1
|
Enzer KG, Baker CD, Wisniewski BL. Bronchopulmonary Dysplasia. Clin Chest Med 2024; 45:639-650. [PMID: 39069327 DOI: 10.1016/j.ccm.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Bronchopulmonary dysplasia (BPD) is a chronic lung disease, associated with premature birth, that arises during the infantile period. It is an evolving disease process with an unchanged incidence due to advancements in neonatal care which allow for the survival of premature infants of lower gestational ages and birth weights. Currently, there are few effective interventions to prevent BPD. However, careful attention to BPD phenotypes and comprehensive care provided by an interdisciplinary team have improved care. Interventions early in the disease course hold promise for improving long-term survival and outcomes in adulthood for this high-risk population.
Collapse
Affiliation(s)
- Katelyn G Enzer
- Department of Pediatrics, Section of Pulmonary and Sleep Medicine, University of Colorado School of Medicine, 13123 East 16th Avenue Box B-395, Aurora, CO 80045, USA.
| | - Christopher D Baker
- Department of Pediatrics, Section of Pulmonary and Sleep Medicine, University of Colorado School of Medicine, 13123 East 16th Avenue Box B-395, Aurora, CO 80045, USA
| | - Benjamin L Wisniewski
- Department of Pediatrics, Section of Pulmonary and Sleep Medicine, University of Colorado School of Medicine, 13123 East 16th Avenue Box B-395, Aurora, CO 80045, USA
| |
Collapse
|
2
|
Gunatilaka CC, McKenzie C, Hysinger EB, Xiao Q, Higano NS, Woods JC, Bates AJ. Tracheomalacia Reduces Aerosolized Drug Delivery to the Lung. J Aerosol Med Pulm Drug Deliv 2024; 37:19-29. [PMID: 38064481 PMCID: PMC10877398 DOI: 10.1089/jamp.2023.0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/23/2023] [Indexed: 02/12/2024] Open
Abstract
Rationale: Neonates with respiratory issues are frequently treated with aerosolized medications to manage lung disease or facilitate airway clearance. Dynamic tracheal collapse (tracheomalacia [TM]) is a common comorbidity in these patients, but it is unknown whether the presence of TM alters the delivery of aerosolized drugs. Objectives: To quantify the effect of neonatal TM on the delivery of aerosolized drugs. Methods: Fourteen infant subjects with respiratory abnormalities were recruited; seven with TM and seven without TM. Respiratory-gated 3D ultrashort echo time magnetic resonance imaging (MRI) was acquired covering the central airway and lungs. For each subject, a computational fluid dynamics simulation modeled the airflow and particle transport in the central airway based on patient-specific airway anatomy, motion, and airflow rates derived from MRI. Results: Less aerosolized drug reached the distal airways in subjects with TM than in subjects without TM: of the total drug delivered, less particle mass passed through the main bronchi in subjects with TM compared with subjects without TM (33% vs. 47%, p = 0.013). In subjects with TM, more inhaled particles were deposited on the surface of the airway (48% vs. 25%, p = 0.003). This effect becomes greater with larger particle sizes and is significant for particles with a diameter >2 μm (2-5 μm, p ≤ 0.025 and 5-15 μm, p = 0.004). Conclusions: Neonatal patients with TM receive less aerosolized drug delivered to the lungs than subjects without TM. Currently, infants with lung disease and TM may not be receiving adequate and/or expected medication. Particles >2 μm in diameter are likely to deposit on the surface of the airway due to anatomical constrictions such as reduced tracheal and glottal cross-sectional area in neonates with TM. This problem could be alleviated by delivering smaller aerosolized particles.
Collapse
Affiliation(s)
- Chamindu C. Gunatilaka
- Center for Pulmonary Imaging Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | | | - Erik B. Hysinger
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Qiwei Xiao
- Center for Pulmonary Imaging Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Nara S. Higano
- Center for Pulmonary Imaging Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Jason C. Woods
- Center for Pulmonary Imaging Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Alister J. Bates
- Center for Pulmonary Imaging Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
3
|
Onland W, Offringa M, van Kaam A. Late (≥ 7 days) inhaled corticosteroids to reduce bronchopulmonary dysplasia in preterm infants. Cochrane Database Syst Rev 2022; 12:CD002311. [PMID: 36521169 PMCID: PMC9754672 DOI: 10.1002/14651858.cd002311.pub5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Bronchopulmonary dysplasia (BPD), defined as oxygen dependence at 36 weeks' postmenstrual age (PMA), remains an important complication of prematurity. Pulmonary inflammation plays a central role in the pathogenesis of BPD. Attenuating pulmonary inflammation with postnatal systemic corticosteroids reduces the incidence of BPD in preterm infants but may be associated with an increased risk of adverse neurodevelopmental outcomes. Local administration of corticosteroids via inhalation may be an effective and safe alternative. OBJECTIVES To assess the benefits and harms of inhaled corticosteroids versus placebo, initiated between seven days of postnatal life and 36 weeks' postmenstrual age, to preterm infants at risk of developing bronchopulmonary dysplasia. SEARCH METHODS We searched CENTRAL, MEDLINE, Embase, CINAHL, and three trials registries to August 2022. We searched conference proceedings and the reference lists of retrieved articles for additional studies. SELECTION CRITERIA We included randomised controlled trials (RCTs) comparing inhaled corticosteroids to placebo, started between seven days' postnatal age (PNA) and 36 weeks' PMA, in infants at risk of BPD. We excluded trials investigating systemic corticosteroids versus inhaled corticosteroids. DATA COLLECTION AND ANALYSIS We collected data on participant characteristics, trial methodology, and inhalation regimens. The primary outcomes were mortality, BPD, or both at 36 weeks' PMA. Secondary outcomes included short-term respiratory outcomes (mortality or BPD at 28 days' PNA, failure to extubate, total days of mechanical ventilation and oxygen use, and need for systemic corticosteroids) and adverse effects. We contacted the trial authors to verify the validity of extracted data and to request missing data. We analysed all data using Review Manager 5. Where possible, we reported the results of meta-analyses using risk ratios (RRs) and risk differences (RDs) for dichotomous outcomes and mean differences (MDs) for continuous outcomes, along with their 95% confidence intervals (CIs). We analysed ventilated and non-ventilated participants separately. We used the GRADE approach to assess the certainty of the evidence. MAIN RESULTS We included seven trials involving 218 preterm infants in this review. We identified no new eligible studies in this update. The evidence is very uncertain regarding whether inhaled corticosteroids affects the combined outcome of mortality or BPD at 36 weeks' PMA (RR 1.10, 95% CI 0.74 to 1.63; RD 0.07, 95% CI -0.21 to 0.34; 1 study, 30 infants; very low-certainty) or its separate components: mortality (RR 3.00, 95% CI 0.35 to 25.78; RD 0.07, 95% CI -0.08 to 0.21; 3 studies, 61 infants; very low-certainty) and BPD (RR 1.00, 95% CI 0.59 to 1.70; RD 0.00, 95% CI -0.31 to 0.31; 1 study, 30 infants; very low-certainty) at 36 weeks' PMA. Inhaled corticosteroids may reduce the need for systemic corticosteroids, but the evidence is very uncertain (RR 0.51, 95% CI 0.26 to 1.00; RD -0.22, 95% CI -0.42 to -0.02; number needed to treat for an additional beneficial outcome 5, 95% CI 2 to 115; 4 studies, 74 infants; very low-certainty). There was a paucity of data on short-term and long-term adverse effects. Despite a low risk of bias in the individual studies, we considered the certainty of the evidence for all comparisons discussed above to be very low, because the studies had few participants, there was substantial clinical heterogeneity between studies, and only three studies reported the primary outcome of this review. AUTHORS' CONCLUSIONS Based on the available evidence, we do not know if inhaled corticosteroids initiated from seven days of life in preterm infants at risk of developing BPD reduces mortality or BPD at 36 weeks' PMA. There is a need for larger randomised placebo-controlled trials to establish the benefits and harms of inhaled corticosteroids.
Collapse
Affiliation(s)
- Wes Onland
- Department of Neonatology, Emma Children's Hospital Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Martin Offringa
- Child Health Evaluative Sciences, Hospital for Sick Children, Toronto, Canada
| | - Anton van Kaam
- Department of Neonatology, Emma Children's Hospital Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
4
|
Szabó H, Baraldi E, Colin AA. Corticosteroids in the prevention and treatment of infants with bronchopulmonary dysplasia: Part II. Inhaled corticosteroids alone or in combination with surfactants. Pediatr Pulmonol 2022; 57:787-795. [PMID: 34964564 DOI: 10.1002/ppul.25808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/21/2021] [Accepted: 12/27/2021] [Indexed: 11/09/2022]
Abstract
This paper is the second in a two-part State-of-the-Art series that reviews the latest relevant clinical trials investigating the short-term and long-term effects of corticosteroids in the prevention and treatment of bronchopulmonary dysplasia (BPD). Inhaled postnatal corticosteroids demonstrate low systemic bioavailability and rapid systemic clearance with high pulmonary deposition and were expected to reduce the incidence of BPD with reduced adverse effects, however, increased rate of mortality in the neonatal period and at the 18-24 months follow-up was observed. In a milestone study, intratracheal instillation of corticosteroids combined with surfactant decreased the incidence of BPD without increasing the mortality or the long-term neurodevelopmental adverse outcomes. However, subsequent trials using different types of surfactants, different surfactant to budesonide ratio, different time of the drug administration for infants with different severity of respiratory distress syndrome could not reproduce all the beneficial effects. Future perspectives for the identification of premature infants at high risk of BPD and the prevention or treatment of established BPD are discussed.
Collapse
Affiliation(s)
- Hajnalka Szabó
- Department of Pediatrics, Faculty of Medicine & Albert Szent-Györgyi Health Center, University of Szeged, Szeged, Hungary
| | - Eugenio Baraldi
- Neonatal Intensive Care Unit, Department of Woman's and Child's Health, Padova University Hospital, Padova, Italy
| | - Andrew A Colin
- Division of Pediatric Pulmonology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| |
Collapse
|
5
|
Summary for Clinicians: Clinical Practice Guidelines for Outpatient Respiratory Management of Infants, Children, and Adolescents with Post-Prematurity Respiratory Disease. Ann Am Thorac Soc 2022; 19:873-879. [PMID: 35239469 DOI: 10.1513/annalsats.202201-007cme] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
6
|
Cristea AI, Ren CL, Amin R, Eldredge LC, Levin JC, Majmudar PP, May AE, Rose RS, Tracy MC, Watters KF, Allen J, Austin ED, Cataletto ME, Collaco JM, Fleck RJ, Gelfand A, Hayes D, Jones MH, Kun SS, Mandell EW, McGrath-Morrow SA, Panitch HB, Popatia R, Rhein LM, Teper A, Woods JC, Iyer N, Baker CD. Outpatient Respiratory Management of Infants, Children, and Adolescents with Post-Prematurity Respiratory Disease: An Official American Thoracic Society Clinical Practice Guideline. Am J Respir Crit Care Med 2021; 204:e115-e133. [PMID: 34908518 PMCID: PMC8865713 DOI: 10.1164/rccm.202110-2269st] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Premature birth affects millions of neonates each year, placing them at risk for respiratory disease due to prematurity. Bronchopulmonary dysplasia is the most common chronic lung disease of infancy, but recent data suggest that even premature infants who do not meet the strict definition of bronchopulmonary dysplasia can develop adverse pulmonary outcomes later in life. This post-prematurity respiratory disease (PPRD) manifests as chronic respiratory symptoms, including cough, recurrent wheezing, exercise limitation, and reduced pulmonary function. This document provides an evidence-based clinical practice guideline on the outpatient management of infants, children, and adolescents with PPRD. Methods: A multidisciplinary panel of experts posed questions regarding the outpatient management of PPRD. We conducted a systematic review of the relevant literature. The Grading of Recommendations, Assessment, Development, and Evaluation approach was used to rate the quality of evidence and the strength of the clinical recommendations. Results: The panel members considered the strength of each recommendation and evaluated the benefits and risks of applying the intervention. In formulating the recommendations, the panel considered patient and caregiver values, the cost of care, and feasibility. Recommendations were developed for or against three common medical therapies and four diagnostic evaluations in the context of the outpatient management of PPRD. Conclusions: The panel developed recommendations for the outpatient management of patients with PPRD on the basis of limited evidence and expert opinion. Important areas for future research were identified.
Collapse
|
7
|
Rhoads E, Montgomery GS, Ren CL. Wheezing in preterm infants and children. Pediatr Pulmonol 2021; 56:3472-3477. [PMID: 33580622 DOI: 10.1002/ppul.25314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/23/2021] [Accepted: 02/08/2021] [Indexed: 11/10/2022]
Abstract
Wheezing is a common outcome of preterm birth. This article will review the mechanisms, epidemiology, and treatment of wheezing in preterm children with and without a history of bronchopulmonary dysplasia.
Collapse
Affiliation(s)
- Eli Rhoads
- Division of Pediatric Pulmonology, Allergy, and Sleep Medicine, Riley Hospital for Children, Indianapolis, Indiana, USA.,Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Gregory S Montgomery
- Division of Pediatric Pulmonology, Allergy, and Sleep Medicine, Riley Hospital for Children, Indianapolis, Indiana, USA.,Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Clement L Ren
- Division of Pediatric Pulmonology, Allergy, and Sleep Medicine, Riley Hospital for Children, Indianapolis, Indiana, USA.,Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
8
|
Pavlek LR, Rivera BK, Smith CV, Randle J, Hanlon C, Small K, Bell EF, Rysavy MA, Conroy S, Backes CH. Eligibility Criteria and Representativeness of Randomized Clinical Trials That Include Infants Born Extremely Premature: A Systematic Review. J Pediatr 2021; 235:63-74.e12. [PMID: 33894262 PMCID: PMC9348995 DOI: 10.1016/j.jpeds.2021.04.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/23/2021] [Accepted: 04/15/2021] [Indexed: 02/08/2023]
Abstract
OBJECTIVE To assess the eligibility criteria and trial characteristics among contemporary (2010-2019) randomized clinical trials (RCTs) that included infants born extremely preterm (<28 weeks of gestation) and to evaluate whether eligibility criteria result in underrepresentation of high-risk subgroups (eg, infants born at <24 weeks of gestation). STUDY DESIGN PubMed and Scopus were searched January 1, 2010, to December 31, 2019, with no language restrictions. RCTs with mean or median gestational ages at birth of <28 weeks of gestation were included. The study followed the PRISMA guidelines; outcomes were registered prospectively. Data extraction was performed independently by multiple observers. Study quality was evaluated using a modified Jadad scale. RESULTS Among RCTs (n = 201), 32 552 infants were included. Study participant characteristics, interventions, and outcomes were highly variable. A total of 1603 eligibility criteria were identified; rationales were provided for 18.8% (n = 301) of criteria. Fifty-five RCTs (27.4%) included infants <24 weeks of gestation; 454 (1.4%) infants were identified as <24 weeks of gestation. CONCLUSIONS The present study identifies sources of variability across RCTs that included infants born extremely preterm and reinforces the critical need for consistent and transparent policies governing eligibility criteria.
Collapse
Affiliation(s)
- Leeann R. Pavlek
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital,Department of Pediatrics and The Ohio State University Wexner Medical Center, Columbus, OH
| | - Brian K. Rivera
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital
| | - Charles V. Smith
- Center for Integrated Brain Research, Seattle Children’s Research Institute, Seattle, WA
| | - Joanie Randle
- Ohio Perinatal Research Network at Nationwide Children’s Hospital, Columbus, OH
| | - Cory Hanlon
- Ohio Perinatal Research Network at Nationwide Children’s Hospital, Columbus, OH
| | - Kristi Small
- Ohio Perinatal Research Network at Nationwide Children’s Hospital, Columbus, OH
| | - Edward F. Bell
- Stead Family Department of Pediatrics, University of Iowa, Iowa City, IA
| | - Matthew A. Rysavy
- Stead Family Department of Pediatrics, University of Iowa, Iowa City, IA
| | - Sara Conroy
- Center for Biostatistics, Department of Biomedical Informatics, The Ohio State University,Biostatistics Resource at Nationwide Children’s Hospital
| | - Carl H. Backes
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital,Department of Pediatrics and The Ohio State University Wexner Medical Center, Columbus, OH,Ohio Perinatal Research Network at Nationwide Children’s Hospital, Columbus, OH,Obstetrics and Gynecology, The Ohio State University Wexner Medical Center,The Heart Center, Nationwide Children’s Hospital, Columbus, OH
| |
Collapse
|
9
|
Abstract
Introduction: Bronchopulmonary dysplasia (BPD) is a common long-term adverse complication of very premature delivery. Affected infants can suffer chronic respiratory morbidities including lung function abnormalities and reduced exercise capacity even as young adults. Many studies have investigated possible preventative strategies; however, it is equally important to identify optimum management strategies for infants with evolving or established BPD. Areas covered: Respiratory support modalities and established and novel pharmacological treatments. Expert opinion: Respiratory support modalities including proportional assist ventilation and neurally adjusted ventilatory assist are associated with short term improvements in oxygenation indices. Such modalities need to be investigated in appropriate RCTs. Many pharmacological treatments are routinely used with a limited evidence base, for example diuretics. Stem cell therapies in small case series are associated with promising results. More research is required before it is possible to determine if such therapies should be investigated in large RCTs with long-term outcomes.
Collapse
Affiliation(s)
- Emma Williams
- a Department of Women and Children's Health, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London , UK.,b The Asthma UK Centre for Allergic Mechanisms in Asthma, King's College London , UK
| | - Anne Greenough
- a Department of Women and Children's Health, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London , UK.,c NIHR Biomedical Research Centre based at Guy's and St Thomas' NHS Foundation Trust and King's College London , London , UK
| |
Collapse
|
10
|
Zhang ZQ, Zhong Y, Huang XM, Du LZ. Airway administration of corticosteroids for prevention of bronchopulmonary dysplasia in premature infants: a meta-analysis with trial sequential analysis. BMC Pulm Med 2017; 17:207. [PMID: 29246209 PMCID: PMC5732371 DOI: 10.1186/s12890-017-0550-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 11/30/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Uncertainly prevails with regard to the use of inhalation or instillation steroids to prevent bronchopulmonary dysplasia in preterm infants. The meta-analysis with sequential analysis was designed to evaluate the efficacy and safety of airway administration (inhalation or instillation) of corticosteroids for preventing bronchopulmonary dysplasia (BPD) in premature infants. METHODS We searched MEDLINE, EMBASE, CINAHL, and Cochrane CENTRAL from their inceptions to February 2017. All published randomized controlled trials (RCTs) evaluating the effect of airway administration of corticosteroids (AACs) vs placebo or systemic corticosteroid in prematurity were included. All meta-analyses were performed using Review Manager 5.3. RESULTS Twenty five RCTs retrieved (n = 3249) were eligible for further analysis. Meta-analysis and trial sequential analysis corrected the 95% confidence intervals estimated a lower risk of the primary outcome of BPD (relative risk 0.71, adjusted 95% confidence interval 0.57-0.87) and death or BPD (relative risk 0.81, adjusted 95% confidence interval 0.71-0.97) in AACs group than placebo and it is equivalent for preventing BPD than systemic corticosteroids. Moreover, AACs fail to increasing risk of death compared with placebo (relative risk 0.90, adjusted 95% confidence interval 0.40-2.03) or systemic corticosteroids (relative risk 0.81, 95% confidence interval 0.62-1.06). CONCLUSIONS Our findings suggests that AACs (especially instillation of budesonide using surfactant as a vehicle) are an effective and safe option for preventing BPD in preterm infants. Furthermore, the appropriate dose and duration, inhalation or instillation with surfactant as a vehicle and the long-term safety of airway administration of corticosteroids needs to be assessed in large trials.
Collapse
Affiliation(s)
- Zhi-Qun Zhang
- Department of Neonatology, the Children’s Hospital, Zhejiang University School of Medicine, No. 3333 Bingsheng Road, Hangzhou City, Zhejiang 310002 China
- Department of Pediatrics, Hangzhou First People’s Hospital, Nanjing Medical University, No. 261 Huansha Road, Hangzhou City, Zhejiang 310002 China
| | - Ying Zhong
- Department of Neonatology, the Children’s Hospital, Zhejiang University School of Medicine, No. 3333 Bingsheng Road, Hangzhou City, Zhejiang 310002 China
| | - Xian-Mei Huang
- Department of Pediatrics, Hangzhou First People’s Hospital, Nanjing Medical University, No. 261 Huansha Road, Hangzhou City, Zhejiang 310002 China
| | - Li-Zhong Du
- Department of Neonatology, the Children’s Hospital, Zhejiang University School of Medicine, No. 3333 Bingsheng Road, Hangzhou City, Zhejiang 310002 China
| |
Collapse
|
11
|
Efficacy of glucocorticoids, vitamin A and caffeine therapies for neonatal mortality in preterm infants: a network meta-analysis. Oncotarget 2017; 8:81167-81175. [PMID: 29113376 PMCID: PMC5655271 DOI: 10.18632/oncotarget.20882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/15/2017] [Indexed: 11/25/2022] Open
Abstract
Introduction The paper aimed to evaluate the efficacy of different therapies in improving survival among preterm infants. Materials and Methods PubMed and Embase were searched from inception to 2017. We assessed studies for eligibility and extracted data. A Bayesian random-effects model was used to evaluate different therapies combined direct comparisons with indirect evidence. Consistency analysis was achieved using node-splitting plots. Surface under the cumulative ranking curve (SUCRA) was calculated to rank different therapies. Rankings of the competing therapies were also performed. Results A total of 42 randomized controlled trials (RCTs) were included for the network meta-analysis. Forest plots demonstrated that dexamethasone (OR = 10.13, 95% CrI: 5.11 to 17.89) and vitamin A (OR = 28.44, 95% CrI: 14.66 to 42.11) is superior to placebo in duration of oxygen supplementation while vitamin A (OR = −29.76, 95% CrI: −57.66 to −1.75) is inferior to placebo with regard to duration of hospitalization. Also, dexamethasone (OR = 0.42, 95% CrI: 0.24 to 0.68) showed lower incidence rate of BPD. SUCRA results showed the superiority of Budesonide based on primary efficacy outcomes. In addition, dexamethasone also showed high efficacy ranking in duration of ventilation, duration of oxygen supplementation, and occurrence of BPD. Hydrocortisone was effective in reducing neonatal mortality. No significant difference was found among these drugs. Conclusions No significant heterogeneity was found among these drugs. In general, budesonide might have the potential to be the optimal drug for its efficacy in reducing neonatal mortality and BPD, the two most essential outcome measures. Dexamethasone might be the suboptimal drug.
Collapse
|
12
|
Nelin LD, Logan JW. The use of inhaled corticosteroids in chronically ventilated preterm infants. Semin Fetal Neonatal Med 2017; 22:296-301. [PMID: 28768578 DOI: 10.1016/j.siny.2017.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Bronchopulmonary dysplasia (BPD) is the most usual reason for preterm infants to require chronic mechanical ventilation. Inflammation is a key factor underlying the lung injury leading to the development of BPD, and the rationale for use of corticosteroids in the management of ventilator-dependent preterm infants is based on their anti-inflammatory effects. Because systemic corticosteroids are associated with significant adverse effects in preterm infants, attention has turned to the use of inhaled corticosteroids (ICS) as a potentially safer therapy for BPD. The aim of this review is to discuss what is known about the efficacy and safety of ICS in chronically ventilated preterm infants. However, this has been a challenge since there is a paucity of high-grade evidence for the use of ICS in these patients. Thus, there is a real need for well-powered randomized controlled trials examining short- and long-term outcomes of ICS use in this population.
Collapse
Affiliation(s)
- Leif D Nelin
- Comprehensive Center for Bronchopulmonary Dysplasia, Nationwide Children's Hospital, Columbus, OH, USA.
| | - J Wells Logan
- Comprehensive Center for Bronchopulmonary Dysplasia, Nationwide Children's Hospital, Columbus, OH, USA
| |
Collapse
|
13
|
Onland W, Offringa M, van Kaam A. Late (≥ 7 days) inhalation corticosteroids to reduce bronchopulmonary dysplasia in preterm infants. Cochrane Database Syst Rev 2017; 8:CD002311. [PMID: 28836266 PMCID: PMC6483527 DOI: 10.1002/14651858.cd002311.pub4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Bronchopulmonary dysplasia (BPD), defined as oxygen dependence at 36 weeks postmenstrual age (PMA), remains an important complication of prematurity. Pulmonary inflammation plays a central role in the pathogenesis of BPD. Attenuating pulmonary inflammation with postnatal systemic corticosteroids reduces the incidence of BPD in preterm infants but may be associated with an increased risk of adverse neurodevelopmental outcomes. Local administration of corticosteroids via inhalation might be an effective and safe alternative. OBJECTIVES To determine if administration of inhalation corticosteroids after the first week of life until 36 weeks PMA to preterm infants at high risk of developing BPD is effective and safe in reducing the incidence of death and BPD as separate or combined outcomes. SEARCH METHODS We used the standard search strategy of Cochrane Neonatal to search the Cochrane Central Register of Controlled Trials (CENTRAL 2017, Issue 4), MEDLINE via PubMed (1966 to 19 May 2017), Embase (1980 to 19 May 2017), and CINAHL (1982 to 19 May 2017). We also searched clinical trials databases, conference proceedings, and the reference lists of retrieved articles for randomised controlled trials and quasi-randomised trials. SELECTION CRITERIA We included randomised controlled trials comparing inhalation corticosteroids, started ≥ 7 days postnatal age (PNA) but before 36 weeks PMA, to placebo in ventilated and non-ventilated infants at risk of BPD. We excluded trials investigating systemic corticosteroids versus inhalation corticosteroids. DATA COLLECTION AND ANALYSIS We collected data on participant characteristics, trial methodology, and inhalation regimens. The primary outcome was death or BPD at 36 weeks PMA. Secondary outcomes were the combined outcome death or BPD at 28 days PNA, the seperate outcomes of death and BPD at both 28 days PNA, and at 36 weeks PMA, and short-term respiratory outcomes, such as failure to extubate; total days of mechanical ventilation and oxygen use; and the need for systemic corticosteroids. We contacted the original trialists to verify the validity of extracted data and to provide missing data. We analysed all data using Review Manager 5. When possible, we performed meta-analysis using typical risk ratio (RR) for dichotomous outcomes and weighted mean difference (WMD) for continuous outcomes along with their 95% confidence intervals (CI). We analysed ventilated and non-ventilated participants separately.We used the GRADE approach to assess the quality of the evidence. MAIN RESULTS We included eight trials randomising 232 preterm infants in this review. Inhalation corticosteroids did not reduce the separate or combined outcomes of death or BPD. The meta-analyses of the studies showed a reduced risk in favor of inhalation steroids regarding failure to extubate at seven days (typical RR (TRR) 0.80, 95% CI 0.66 to 0.98; 5 studies, 79 infants) and at the latest reported time point after treatment onset (TRR 0.60, 95% CI 0.45 to 0.80; 6 studies, 90 infants). However, both analyses showed increased statistical heterogeneity (I2 statistic 73% and 86%, respectively). Furthermore, inhalation steroids did not impact total duration of mechanical ventilation or oxygen dependency. There was a trend toward a reduction in the use of systemic corticosteroids in infants receiving inhalation corticosteroids (TRR 0.51, 95% CI 0.26 to 1.00; 4 studies, 74 infants; very low-quality evidence). There was a paucity of data on short- and long-term adverse effects. Our results should be interpreted with caution because the total number of randomised participants is relatively small, and most trials differed considerably in participant characteristics, inhalation therapy, and outcome definitions. AUTHORS' CONCLUSIONS Based on the results of the currently available evidence, inhalation corticosteroids initiated at ≥ 7 days of life for preterm infants at high risk of developing BPD cannot be recommended at this point in time. More and larger randomised, placebo-controlled trials are needed to establish the efficacy and safety of inhalation corticosteroids.
Collapse
Affiliation(s)
- Wes Onland
- Emma Children's Hospital AMC, University of AmsterdamDepartment of NeonatologyMeibergdreef 9AmsterdamNetherlands1105 AZ
| | - Martin Offringa
- Hospital for Sick ChildrenChild Health Evaluative Sciences555 University AvenueTorontoONCanadaM5G 1X8
| | - Anton van Kaam
- Emma Children's Hospital AMC, University of AmsterdamDepartment of NeonatologyMeibergdreef 9AmsterdamNetherlands1105 AZ
| | | |
Collapse
|