1
|
Alvarez de la Rosa D, Ramos-Hernández Z, Weller-Pérez J, Johnson TA, Hager GL. The impact of mineralocorticoid and glucocorticoid receptor interaction on corticosteroid transcriptional outcomes. Mol Cell Endocrinol 2024; 594:112389. [PMID: 39423940 DOI: 10.1016/j.mce.2024.112389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/23/2024] [Accepted: 10/16/2024] [Indexed: 10/21/2024]
Abstract
The mineralocorticoid and glucocorticoid receptors (MR and GR, respectively) are members of the steroid receptor subfamily of nuclear receptors. Their main function is to act as ligand-activated transcription factors, transducing the effects of corticosteroid hormones (aldosterone and glucocorticoids) by modulating gene expression. Corticosteroid signaling is essential for homeostasis and adaptation to different forms of stress. GR responds to glucocorticoids by regulating genes involved in development, metabolism, immunomodulation and brain function. MR is best known for mediating the effects of aldosterone, a key hormone controlling electrolyte and water homeostasis. In addition to aldosterone, MR binds glucocorticoids (cortisol and corticosterone) with equally high affinity. This ligand promiscuity has important repercussions to understand MR function, as well as glucocorticoid signaling. MR and GR share significant sequence and structural similarities, regulate overlapping sets of genes and are able to interact forming heteromeric complexes. However, the precise role of these heteromers in regulating corticosteroid-regulated transcriptional outcomes remains an open question. In this review, we examine the evidence supporting MR-GR heteromerization, the molecular determinants of complex formation and their possible role in differential regulation of transcription in different cellular contexts and ligand availability.
Collapse
Affiliation(s)
- Diego Alvarez de la Rosa
- Instituto de Tecnologías Biomédicas and Departamento de Ciencias Médicas Básicas, Universidad de La Laguna, La Laguna, Tenerife, Spain.
| | - Zuleima Ramos-Hernández
- Instituto de Tecnologías Biomédicas and Departamento de Ciencias Médicas Básicas, Universidad de La Laguna, La Laguna, Tenerife, Spain
| | - Julián Weller-Pérez
- Instituto de Tecnologías Biomédicas and Departamento de Ciencias Médicas Básicas, Universidad de La Laguna, La Laguna, Tenerife, Spain
| | - Thomas A Johnson
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Gordon L Hager
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
2
|
Gartling G, Sayce L, Zimmerman Z, Slater A, Hary L, Yang W, Santacatterina M, Rousseau B, Branski RC. Acute Effects of Steroids on Vocal Fold Epithelium Post-injury in a Preclinical Model. Laryngoscope 2024. [PMID: 39276031 DOI: 10.1002/lary.31729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/18/2024] [Accepted: 08/13/2024] [Indexed: 09/16/2024]
Abstract
INTRODUCTION Glucocorticoids (GCs) are commonly prescribed for laryngeal indications due to their potent anti-inflammatory properties. However, GCs effect on vocal fold (VF) epithelial morphology and barrier function following injury is overlooked and may be key to efficacy. In this study, the effects of GCs on epithelial morphology and barrier function were quantified in injured VFs. We seek to increase our understanding of biochemical processes underlying GC mechanisms to refine therapeutic strategies. METHODS Microflap injury was induced in 65 rabbits. Seven days after injury, animals received bilateral 20 μL intracordal injections of saline, dexamethasone, methylprednisolone, or triamcinolone (n = 15 per condition). Five rabbits in each condition were euthanized 1, 7, or 60 days following treatment. An additional five animals served as non-injured/untreated controls. To quantify transepithelial electrical resistance (TEER), 1 mm epithelial biopsies were placed in an Ussing chamber. The contralateral VF was processed for transmission electron microscopy and epithelial depth analysis. RESULTS At 60 days, GC treatment maintained TEER levels similar to non-injured/untreated controls. However, triamcinolone reduced TEER compared with saline-treated conditions. Acutely, epithelial hyperplasia typically persisted in all injured VFs. At 60 days, only dexamethasone and triamcinolone increased epithelial depth in injured VFs; all GCs increased epithelial depth compared with non-injured/untreated controls. CONCLUSION Acutely, GCs did not alter TEER. Additionally, GCs did not alter epithelial depth compared with saline treatment, indicating alignment with natural healing responses. At 60 days, GCs exhibited varying degrees of TEER restoration and epithelial hyperplasia, possibly due to distinct pharmacodynamic profiles. LEVEL OF EVIDENCE NA Laryngoscope, 2024.
Collapse
Affiliation(s)
- Gary Gartling
- Department of Otolaryngology-Head and Neck Surgery, NYU Grossman School of Medicine, New York, New York, U.S.A
| | - Lea Sayce
- Department of Communication Science and Disorders, School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, U.S.A
| | - Zachary Zimmerman
- Department of Environmental and Occupational Health, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, U.S.A
| | - Alysha Slater
- Department of Communication Science and Disorders, School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, U.S.A
| | - Lizzie Hary
- Department of Communication Science and Disorders, School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, U.S.A
| | - Wenqing Yang
- Division of Biostatistics, Department of Population Health, NYU Grossman School of Medicine, New York, New York, U.S.A
| | - Michele Santacatterina
- Division of Biostatistics, Department of Population Health, NYU Grossman School of Medicine, New York, New York, U.S.A
| | - Bernard Rousseau
- Doisy College of Health Sciences, Saint Louis University, St. Louis, Missouri, U.S.A
| | - Ryan C Branski
- Department of Otolaryngology-Head and Neck Surgery, NYU Grossman School of Medicine, New York, New York, U.S.A
| |
Collapse
|
3
|
Livingstone DEW, Sooy K, Sykes C, Webster SP, Walker BR, Andrew R. 5α-Tetrahydrocorticosterone: A topical anti-inflammatory glucocorticoid with an improved therapeutic index in a murine model of dermatitis. Br J Pharmacol 2024; 181:1256-1267. [PMID: 37990638 DOI: 10.1111/bph.16285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 11/23/2023] Open
Abstract
BACKGROUND AND PURPOSE Glucocorticoids are powerful anti-inflammatory drugs, but are associated with many side-effects. Topical application in atopic dermatitis leads to skin thinning, metabolic changes, and adrenal suppression. 5α-Tetrahydrocorticosterone (5αTHB) is a potential selective anti-inflammatory with reduced metabolic effects. Here, the efficacy and side-effect profile of 5αTHB were compared with hydrocortisone in preclinical models of irritant dermatitis. EXPERIMENTAL APPROACH Acute irritant dermatitis was invoked in ear skin of male C57BL/6 mice with a single topical application of croton oil. Inflammation was assessed as oedema via ear weight following treatment with 5αTHB and hydrocortisone. Side-effects of 5αTHB and hydrocortisone were assessed following chronic topical steroid treatment (28 days) to non-irritated skin. Skin thinning was quantified longitudinally by caliper measurements and summarily by qPCR for transcripts for genes involved in extracellular matrix homeostasis; systemic effects of topical steroid administration also were assessed. Clearance of 5αTHB and hydrocortisone were measured following intravenous and oral administration. KEY RESULTS 5αTHB suppressed ear swelling in mice, with ED50 similar to hydrocortisone (23 μg vs. 13 μg). Chronic application of 5αTHB did not cause skin thinning, adrenal atrophy, weight loss, thymic involution, or raised insulin levels, all of which were observed with topical hydrocortisone. Transcripts for genes involved in collagen synthesis and stability were adversely affected by all doses of hydrocortisone, but only by the highest dose of 5αTHB (8× ED50 ). 5αTHB was rapidly cleared from the systemic circulation. CONCLUSIONS AND IMPLICATIONS Topical 5αTHB has potential to treat inflammatory skin conditions, particularly in areas of delicate skin.
Collapse
Affiliation(s)
- Dawn Elizabeth Watson Livingstone
- University/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
- Centre for Discovery Brain Science, University of Edinburgh, Edinburgh, UK
| | - Karen Sooy
- University/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Catherine Sykes
- University/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Scott Peter Webster
- University/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Brian Robert Walker
- University/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Ruth Andrew
- University/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
4
|
Xu C. Extra-adrenal aldosterone: a mini review focusing on the physiology and pathophysiology of intrarenal aldosterone. Endocrine 2024; 83:285-301. [PMID: 37847370 DOI: 10.1007/s12020-023-03566-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/08/2023] [Indexed: 10/18/2023]
Abstract
PURPOSE Accumulating evidence has demonstrated the existence of extra-adrenal aldosterone in various tissues, including the brain, heart, vascular, adipocyte, and kidney, mainly based on the detection of the CYP11B2 (aldosterone synthase, cytochrome P450, family 11, subfamily B, polypeptide 2) expression using semi-quantitative methods including reverse transcription-polymerase chain reaction and antibody-based western blotting, as well as local tissue aldosterone levels by antibody-based immunosorbent assays. This mini-review highlights the current evidence and challenges in extra-adrenal aldosterone, focusing on intrarenal aldosterone. METHODS A narrative review. RESULTS Locally synthesized aldosterone may play a vital role in various physio-pathological processes, especially cardiovascular events. The site of local aldosterone synthesis in the kidney may include the mesangial cells, podocytes, proximal tubules, and collecting ducts. The synthesis of renal aldosterone may be regulated by (pro)renin receptor/(pro)renin, angiotensin II/Angiotensin II type 1 receptor, wnt/β-catenin, cyclooxygenase-2/prostaglandin E2, and klotho. Enhanced renal aldosterone release promotes Na+ reabsorption and K+ excretion in the distal nephron and may contribute to the progress of diabetic nephropathy and salt-related hypertension. CONCLUSIONS Inhibition of intrarenal aldosterone signaling by aldosterone synthase inhibitors or mineralocorticoid receptor antagonists may be a hopeful pharmacological technique for the therapy of diabetic nephropathy and saltrelated hypertension. Yet, current reports are often conflicting or ambiguous, leading many to question whether extra-adrenal aldosterone exists, or whether it is of any physiological and pathophysiological significance.
Collapse
Affiliation(s)
- Chuanming Xu
- Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang, 330002, Jiangxi, China.
| |
Collapse
|
5
|
Carceller-Zazo E, Sevilla LM, Pons-Alonso O, Chiner-Oms Á, Amazit L, An Vu T, Vitellius G, Viengchareun S, Comas I, Jaszczyszyn Y, Abella M, Alegre-Martí A, Estébanez-Perpiñá E, Lombès M, Pérez P. The mineralocorticoid receptor modulates timing and location of genomic binding by glucocorticoid receptor in response to synthetic glucocorticoids in keratinocytes. FASEB J 2023; 37:e22709. [PMID: 36527388 DOI: 10.1096/fj.202201199rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022]
Abstract
Glucocorticoids (GCs) exert potent antiproliferative and anti-inflammatory properties, explaining their therapeutic efficacy for skin diseases. GCs act by binding to the GC receptor (GR) and the mineralocorticoid receptor (MR), co-expressed in classical and non-classical targets including keratinocytes. Using knockout mice, we previously demonstrated that GR and MR exert essential nonoverlapping functions in skin homeostasis. These closely related receptors may homo- or heterodimerize to regulate transcription, and theoretically bind identical GC-response elements (GRE). We assessed the contribution of MR to GR genomic binding and the transcriptional response to the synthetic GC dexamethasone (Dex) using control (CO) and MR knockout (MREKO ) keratinocytes. GR chromatin immunoprecipitation (ChIP)-seq identified peaks common and unique to both genotypes upon Dex treatment (1 h). GREs, AP-1, TEAD, and p53 motifs were enriched in CO and MREKO peaks. However, GR genomic binding was 35% reduced in MREKO , with significantly decreased GRE enrichment, and reduced nuclear GR. Surface plasmon resonance determined steady state affinity constants, suggesting preferred dimer formation as MR-MR > GR-MR ~ GR-GR; however, kinetic studies demonstrated that GR-containing dimers had the longest lifetimes. Despite GR-binding differences, RNA-seq identified largely similar subsets of differentially expressed genes in both genotypes upon Dex treatment (3 h). However, time-course experiments showed gene-dependent differences in the magnitude of expression, which correlated with earlier and more pronounced GR binding to GRE sites unique to CO including near Nr3c1. Our data show that endogenous MR has an impact on the kinetics and differential genomic binding of GR, affecting the time-course, specificity, and magnitude of GC transcriptional responses in keratinocytes.
Collapse
Affiliation(s)
- Elena Carceller-Zazo
- Inserm, Physiologie et Physiopathologie Endocriniennes, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Lisa M Sevilla
- Department of Pathology and Molecular and Cell Therapy, Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, Spain
| | - Omar Pons-Alonso
- Department of Pathology and Molecular and Cell Therapy, Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, Spain
| | - Álvaro Chiner-Oms
- Department of Genomics and Proteomics, Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, Spain
| | - Larbi Amazit
- Inserm, Physiologie et Physiopathologie Endocriniennes, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,Unité Mixte de Service UMS-44, Le Kremlin Bicêtre, France
| | - Thi An Vu
- Inserm, Physiologie et Physiopathologie Endocriniennes, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Géraldine Vitellius
- Inserm, Physiologie et Physiopathologie Endocriniennes, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Say Viengchareun
- Inserm, Physiologie et Physiopathologie Endocriniennes, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Iñaki Comas
- Department of Genomics and Proteomics, Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, Spain
| | - Yan Jaszczyszyn
- CEA, CNRS, Institute for Integrative Biology of the Cell, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Montserrat Abella
- Structural Biology of Nuclear Receptors, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain.,Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain
| | - Andrea Alegre-Martí
- Structural Biology of Nuclear Receptors, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain.,Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain
| | - Eva Estébanez-Perpiñá
- Structural Biology of Nuclear Receptors, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain.,Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain
| | - Marc Lombès
- Inserm, Physiologie et Physiopathologie Endocriniennes, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Paloma Pérez
- Department of Pathology and Molecular and Cell Therapy, Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, Spain
| |
Collapse
|
6
|
Lesovaya EA, Chudakova D, Baida G, Zhidkova EM, Kirsanov KI, Yakubovskaya MG, Budunova IV. The long winding road to the safer glucocorticoid receptor (GR) targeting therapies. Oncotarget 2022; 13:408-424. [PMID: 35198100 PMCID: PMC8858080 DOI: 10.18632/oncotarget.28191] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/25/2022] [Indexed: 11/25/2022] Open
Abstract
Glucocorticoids (Gcs) are widely used to treat inflammatory diseases and hematological malignancies, and despite the introduction of novel anti-inflammatory and anti-cancer biologics, the use of inexpensive and effective Gcs is expected to grow. Unfortunately, chronic treatment with Gcs results in multiple atrophic and metabolic side effects. Thus, the search for safer glucocorticoid receptor (GR)-targeted therapies that preserve therapeutic potential of Gcs but result in fewer adverse effects remains highly relevant. Development of selective GR agonists/modulators (SEGRAM) with reduced side effects, based on the concept of dissociation of GR transactivation and transrepression functions, resulted in limited success, and currently focus has shifted towards partial GR agonists. Additional approach is the identification and inhibition of genes associated with Gcs specific side effects. Others and we recently identified GR target genes REDD1 and FKBP51 as key mediators of Gcs-induced atrophy, and selected and validated candidate molecules for REDD1 blockage including PI3K/Akt/mTOR inhibitors. In this review, we summarized classic and contemporary approaches to safer GR-mediated therapies including unique concept of Gcs combination with REDD1 inhibitors. We discussed protective effects of REDD1 inhibitors against Gcs–induced atrophy in skin and bone and underlined the translational potential of this combination for further development of safer and effective Gcs-based therapies.
Collapse
Affiliation(s)
- Ekaterina A. Lesovaya
- Deparment of Chemical Carcinogenesis, Institute of Carcinogenesis, N.N. Blokhin NMRCO, Moscow, Russia
- Department of Oncology, I.P. Pavlov Ryazan State Medical University, Ryazan, Russia
| | - Daria Chudakova
- Department of Dermatology, Northwestern University, Chicago, IL, USA
| | - Gleb Baida
- Department of Dermatology, Northwestern University, Chicago, IL, USA
| | - Ekaterina M. Zhidkova
- Deparment of Chemical Carcinogenesis, Institute of Carcinogenesis, N.N. Blokhin NMRCO, Moscow, Russia
| | - Kirill I. Kirsanov
- Deparment of Chemical Carcinogenesis, Institute of Carcinogenesis, N.N. Blokhin NMRCO, Moscow, Russia
- Deparment of General Medical Practice, RUDN University, Moscow, Russia
| | - Marianna G. Yakubovskaya
- Deparment of Chemical Carcinogenesis, Institute of Carcinogenesis, N.N. Blokhin NMRCO, Moscow, Russia
| | - Irina V. Budunova
- Department of Dermatology, Northwestern University, Chicago, IL, USA
| |
Collapse
|
7
|
Eirefelt S, Stahlhut M, Svitacheva N, Carnerup MA, Da Rosa JMC, Ewald DA, Marstrand TT, Krogh-Madsen M, Dünstl G, Dack KN, Ollerstam A, Norsgaard H. Characterization of a novel non-steroidal glucocorticoid receptor agonist optimized for topical treatment. Sci Rep 2022; 12:1501. [PMID: 35087193 PMCID: PMC8795149 DOI: 10.1038/s41598-022-05471-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 01/12/2022] [Indexed: 11/17/2022] Open
Abstract
Glucocorticoids (GCs) are commonly used topical treatments for skin diseases but are associated with both local and systemic side effects. In this study, we describe a selective non-steroidal glucocorticoid receptor (GR) agonist for topical use, LEO 134310, which is rapidly deactivated in the blood resulting in low systemic exposure and a higher therapeutic index in the TPA-induced skin inflammation mouse model compared with betamethasone valerate (BMV) and clobetasol propionate (CP). Selectivity of LEO 134310 for GR was confirmed within a panel of nuclear receptors, including the mineralocorticoid receptor (MR), which has been associated with induction of skin atrophy. Topical treatment with LEO 134310 in minipigs did not result in any significant reduction in epidermal thickness in contrast to significant epidermal thinning induced by treatment with BMV and CP. Thus, the profile of LEO 134310 may potentially provide an effective and safer treatment option for skin diseases compared with currently used glucocorticoids.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Georg Dünstl
- LEO Pharma A/S, Industriparken 55, Ballerup, Denmark
| | | | | | | |
Collapse
|
8
|
Pérez P. The mineralocorticoid receptor in skin disease. Br J Pharmacol 2021; 179:3178-3189. [PMID: 34788475 DOI: 10.1111/bph.15736] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/23/2021] [Accepted: 10/19/2021] [Indexed: 11/26/2022] Open
Abstract
The Mineralocorticoid Receptor (MR or NR3C2) is expressed in all cell types of the different skin compartments and can be bound and activated by glucocorticoids (GCs) with higher affinity than its closely related glucocorticoid (GC) receptor (GR or NR3C1). As both corticosteroid receptors co-express in skin, and considering the therapeutic relevance of GCs to combat skin inflammatory diseases, it was proposed that several of the major side-effects of topical GCs such as skin atrophy and delayed wound healing were due to unintended activation of the MR. Indeed, cutaneous MR blockade using genetic and pharmacological approaches in mice and human reduced the GC-associated skin atrophy in conditions of endogenous and pharmacological GC excess. While data support the safety of topical MR antagonists combined with GCs, it is crucial to address the efficacy of treatment in skin inflammatory conditions and its impact on the overall metabolism.
Collapse
Affiliation(s)
- Paloma Pérez
- Instituto de Biomedicina de Valencia (IBV)-CSIC, Valencia, Spain
| |
Collapse
|
9
|
Carpenter MA, Kemp MG. Topical Treatment of Human Skin and Cultured Keratinocytes with High-Dose Spironolactone Reduces XPB Expression and Induces Toxicity. JID INNOVATIONS 2021; 1:100023. [PMID: 34909723 PMCID: PMC8659383 DOI: 10.1016/j.xjidi.2021.100023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 12/25/2022] Open
Abstract
Spironolactone (SP) is used to treat a variety of disparate disease states ranging from heart failure to acne through antagonism of the mineralocorticoid and androgen receptors. Although normally taken as an oral medication, recent studies have explored the topical application of SP onto the skin. However, because SP induces the proteolytic degradation of the XPB protein, which plays critical roles in DNA repair and transcription, there may be safety concerns with the use of topical SP. In this study, we show that the topical application of a high concentration of either SP or its metabolite canrenone onto human skin ex vivo lowers XPB protein levels and induces toxic responses in the epidermis. Interestingly, although SP and canrenone both inhibit cell proliferation, induce replication stress responses, and stimulate apoptotic signaling at high concentrations in cultured keratinocytes in vitro, these effects were not correlated with XPB protein loss. Thus, high concentrations of SP and canrenone likely inhibit cell proliferation and induce toxicity through additional mechanisms to XPB proteolytic degradation. This work suggests that care may need to be taken when using high concentrations of SP directly on human skin.
Collapse
Affiliation(s)
- M. Alexandra Carpenter
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, USA
| | - Michael G. Kemp
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, USA
| |
Collapse
|
10
|
Aschoff R, Lang A, Koch E. Effects of intermittent treatment with topical corticosteroids and calcineurin inhibitors on epidermal and dermal thickness using optical coherence tomography and ultrasound. Skin Pharmacol Physiol 2021; 35:41-50. [PMID: 34348352 DOI: 10.1159/000518214] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 06/03/2021] [Indexed: 11/19/2022]
Affiliation(s)
- Roland Aschoff
- Department of Dermatology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Awena Lang
- Department of Dermatology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Edmund Koch
- Department of Clinical Sensoring and Monitoring, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
11
|
Slominski RM, Raman C, Elmets C, Jetten AM, Slominski AT, Tuckey RC. The significance of CYP11A1 expression in skin physiology and pathology. Mol Cell Endocrinol 2021; 530:111238. [PMID: 33716049 PMCID: PMC8205265 DOI: 10.1016/j.mce.2021.111238] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/25/2021] [Accepted: 02/27/2021] [Indexed: 12/14/2022]
Abstract
CYP11A1, a member of the cytochrome P450 family, plays several key roles in the human body. It catalyzes the first and rate-limiting step in steroidogenesis, converting cholesterol to pregnenolone. Aside from the classical steroidogenic tissues such as the adrenals, gonads and placenta, CYP11A1 has also been found in the brain, gastrointestinal tract, immune systems, and finally the skin. CYP11A1 activity in the skin is regulated predominately by StAR protein and hence cholesterol levels in the mitochondria. However, UVB, UVC, CRH, ACTH, cAMP, and cytokines IL-1, IL-6 and TNFα can also regulate its expression and activity. Indeed, CYP11A1 plays several critical roles in the skin through its initiation of local steroidogenesis and specific metabolism of vitamin D, lumisterol, and 7-dehydrocholesterol. Products of these pathways regulate the protective barrier and skin immune functions in a context-dependent fashion through interactions with a number of receptors. Disturbances in CYP11A1 activity can lead to skin pathology.
Collapse
Affiliation(s)
- R M Slominski
- Department of Medicine, Division of Rheumatology, USA; Department of Dermatology, USA
| | - C Raman
- Department of Medicine, Division of Rheumatology, USA; Department of Dermatology, USA
| | - C Elmets
- Department of Dermatology, USA; Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, USA
| | - A M Jetten
- Cell Biology Section, Immunity, Inflammation, Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - A T Slominski
- Department of Dermatology, USA; VA Medical Center, Birmingham, AL, USA.
| | - R C Tuckey
- School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia.
| |
Collapse
|
12
|
A novel mineralocorticoid receptor antagonist, 7,3',4'-trihydroxyisoflavone improves skin barrier function impaired by endogenous or exogenous glucocorticoids. Sci Rep 2021; 11:11920. [PMID: 34099793 PMCID: PMC8184959 DOI: 10.1038/s41598-021-91450-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 05/10/2021] [Indexed: 11/08/2022] Open
Abstract
Excess glucocorticoids (GCs) with either endogenous or exogenous origins deteriorate skin barrier function. GCs bind to mineralocorticoid and GC receptors (MRs and GRs) in normal human epidermal keratinocytes (NHEKs). Inappropriate MR activation by GCs mediates various GC-induced cutaneous adverse events. We examined whether MR antagonists can ameliorate GC-mediated skin barrier dysfunction in NHEKs, reconstructed human epidermis (RHE), and subjects under psychological stress (PS). In a preliminary clinical investigation, topical MR antagonists improved skin barrier function in topical GC-treated subjects. In NHEKs, cortisol induced nuclear translocation of GR and MR, and GR and MR antagonists inhibited cortisol-induced reductions of keratinocyte differentiation. We identified 7,3',4'-trihydroxyisoflavone (7,3',4'-THIF) as a novel compound that inhibits MR transcriptional activity by screening 30 cosmetic compounds. 7,3',4'-THIF ameliorated the cortisol effect which decreases keratinocyte differentiation in NHEKs and RHE. In a clinical study on PS subjects, 7,3',4'-THIF (0.1%)-containing cream improved skin barrier function, including skin surface pH, barrier recovery rate, and stratum corneum lipids. In conclusion, skin barrier dysfunction owing to excess GC is mediated by MR and GR; thus, it could be prevented by treatment with MR antagonists. Therefore, topical MR antagonists are a promising therapeutic option for skin barrier dysfunction after topical GC treatment or PS.
Collapse
|
13
|
Polymeric micelle mediated follicular delivery of spironolactone: Targeting the mineralocorticoid receptor to prevent glucocorticoid-induced activation and delayed cutaneous wound healing. Int J Pharm 2021; 604:120773. [PMID: 34090990 DOI: 10.1016/j.ijpharm.2021.120773] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 01/19/2023]
Abstract
Impaired wound healing in patients receiving glucocorticoid therapy is a serious clinical concern: mineralocorticoid receptor (MR) antagonists can counter glucocorticoid-induced off-target activation of MR receptors. The aim of this study was to investigate the cutaneous delivery of the potent MR antagonist, spironolactone (SPL), from polymeric micelle nanocarriers, prepared using a biodegradable copolymer, methoxy-poly(ethylene glycol)-di-hexyl-substituted-poly(lactic acid). Immunofluorescent labelling of the MR showed that it was principally located in the pilosebaceous unit (PSU), justifying the study rationale since polymeric micelles accumulate preferentially in appendageal structures. Cutaneous biodistribution studies under infinite and finite dose conditions, demonstrated delivery of pharmacologically relevant amounts of SPL to the epidermis and upper dermis. Preferential PSU targeting was confirmed by comparing amounts of SPL in PSU-containing and PSU-free skin biopsies: SPL nanomicelles showed 5-fold higher delivery of SPL in the PSU-containing biopsies, 0.54 ± 0.18 ng/mm2vs. 0.10 ± 0.03 ng/mm2, after application of a hydrogel in finite conditions. Canrenone, an active metabolite of SPL, was also quantified in skin samples. In addition to being used for the treatment of delayed cutaneous wound healing by site-specific antagonism of the MR, the formulation might also be used to treat pilosebaceous androgen-related skin diseases, e.g. acne vulgaris, since SPL is a potent androgen receptor antagonist.
Collapse
|
14
|
Abstract
The Epithelial Na+ Channel, ENaC, comprised of 3 subunits (αβγ, or sometimes δβγENaC), plays a critical role in regulating salt and fluid homeostasis in the body. It regulates fluid reabsorption into the blood stream from the kidney to control blood volume and pressure, fluid absorption in the lung to control alveolar fluid clearance at birth and maintenance of normal airway surface liquid throughout life, and fluid absorption in the distal colon and other epithelial tissues. Moreover, recent studies have also revealed a role for sodium movement via ENaC in nonepithelial cells/tissues, such as endothelial cells in blood vessels and neurons. Over the past 25 years, major advances have been made in our understanding of ENaC structure, function, regulation, and role in human disease. These include the recently solved three-dimensional structure of ENaC, ENaC function in various tissues, and mutations in ENaC that cause a hereditary form of hypertension (Liddle syndrome), salt-wasting hypotension (PHA1), or polymorphism in ENaC that contributes to other diseases (such as cystic fibrosis). Moreover, great strides have been made in deciphering the regulation of ENaC by hormones (e.g., the mineralocorticoid aldosterone, glucocorticoids, vasopressin), ions (e.g., Na+ ), proteins (e.g., the ubiquitin-protein ligase NEDD4-2, the kinases SGK1, AKT, AMPK, WNKs & mTORC2, and proteases), and posttranslational modifications [e.g., (de)ubiquitylation, glycosylation, phosphorylation, acetylation, palmitoylation]. Characterization of ENaC structure, function, regulation, and role in human disease, including using animal models, are described in this article, with a special emphasis on recent advances in the field. © 2021 American Physiological Society. Compr Physiol 11:1-29, 2021.
Collapse
Affiliation(s)
- Daniela Rotin
- The Hospital for Sick Children, and The University of Toronto, Toronto, Canada
| | - Olivier Staub
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
15
|
Niculet E, Bobeica C, Tatu AL. Glucocorticoid-Induced Skin Atrophy: The Old and the New. Clin Cosmet Investig Dermatol 2020; 13:1041-1050. [PMID: 33408495 PMCID: PMC7779293 DOI: 10.2147/ccid.s224211] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/22/2020] [Indexed: 12/13/2022]
Abstract
Glucocorticoids are major therapeutic agents highly used in the medical field. Topical glucocorticoids have biologic activities which make them useful in dermatology – anti-inflammatory, vasoconstrictive, immune suppressive and antiproliferative, in treating inflammatory skin disorders (allergic contact eczema, atopic hand eczema, nummular eczema, psoriasis vulgaris or toxic-irritative eczema). Unfortunately, the beneficial effects of topical glucocorticoids are shadowed by their potential for adverse effects – muscle or skin atrophy, striae distensae, rubeosis or acne. Skin atrophy is one of the most prevalent side-effects, with changes found in all skin compartments – marked hypoplasia, elasticity loss with tearing, increased fragility, telangiectasia, bruising, cutaneous transparency, or a dysfunctional skin barrier. The structure and function of the epidermis is altered even in the short-term topical glucocorticoid treatment; it affects stratum corneum components, subsequently affecting skin barrier integrity. The dermis is altered by directly inhibiting fibroblast proliferation, reducing mast cell numbers, and loss of support; there is depletion of mucopolysaccharides, elastin fibers, matrix metalloproteases and inhibition of collagen synthesis. Atrophogenic changes can be found also in hair follicles, sebaceous glands or dermal adipose tissue. Attention should be paid to topical glucocorticoid treatment prescription, to the beneficial/adverse effects ratio of the chosen agent, and studies should be oriented on the development of newer, innovative targeted (gene or receptor) therapies.
Collapse
Affiliation(s)
- Elena Niculet
- Department of Morphological and Functional Sciences, Faculty of Medicine and Pharmacy, "Dunarea de Jos" University, Galati, Romania
| | - Carmen Bobeica
- Department of Dermato-Venereology, Doctoral School, University of Medicine and Pharmacy "Gr. T. Popa", Iași, Romania
| | - Alin L Tatu
- Clinical Department, Faculty of Medicine and Pharmacy, "Dunarea de Jos" University, Galati, Romania.,Research Center in the Field of Medical and Pharmaceutical Sciences, ReFORM-UDJ, Galati, Romania.,Dermatology Department, "Sf. Cuvioasa Parascheva" Clinical Hospital of Infectious Diseases, Galati, Romania
| |
Collapse
|
16
|
Gabbard RD, Hoopes RR, Kemp MG. Spironolactone and XPB: An Old Drug with a New Molecular Target. Biomolecules 2020; 10:E756. [PMID: 32414008 PMCID: PMC7277409 DOI: 10.3390/biom10050756] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/09/2020] [Accepted: 05/10/2020] [Indexed: 02/08/2023] Open
Abstract
Spironolactone (SP) is commonly used for the treatment of heart failure, hypertension, and complications of cirrhosis by antagonizing the mineralocorticoid receptor. However, SP also antagonizes the androgen receptor, and thus SP has also been shown to be effective in the treatment of acne, hair loss, and hirsutism in women. Interestingly, recent drug repurposing screens have identified new and diverse functions for SP as a simulator of tumor immunosurveillance and as an inhibitor of DNA repair and viral infection. These novel pharmacological effects of SP have all been linked to the ability of SP to induce the rapid proteolytic degradation of the xeroderma pigmentosum group B (XPB) protein. XPB is a critical enzymatic component of the multi-subunit complex known as transcription factor II-H (TFIIH), which plays essential roles in both DNA repair and the initiation of transcription. Given the critical functions for XPB and TFIIH in these processes, the loss of XPB by SP could lead to mutagenesis. However, the ability of SP to promote cancer stem cell death and facilitate immune recognition may counteract the negative consequences of SP to mitigate carcinogenic risk. Thus, SP appears to have new and interesting pharmacological effects that may extend its potential uses.
Collapse
Affiliation(s)
| | | | - Michael G. Kemp
- Department of Pharmacology and Toxicology, Wright State University Boonshoft School of Medicine, Dayton, OH 45435, USA; (R.D.G.); (R.R.H.)
| |
Collapse
|
17
|
Bigas J, Sevilla LM, Pérez P. Epidermal Mineralocorticoid Receptor Inactivation Affects the Homeostasis of All Skin Layers in Chronologically Aged Mice. J Invest Dermatol 2020; 140:1899-1908. [PMID: 32199993 DOI: 10.1016/j.jid.2020.03.933] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/17/2020] [Accepted: 03/02/2020] [Indexed: 12/26/2022]
Abstract
The increased production of endogenous glucocorticoids (GCs) in the skin of the elderly population contributes to age-related defects strikingly similar to those occurring after pharmacologic treatments with GCs. GCs act through the ligand-dependent transcription factors GC receptor (GR) and mineralocorticoid receptor (MR). We reported that epidermal MR plays nonredundant roles relative to GR in adult mouse skin homeostasis; however, its relative contribution to natural skin aging has not been previously investigated. A 13-month-old MR epidermal knockout (MREKO) mice showed differential features of aging relative to controls (CO) in all skin compartments. MREKO mice were resistant to age-induced epidermal atrophy but showed reduced dermal thickness, with decreased collagen deposition and decreased SMAD2 and 3 activity. Importantly, the dermal white adipose tissue (dWAT) was 2.5-fold enlarged in 13-month MREKO versus CO, featuring adipocyte hyperplasia and hypertrophy at least in part through early increases in Pparg. These changes correlated with compartment-specific alterations in GC signaling. In addition, conditioned medium from MREKO keratinocytes increased adipocyte differentiation, indicating paracrine regulation of adipogenesis through mechanisms that include activation of β-catenin signaling. These findings highlight the importance of epidermal MR in regulating cross-talk among skin compartments in naturally aged skin through GC and β-catenin signaling pathways.
Collapse
Affiliation(s)
- Judit Bigas
- Instituto de Biomedicina de Valencia-Consejo Superior de Investigaciones Científicas (IBV-CSIC), Jaime Roig, Valencia, Spain
| | - Lisa M Sevilla
- Instituto de Biomedicina de Valencia-Consejo Superior de Investigaciones Científicas (IBV-CSIC), Jaime Roig, Valencia, Spain
| | - Paloma Pérez
- Instituto de Biomedicina de Valencia-Consejo Superior de Investigaciones Científicas (IBV-CSIC), Jaime Roig, Valencia, Spain.
| |
Collapse
|
18
|
Vallini V, Rinaldi E, Mangano L, Modesti L, Ghelardini P, Roberts AT, Grazi G. Multiple subcutaneous haematomas of the legs causing skin necrosis in an elderly patient affected by corticosteroid-induced skin atrophy: Case report and review of literature. Int Wound J 2020; 17:540-546. [PMID: 31972900 DOI: 10.1111/iwj.13312] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/16/2018] [Indexed: 12/19/2022] Open
Abstract
Corticosteroid-induced skin atrophy (CISA) consists of a thinning of the skin and subcutaneous tissues, representing the natural consequence of a prolonged glucocorticosteroids use, both systemic as well as topical. It is characterised by the loss of elasticity and skin thickness, associated with an increased skin fragility leading to ecchymoses, haematomas, and steroid purpura. The management of CISA is a challenge for physicians, as the pathology is reversible in a minimal percentage of cases and only after a short topical steroid or low-dose course therapy. Often wounds with large loss of substance represent the more common complication, after a surgical drainage which is often necessary. Skin necrosis with compartment syndrome of a leg is another potential risk for these patients. Here, we report a case of an elderly patient affected by multiple subcutaneous haematomas of the legs causing skin necrosis, arisen after the use of anticoagulants for a deep venous thrombosis. The patient was successfully treated with surgical drainage, negative pressure wound therapy (NPWT), and porcine xenograft with no complications. Finally, we discuss the evidence of the current literature on topic.
Collapse
Affiliation(s)
- Valerio Vallini
- Azienda USL Toscana nord ovest, U.O. Medicina Interna, Ospedale Santa Maria Maddalena, Pisa, Italy
| | - Elisabetta Rinaldi
- Azienda USL Toscana nord ovest, U.O. Medicina Interna, Ospedale Santa Maria Maddalena, Pisa, Italy
| | - Luciana Mangano
- Azienda USL Toscana nord ovest, U.O. Medicina Interna, Ospedale Santa Maria Maddalena, Pisa, Italy
| | - Luca Modesti
- Azienda USL Toscana nord ovest, U.O. Ortopedia, Ospedale Felice Lotti, Pisa, Italy
| | - Piero Ghelardini
- Azienda USL Toscana nord ovest, U.O. Medicina Interna, Ospedale Santa Maria Maddalena, Pisa, Italy
| | - Anna Theresa Roberts
- Azienda USL Toscana nord ovest, U.O. Medicina Interna, Ospedale Santa Maria Maddalena, Pisa, Italy
| | - Giovanni Grazi
- Azienda USL Toscana nord ovest, U.O. Medicina Interna, Ospedale Santa Maria Maddalena, Pisa, Italy
| |
Collapse
|
19
|
Hundt JE, Sass S, Funk W, Bíró T, Farman N, Langan EA, Paus R. Mineralocorticoid Receptor Antagonists Stimulate Human Hair Growth ex vivo. Skin Pharmacol Physiol 2019; 32:344-348. [PMID: 31522177 DOI: 10.1159/000501729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 06/25/2019] [Indexed: 11/19/2022]
Abstract
Whilst topical steroids represent one of the most frequently administered treatments for skin and hair diseases, predominantly based on their glucocorticoid receptor-mediated anti-inflammatory effects, the mineralocorticoid effects of topical steroids have received surprisingly little attention. However, the role of mineralocorticoid receptor (MR) signaling is now known to extend beyond the kidney, with human skin, including the hair follicle (HF), expressing the MR. Using microdissected female HFs treated ex vivo with MR agonists and antagonists, we sought to determine the effects of MR-mediated signaling in the cutaneous context. Indeed, not only did the skin and HF epithelium express the MR at both the gene and protein level, but its expression was hair cycle dependent. Moreover, the selective MR antagonist eplerenone promoted hair shaft elongation and hair matrix keratinocyte proliferation whilst delaying catagen (HF regression). These novel observations suggest that the female human HF is sensitive to the inhibition of MR signaling and provide the first evidence that sustained MR signaling may even be required to maintain the growth phase (anagen) of human scalp HFs. Indeed, these data encourage the systematic evaluation of MR agonists and antagonists in human hair growth control so as to identify much-needed, novel anti-hirsutism and/or hair growth-promoting agents, respectively.
Collapse
Affiliation(s)
- Jennifer E Hundt
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Stephanie Sass
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | | | - Tamás Bíró
- Department of Immunology, University of Debrecen, Debrecen, Hungary
| | - Nicolette Farman
- Centre de Recherches des Cordeliers, INSERM U1138, Paris, France
| | - Ewan A Langan
- Department of Dermatology, University of Lübeck, Lübeck, Germany.,Centre for Dermatology Research, University of Manchester, Manchester, United Kingdom
| | - Ralf Paus
- Centre for Dermatology Research, University of Manchester, Manchester, United Kingdom, E-Mail .,Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA, E-Mail
| |
Collapse
|
20
|
Nguyen VT, Farman N, Palacios-Ramirez R, Sbeih M, Behar-Cohen F, Aractingi S, Jaisser F. Cutaneous Wound Healing in Diabetic Mice Is Improved by Topical Mineralocorticoid Receptor Blockade. J Invest Dermatol 2019; 140:223-234.e7. [PMID: 31278904 DOI: 10.1016/j.jid.2019.04.030] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 03/20/2019] [Accepted: 04/08/2019] [Indexed: 12/19/2022]
Abstract
Skin ulcers resulting from impaired wound healing are a serious complication of diabetes. Unresolved inflammation, associated with the dysregulation of both the phenotype and function of macrophages, is involved in the poor healing of diabetic wounds. Here, we report that topical pharmacological inhibition of the mineralocorticoid receptor (MR) by canrenoate or MR small interfering RNA can resolve inflammation to improve delayed skin wound healing in diabetic mouse models; importantly, wounds from normal mice are unaffected. The beneficial effect of canrenoate is associated with an increased ratio of anti-inflammatory M2 macrophages to proinflammatory M1 macrophages in diabetic wounds. Furthermore, we show that MR blockade leads to downregulation of the MR target, LCN2, which may facilitate macrophage polarization toward the M2 phenotype and improve impaired angiogenesis in diabetic wounds. Indeed, diabetic LCN2-deficient mice showed improved wound healing associated with macrophage M2 polarization and angiogenesis. In addition, recombinant LCN2 protein prevented IL-4-induced macrophage switch from M1 to M2 phenotype. In conclusion, topical MR blockade accelerates skin wound healing in diabetic mice via LCN2 reduction, M2 macrophage polarization, prevention of inflammation, and induction of angiogenesis.
Collapse
Affiliation(s)
- Van Tuan Nguyen
- INSERM, Centre de Recherche des Cordeliers, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, Paris, France; Laboratory of progenitors and endothelial cells during and after pregnancy, INSERM UMR 938, Centre de Recherche St Antoine, Sorbonne Université, Paris, France; Department of Basic Science, Thai Nguyen University of Agriculture and Forestry, Thainguyen, Vietnam
| | - Nicolette Farman
- INSERM, Centre de Recherche des Cordeliers, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, Paris, France
| | - Roberto Palacios-Ramirez
- INSERM, Centre de Recherche des Cordeliers, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, Paris, France
| | - Maria Sbeih
- Laboratory of progenitors and endothelial cells during and after pregnancy, INSERM UMR 938, Centre de Recherche St Antoine, Sorbonne Université, Paris, France
| | - Francine Behar-Cohen
- INSERM, Centre de Recherche des Cordeliers, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, Paris, France; Faculty of Medicine, Université Paris Descartes, Paris, France
| | - Sélim Aractingi
- Laboratory of progenitors and endothelial cells during and after pregnancy, INSERM UMR 938, Centre de Recherche St Antoine, Sorbonne Université, Paris, France; Faculty of Medicine, Université Paris Descartes, Paris, France; Department of Dermatology, Hôpital Cochin-Tarnier, Paris, France
| | - Frederic Jaisser
- INSERM, Centre de Recherche des Cordeliers, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, Paris, France; INSERM, Clinical Investigation Centre 1433, Vandoeuvre-lès-Nancy, France.
| |
Collapse
|
21
|
Spironolactone Depletes the XPB Protein and Inhibits DNA Damage Responses in UVB-Irradiated Human Skin. J Invest Dermatol 2019; 139:448-454. [PMID: 30227140 PMCID: PMC6342635 DOI: 10.1016/j.jid.2018.07.039] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/17/2018] [Accepted: 07/30/2018] [Indexed: 12/14/2022]
Abstract
UVB wavelengths of light induce the formation of photoproducts in genomic DNA that are potentially mutagenic and detrimental to epidermal cell function. The mineralocorticoid and androgen receptor antagonist spironolactone (SP) was recently identified as an inhibitor of UV photoproduct removal in human cancer cells in vitro via its ability to promote the rapid proteolytic degradation of the DNA repair protein XPB. Using normal human keratinocytes in vitro and skin explants ex vivo, we found that SP rapidly depleted XPB protein in both systems and abrogated two major responses to UVB-induced DNA damage, including the removal of UV photoproducts from genomic DNA and the activation of ATR/ATM DNA damage kinase signaling. These effects were also correlated with both mutagenesis and a predisposition to UVB-induced cell death but were unique to SP, because neither the SP metabolites canrenone and 7α-thiomethylspironolactone nor the more specific mineralocorticoid receptor antagonist eplerenone affected XPB protein levels or the UVB response. Our findings provide an approach for studying XPB and its roles in the UVB DNA damage response in human skin ex vivo and indicate that SP may increase UVB mutagenesis and skin cancer risk in certain individuals.
Collapse
|
22
|
Sevilla LM, Pérez P. Roles of the Glucocorticoid and Mineralocorticoid Receptors in Skin Pathophysiology. Int J Mol Sci 2018; 19:ijms19071906. [PMID: 29966221 PMCID: PMC6073661 DOI: 10.3390/ijms19071906] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 06/25/2018] [Accepted: 06/27/2018] [Indexed: 12/15/2022] Open
Abstract
The nuclear hormone receptor (NR) superfamily comprises approximately 50 evolutionarily conserved proteins that play major roles in gene regulation by prototypically acting as ligand-dependent transcription factors. Besides their central role in physiology, NRs have been largely used as therapeutic drug targets in many chronic inflammatory conditions and derivatives of their specific ligands, alone or in combination, are frequently prescribed for the treatment of skin diseases. In particular, glucocorticoids (GCs) are the most commonly used compounds for treating prevalent skin diseases such as psoriasis due to their anti-proliferative and anti-inflammatory actions. However, and despite their therapeutic efficacy, the long-term use of GCs is limited because of the cutaneous adverse effects including atrophy, delayed wound healing, and increased susceptibility to stress and infections. The GC receptor (GR/NR3C1) and the mineralocorticoid receptor (MR/NR3C2) are members of the NR subclass NR3C that are highly related, both structurally and functionally. While the GR is ubiquitously expressed and is almost exclusively activated by GCs; an MR has a more restricted tissue expression pattern and can bind GCs and the mineralocorticoid aldosterone with similar high affinity. As these receptors share 95% identity in their DNA binding domains; both can recognize the same hormone response elements; theoretically resulting in transcriptional regulation of the same target genes. However, a major mechanism for specific activation of GRs and/or MRs is at the pre-receptor level by modulating the local availability of active GCs. Furthermore, the selective interactions of each receptor with spatio-temporally regulated transcription factors and co-regulators are crucial for the final transcriptional outcome. While there are abundant genome wide studies identifying GR transcriptional targets in a variety of tissue and cell types; including keratinocytes; the data for MR is more limited thus far. Our group and others have studied the role of GRs and MRs in skin development and disease by generating and characterizing mouse and cellular models with gain- and loss-of-function for each receptor. Both NRs are required for skin barrier competence during mouse development and also play a role in adult skin homeostasis. Moreover, the combined loss of epidermal GRs and MRs caused a more severe skin phenotype relative to single knock-outs (KOs) in developing skin and in acute inflammation and psoriasis, indicating that these corticosteroid receptors play cooperative roles. Understanding GR- and MR-mediated signaling in skin should contribute to deciphering their tissue-specific relative roles and ultimately help to improve GC-based therapies.
Collapse
Affiliation(s)
- Lisa M Sevilla
- Instituto de Biomedicina de Valencia (IBV)-CSIC, 46010 Valencia, Spain.
| | - Paloma Pérez
- Instituto de Biomedicina de Valencia (IBV)-CSIC, 46010 Valencia, Spain.
| |
Collapse
|
23
|
Epidermal glucocorticoid and mineralocorticoid receptors act cooperatively to regulate epidermal development and counteract skin inflammation. Cell Death Dis 2018; 9:588. [PMID: 29789551 PMCID: PMC5964110 DOI: 10.1038/s41419-018-0673-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 05/02/2018] [Accepted: 05/03/2018] [Indexed: 12/14/2022]
Abstract
Endogenous and synthetic glucocorticoids (GCs) regulate epidermal development and combat skin inflammatory diseases. GC actions can be mediated through the GC receptor (GR) and/or the mineralocorticoid receptor (MR), highly homologous ligand-activated transcription factors. While the role of GR as a potent anti-inflammatory mediator is well known, that of MR is not as clear, nor is whether these receptors cooperate or antagonize each other in the epidermis. To address this, we generated mice with epidermal-specific loss of both receptors (double knockout, DKO), and analyzed the phenotypical and functional consequences relative to single KOs or controls (CO). At birth, DKO epidermis displayed a phenotype of defective differentiation and inflammation, which was more severe than in either single KO, featuring neutrophil-containing infiltrates, and gene dysregulation characteristic of human psoriatic lesions. This phenotype resolved spontaneously. However, in adulthood, single or combined loss of GC receptors increased susceptibility to inflammation and hyperproliferation triggered by phorbol ester which, different to CO, was not effectively counteracted by GC treatment. Also, DKOs were more susceptible to imiquimod-induced psoriasis than CO showing severe defective epidermal differentiation and microabcesses while single KOs showed an intermediate response. Immortalized DKO keratinocytes featured increased proliferation kinetics and reduced cell size, a unique phenotype relative to single KO cells. The lack of GR and MR in keratinocytes, individual or combined, caused constitutive increases in p38 and ERK activities, which were partially reversed upon reinsertion of receptors into DKO cells. DKO keratinocytes also displayed significant increases in AP-1 and NF-κB transcriptional activities, which were partially rescued by ERK and p38 inhibition, respectively. Reinsertion of GR and MR in DKO keratinocytes resulted in physical and cooperative functional interactions that restored the transcriptional response to GCs. In conclusion, our data have revealed that epidermal GR and MR act cooperatively to regulate epidermal development and counteract skin inflammation.
Collapse
|
24
|
Dahmana N, Gabriel D, Gurny R, Kalia YN. Development and validation of a fast and sensitive UHPLC-ESI-MS method for the simultaneous quantification of spironolactone and its metabolites in ocular tissues. Biomed Chromatogr 2018; 32:e4287. [PMID: 29767448 DOI: 10.1002/bmc.4287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 04/20/2018] [Accepted: 05/04/2018] [Indexed: 11/09/2022]
Abstract
Glucocorticoids are a mainstay for the treatment of immune-mediated conditions and inflammatory diseases. However, their chronic use causes numerous side-effects including delays in corneal and cutaneous wound healing. This is attributed to off-target agonism of the mineralocorticoid receptor, which can be reduced by co-administration of a mineralocorticoid receptor antagonist such as spironolactone. The aim of this study was to develop a fast, selective and sensitive UHPLC-ESI-MS method for the simultaneous quantification of spironolactone, its active metabolites (7α-thiomethylspironolactone and canrenone), the latter's water-soluble prodrug potassium canrenoate and the synthetic glucocorticoid, dexamethasone, in corneal samples (17α-methyltestosterone served as an internal standard). A one-step extraction procedure using MeOH-H2 O (1:1) was validated and employed to recover the analytes from the corneal tissue. Extracts were centrifuged and the supernatant analyzed under isocratic conditions. Compounds were detected using selected ion recording mode. The method satisfied US Food and Drug Administration guidelines with respect to selectivity, precision and accuracy and displayed linearity from 5 to 1000 ng/mL for all of the analytes. The lower limit of quantitation of the method was 5 ng/mL, making it sufficiently sensitive for quantification of the analytes in samples from in vivo studies.
Collapse
Affiliation(s)
- Naoual Dahmana
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Lausanne, Switzerland
| | | | - Robert Gurny
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Lausanne, Switzerland.,Apidel SA, Geneva, Switzerland
| | - Yogeshvar N Kalia
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
25
|
Dahmana N, Mugnier T, Gabriel D, Kaltsatos V, Bertaim T, Behar-Cohen F, Gurny R, Kalia YN. Topical Administration of Spironolactone-Loaded Nanomicelles Prevents Glucocorticoid-Induced Delayed Corneal Wound Healing in Rabbits. Mol Pharm 2018; 15:1192-1202. [DOI: 10.1021/acs.molpharmaceut.7b01028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Naoual Dahmana
- School of Pharmaceutical Sciences, University of Geneva & University of Lausanne, CMU - 1 rue Michel Servet, 1211 Geneva 4, Switzerland
| | | | - Doris Gabriel
- Apidel SA, 29 Quai du Mont Blanc, 1201 Geneva, Switzerland
| | | | - Thierry Bertaim
- CEVA Santé Animal, 10 Avenue de la Ballastière, 33500 Libourne, France
| | - Francine Behar-Cohen
- Fondation Asile des Aveugles, Hôpital Ophtalmique Jules-Gonin, 15 Avenue de France, 1004 Lausanne, Switzerland
- INSERM, UMRS 872 Team 17, Centre de Recherche des Cordeliers, 15 rue de l’Ecole de Médecine, 75006 Paris, France
| | - Robert Gurny
- School of Pharmaceutical Sciences, University of Geneva & University of Lausanne, CMU - 1 rue Michel Servet, 1211 Geneva 4, Switzerland
- Apidel SA, 29 Quai du Mont Blanc, 1201 Geneva, Switzerland
| | - Yogeshvar N. Kalia
- School of Pharmaceutical Sciences, University of Geneva & University of Lausanne, CMU - 1 rue Michel Servet, 1211 Geneva 4, Switzerland
| |
Collapse
|
26
|
Ranugha PSS, Betkerur J. Antihypertensives in dermatology Part I - Uses of antihypertensives in dermatology. Indian J Dermatol Venereol Leprol 2018; 84:6-15. [DOI: 10.4103/ijdvl.ijdvl_991_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
27
|
Boix J, Nguyen VT, Farman N, Aractingi S, Pérez P. Mineralocorticoid receptor blockade improves glucocorticoid-induced skin atrophy but partially ameliorates anti-inflammatory actions in an irritative model in human skin explants. Exp Dermatol 2017; 27:185-187. [PMID: 29178328 DOI: 10.1111/exd.13473] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2017] [Indexed: 01/21/2023]
Abstract
We recently demonstrated that blockade of the mineralocorticoid receptor (MR) effectively ameliorated GC-induced skin atrophy in healthy human skin explants and epidermal MR knockout mice. However, whether MR blockade improves the therapeutic index of glucocorticoids (GCs) in skin pathology was not investigated. We assessed the effects of GCs, MR antagonists (MRA) or both, in SDS-treated human skin explants. All treatments restored SDS-augmented epidermal thickness but only GC plus MRA restored the expression of COL1A1. However, MRA alone or in combination with GCs may exert a dual role in regulating inflammatory cytokines. Thus, although combined treatment may be beneficial to improve irritative skin, extensive in vivo testing is required to establish whether the anti-inflammatory effects of GCs are maintained in the presence of MRA.
Collapse
Affiliation(s)
- Julia Boix
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (IBV-CSIC), Valencia, Spain
| | - Van Tuan Nguyen
- UMR 1138, INSERM, Centre de Recherche des Cordeliers, Paris, France.,Basic Science Department, Thai Nguyen University of Agriculture and Forestry, Thai Nguyen, Vietnam
| | - Nicolette Farman
- UMR 1138, INSERM, Centre de Recherche des Cordeliers, Paris, France
| | - Sélim Aractingi
- Hôpital Cochin Tarnier, Département de Dermatologie, Université Paris Descartes, Paris, France
| | - Paloma Pérez
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (IBV-CSIC), Valencia, Spain
| |
Collapse
|
28
|
Primary aldosteronism patients show skin alterations and abnormal activation of glucocorticoid receptor in keratinocytes. Sci Rep 2017; 7:15806. [PMID: 29150654 PMCID: PMC5693903 DOI: 10.1038/s41598-017-16216-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 11/08/2017] [Indexed: 12/20/2022] Open
Abstract
Primary aldosteronism (PA) is a disease characterized by high aldosterone levels caused by benign adrenal tumors being the most frequent cause of secondary hypertension. Aldosterone plays vital physiological roles through the mineralocorticoid receptor (MR) but in certain cell types, it can also activate the glucocorticoid (GC) receptor (GR). Both MR and GR are structurally and functionally related and belong to the same family of ligand-dependent transcription factors that recognize identical GC regulatory elements (GREs) on their target genes. GCs play key roles in skin pathophysiology acting through both GR and MR; however, the effects of aldosterone and the potential association of PA and skin disease were not previously addressed. Skin samples from PA revealed histopathological alterations relative to control subjects, featuring epidermal hyperplasia, impaired differentiation, and increased dermal infiltrates, correlating with increased NF-κB signaling and up-regulation of TNF-A and IL-6 cytokines. PA skin samples also showed significantly higher expression of MR, GR, and HSD11B2. In cultured keratinocytes, aldosterone treatment increased GRE transcriptional activity which was significantly inhibited by co-treatment with GR- and MR-antagonists. This study demonstrates that high levels of aldosterone in PA patients correlate with skin anomalies and inflammatory features associated with abnormal GR/MR activation in epidermal keratinocytes.
Collapse
|
29
|
Stojadinovic O, Lindley LE, Jozic I, Tomic-Canic M. Mineralocorticoid Receptor Antagonists-A New Sprinkle of Salt and Youth. J Invest Dermatol 2017; 136:1938-1941. [PMID: 27664711 DOI: 10.1016/j.jid.2016.07.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 07/13/2016] [Indexed: 01/17/2023]
Abstract
Skin atrophy and impaired cutaneous wound healing are the recognized side effects of topical glucocorticoid (GC) therapy. Although GCs have high affinity for the glucocorticoid receptor, they also bind and activate the mineralocorticoid receptor. In light of this, one can speculate that some of the GC-mediated side effects can be remedied by blocking activation of the mineralocorticoid receptor. Indeed, according to Nguyen et al., local inhibition of the mineralocorticoid receptor via antagonists (spironolactone, canrenoate, and eplerenone) rescues GC-induced delayed epithelialization and accelerates wound closure in diabetic animals by targeting epithelial sodium channels and stimulating keratinocyte proliferation. These findings suggest that the use of mineralocorticoid receptor antagonists coupled with GC therapy may be beneficial in overcoming at least some of the GC-mediated side effects.
Collapse
Affiliation(s)
- Olivera Stojadinovic
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA; Graduate Program in Biomedical Sciences, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Linsey E Lindley
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Ivan Jozic
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Marjana Tomic-Canic
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA; John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, USA.
| |
Collapse
|
30
|
Glucocorticoids Inhibit Wound Healing: Novel Mechanism of Action. J Invest Dermatol 2017; 137:1012-1014. [PMID: 28411834 DOI: 10.1016/j.jid.2017.01.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 01/31/2017] [Indexed: 11/21/2022]
Abstract
Jozic et al. describe mechanisms of glucocorticoid (GC) downregulation of wound healing by interaction with the membrane bound GC receptor, followed by stimulation of β-catenin and c-myc pathways. Targeting the membrane bound GC receptor or the recently discovered interaction of GC with mineralocorticoid receptors may counteract negative effects of GC on the skin barrier and potentially could serve as a remedy for age-related skin atrophy.
Collapse
|
31
|
Fukaya M. Cortisol Homeostasis in the Epidermis is Influenced by Topical Corticosteroids in Patients with Atopic Dermatitis. Indian J Dermatol 2017; 62:440. [PMID: 28794569 PMCID: PMC5527739 DOI: 10.4103/ijd.ijd_702_16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background: The skin produces cortisol by itself and regulates its own proliferation and differentiation. There is a possibility that topical corticosteroids (TCSs) influence the cortisol homeostasis in the skin. Aims and Objectives: The author described the density and distribution of cortisol and its parties in the epidermis after application of topical steroids immunohistologically. Materials and Methods: The forearm skin was biopsied before and after 2 weeks’ application of clobetasol propionate 0.05% two times a day in one healthy volunteer. The biopsied skin was stained immunohistologically by ant-MLN64, StAR, CPY11A1, cortisol, HSD11B1, HSD11B2, glucocorticoid receptor alpha, glucocorticoid receptor beta (GRB), and mineralocorticoid receptor (MCR) antibodies. The skin biopsy was performed similarly in 19 adult patients with atopic dermatitis who had used TCS for a considerable period. They were 4 TCS present users (TCS+), 12 TCS nonusers with skin manifestation on the biopsied site (TCS-E+) and 3 TCS nonusers without skin manifestation on the biopsied site (TCS-E−). Results: The staining density increased during TCS application in MLN64, cortisol and HSD11B2 in a healthy volunteer. The staining density was stronger in HSD11B2 of the basal layer and MCR of the spinous layer in the TCS-E+ patients than in the TCS+ and TCS-E− patients. The staining density was weaker in MLN64 of the basal and granular layers, HSD11B1 of the basal layer and GRB of the whole layer in the TCS-E+ patients than in the TCS+ and TCS-E− patients. Conclusion: The hypertrophy of the epidermis and insufficient keratinization recognized in the TCS-E+ patients might be caused by the decreased cortisol synthesis regulated by MLN64 and the increased cortisol inactivation by HSD11B2. Decreased GRB and increased MCR might enhance the reactivity of cortisol in the keratinocytes.
Collapse
|
32
|
Ginsenoside Rg1 attenuates ultraviolet B-induced glucocortisides resistance in keratinocytes via Nrf2/HDAC2 signalling. Sci Rep 2016; 6:39336. [PMID: 27982079 PMCID: PMC5159887 DOI: 10.1038/srep39336] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/18/2016] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress, which occurs after ultraviolet (UV) radiation, usually results in Glucocorticoid (GC) resistance and the subsequent development of skin inflammation. One approach to protecting the skin against UV radiation is the use of antioxidants. The ginsenoside Rg1 is a novel natural antioxidant isolated from the medicinal plant Panax ginseng C.A. Mey. We demonstrated that UVB exposure exacerbated inflammation and reduced both the level of the glucocorticoid receptor (GR) and the efficacy of dexamethasone (Dex) in human keratinocytes (HaCaT cells). Pretreatment with Rg1 increased the expression of GR and restored Dex responsiveness to inflammation in UVB-irradiated HaCaT cells. Mechanistically, Rg1 rescued UVB-induced HDAC2 degradation. HDAC2 knockdown partially abolished the Rg1-induced up-regulation of GR and the enhancement of GC sensitivity. In addition, Rg1 reduced the production of reactive oxygen species (ROS), which preceded the up-regulation of HDAC2, and consequent sensitization of cells to Dex. Moreover, Rg1 treatment promoted the translocation and activation of Nrf2. Nrf2 knockdown partially abolished the Rg1-induced decrease of ROS production and increase of HDAC2. Rg1 also potentiated the anti-inflammatory effects of Dex in UVB-irradiated mouse skin. In conclusion, we demonstrated that Rg1 attenuated UVB-induced GC insensitivity. Notably, these effects were partially mediated by the Nrf2/HDAC2 pathway.
Collapse
|
33
|
Dainichi T, Kabashima K. Alopecia areata: What's new in epidemiology, pathogenesis, diagnosis, and therapeutic options? J Dermatol Sci 2016; 86:3-12. [PMID: 27765435 DOI: 10.1016/j.jdermsci.2016.10.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 10/05/2016] [Indexed: 12/12/2022]
Abstract
Alopecia areata (AA) is a common and stressful disorder that results in hair loss, and resistant to treatment in some cases. Experimental and clinical evidence suggests that AA is caused by autoimmune attack against the hair follicles. The precise pathomechanism, however, remains unknown. Here, we focus on the recent progress in multidisciplinary approaches to the epidemiology, pathogenesis, and new treatments of AA in 996 publications from January 2010 to July 2016, and provide an overview of the current understanding in clinical management and research directions.
Collapse
Affiliation(s)
- Teruki Dainichi
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | - Kenji Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan; Singapore Immunology Network (SIgN) and Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore; PRESTO, Japan Science and Technology Agency, Kawaguchi, Japan
| |
Collapse
|
34
|
Jaisser F, Farman N. Emerging Roles of the Mineralocorticoid Receptor in Pathology: Toward New Paradigms in Clinical Pharmacology. Pharmacol Rev 2016; 68:49-75. [PMID: 26668301 DOI: 10.1124/pr.115.011106] [Citation(s) in RCA: 202] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The mineralocorticoid receptor (MR) and its ligand aldosterone are the principal modulators of hormone-regulated renal sodium reabsorption. In addition to the kidney, there are several other cells and organs expressing MR, in which its activation mediates pathologic changes, indicating potential therapeutic applications of pharmacological MR antagonism. Steroidal MR antagonists have been used for decades to fight hypertension and more recently heart failure. New therapeutic indications are now arising, and nonsteroidal MR antagonists are currently under development. This review is focused on nonclassic MR targets in cardiac, vascular, renal, metabolic, ocular, and cutaneous diseases. The MR, associated with other risk factors, is involved in organ fibrosis, inflammation, oxidative stress, and aging; for example, in the kidney and heart MR mediates hormonal tissue-specific ion channel regulation. Genetic and epigenetic modifications of MR expression/activity that have been documented in hypertension may also present significant risk factors in other diseases and be susceptible to MR antagonism. Excess mineralocorticoid signaling, mediated by aldosterone or glucocorticoids binding, now appears deleterious in the progression of pathologies that may lead to end-stage organ failure and could therefore benefit from the repositioning of pharmacological MR antagonists.
Collapse
Affiliation(s)
- F Jaisser
- INSERM UMR 1138 Team 1, Cordeliers Research Center, Pierre et Marie Curie University, Paris, France (F.J., N.F); and University Paris-Est Creteil, Creteil, France (F.J.)
| | - N Farman
- INSERM UMR 1138 Team 1, Cordeliers Research Center, Pierre et Marie Curie University, Paris, France (F.J., N.F); and University Paris-Est Creteil, Creteil, France (F.J.)
| |
Collapse
|
35
|
Epidermal Mineralocorticoid Receptor Plays Beneficial and Adverse Effects in Skin and Mediates Glucocorticoid Responses. J Invest Dermatol 2016; 136:2417-2426. [PMID: 27464843 DOI: 10.1016/j.jid.2016.07.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 06/30/2016] [Accepted: 07/11/2016] [Indexed: 12/20/2022]
Abstract
Glucocorticoids (GCs) regulate skin homeostasis and combat cutaneous inflammatory diseases; however, adverse effects of chronic GC treatments limit their therapeutic use. GCs bind and activate the GC receptor and the mineralocorticoid receptor (MR), transcription factors that recognize identical hormone responsive elements. Whether epidermal MR mediates beneficial or deleterious GC effects is of great interest for improving GC-based skin therapies. MR epidermal knockout mice exhibited increased keratinocyte proliferation and differentiation and showed resistance to GC-induced epidermal thinning. However, crucially, loss of epidermal MR rendered mice more sensitive to inflammatory stimuli and skin damage. MR epidermal knockout mice showed increased susceptibility to phorbol 12-myristate 13-acetate-induced inflammation with higher cytokine induction. Likewise, cultured MR epidermal knockout keratinocytes had increased phorbol 12-myristate 13-acetate-induced NF-κB activation, highlighting an anti-inflammatory function for MR. GC-induced transcription was reduced in MR epidermal knockout keratinocytes, at least partially due to decreased recruitment of GC receptor to hormone responsive element-containing sequences. Our results support a role for epidermal MR in adult skin homeostasis and demonstrate nonredundant roles for MR and GC receptor in mediating GC actions.
Collapse
|
36
|
Re-Epithelialization of Pathological Cutaneous Wounds Is Improved by Local Mineralocorticoid Receptor Antagonism. J Invest Dermatol 2016; 136:2080-2089. [PMID: 27262545 DOI: 10.1016/j.jid.2016.05.101] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 04/02/2016] [Accepted: 05/11/2016] [Indexed: 11/24/2022]
Abstract
Impaired cutaneous wound healing is a social burden. It occurs as a consequence of glucocorticoid treatment in several pathologies. Glucocorticoids (GC) bind not only to the glucocorticoid receptor but also to the mineralocorticoid receptor (MR), both expressed by keratinocytes. In addition to its beneficial effects through the glucocorticoid receptor, GC exposure may lead to inappropriate MR occupancy. We hypothesized that dermatological use of MR antagonists (MRA) might be beneficial by overcoming the negative impact of GC treatment on pathological wounds. The potent GC clobetasol, applied as an ointment to mouse skin, or added to cultured human skin explants, induced delayed wound closure and outgrowth of epidermis with reduced proliferation of keratinocytes. Delayed wound re-epithelialization was rescued by local MRA application. Normal skin was unaffected by MRA. The benefit of MR blockade is explained by the increased expression of MR in clobetasol-treated mouse skin. Blockade of the epithelial sodium channel by phenamil also rescued cultured human skin explants from GC-impaired growth of the epidermis. MRA application over post-biopsy wounds of clobetasol-treated skin zones of healthy volunteers (from the Interest of Topical Spironolactone's Administration to Prevent Corticoid-induced Epidermal Atrophy clinical trial) also accelerated wound closure. In conclusion, we propose repositioning MRA for cutaneous application to improve delayed wound closure occurring in pathology.
Collapse
|
37
|
Farman N, Nguyen VT. A novel actor in skin biology: the mineralocorticoid receptor. Exp Dermatol 2015; 25:24-5. [PMID: 26519358 DOI: 10.1111/exd.12888] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Nicolette Farman
- INSERM UMR-S 1138, Team 1, Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, Paris, France
| | - Van Tuan Nguyen
- INSERM UMR-S 938, Centre de Recherche St Antoine, Université Pierre et Marie Curie, Paris, France
| |
Collapse
|