due to the suboptimal activation of these T cells. To address this limitation, here a therapeutic cancer nanovaccine is developed that enhances T cell responses by interacting with both DCs and T cells. The nanovaccine is based on a cancer cell membrane nanoparticle (CCM-MPLA) that utilizes monophosphoryl lipid A (MPLA) as an adjuvant. To allow direct interaction between the nanovaccine and tumor-specific T cells, anti-CD28 antibodies (aCD28) are conjugated onto CCM-MPLA, resulting in CCM-MPLA-aCD28. This nanovaccine activates tumor-specific CD8+ T cells in both the presence and absence of DCs. Compared with nanovaccines that interact with either DCs (CCM-MPLA) or T cells (CCM-aCD28), CCM-MPLA-aCD28 induces more potent responses of tumor-specific CD8+ T cells and exhibits a higher antitumor efficacy in tumor-bearing mice. No differences in T cell activation efficiency and therapeutic efficacy are observed between CCM-MPLA and CCM-aCD28. This approach may lead to the development of effective personalized therapeutic cancer vaccines prepared from autologous cancer cells.
Collapse
Affiliation(s)
- Seokhyeong Go
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Mungyo Jung
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- Institute of Engineering Research, Seoul National University, Seoul, 08826, Republic of Korea
| | - Suyoung Lee
- Laboratory of Immune Regulation, Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sangjun Moon
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jihye Hong
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Cheesue Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yeonseok Chung
- Laboratory of Immune Regulation, Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Byung-Soo Kim
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- Institute of Engineering Research, Seoul National University, Seoul, 08826, Republic of Korea
- Institute of Chemical Processes and BioMAX, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
3
|
Makandar AI, Jain M, Yuba E, Sethi G, Gupta RK. Canvassing Prospects of Glyco-Nanovaccines for Developing Cross-Presentation Mediated Anti-Tumor Immunotherapy. Vaccines (Basel) 2022; 10:vaccines10122049. [PMID: 36560459 PMCID: PMC9784904 DOI: 10.3390/vaccines10122049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 12/02/2022] Open
Abstract
In view of the severe downsides of conventional cancer therapies, the quest of developing alternative strategies still remains of critical importance. In this regard, antigen cross-presentation, usually employed by dendritic cells (DCs), has been recognized as a potential solution to overcome the present impasse in anti-cancer therapeutic strategies. It has been established that an elevated cytotoxic T lymphocyte (CTL) response against cancer cells can be achieved by targeting receptors expressed on DCs with specific ligands. Glycans are known to serve as ligands for C-type lectin receptors (CLRs) expressed on DCs, and are also known to act as a tumor-associated antigen (TAA), and, thus, can be harnessed as a potential immunotherapeutic target. In this scenario, integrating the knowledge of cross-presentation and glycan-conjugated nanovaccines can help us to develop so called 'glyco-nanovaccines' (GNVs) for targeting DCs. Here, we briefly review and analyze the potential of GNVs as the next-generation anti-tumor immunotherapy. We have compared different antigen-presenting cells (APCs) for their ability to cross-present antigens and described the potential nanocarriers for tumor antigen cross-presentation. Further, we discuss the role of glycans in targeting of DCs, the immune response due to pathogens, and imitative approaches, along with parameters, strategies, and challenges involved in cross-presentation-based GNVs for cancer immunotherapy. It is known that the effectiveness of GNVs in eradicating tumors by inducing strong CTL response in the tumor microenvironment (TME) has been largely hindered by tumor glycosylation and the expression of different lectin receptors (such as galectins) by cancer cells. Tumor glycan signatures can be sensed by a variety of lectins expressed on immune cells and mediate the immune suppression which, in turn, facilitates immune evasion. Therefore, a sound understanding of the glycan language of cancer cells, and glycan-lectin interaction between the cancer cells and immune cells, would help in strategically designing the next-generation GNVs for anti-tumor immunotherapy.
Collapse
Affiliation(s)
- Amina I. Makandar
- Protein Biochemistry Research Centre, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune 411033, Maharashtra, India
| | - Mannat Jain
- Protein Biochemistry Research Centre, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune 411033, Maharashtra, India
| | - Eiji Yuba
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
- Correspondence: (E.Y.); (G.S.); or (R.K.G.)
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Correspondence: (E.Y.); (G.S.); or (R.K.G.)
| | - Rajesh Kumar Gupta
- Protein Biochemistry Research Centre, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune 411033, Maharashtra, India
- Correspondence: (E.Y.); (G.S.); or (R.K.G.)
| |
Collapse
|
4
|
Balmert SC, Ghozloujeh ZG, Carey CD, Williams LH, Zhang J, Shahi P, Amer M, Sumpter TL, Erdos G, Korkmaz E, Falo LD. A microarray patch SARS-CoV-2 vaccine induces sustained antibody responses and polyfunctional cellular immunity. iScience 2022; 25:105045. [PMID: 36062075 PMCID: PMC9425707 DOI: 10.1016/j.isci.2022.105045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 04/19/2022] [Accepted: 08/25/2022] [Indexed: 12/01/2022] Open
Abstract
Sustainable global immunization campaigns against COVID-19 and other emerging infectious diseases require effective, broadly deployable vaccines. Here, we report a dissolvable microarray patch (MAP) SARS-CoV-2 vaccine that targets the immunoresponsive skin microenvironment, enabling efficacious needle-free immunization. Multicomponent MAPs delivering both SARS-CoV-2 S1 subunit antigen and the TLR3 agonist Poly(I:C) induce robust antibody and cellular immune responses systemically and in the respiratory mucosa. MAP vaccine-induced antibodies bind S1 and the SARS-CoV-2 receptor-binding domain, efficiently neutralize the virus, and persist at high levels for more than a year. The MAP platform reduces systemic toxicity of the delivered adjuvant and maintains vaccine stability without refrigeration. When applied to human skin, MAP vaccines activate skin-derived migratory antigen-presenting cells, supporting the feasibility of human translation. Ultimately, this shelf-stable MAP vaccine improves immunogenicity and safety compared to traditional intramuscular vaccines and offers an attractive alternative for global immunization efforts against a range of infectious pathogens.
Collapse
Affiliation(s)
- Stephen C. Balmert
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | | - Cara Donahue Carey
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Li’an H. Williams
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Jiying Zhang
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Preeti Shahi
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Maher Amer
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Tina L. Sumpter
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Geza Erdos
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Emrullah Korkmaz
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA 15261, USA
| | - Louis D. Falo
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA 15261, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
- Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
- The McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| |
Collapse
|
5
|
Jiang Z, Zhang W, Zhang J, Liu T, Xing J, Zhang H, Tang D. Nanomaterial-Based Drug Delivery Systems: A New Weapon for Cancer Immunotherapy. Int J Nanomedicine 2022; 17:4677-4696. [PMID: 36211025 PMCID: PMC9541303 DOI: 10.2147/ijn.s376216] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/09/2022] [Indexed: 11/06/2022] Open
Abstract
Cancer immunotherapy, a major breakthrough in cancer treatment, has been successfully applied to treat a number of tumors. However, given the presence of factors in the tumor microenvironment (TME) that impede immunotherapy, only a small proportion of patients achieve a good clinical response. With the ability to increase permeability and cross biological barriers, nanomaterials have been successfully applied to deliver immunotherapeutic agents, thus realizing the anti-cancer therapeutic potential of therapeutic agents. This has driven a wave of research into systems for the delivery of immunotherapeutic agents, which has resulted in widespread interest in nanomaterial-based drug delivery systems. Nanomaterial-based drug delivery systems are able to overcome the challenges from TME and thus achieve good results in cancer immunotherapy. If it can make a breakthrough in improving biocompatibility and reducing cytotoxicity, it will be more widely used in clinical practice. Different types of nanomaterials may also have some subtle differences in enhancing cancer immunotherapy. Moreover, delivery systems made of nanomaterials loaded with drugs, such as cytotoxic drugs, cytokines, and adjuvants, could be used for cancer immunotherapy because they avoid the toxicity and side effects associated with these drugs, thereby enabling their reuse. Therefore, further insights into nanomaterial-based drug delivery systems will provide more effective treatment options for cancer patients.
Collapse
Affiliation(s)
- Zhengting Jiang
- Clinical Medical College, Yangzhou University, Yangzhou, 225000, People’s Republic of China
| | - Wenjie Zhang
- Clinical Medical College, Yangzhou University, Yangzhou, 225000, People’s Republic of China
| | - Jie Zhang
- Clinical Medical College, Yangzhou University, Yangzhou, 225000, People’s Republic of China
| | - Tian Liu
- Clinical Medical College, Yangzhou University, Yangzhou, 225000, People’s Republic of China
| | - Juan Xing
- Clinical Medical College, Yangzhou University, Yangzhou, 225000, People’s Republic of China
| | - Huan Zhang
- Clinical Medical College, Yangzhou University, Yangzhou, 225000, People’s Republic of China
| | - Dong Tang
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu Province Hospital, Clinical Medical College, Yangzhou University, Yangzhou, 225000, People’s Republic of China,Correspondence: Dong Tang, Department of General Surgery, Institute of General Surgery, Northern Jiangsu Province Hospital, Clinical Medical College, Yangzhou University, Yangzhou, 225000, People’s Republic of China, Email
| |
Collapse
|
6
|
Comparetti EJ, Ferreira NN, Ferreira LMB, Kaneno R, Zucolotto V. Immunomodulatory properties of nanostructured systems for cancer therapy. J Biomed Mater Res A 2022; 110:1166-1181. [PMID: 35043549 DOI: 10.1002/jbm.a.37359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 12/06/2021] [Accepted: 01/03/2022] [Indexed: 11/10/2022]
Abstract
Based on statistical data reported in 2020, cancer was responsible for approximately 10 million deaths. Furthermore, 17 million new cases were diagnosed worldwide. Nanomedicine and immunotherapy have shown satisfactory clinical results among all scientific and technological alternatives for the treatment of cancer patients. Immunotherapy-based treatments comprise the consideration of new alternatives to hinder neoplastic proliferation and to reduce adverse events in the body, thereby promoting immune destruction of diseased cells. Additionally, nanostructured systems have been proven to elicit specific immune responses that may enhance anti-tumor activity. A new generation of nanomedicines, based on biomimetic and bioinspired systems, has been proposed to target tumors by providing immunomodulatory features and by enabling recovery of human immune destruction capacity against cancer cells. This review provides an overview of the aspects and the mechanisms by which nanomedicines can be used to enhance clinical procedures using the immune modulatory responses of nanoparticles (NPs) in the host defense system. We initially outline the cancer statistics for conventional and new treatment approaches providing a brief description of the human host defense system and basic principles of NP interactions with monocytes, leukocytes, and dendritic cells for the modulation of antitumor immune responses. A report on different biomimetic and bioinspired systems is also presented here and their particularities in cancer treatments are addressed, highlighting their immunomodulatory properties. Finally, we propose future perspectives regarding this new therapeutic strategy, highlighting the main challenges for future use in clinical practice.
Collapse
Affiliation(s)
- Edson J Comparetti
- Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos, University of São Paulo, São Carlos, Brazil
| | - Natalia N Ferreira
- Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos, University of São Paulo, São Carlos, Brazil
| | - Leonardo M B Ferreira
- Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos, University of São Paulo, São Carlos, Brazil
| | - Ramon Kaneno
- Department of Microbiology and Immunology, Institute of Biosciences of Botucatu, São Paulo State University, Botucatu, Brazil
| | - Valtencir Zucolotto
- Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos, University of São Paulo, São Carlos, Brazil
| |
Collapse
|
7
|
Yu J, Wang S, Qi J, Yu Z, Xian Y, Liu W, Wang X, Liu C, Wei M. Mannose-modified liposome designed for epitope peptide drug delivery in cancer immunotherapy. Int Immunopharmacol 2021; 101:108148. [PMID: 34653955 DOI: 10.1016/j.intimp.2021.108148] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/16/2021] [Accepted: 09/07/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND Based on the interaction between cytotoxic T lymphocyte (CTL) dominant epitopes and dendritic cells (DCs), CD8+T cells are specifically activated into CTL cells. Targeted killing is a type of tumor vaccine for immunotherapy with great development potential. However, because of the disadvantages of poor stability in vivo and low uptake rate of DCs caused by single use of dominant epitope peptide drugs, its use is limited. Here, we investigated the antitumor potential of M-YL/LA-Lipo, a novel liposome drug delivery system. METHODS We assembled mannose on the surface of liposome, which has a highly targeted effect on the mannose receptor on the surface of DCs. The dominant epitope peptide drugs were encapsulated into the liposome using membrane hydration method, and the encapsulation rate, release rate, in vitro stability, and microstructure were characterized using ultrafiltration method, dialysis method, and negative staining transmission electron microscopy. In addition, its targeting ability was verified by in vitro interaction with DCs, and its anticancer effect was verified by animal experiments. RESULTS We have successfully prepared a liposome drug delivery system with stable physical and chemical properties. Moreover, we demonstrated that it was highly uptaken by DCs and promoted DC maturation in vitro. Furthermore, in vivo animal experiments indicated that M-YL/LA-Lipo specific CTL significantly inhibited the hematogenous spread of lung metastasis of triple negative breast cancer. CONCLUSIONS we successfully constructed a new polypeptide liposome drug delivery system by avoiding the disadvantages of single use of dominant epitope peptide drugs and accurate targeted therapy for tumors.
Collapse
Affiliation(s)
- Jiankun Yu
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Shanshan Wang
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Jing Qi
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Zhaojin Yu
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yunkai Xian
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Wensi Liu
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Xiangyi Wang
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Chao Liu
- Liaoning Medical Diagnosis and Treatment Technology R&D Center Co, Ltd., Shenyang 110167, China; Shenyang Kangwei Medical Analysis Laboratory Co, Ltd., Shenyang 110167, China
| | - Minjie Wei
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| |
Collapse
|
8
|
Abstract
INTRODUCTION Vaccination is so far the most effective way of eradicating infections. Rapidly emerging drug resistance against infectious diseases and chemotherapy-related toxicities in cancer warrant immediate vaccine development to save mankind. Subunit vaccines alone, however, fail to elicit sufficiently strong and long-lasting protective immunity against deadly pathogens. Nanoparticle (NP)-based delivery vehicles like microemulsions, liposomes, virosomes, nanogels, micelles and dendrimers offer promising strategies to overcome limitations of traditional vaccine adjuvants. Nanovaccines can improve targeted delivery, antigen presentation, stimulation of body's innate immunity, strong T cell response combined with safety to combat infectious diseases and cancers. Further, nanovaccines can be highly beneficial to generate effective immutherapeutic formulations against cancer. AREAS COVERED This review summarizes the emerging nanoparticle strategies highlighting their success and challenges in preclinical and clinical trials in infectious diseases and cancer. It provides a concise overview of current nanoparticle-based vaccines, their adjuvant potential and their cellular delivery mechanisms. EXPERT OPINION The nanovaccines (50-250 nm in size) are most efficient in terms of tissue targeting, prolonged circulation and preferential uptake by the professional APCs chiefly due to their small size. More rational designing, improved antigen loading, extensive functionalization and targeted delivery are some of the future goals of ideal nanovaccines.
Collapse
Affiliation(s)
- Amrita Das
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Nahid Ali
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
9
|
Nijen Twilhaar MK, Czentner L, van Nostrum CF, Storm G, den Haan JMM. Mimicking Pathogens to Augment the Potency of Liposomal Cancer Vaccines. Pharmaceutics 2021; 13:954. [PMID: 34202919 PMCID: PMC8308965 DOI: 10.3390/pharmaceutics13070954] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 01/02/2023] Open
Abstract
Liposomes have emerged as interesting vehicles in cancer vaccination strategies as their composition enables the inclusion of both hydrophilic and hydrophobic antigens and adjuvants. In addition, liposomes can be decorated with targeting moieties to further resemble pathogenic particles that allow for better engagement with the immune system. However, so far liposomal cancer vaccines have not yet reached their full potential in the clinic. In this review, we summarize recent preclinical studies on liposomal cancer vaccines. We describe the basic ingredients for liposomal cancer vaccines, tumor antigens, and adjuvants, and how their combined inclusion together with targeting moieties potentially derived from pathogens can enhance vaccine immunogenicity. We discuss newly identified antigen-presenting cells in humans and mice that pose as promising targets for cancer vaccines. The lessons learned from these preclinical studies can be applied to enhance the efficacy of liposomal cancer vaccination in the clinic.
Collapse
Affiliation(s)
- Maarten K. Nijen Twilhaar
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands;
| | - Lucas Czentner
- Department of Pharmaceutics, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands; (L.C.); (C.F.v.N.); (G.S.)
| | - Cornelus F. van Nostrum
- Department of Pharmaceutics, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands; (L.C.); (C.F.v.N.); (G.S.)
| | - Gert Storm
- Department of Pharmaceutics, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands; (L.C.); (C.F.v.N.); (G.S.)
- Department of Biomaterials, Science and Technology, Faculty of Science and Technology, University of Twente, 7522 NB Enschede, The Netherlands
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Joke M. M. den Haan
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands;
| |
Collapse
|
10
|
Yu Z, Liu W, He Y, Sun M, Yu J, Jiao X, Han Q, Tang H, Zhang B, Xian Y, Qi J, Gong J, Xin W, Shi G, Shan F, Zhang R, Li J, Wei M. HLA-A2.1-restricted ECM1-derived epitope LA through DC cross-activation priming CD8 + T and NK cells: a novel therapeutic tumour vaccine. J Hematol Oncol 2021; 14:71. [PMID: 33910591 PMCID: PMC8082934 DOI: 10.1186/s13045-021-01081-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 04/15/2021] [Indexed: 12/22/2022] Open
Abstract
Background CD8+ T cell-mediated adaptive cellular immunity and natural killer (NK) cell-mediated innate immunity both play important roles in tumour immunity. This study aimed to develop therapeutic tumour vaccines based on double-activation of CD8+ T and NK cells. Methods The immune Epitope database, Molecular Operating Environment software, and enzyme-linked immunosorbent assay were used for epitope identification. Flow cytometry, confocal microscopy, UPLC-QTOF-MS, and RNA-seq were utilized for evaluating immunity of PBMC-derived DCs, CD8+ T or NK cells and related pathways. HLA-A2.1 transgenic mice combined with immunologically reconstituted tumour-bearing mice were used to examine the antitumour effect and safety of epitope vaccines. Results We identified novel HLA-A2.1-restricted extracellular matrix protein 1(ECM1)-derived immunodominant epitopes in which LA induced a potent immune response. We also found that LA-loaded DCs upregulated the frequency of CD3+/CD8+ T cells, CD45RO+/CD69+ activated memory T cells, and CD3−/CD16+/CD56+ NK cells. We demonstrated cytotoxic granule release of LA/DC-CTLs or LA/DC-NK cells and cytotoxicity against tumour cells and microtissue blocks via the predominant IFN-γ/perforin/granzyme B cell death pathway. Further investigating the mechanism of LA-mediated CD8+ T activation, we found that LA could be internalized into DCs through phagocytosis and then formed a LA-MHC-I complex presented onto the DC surface for recognition of the T cell receptor to upregulate Zap70 phosphorylation levels to further activate CD8+ T cells by DC-CTL interactions. In addition, LA-mediated DC-NK crosstalk through stimulation of the TLR4-p38 MAPK pathway increased MICA/B expression on DCs to interact with NKG2D for NK activation. Promisingly, LA could activate CD8+ T cells and NK cells simultaneously via interacting with DCs to suppress tumours in vivo. Moreover, the safety of LA was confirmed. Conclusions LA-induced immune antitumour activity through DC cross-activation with CD8+ T and NK cells, which demonstrated proof-of-concept evidence for the capability and safety of a novel therapeutic tumour vaccine. Supplementary Information The online version contains supplementary material available at 10.1186/s13045-021-01081-7.
Collapse
Affiliation(s)
- Zhaojin Yu
- Department of Pharmacology, School of Pharmacy, China Medical University, No. 13, Beihai Road, Dadong District, Shenyang, Liaoning Province, China.,Liaoning Key Laboratory of Molecular Targeted Antitumour Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Centre, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumours, Ministry of Education, China Medical University, No.77, Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, China
| | - Wensi Liu
- Department of Pharmacology, School of Pharmacy, China Medical University, No. 13, Beihai Road, Dadong District, Shenyang, Liaoning Province, China.,Liaoning Key Laboratory of Molecular Targeted Antitumour Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Centre, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumours, Ministry of Education, China Medical University, No.77, Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, China
| | - Ying He
- Department of Pharmacology, School of Pharmacy, China Medical University, No. 13, Beihai Road, Dadong District, Shenyang, Liaoning Province, China.,Liaoning Key Laboratory of Molecular Targeted Antitumour Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Centre, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumours, Ministry of Education, China Medical University, No.77, Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, China.,The Third Department of Medical Oncology, The Fourth Hospital of China Medical University, Shenyang City, Liaoning Province, China
| | - Mingli Sun
- Department of Pharmacology, School of Pharmacy, China Medical University, No. 13, Beihai Road, Dadong District, Shenyang, Liaoning Province, China.,Liaoning Key Laboratory of Molecular Targeted Antitumour Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Centre, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumours, Ministry of Education, China Medical University, No.77, Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, China
| | - Jiankun Yu
- Department of Pharmacology, School of Pharmacy, China Medical University, No. 13, Beihai Road, Dadong District, Shenyang, Liaoning Province, China.,Liaoning Key Laboratory of Molecular Targeted Antitumour Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Centre, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumours, Ministry of Education, China Medical University, No.77, Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, China
| | - Xue Jiao
- Department of Pharmacology, School of Pharmacy, China Medical University, No. 13, Beihai Road, Dadong District, Shenyang, Liaoning Province, China.,Liaoning Key Laboratory of Molecular Targeted Antitumour Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Centre, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumours, Ministry of Education, China Medical University, No.77, Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, China
| | - Qiang Han
- Department of Pharmacology, School of Pharmacy, China Medical University, No. 13, Beihai Road, Dadong District, Shenyang, Liaoning Province, China.,Department of Pharmacy, Harrison International Peace Hospital, Hengshui, Hebei Province, China
| | - Haichao Tang
- Department of Pharmacology, School of Pharmacy, China Medical University, No. 13, Beihai Road, Dadong District, Shenyang, Liaoning Province, China.,Liaoning Key Laboratory of Molecular Targeted Antitumour Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Centre, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumours, Ministry of Education, China Medical University, No.77, Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, China
| | - Bing Zhang
- Department of Pharmacology, School of Pharmacy, China Medical University, No. 13, Beihai Road, Dadong District, Shenyang, Liaoning Province, China.,Liaoning Key Laboratory of Molecular Targeted Antitumour Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Centre, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumours, Ministry of Education, China Medical University, No.77, Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, China
| | - Yunkai Xian
- Department of Pharmacology, School of Pharmacy, China Medical University, No. 13, Beihai Road, Dadong District, Shenyang, Liaoning Province, China.,Liaoning Key Laboratory of Molecular Targeted Antitumour Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Centre, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumours, Ministry of Education, China Medical University, No.77, Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, China
| | - Jing Qi
- Department of Pharmacology, School of Pharmacy, China Medical University, No. 13, Beihai Road, Dadong District, Shenyang, Liaoning Province, China.,Liaoning Key Laboratory of Molecular Targeted Antitumour Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Centre, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumours, Ministry of Education, China Medical University, No.77, Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, China
| | - Jing Gong
- Department of Pharmacology, School of Pharmacy, China Medical University, No. 13, Beihai Road, Dadong District, Shenyang, Liaoning Province, China.,Liaoning Key Laboratory of Molecular Targeted Antitumour Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Centre, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumours, Ministry of Education, China Medical University, No.77, Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, China
| | - Wang Xin
- Liaoning Medical Diagnosis and Treatment R&D Centre Co. Ltd., Shenyang, Liaoning Province, China
| | - Gang Shi
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Intitute, No.77, Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, China
| | - Fengping Shan
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning Province, China
| | - Rui Zhang
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Intitute, No.77, Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, China.
| | - Jianping Li
- Department of Pharmacology, School of Pharmacy, China Medical University, No. 13, Beihai Road, Dadong District, Shenyang, Liaoning Province, China. .,Transfusion Medicine Institute, Liaoning Blood Centre, Shenyang, Liaoning Province, China. .,Transfusion Medicine Institute, Harbin Blood Centre, Harbin, Heilongjiang Province, China.
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, No. 13, Beihai Road, Dadong District, Shenyang, Liaoning Province, China. .,Liaoning Key Laboratory of Molecular Targeted Antitumour Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Centre, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumours, Ministry of Education, China Medical University, No.77, Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, China.
| |
Collapse
|
11
|
Liu W, Tang H, Li L, Wang X, Yu Z, Li J. Peptide-based therapeutic cancer vaccine: Current trends in clinical application. Cell Prolif 2021; 54:e13025. [PMID: 33754407 PMCID: PMC8088465 DOI: 10.1111/cpr.13025] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/21/2021] [Accepted: 03/03/2021] [Indexed: 02/06/2023] Open
Abstract
The peptide‐based therapeutic cancer vaccines have attracted enormous attention in recent years as one of the effective treatments of tumour immunotherapy. Most of peptide‐based vaccines are based on epitope peptides stimulating CD8+ T cells or CD4+ T helper cells to target tumour‐associated antigens (TAAs) or tumour‐specific antigens (TSAs). Some adjuvants and nanomaterials have been exploited to optimize the efficiency of immune response of the epitope peptide to improve its clinical application. At present, numerous peptide‐based therapeutic cancer vaccines have been developed and achieved significant clinical benefits. Similarly, the combination of peptide‐based vaccines and other therapies has demonstrated a superior efficacy in improving anti‐cancer activity. We delve deeper into the choices of targets, design and screening of epitope peptides, clinical efficacy and adverse events of peptide‐based vaccines, and strategies combination of peptide‐based therapeutic cancer vaccines and other therapies. The review will provide a detailed overview and basis for future clinical application of peptide‐based therapeutic cancer vaccines.
Collapse
Affiliation(s)
- Wensi Liu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, Liaoning Cancer immune peptide drug Engineering Technology Research Center, Shenyang, China
| | - Haichao Tang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, Liaoning Cancer immune peptide drug Engineering Technology Research Center, Shenyang, China
| | - Luanfeng Li
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, Liaoning Cancer immune peptide drug Engineering Technology Research Center, Shenyang, China
| | - Xiangyi Wang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, Liaoning Cancer immune peptide drug Engineering Technology Research Center, Shenyang, China
| | - Zhaojin Yu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, Liaoning Cancer immune peptide drug Engineering Technology Research Center, Shenyang, China
| | - Jianping Li
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Transfusion Medicine Institute, Liaoning Blood Center, Shenyang, China.,Transfusion Medicine Institute, Harbin Blood Center, Harbin, China
| |
Collapse
|
12
|
Qin H, Chen Y. Lipid Metabolism and Tumor Antigen Presentation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1316:169-189. [PMID: 33740250 DOI: 10.1007/978-981-33-6785-2_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tumors always evade immune surveillance and block T cell activation in a poorly immunogenic and immunosuppressive environment. Cancer cells and immune cells exhibit metabolic reprogramming in the tumor microenvironment (TME), which intimately links immune cell function and edits tumor immunology. In addition to glucose metabolism, amino acid and lipid metabolism also provide the materials for biological processes crucial in cancer biology and pathology. Furthermore, lipid metabolism is synergistically or negatively involved in the interactions between tumors and the microenvironment and contributes to the regulation of immune cells. Antigen processing and presentation as the initiation of adaptive immune response play a critical role in antitumor immunity. Therefore, a relationship exists between antigen-presenting cells and lipid metabolism in TME. This chapter introduces the updated understandings of lipid metabolism of tumor antigen-presenting cells and describes new directions in the manipulation of immune responses for cancer treatment.
Collapse
Affiliation(s)
- Hong Qin
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, Centre for Lipid Research, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yaxi Chen
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, Centre for Lipid Research, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
13
|
Optimization of Liposomes for Antigen Targeting to Splenic CD169 + Macrophages. Pharmaceutics 2020; 12:pharmaceutics12121138. [PMID: 33255564 PMCID: PMC7760819 DOI: 10.3390/pharmaceutics12121138] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 12/21/2022] Open
Abstract
Despite promising progress in cancer vaccination, therapeutic effectiveness is often insufficient. Cancer vaccine effectiveness could be enhanced by targeting vaccine antigens to antigen-presenting cells, thereby increasing T-cell activation. CD169-expressing splenic macrophages efficiently capture particulate antigens from the blood and transfer these antigens to dendritic cells for the activation of CD8+ T cells. In this study, we incorporated a physiological ligand for CD169, the ganglioside GM3, into liposomes to enhance liposome uptake by CD169+ macrophages. We assessed how variation in the amount of GM3, surface-attached PEG and liposomal size affected the binding to, and uptake by, CD169+ macrophages in vitro and in vivo. As a proof of concept, we prepared GM3-targeted liposomes containing a long synthetic ovalbumin peptide and tested the capacity of these liposomes to induce CD8+ and CD4+ T-cell responses compared to control liposomes or soluble peptide. The data indicate that the delivery of liposomes to splenic CD169+ macrophages can be optimized by the selection of liposomal constituents and liposomal size. Moreover, optimized GM3-mediated liposomal targeting to CD169+ macrophages induces potent immune responses and therefore presents as an interesting delivery strategy for cancer vaccination.
Collapse
|
14
|
Gu Z, Da Silva CG, Van der Maaden K, Ossendorp F, Cruz LJ. Liposome-Based Drug Delivery Systems in Cancer Immunotherapy. Pharmaceutics 2020; 12:E1054. [PMID: 33158166 PMCID: PMC7694212 DOI: 10.3390/pharmaceutics12111054] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 02/07/2023] Open
Abstract
Cancer immunotherapy has shown remarkable progress in recent years. Nanocarriers, such as liposomes, have favorable advantages with the potential to further improve cancer immunotherapy and even stronger immune responses by improving cell type-specific delivery and enhancing drug efficacy. Liposomes can offer solutions to common problems faced by several cancer immunotherapies, including the following: (1) Vaccination: Liposomes can improve the delivery of antigens and other stimulatory molecules to antigen-presenting cells or T cells; (2) Tumor normalization: Liposomes can deliver drugs selectively to the tumor microenvironment to overcome the immune-suppressive state; (3) Rewiring of tumor signaling: Liposomes can be used for the delivery of specific drugs to specific cell types to correct or modulate pathways to facilitate better anti-tumor immune responses; (4) Combinational therapy: Liposomes are ideal vehicles for the simultaneous delivery of drugs to be combined with other therapies, including chemotherapy, radiotherapy, and phototherapy. In this review, different liposomal systems specifically developed for immunomodulation in cancer are summarized and discussed.
Collapse
Affiliation(s)
- Zili Gu
- Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (Z.G.); (C.G.D.S.)
| | - Candido G. Da Silva
- Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (Z.G.); (C.G.D.S.)
| | - Koen Van der Maaden
- Tumor Immunology Group, Department of Immunology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (K.v.d.M.); (F.O.)
- TECOdevelopment GmbH, 53359 Rheinbach, Germany
| | - Ferry Ossendorp
- Tumor Immunology Group, Department of Immunology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (K.v.d.M.); (F.O.)
| | - Luis J. Cruz
- Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (Z.G.); (C.G.D.S.)
| |
Collapse
|
15
|
Plant lectins and their usage in preparing targeted nanovaccines for cancer immunotherapy. Semin Cancer Biol 2020; 80:87-106. [PMID: 32068087 DOI: 10.1016/j.semcancer.2020.02.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/30/2020] [Accepted: 02/06/2020] [Indexed: 01/06/2023]
Abstract
Plant lectins, a natural source of glycans with a therapeutic potential may lead to the discovery of new targeted therapies. Glycans extracted from plant lectins are known to act as ligands for C-type lectin receptors (CLRs) that are primarily present on immune cells. Plant-derived glycosylated lectins offer diversity in their N-linked oligosaccharide structures that can serve as a unique source of homogenous and heterogenous glycans. Among the plant lectins-derived glycan motifs, Man9GlcNAc2Asn exhibits high-affinity interactions with CLRs that may resemble glycan motifs of pathogens. Thus, such glycan domains when presented along with antigens complexed with a nanocarrier of choice may bewilder the immune cells and direct antigen cross-presentation - a cytotoxic T lymphocyte immune response mediated by CD8+ T cells. Glycan structure analysis has attracted considerable interest as glycans are looked upon as better therapeutic alternatives than monoclonal antibodies due to their cost-effectiveness, reduced toxicity and side effects, and high specificity. Furthermore, this approach will be useful to understand whether the multivalent glycan presentation on the surface of nanocarriers can overcome the low-affinity lectin-ligand interaction and thereby modulation of CLR-dependent immune response. Besides this, understanding how the heterogeneity of glycan structure impacts the antigen cross-presentation is pivotal to develop alternative targeted therapies. In the present review, we discuss the findings on structural analysis of glycans from natural lectins performed using GlycanBuilder2 - a software tool based on a thorough literature review of natural lectins. Additionally, we discuss how multiple parameters like the orientation of glycan ligands, ligand density, simultaneous targeting of multiple CLRs and design of antigen delivery nanocarriers may influence the CLR targeting efficacy. Integrating this information will eventually set the ground for new generation immunotherapeutic vaccine design for the treatment of various human malignancies.
Collapse
|
16
|
Liposome and immune system interplay: Challenges and potentials. J Control Release 2019; 305:194-209. [DOI: 10.1016/j.jconrel.2019.05.030] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 05/15/2019] [Accepted: 05/17/2019] [Indexed: 01/20/2023]
|
17
|
Du G, Leone M, Romeijn S, Kersten G, Jiskoot W, Bouwstra JA. Immunogenicity of diphtheria toxoid and poly(I:C) loaded cationic liposomes after hollow microneedle-mediated intradermal injection in mice. Int J Pharm 2018; 547:250-257. [PMID: 29870743 DOI: 10.1016/j.ijpharm.2018.06.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/31/2018] [Accepted: 06/01/2018] [Indexed: 02/06/2023]
Abstract
In this study, we aimed to investigate the immunogenicity of cationic liposomes loaded with diphtheria toxoid (DT) and poly(I:C) after hollow microneedle-mediated intradermal vaccination in mice. The following liposomal formulations were studied: DT loaded liposomes, a mixture of free DT and poly(I:C)-loaded liposomes, a mixture of DT-loaded liposomes and free poly(I:C), and liposomal formulations with DT and poly(I:C) either individually or co-encapsulated in the liposomes. Reference groups were DT solution adjuvanted with or without poly(I:C) (DT/poly(I:C)). The liposomal formulations were characterized in terms of particle size, zeta potential, loading and release of DT and poly(I:C). After intradermal injection of BALB/c mice with the formulations through a hollow microneedle, the immunogenicity was assessed by DT-specific ELISAs. All formulations induced similar total IgG and IgG1 titers. However, all the liposomal groups containing both DT and poly(I:C) showed enhanced IgG2a titers compared to DT/poly(I:C) solution, indicating that the immune response was skewed towards a Th1 direction. This enhancement was similar for all liposomal groups that contain both DT and poly(I:C) in the formulations. Our results reveal that a mixture of DT encapsulated liposomes and poly(I:C) encapsulated liposomes have a similar effect on the antibody responses as DT and poly(I:C) co-encapsulated liposomes. These findings may have implications for future design of liposomal vaccine delivery systems.
Collapse
Affiliation(s)
- Guangsheng Du
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden 2300 RA, The Netherlands
| | - Mara Leone
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden 2300 RA, The Netherlands
| | - Stefan Romeijn
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden 2300 RA, The Netherlands
| | - Gideon Kersten
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden 2300 RA, The Netherlands; Department of Analytical Development and Formulation, Intravacc, Bilthoven 3720 AL, The Netherlands
| | - Wim Jiskoot
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden 2300 RA, The Netherlands
| | - Joke A Bouwstra
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden 2300 RA, The Netherlands.
| |
Collapse
|
18
|
Mayer S, Moeller R, Monteiro JT, Ellrott K, Josenhans C, Lepenies B. C-Type Lectin Receptor (CLR)-Fc Fusion Proteins As Tools to Screen for Novel CLR/Bacteria Interactions: An Exemplary Study on Preselected Campylobacter jejuni Isolates. Front Immunol 2018; 9:213. [PMID: 29487596 PMCID: PMC5816833 DOI: 10.3389/fimmu.2018.00213] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 01/25/2018] [Indexed: 12/17/2022] Open
Abstract
C-type lectin receptors (CLRs) are carbohydrate-binding receptors that recognize their ligands often in a Ca2+-dependent manner. Upon ligand binding, myeloid CLRs in innate immunity trigger or inhibit a variety of signaling pathways, thus initiating or modulating effector functions such as cytokine production, phagocytosis, and antigen presentation. CLRs bind to various pathogens, including viruses, fungi, parasites, and bacteria. The bacterium Campylobacter jejuni (C. jejuni) is a very frequent Gram-negative zoonotic pathogen of humans, causing severe intestinal symptoms. Interestingly, C. jejuni expresses several glycosylated surface structures, for example, the capsular polysaccharide (CPS), lipooligosaccharide (LOS), and envelope proteins. This “Methods” paper describes applications of CLR–Fc fusion proteins to screen for yet unknown CLR/bacteria interactions using C. jejuni as an example. ELISA-based detection of CLR/bacteria interactions allows a first prescreening that is further confirmed by flow cytometry-based binding analysis and visualized using confocal microscopy. By applying these methods, we identified Dectin-1 as a novel CLR recognizing two selected C. jejuni isolates with different LOS and CPS genotypes. In conclusion, the here-described applications of CLR–Fc fusion proteins represent useful methods to screen for and identify novel CLR/bacteria interactions.
Collapse
Affiliation(s)
- Sabine Mayer
- Immunology Unit and Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine, Hannover, Germany
| | - Rebecca Moeller
- Immunology Unit and Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine, Hannover, Germany
| | - João T Monteiro
- Immunology Unit and Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine, Hannover, Germany
| | - Kerstin Ellrott
- Medical School Hannover, Institute for Medical Microbiology, Hannover, Germany.,German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Germany
| | - Christine Josenhans
- Medical School Hannover, Institute for Medical Microbiology, Hannover, Germany.,German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Germany.,Max von Pettenkofer Institute, Ludwig Maximilian University Munich, Munich, Germany.,German Center for Infection Research (DZIF), Partner Site Munich, Germany
| | - Bernd Lepenies
- Immunology Unit and Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine, Hannover, Germany
| |
Collapse
|
19
|
Ubiquitinated Proteins Isolated From Tumor Cells Are Efficient Substrates for Antigen Cross-Presentation. J Immunother 2018; 40:155-163. [PMID: 28368960 DOI: 10.1097/cji.0000000000000165] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We have previously shown that inhibition of the proteasome causes defective ribosomal products to be shunted into autophagosomes and subsequently released from tumor cells as defective ribosomal products in Blebs (DRibbles). These DRibbles serve as an excellent source of antigens for cross-priming of tumor-specific T cells. Here, we examine the role of ubiquitinated proteins (Ub-proteins) in this pathway. Using purified Ub-proteins from tumor cells that express endogenous tumor-associated antigen or exogenous viral antigen, we tested the ability of these proteins to stimulate antigen-specific T-cell responses, by activation of monocyte-derived dendritic cells generated from human peripheral blood mononuclear cells. Compared with total cell lysates, we found that purified Ub-proteins from both a gp100-specific melanoma cell line and from a lung cancer cell line expressing cytomegalovirus pp65 antigen produced a significantly higher level of IFN-γ in gp100- or pp65-specific T cells, respectively. In addition, Ub-proteins from an allogeneic tumor cell line could be used to stimulate tumor-infiltrating lymphocytes isolated and expanded from non-small cell lung cancer patients. These results establish that Ub-proteins provide a relevant source of antigens for cross-priming of antitumor immune responses in a variety of settings, including endogenous melanoma and exogenous viral antigen presentation, as well as antigen-specific tumor-infiltrating lymphocytes. Thus, ubiquitin can be used as an affinity tag to enrich for unknown tumor-specific antigens from tumor cell lysates to stimulate tumor-specific T cells ex vivo or to be used as vaccines to target short-lived proteins.
Collapse
|
20
|
Rancan F, Afraz Z, Hadam S, Weiß L, Perrin H, Kliche A, Schrade P, Bachmann S, Schäfer-Korting M, Blume-Peytavi U, Wagner R, Combadière B, Vogt A. Topically applied virus-like particles containing HIV-1 Pr55 gag protein reach skin antigen-presenting cells after mild skin barrier disruption. J Control Release 2017; 268:296-304. [PMID: 29080666 DOI: 10.1016/j.jconrel.2017.10.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 10/20/2017] [Indexed: 12/21/2022]
Abstract
Loading of antigen on particles as well as the choice of skin as target organ for vaccination were independently described as effective dose-sparing strategies for vaccination. Combining these two strategies, sufficient antigen recognition may be achievable via the transcutaneous route even with minimal-invasive tools. Here, we investigated the skin penetration and cellular uptake of topically administered virus-like particles (VLPs), composed of the HIV-1 precursor protein Pr55gag, as well as the migratory activity of skin antigen-presenting cells (APCs). We compared VLP administration on ex vivo human skin pre-treated with cyanoacrylate tape stripping (CSSS, minimal-invasive) to administration by skin pricking and intradermal injection (invasive). CSSS as well as pricking treatments resulted in penetration of VLPs in the viable skin layers. Electron microscopy confirmed that at least part of VLPs remained intact during the penetration process. Flow cytometry of epidermal, dermal, and HLA-DR+ APCs harvested from culture media of skin explants cultivated at air-liquid interface revealed that a number of cells had taken-up VLPs. Similar results were found between invasive and minimal-invasive VLP application methods. CSSS pre-treatment was associated with significantly increased levels of IL-1α levels in cell culture media as compared to untreated and pricked skin. Our findings provide first evidence for effective cellular uptake of VLPs after dermal application and indicate that even mild physical barrier disruption, as induced by CSSS, provides stimulatory signals that enable the activation of APCs and uptake of large antigenic material.
Collapse
Affiliation(s)
- Fiorenza Rancan
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin(2), 10117 Berlin, Germany
| | - Zahra Afraz
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin(2), 10117 Berlin, Germany; Institut für Pharmazie (Pharmakologie und Toxikologie), Freie Universität Berlin, 14195 Berlin, Germany
| | - Sabrina Hadam
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin(2), 10117 Berlin, Germany
| | - Lina Weiß
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin(2), 10117 Berlin, Germany
| | - Hélène Perrin
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, U1135, CNRS, ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), 91 Boulevard de l'Hôpital, F-75013 Paris, France
| | - Alexander Kliche
- Institute of Medical Microbiology and Hygiene, University of Regensburg, 93053 Regensburg, Germany
| | - Petra Schrade
- Institute of Vegetative Anatomy, Department of Anatomy, Charité - Universitätsmedizin Berlin(2), 10117 Berlin, Germany
| | - Sebastian Bachmann
- Institute of Vegetative Anatomy, Department of Anatomy, Charité - Universitätsmedizin Berlin(2), 10117 Berlin, Germany
| | - Monika Schäfer-Korting
- Institut für Pharmazie (Pharmakologie und Toxikologie), Freie Universität Berlin, 14195 Berlin, Germany
| | - Ulrike Blume-Peytavi
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin(2), 10117 Berlin, Germany
| | - Ralf Wagner
- Institute of Medical Microbiology and Hygiene, University of Regensburg, 93053 Regensburg, Germany
| | - Béhazine Combadière
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, U1135, CNRS, ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), 91 Boulevard de l'Hôpital, F-75013 Paris, France
| | - Annika Vogt
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin(2), 10117 Berlin, Germany; Sorbonne Universités, UPMC Univ Paris 06, INSERM, U1135, CNRS, ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), 91 Boulevard de l'Hôpital, F-75013 Paris, France.
| |
Collapse
|
21
|
|
22
|
Varypataki EM, Benne N, Bouwstra J, Jiskoot W, Ossendorp F. Efficient Eradication of Established Tumors in Mice with Cationic Liposome-Based Synthetic Long-Peptide Vaccines. Cancer Immunol Res 2017; 5:222-233. [PMID: 28143806 DOI: 10.1158/2326-6066.cir-16-0283] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 01/10/2017] [Accepted: 01/10/2017] [Indexed: 11/16/2022]
Abstract
Therapeutic vaccination with synthetic long peptides (SLP) can be clinically effective against HPV-induced premalignant lesions; however, their efficiency in established malignant lesions leaves room for improvement. Here, we report the high therapeutic potency of cationic liposomes loaded with well-defined tumor-specific SLPs and a TLR3 ligand as adjuvant. The cationic particles, with an average size of 160 nm, could strongly activate functional, antigen-specific CD8+ and CD4+ T cells and induced in vivo cytotoxicity against target cells after intradermal vaccination. At a low dose (1 nmol) of SLP, our liposomal formulations significantly controlled tumor outgrowth in two independent models (melanoma and HPV-induced tumors) and even cured 75%-100% of mice of their large established tumors. Cured mice were fully protected from a second challenge with an otherwise lethal dose of tumor cells, indicating the potential of liposomal SLP in the formulation of powerful vaccines for cancer immunotherapy. Cancer Immunol Res; 5(3); 222-33. ©2017 AACR.
Collapse
Affiliation(s)
- Eleni Maria Varypataki
- Division of Drug Delivery Technology, Cluster BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden, the Netherlands
| | - Naomi Benne
- Division of Drug Delivery Technology, Cluster BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden, the Netherlands
| | - Joke Bouwstra
- Division of Drug Delivery Technology, Cluster BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden, the Netherlands
| | - Wim Jiskoot
- Division of Drug Delivery Technology, Cluster BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden, the Netherlands.
| | - Ferry Ossendorp
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Centre, Leiden, the Netherlands.
| |
Collapse
|
23
|
Johannssen T, Lepenies B. Glycan-Based Cell Targeting To Modulate Immune Responses. Trends Biotechnol 2016; 35:334-346. [PMID: 28277249 DOI: 10.1016/j.tibtech.2016.10.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 10/04/2016] [Accepted: 10/06/2016] [Indexed: 02/06/2023]
Abstract
Glycosylation is an integral post-translational modification present in more than half of all eukaryotic proteins. It affects key protein functions, including folding, stability, and immunogenicity. Glycoengineering approaches, such as the use of bacterial N-glycosylation systems, or expression systems, including yeasts, insect cells, and mammalian cells, have enabled access to defined and homogenous glycoproteins. Given that glycan structures on proteins can be recognized by host lectin receptors, they may facilitate cell-specific targeting and immune modulation. Myeloid C-type lectin receptors (CLRs) expressed by antigen-presenting cells are attractive targets to shape immune responses. Multivalent glycan display on nanoparticles, liposomes, or dendrimers has successfully enabled CLR targeting. In this review, we discuss novel strategies to access defined glycan structures and highlight CLR targeting approaches for immune modulation.
Collapse
Affiliation(s)
- Timo Johannssen
- Max Planck Institute of Colloids and Interfaces, Department of Biomolecular Systems, Am Mühlenberg 1, 14476 Potsdam, Germany; Freie Universität Berlin, Institute of Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Arnimallee 22, 14195 Berlin, Germany; University of Veterinary Medicine Hannover, Immunology Unit & Research Center for Emerging Infections and Zoonoses (RIZ), Bünteweg 17, 30559 Hannover, Germany
| | - Bernd Lepenies
- University of Veterinary Medicine Hannover, Immunology Unit & Research Center for Emerging Infections and Zoonoses (RIZ), Bünteweg 17, 30559 Hannover, Germany.
| |
Collapse
|