1
|
Weerasooriya L, Howie AJ, Wakeman MP, Cavanagh S, Milford DV. Kidney biopsy findings in children with diabetes mellitus. Pediatr Nephrol 2024; 39:1865-1873. [PMID: 38123711 PMCID: PMC11026184 DOI: 10.1007/s00467-023-06254-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Diabetic nephropathy may begin in childhood, but clinical kidney disease ascribable to this is uncommon in children with type 1 (insulin dependent) diabetes mellitus. METHODS We reviewed our experience of kidney biopsies in children with type 1 diabetes mellitus. RESULTS Between 1995 and 2022, there were biopsies in 17 children, with various clinical indications for kidney biopsy, making this the largest series of biopsies in diabetic children with clinical kidney abnormalities. Four biopsies showed diabetic nephropathy, three showed the combination of diabetic nephropathy and IgA nephropathy, and ten showed a variety of conditions other than diabetic nephropathy: minimal change disease (2), membranous nephropathy (2), thin glomerular basement membrane lesion (2), non-glomerular chronic damage in Wolcott-Rallison syndrome (2), acute pauciimmune necrotizing crescentic glomerulonephritis (1) and IgA nephropathy (1). Clinical clues of something other than diabetic nephropathy included acute kidney injury, microscopic haematuria or chronic kidney impairment with little or no proteinuria and the nephrotic syndrome after a short duration of diabetes. CONCLUSIONS We confirm that changes better known in adults with either type 1 or type 2 diabetes mellitus can occur in children with type 1 diabetes mellitus: overt diabetic nephropathy either on its own or combined with other conditions and kidney disorders other than diabetic nephropathy.
Collapse
Affiliation(s)
| | - Alexander J Howie
- Department of Histopathology, Birmingham Children's Hospital, Birmingham, B4 6NH, UK.
| | - Matthew P Wakeman
- Department of Histopathology, Birmingham Children's Hospital, Birmingham, B4 6NH, UK
| | - Susan Cavanagh
- Department of Histopathology, Birmingham Children's Hospital, Birmingham, B4 6NH, UK
| | - David V Milford
- Department of Nephrology, Birmingham Children's Hospital, Birmingham, B4 6NH, UK
| |
Collapse
|
2
|
Birzle C, Schrader H, Blutke A, Ferling H, Scholz-Göppel K, Wanke R, Schwaiger J. Detection of Diclofenac-Induced Alterations in Rainbow Trout (Oncorhynchus mykiss) Using Quantitative Stereological Methods. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:859-872. [PMID: 36705425 DOI: 10.1002/etc.5573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/26/2022] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
In 2013, the nonsteroidal anti-inflammatory drug diclofenac (DCF) was included in the watch list for emerging pollutants under the European Union Water Framework Directive. Frequently, monitoring data revealed DCF concentrations in surface waters exceeding the proposed environmental quality standards of 0.04 µg L-1 and 0.126 µg L-1 . In recent literature, the possible effects of DCF on fish are discussed controversially. To contribute to a realistic risk assessment of DCF, a 28-day exposure experiment was carried on rainbow trout (Oncorhynchus mykiss). To warrant reliability of data, experiments were conducted considering the Criteria for Reporting and Evaluating Ecotoxicity Data. The test concentrations of DCF used (0.1, 0.5, 1, 5, 25, and 100 µg L-1 ) also included environmentally relevant concentrations. The lowest-observed-effect concentration (LOEC) for a significant decrease in the plasma concentrations of the DCF biomarker prostaglandin E2 was 0.5 µg L-1 (male fish). For objective evaluation of relevant histomorphological parameters of gills and trunk kidneys, unbiased quantitative stereological methods were applied. In the gills, significant increases in the thickness of the secondary lamella and in the true harmonic mean of barrier thickness in secondary lamellae were present at DCF concentrations of 25 µg L-1 and 100 µg L-1 . In the trunk kidneys, the absolute and relative volumes of nephrons were significantly decreased, paralleled by a significant increase of the volume of the interstitial renal tissue. With regard to quantitative histomorphological alterations in the trunk kidney, the observed LOEC was 0.5 µg L-1 . The quantitative histomorphological analyses that were conducted allow identification and objective quantification of even subtle but significant morphological effects and thus provide an important contribution for the comparability of study results for the determination of no-observed-effect concentrations (NOEC). Environ Toxicol Chem 2023;42:859-872. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Christoph Birzle
- Bavarian Environment Agency, Unit Aquatic Ecotoxicology and Microbial Ecology, Wielenbach, Germany
| | - Hannah Schrader
- Bavarian Environment Agency, Unit Aquatic Ecotoxicology and Microbial Ecology, Wielenbach, Germany
| | - Andreas Blutke
- Institute of Veterinary Pathology, Center of Clinical Veterinary Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Hermann Ferling
- Bavarian Environment Agency, Unit Aquatic Ecotoxicology and Microbial Ecology, Wielenbach, Germany
| | - Karin Scholz-Göppel
- Bavarian Environment Agency, Unit Aquatic Ecotoxicology and Microbial Ecology, Wielenbach, Germany
| | - Rüdiger Wanke
- Institute of Veterinary Pathology, Center of Clinical Veterinary Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Julia Schwaiger
- Bavarian Environment Agency, Unit Aquatic Ecotoxicology and Microbial Ecology, Wielenbach, Germany
| |
Collapse
|
3
|
Azegami T, Nakayama T, Hayashi K, Hishikawa A, Yoshimoto N, Nakamichi R, Itoh H. Vaccination Against Receptor for Advanced Glycation End Products Attenuates the Progression of Diabetic Kidney Disease. Diabetes 2021; 70:2147-2158. [PMID: 34155040 DOI: 10.2337/db20-1257] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 06/14/2021] [Indexed: 11/13/2022]
Abstract
Effective treatment of diabetic kidney disease (DKD) remains a large unmet medical need. Within the disease's complicated pathogenic mechanism, activation of the advanced glycation end products (AGEs)-receptor for AGE (RAGE) axis plays a pivotal role in the development and progression of DKD. To provide a new therapeutic strategy against DKD progression, we developed a vaccine against RAGE. Three rounds of immunization of mice with the RAGE vaccine successfully induced antigen-specific serum IgG antibody titers and elevated antibody titers were sustained for at least 38 weeks. In addition, RAGE vaccination significantly attenuated the increase in urinary albumin excretion in streptozotocin-induced diabetic mice (type 1 diabetes model) and leptin-receptor-deficient db/db mice (type 2 diabetes model). In microscopic analyses, RAGE vaccination suppressed glomerular hypertrophy and mesangial expansion in both diabetic models and significantly reduced glomerular basement membrane thickness in streptozotocin-induced diabetic mice. Results of an in vitro study indicated that the serum IgG antibody elicited by RAGE vaccination suppressed the expression of AGE-induced vascular cell adhesion molecule 1 and intracellular adhesion molecule 1 in endothelial cells. Thus, our newly developed RAGE vaccine attenuated the progression of DKD in mice and is a promising potential therapeutic strategy for patients with DKD.
Collapse
Affiliation(s)
- Tatsuhiko Azegami
- Keio University Health Center, Kanagawa, Japan
- Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Takashin Nakayama
- Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Kaori Hayashi
- Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Akihito Hishikawa
- Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Norifumi Yoshimoto
- Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Ran Nakamichi
- Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hiroshi Itoh
- Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
4
|
Chen J, Fleming T, Katz S, Dewenter M, Hofmann K, Saadatmand A, Kronlage M, Werner MP, Pokrandt B, Schreiter F, Lin J, Katz D, Morgenstern J, Elwakiel A, Sinn P, Gröne HJ, Hammes HP, Nawroth PP, Isermann B, Sticht C, Brügger B, Katus HA, Hagenmueller M, Backs J. CaM Kinase II-δ Is Required for Diabetic Hyperglycemia and Retinopathy but Not Nephropathy. Diabetes 2021; 70:616-626. [PMID: 33239449 DOI: 10.2337/db19-0659] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 11/17/2020] [Indexed: 11/13/2022]
Abstract
Type 2 diabetes has become a pandemic and leads to late diabetic complications of organs, including kidney and eye. Lowering hyperglycemia is the typical therapeutic goal in clinical medicine. However, hyperglycemia may only be a symptom of diabetes but not the sole cause of late diabetic complications; instead, other diabetes-related alterations could be causative. Here, we studied the role of CaM kinase II-δ (CaMKIIδ), which is known to be activated through diabetic metabolism. CaMKIIδ is expressed ubiquitously and might therefore affect several different organ systems. We crossed diabetic leptin receptor-mutant mice to mice lacking CaMKIIδ globally. Remarkably, CaMKIIδ-deficient diabetic mice did not develop hyperglycemia. As potential underlying mechanisms, we provide evidence for improved insulin sensing with increased glucose transport into skeletal muscle and also reduced hepatic glucose production. Despite normoglycemia, CaMKIIδ-deficient diabetic mice developed the full picture of diabetic nephropathy, but diabetic retinopathy was prevented. We also unmasked a retina-specific gene expression signature that might contribute to CaMKII-dependent retinal diabetic complications. These data challenge the clinical concept of normalizing hyperglycemia in diabetes as a causative treatment strategy for late diabetic complications and call for a more detailed analysis of intracellular metabolic signals in different diabetic organs.
Collapse
Affiliation(s)
- Jessy Chen
- Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany
- German Center for Cardiovascular Research (partner site Heidelberg/Mannheim), Heidelberg, Germany
| | - Thomas Fleming
- Department of Internal Medicine I and Clinical Chemistry, University Hospital of Heidelberg, Heidelberg, Germany
| | - Sylvia Katz
- Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany
- German Center for Cardiovascular Research (partner site Heidelberg/Mannheim), Heidelberg, Germany
| | - Matthias Dewenter
- Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany
- German Center for Cardiovascular Research (partner site Heidelberg/Mannheim), Heidelberg, Germany
| | - Kai Hofmann
- Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany
- German Center for Cardiovascular Research (partner site Heidelberg/Mannheim), Heidelberg, Germany
| | - Alireza Saadatmand
- Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany
- German Center for Cardiovascular Research (partner site Heidelberg/Mannheim), Heidelberg, Germany
| | - Mariya Kronlage
- Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany
- German Center for Cardiovascular Research (partner site Heidelberg/Mannheim), Heidelberg, Germany
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany
| | - Moritz P Werner
- Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany
- German Center for Cardiovascular Research (partner site Heidelberg/Mannheim), Heidelberg, Germany
| | - Bianca Pokrandt
- Heidelberg University Biochemistry Center, INF 328, Heidelberg, Germany
| | - Friederike Schreiter
- Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany
- German Center for Cardiovascular Research (partner site Heidelberg/Mannheim), Heidelberg, Germany
| | - Jihong Lin
- 5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Daniel Katz
- Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany
- German Center for Cardiovascular Research (partner site Heidelberg/Mannheim), Heidelberg, Germany
| | - Jakob Morgenstern
- Department of Internal Medicine I and Clinical Chemistry, University Hospital of Heidelberg, Heidelberg, Germany
| | - Ahmed Elwakiel
- Institute of Laboratory Medicine, Clinical Chemistry, and Molecular Diagnostics (ILM), University of Leipzig, Leipzig, Germany
| | - Peter Sinn
- Department of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Hermann-Josef Gröne
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany
- Institute of Pathology, University of Marburg, Marburg, Germany
| | - Hans-Peter Hammes
- 5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Peter P Nawroth
- Department of Internal Medicine I and Clinical Chemistry, University Hospital of Heidelberg, Heidelberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute for Diabetes and Cancer (IDC) Helmholtz Center Munich, Neuherberg, Germany
- Joint Heidelberg-Institute for Diabetes and Cancer (IDC) Translational Diabetes Program, Neuherberg, Germany
| | - Berend Isermann
- Institute of Laboratory Medicine, Clinical Chemistry, and Molecular Diagnostics (ILM), University of Leipzig, Leipzig, Germany
| | - Carsten Sticht
- Medical Research Center, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Britta Brügger
- Heidelberg University Biochemistry Center, INF 328, Heidelberg, Germany
| | - Hugo A Katus
- German Center for Cardiovascular Research (partner site Heidelberg/Mannheim), Heidelberg, Germany
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany
| | - Marco Hagenmueller
- Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany
- German Center for Cardiovascular Research (partner site Heidelberg/Mannheim), Heidelberg, Germany
| | - Johannes Backs
- Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany
- German Center for Cardiovascular Research (partner site Heidelberg/Mannheim), Heidelberg, Germany
| |
Collapse
|
5
|
Fiedler S, Wünnemann H, Hofmann I, Theobalt N, Feuchtinger A, Walch A, Schwaiger J, Wanke R, Blutke A. A practical guide to unbiased quantitative morphological analyses of the gills of rainbow trout (Oncorhynchus mykiss) in ecotoxicological studies. PLoS One 2020; 15:e0243462. [PMID: 33296424 PMCID: PMC7725368 DOI: 10.1371/journal.pone.0243462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 11/21/2020] [Indexed: 12/28/2022] Open
Abstract
Rainbow trout (Oncorhynchus mykiss) are frequently used as experimental animals in ecotoxicological studies, in which they are experimentally exposed to defined concentrations of test substances, such as heavy metals, pesticides, or pharmaceuticals. Following exposure to a broad variety of aquatic pollutants, early morphologically detectable toxic effects often manifest in alterations of the gills. Suitable methods for an accurate and unbiased quantitative characterization of the type and the extent of morphological gill alterations are therefore essential prerequisites for recognition, objective evaluation and comparison of the severity of gill lesions. The aim of the present guidelines is to provide practicable, standardized and detailed protocols for the application of unbiased quantitative stereological analyses of relevant morphological parameters of the gills of rainbow trout. These gill parameters inter alia include the total volume of the primary and secondary gill lamellae, the surface area of the secondary gill lamellae epithelium (i.e., the respiratory surface) and the thickness of the diffusion barrier. The featured protocols are adapted to fish of frequently used body size classes (300-2000 g). They include well-established, conventional sampling methods, probes and test systems for unbiased quantitative stereological analyses of light- and electron microscopic 2-D gill sections, as well as the application of modern 3-D light sheet fluorescence microscopy (LSFM) of optically cleared gill samples as an innovative, fast and efficient quantitative morphological analysis approach. The methods shown here provide a basis for standardized and representative state-of-the-art quantitative morphological analyses of trout gills, ensuring the unbiasedness and reproducibility, as well as the intra- and inter-study comparability of analyses results. Their broad implementation will therefore significantly contribute to the reliable identification of no observed effect concentration (NOEC) limits in ecotoxicological studies and, moreover, to limit the number of experimental animals by reduction of unnecessary repetition of experiments.
Collapse
Affiliation(s)
- Sonja Fiedler
- Institute of Veterinary Pathology at the Center for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Hannah Wünnemann
- Unit 73 Aquatic Ecotoxicology, Microbial Ecology, Bavarian Environment Agency, Wielenbach, Germany
| | - Isabel Hofmann
- Institute of Veterinary Pathology at the Center for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Natalie Theobalt
- Institute of Veterinary Pathology at the Center for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Annette Feuchtinger
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Axel Walch
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Julia Schwaiger
- Unit 73 Aquatic Ecotoxicology, Microbial Ecology, Bavarian Environment Agency, Wielenbach, Germany
| | - Rüdiger Wanke
- Institute of Veterinary Pathology at the Center for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Andreas Blutke
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
- * E-mail:
| |
Collapse
|
6
|
Role of the Nox4/AMPK/mTOR signaling axe in adipose inflammation-induced kidney injury. Clin Sci (Lond) 2020; 134:403-417. [PMID: 32095833 DOI: 10.1042/cs20190584] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/03/2020] [Accepted: 02/10/2020] [Indexed: 12/25/2022]
Abstract
Diabetic kidney disease is one of the most serious complications of diabetes worldwide and is the leading cause of end-stage renal disease. While research has primarily focused on hyperglycemia as a key player in the pathophysiology of diabetic complications, recently, increasing evidence have underlined the role of adipose inflammation in modulating the development and/or progression of diabetic kidney disease. This review focuses on how adipose inflammation contribute to diabetic kidney disease. Furthermore, it discusses in detail the underlying mechanisms of adipose inflammation, including pro-inflammatory cytokines, oxidative stress, and AMPK/mTOR signaling pathway and critically describes their role in diabetic kidney disease. This in-depth understanding of adipose inflammation and its impact on diabetic kidney disease highlights the need for novel interventions in the treatment of diabetic complications.
Collapse
|
7
|
Giralt-López A, Molina-Van den Bosch M, Vergara A, García-Carro C, Seron D, Jacobs-Cachá C, Soler MJ. Revisiting Experimental Models of Diabetic Nephropathy. Int J Mol Sci 2020; 21:ijms21103587. [PMID: 32438732 PMCID: PMC7278948 DOI: 10.3390/ijms21103587] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 12/12/2022] Open
Abstract
Diabetes prevalence is constantly increasing and, nowadays, it affects more than 350 million people worldwide. Therefore, the prevalence of diabetic nephropathy (DN) has also increased, becoming the main cause of end-stage renal disease (ESRD) in the developed world. DN is characterized by albuminuria, a decline in glomerular filtration rate (GFR), hypertension, mesangial matrix expansion, glomerular basement membrane thickening, and tubulointerstitial fibrosis. The therapeutic advances in the last years have been able to modify and delay the natural course of diabetic kidney disease (DKD). Nevertheless, there is still an urgent need to characterize the pathways that are involved in DN, identify risk biomarkers and prevent kidney failure in diabetic patients. Rodent models provide valuable information regarding how DN is set and its progression through time. Despite the utility of these models, kidney disease progression depends on the diabetes induction method and susceptibility to diabetes of each experimental strain. The classical DN murine models (Streptozotocin-induced, Akita, or obese type 2 models) do not develop all of the typical DN features. For this reason, many models have been crossed to a susceptible genetic background. Knockout and transgenic strains have also been created to generate more robust models. In this review, we will focus on the description of the new DN rodent models and, additionally, we will provide an overview of the available methods for renal phenotyping.
Collapse
Affiliation(s)
- Anna Giralt-López
- Nephrology Research Group, Vall d’Hebrón Institut de Recerca, 08035 Barcelona, Spain; (A.G.-L.); (M.M.-V.d.B.); (A.V.); (C.G.-C.); (D.S.)
| | - Mireia Molina-Van den Bosch
- Nephrology Research Group, Vall d’Hebrón Institut de Recerca, 08035 Barcelona, Spain; (A.G.-L.); (M.M.-V.d.B.); (A.V.); (C.G.-C.); (D.S.)
| | - Ander Vergara
- Nephrology Research Group, Vall d’Hebrón Institut de Recerca, 08035 Barcelona, Spain; (A.G.-L.); (M.M.-V.d.B.); (A.V.); (C.G.-C.); (D.S.)
- Nephrology Department, Vall d’Hebrón Hospital, 08035 Barcelona, Spain
| | - Clara García-Carro
- Nephrology Research Group, Vall d’Hebrón Institut de Recerca, 08035 Barcelona, Spain; (A.G.-L.); (M.M.-V.d.B.); (A.V.); (C.G.-C.); (D.S.)
- Nephrology Department, Vall d’Hebrón Hospital, 08035 Barcelona, Spain
| | - Daniel Seron
- Nephrology Research Group, Vall d’Hebrón Institut de Recerca, 08035 Barcelona, Spain; (A.G.-L.); (M.M.-V.d.B.); (A.V.); (C.G.-C.); (D.S.)
- Nephrology Department, Vall d’Hebrón Hospital, 08035 Barcelona, Spain
| | - Conxita Jacobs-Cachá
- Nephrology Research Group, Vall d’Hebrón Institut de Recerca, 08035 Barcelona, Spain; (A.G.-L.); (M.M.-V.d.B.); (A.V.); (C.G.-C.); (D.S.)
- Correspondence: (C.J.-C.); (M.J.S.)
| | - Maria José Soler
- Nephrology Research Group, Vall d’Hebrón Institut de Recerca, 08035 Barcelona, Spain; (A.G.-L.); (M.M.-V.d.B.); (A.V.); (C.G.-C.); (D.S.)
- Nephrology Department, Vall d’Hebrón Hospital, 08035 Barcelona, Spain
- Correspondence: (C.J.-C.); (M.J.S.)
| |
Collapse
|
8
|
Kayhan Kuştepe E, Bahar L, Zayman E, Sucu N, Gül S, Gül M. A light microscopic investigation of the renoprotective effects of α-lipoic acid and α-tocopherol in an experimental diabetic rat model. Biotech Histochem 2020; 95:305-316. [PMID: 32013590 DOI: 10.1080/10520295.2019.1695942] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
We investigated the effects of α-lipoic acid (AL) and α-tocopherol (AT) on renal histopathology in a streptozotocin (STZ) induced diabetic rat model. Adult male rats were divided into six groups: group 1, saline only; group 2, AL only; group 3, AT only; group 4, STZ only; group 5, STZ + AL; group 6 STZ + AT. Experimental diabetes was induced by STZ. AL and AT were administered for 15 days. Kidney sections were examined using a light microscope after hematoxylin and eosin (H & E), periodic acid-Schiff (PAS) and caspase-3 staining. Histological damage to glomeruli, tubule epithelial cells and basement membrane was observed in group 4. Administration of AT and AL reduced renal injury in the diabetic rats. Group 5 exhibited a greater curative effect on diabetic rats than group 6. AT and AL may be useful for preventing diabetic renal damage.
Collapse
Affiliation(s)
- Elif Kayhan Kuştepe
- Department of Histology and Embryology, Medical Faculty, Inonu University, Malatya, Turkey
| | - Leyla Bahar
- Department of Medical Services and Techniques, Vocational School of Health Services, Mersin University, Mersin, Turkey
| | - Emrah Zayman
- Department of Histology and Embryology, Medical Faculty, Inonu University, Malatya, Turkey
| | - Nehir Sucu
- Department of Cardiovascular Surgery, Medical Faculty, Mersin University, Mersin, Turkey
| | - Semir Gül
- Department of Histology and Embryology, Medical Faculty, Inonu University, Malatya, Turkey
| | - Mehmet Gül
- Department of Histology and Embryology, Medical Faculty, Inonu University, Malatya, Turkey
| |
Collapse
|
9
|
Majumder S, Hadden MJ, Thieme K, Batchu SN, Niveditha D, Chowdhury S, Yerra VG, Advani SL, Bowskill BB, Liu Y, Vakili H, Alghamdi TA, White KE, Geldenhuys L, Siddiqi FS, Advani A. Dysregulated expression but redundant function of the long non-coding RNA HOTAIR in diabetic kidney disease. Diabetologia 2019; 62:2129-2142. [PMID: 31399844 DOI: 10.1007/s00125-019-4967-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/21/2019] [Indexed: 01/21/2023]
Abstract
AIMS/HYPOTHESIS Long non-coding RNAs (lncRNAs) are garnering increasing attention for their putative roles in the pathogenesis of chronic diseases, including diabetic kidney disease (DKD). However, much about in vivo lncRNA functionality in the adult organism remains unclear. To better understand lncRNA regulation and function in DKD, we explored the effects of the modular scaffold lncRNA HOTAIR (HOX antisense intergenic RNA), which approximates chromatin modifying complexes to their target sites on the genome. METHODS Experiments were performed in human kidney tissue, in mice with streptozotocin-induced diabetes, the db/db mouse model of type 2 diabetes, podocyte-specific Hotair knockout mice and conditionally immortalised mouse podocytes. RESULTS HOTAIR was observed to be expressed by several kidney cell-types, including glomerular podocytes, in both human and mouse kidneys. However, knockout of Hotair from podocytes had almost no effect on kidney structure, function or ultrastructure. Glomerular HOTAIR expression was found to be increased in human DKD, in the kidneys of mice with streptozotocin-induced diabetes and in the kidneys of db/db mice. Likewise, exposure of cultured mouse podocytes to high glucose caused upregulation of Hotair expression, which occurred in a p65-dependent manner. Although HOTAIR expression was upregulated in DKD and in high glucose-exposed podocytes, its knockout did not alter the development of kidney damage in diabetic mice. Rather, in a bioinformatic analysis of human kidney tissue, HOTAIR expression closely paralleled the expression of its genic neighbour, HOXC11, which is important to developmental patterning but which has an uncertain role in the adult kidney. CONCLUSIONS/INTERPRETATION Many lncRNAs have been found to bind to the same chromatin modifying complexes. Thus, there is likely to exist sufficient redundancy in the system that the biological effects of dysregulated lncRNAs in kidney disease may often be inconsequential. The example of the archetypal scaffold lncRNA, HOTAIR, illustrates how lncRNA dysregulation may be a bystander in DKD without necessarily contributing to the pathogenesis of the condition. In the absence of in vivo validation, caution should be taken before ascribing major functional roles to single lncRNAs in the pathogenesis of chronic diseases.
Collapse
Affiliation(s)
- Syamantak Majumder
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute, St Michael's Hospital, 209 Victoria Street, Toronto, ON, M5C 1T8, Canada
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, Rajasthan, India
| | - Mitchell J Hadden
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute, St Michael's Hospital, 209 Victoria Street, Toronto, ON, M5C 1T8, Canada
| | - Karina Thieme
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute, St Michael's Hospital, 209 Victoria Street, Toronto, ON, M5C 1T8, Canada
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Sri N Batchu
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute, St Michael's Hospital, 209 Victoria Street, Toronto, ON, M5C 1T8, Canada
| | - Divya Niveditha
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, Rajasthan, India
| | - Shibasish Chowdhury
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, Rajasthan, India
| | - Veera Ganesh Yerra
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute, St Michael's Hospital, 209 Victoria Street, Toronto, ON, M5C 1T8, Canada
| | - Suzanne L Advani
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute, St Michael's Hospital, 209 Victoria Street, Toronto, ON, M5C 1T8, Canada
| | - Bridgit B Bowskill
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute, St Michael's Hospital, 209 Victoria Street, Toronto, ON, M5C 1T8, Canada
| | - Youan Liu
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute, St Michael's Hospital, 209 Victoria Street, Toronto, ON, M5C 1T8, Canada
| | - Hana Vakili
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute, St Michael's Hospital, 209 Victoria Street, Toronto, ON, M5C 1T8, Canada
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tamadher A Alghamdi
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute, St Michael's Hospital, 209 Victoria Street, Toronto, ON, M5C 1T8, Canada
| | - Kathryn E White
- Electron Microscopy Research Services, Newcastle University, Newcastle upon Tyne, UK
| | | | - Ferhan S Siddiqi
- Department of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Andrew Advani
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute, St Michael's Hospital, 209 Victoria Street, Toronto, ON, M5C 1T8, Canada.
| |
Collapse
|
10
|
Bryniarski MA, Yee BM, Jaffri I, Chaves LD, Yu JA, Guan X, Ghavam N, Yacoub R, Morris ME. Increased megalin expression in early type 2 diabetes: role of insulin-signaling pathways. Am J Physiol Renal Physiol 2018; 315:F1191-F1207. [PMID: 29949391 DOI: 10.1152/ajprenal.00210.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The megalin/cubilin complex is responsible for the majority of serum protein reclamation in the proximal tubules. The current study examined if decreases in their renal expression, along with the albumin recycling protein neonatal Fc receptor (FcRn) could account for proteinuria/albuminuria in the Zucker diabetic fatty rat model of type 2 diabetes. Immunoblots of renal cortex samples obtained at worsening disease stages demonstrated no loss in megalin, cubilin, or FcRn, even when proteinuria was measured. Additionally, early diabetic rats exhibited significantly increased renal megalin expression when compared with controls (adjusted P < 0.01). Based on these results, the ability of insulin to increase megalin was examined in a clonal subpopulation of the opossum kidney proximal tubule cell line. Insulin treatments (24 h, 100 nM) under high glucose conditions significantly increased megalin protein ( P < 0.0001), mRNA ( P < 0.0001), and albumin endocytosis. The effect on megalin expression was prevented with inhibitors against key effectors of insulin intracellular signaling, phosphatidylinositide 3-kinase and Akt. Studies using rapamycin to inhibit the mechanistic target of rapamycin complex 1 (mTORC1) resulted in a loss of insulin-induced megalin expression. However, subsequent evaluation demonstrated these effects were independent of initial mTORC1 suppression. The presented results provide insight into the expression of megalin, cubilin, and FcRn in type 2 diabetes, which may be impacted by elevated insulin and glucose. Furthermore, proximal tubule endocytic activity in early diabetics may be enhanced, a process that could have a significant role in proteinuria-induced renal damage.
Collapse
Affiliation(s)
- Mark A Bryniarski
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo , New York
| | - Benjamin M Yee
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo , New York
| | - Irum Jaffri
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo , New York
| | - Lee D Chaves
- Department of Internal Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo , New York
| | - Jin Ah Yu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo , New York
| | - Xiaowen Guan
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo , New York
| | - Nazanin Ghavam
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo , New York
| | - Rabi Yacoub
- Department of Internal Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo , New York
| | - Marilyn E Morris
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo , New York
| |
Collapse
|
11
|
Van Krieken R, Marway M, Parthasarathy P, Mehta N, Ingram AJ, Gao B, Krepinsky JC. Inhibition of SREBP With Fatostatin Does Not Attenuate Early Diabetic Nephropathy in Male Mice. Endocrinology 2018; 159:1479-1495. [PMID: 29420703 DOI: 10.1210/en.2018-00093] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 01/28/2018] [Indexed: 12/11/2022]
Abstract
Sterol regulatory element binding protein (SREBP) is an important potential mediator of kidney fibrosis and is known to be upregulated in diabetic nephropathy. We evaluated the effectiveness of SREBP inhibition as treatment of diabetic nephropathy. Type 1 diabetes was induced in uninephrectomized male CD1 mice with streptozotocin. The mice were treated with the SREBP inhibitor fatostatin for 12 weeks. At the endpoint, kidney function and pathologic findings were assessed. Fatostatin inhibited the increase of both isoforms of SREBP (types 1 and 2) in diabetic kidneys. Treatment attenuated basement membrane thickening but did not improve hyperfiltration, albuminuria, or kidney fibrosis in diabetic mice. The treatment of nondiabetic mice with fatostatin led to hyperfiltration and increased the glomerular volume to levels seen in diabetic mice. This was associated with increased renal inflammation and a trend toward increased renal fibrosis. Both in vivo and in cultured renal proximal tubular epithelial cells, fatostatin increased the expression of the proinflammatory cytokine monocyte chemoattractant protein-1. Thus, SREBP inhibition with fatostatin not only is ineffective in preventing diabetic nephropathy but also leads to kidney injury in nondiabetic mice. Further research on the efficacy of other SREBP inhibitors and the specific roles of SREBP-1 and SREBP-2 in the treatment and pathogenesis of diabetic nephropathy is needed.
Collapse
Affiliation(s)
| | - Mandeep Marway
- Division of Nephrology, McMaster University at Hamilton, Ontario, Canada
| | | | - Neel Mehta
- Division of Nephrology, McMaster University at Hamilton, Ontario, Canada
| | - Alistar J Ingram
- Division of Nephrology, McMaster University at Hamilton, Ontario, Canada
| | - Bo Gao
- Division of Nephrology, McMaster University at Hamilton, Ontario, Canada
| | - Joan C Krepinsky
- Division of Nephrology, McMaster University at Hamilton, Ontario, Canada
| |
Collapse
|
12
|
EP4 inhibition attenuates the development of diabetic and non-diabetic experimental kidney disease. Sci Rep 2017; 7:3442. [PMID: 28611444 PMCID: PMC5469816 DOI: 10.1038/s41598-017-03237-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 04/25/2017] [Indexed: 01/13/2023] Open
Abstract
The therapeutic targeting of prostanoid subtype receptors may slow the development of chronic kidney disease (CKD) through mechanisms that are distinct from those of upstream COX inhibition. Here, employing multiple experimental models of CKD, we studied the effects of inhibition of the EP4 receptor, one of four receptor subtypes for the prostanoid prostaglandin E2. In streptozotocin-diabetic endothelial nitric oxide synthase knockout mice, EP4 inhibition attenuated the development of albuminuria, whereas the COX inhibitor indomethacin did not. In Type 2 diabetic db/db mice, EP4 inhibition lowered albuminuria to a level comparable with that of the ACE inhibitor captopril. However, unlike captopril, EP4 inhibition had no effect on blood pressure or hyperfiltration although it did attenuate mesangial matrix accumulation. Indicating a glucose-independent mechanism of action, EP4 inhibition also attenuated proteinuria development and glomerular scarring in non-diabetic rats subjected to surgical renal mass ablation. Finally, in vitro, EP4 inhibition prevented transforming growth factor-ß1 induced dedifferentiation of glomerular podocytes. In rodent models of diabetic and non-diabetic CKD, EP4 inhibition attenuated renal injury through mechanisms that were distinct from either broadspectrum COX inhibition or “standard of care” renin angiotensin system blockade. EP4 inhibition may represent a viable repurposing opportunity for the treatment of CKD.
Collapse
|
13
|
Wang L, Sha Y, Bai J, Eisner W, Sparks MA, Buckley AF, Spurney RF. Podocyte-specific knockout of cyclooxygenase 2 exacerbates diabetic kidney disease. Am J Physiol Renal Physiol 2017; 313:F430-F439. [PMID: 28490532 DOI: 10.1152/ajprenal.00614.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 05/02/2017] [Accepted: 05/09/2017] [Indexed: 01/11/2023] Open
Abstract
Enhanced expression of cyclooxygenase 2 (COX2) in podocytes contributes to glomerular injury in diabetic kidney disease, but some basal level of podocyte COX2 expression might be required to promote podocyte attachment and/or survival. To investigate the role of podocyte COX2 expression in diabetic kidney disease, we deleted COX2 specifically in podocytes in a mouse model of Type 1 diabetes mellitus (Akita mice). Podocyte-specific knockout (KO) of COX2 did not affect renal morphology or albuminuria in nondiabetic mice. Albuminuria was significantly increased in wild-type (WT) and KO Akita mice compared with nondiabetic controls, and the increase in albuminuria was significantly greater in KO Akita mice compared with WT Akita mice at both 16 and 20 wk of age. At the 20-wk time point, mesangial expansion was also increased in WT and KO Akita mice compared with nondiabetic animals, and these histologic abnormalities were not improved by KO of COX2. Tubular injury was seen only in diabetic mice, but there were no significant differences between groups. Thus, KO of COX2 enhanced albuminuria and did not improve the histopathologic features of diabetic kidney disease. These data suggest that 1) KO of COX2 in podocytes does not ameliorate diabetic kidney disease in Akita mice, and 2) some basal level of podocyte COX2 expression in podocytes is necessary to attenuate the adverse effects of diabetes on glomerular filtration barrier function.
Collapse
Affiliation(s)
- Liming Wang
- Division of Nephrology, Department of Medicine, Duke University and Durham Veterans Affairs Medical Centers, Durham, North Carolina
| | - Yonggang Sha
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | | | - William Eisner
- Division of Hematological Malignancies, Department of Medicine, Duke University Medical Center, Durham, North Carolina; and
| | - Matthew A Sparks
- Division of Nephrology, Department of Medicine, Duke University and Durham Veterans Affairs Medical Centers, Durham, North Carolina
| | - Anne F Buckley
- Department of Pathology, Duke University Medical Center, Durham, North Carolina
| | - Robert F Spurney
- Division of Nephrology, Department of Medicine, Duke University and Durham Veterans Affairs Medical Centers, Durham, North Carolina;
| |
Collapse
|
14
|
Suzuki M, Shindo D, Suzuki R, Shirataki Y, Waki H. Combined long-term caffeine intake and exercise inhibits the development of diabetic nephropathy in OLETF rats. J Appl Physiol (1985) 2017; 122:1321-1328. [PMID: 28235857 DOI: 10.1152/japplphysiol.00278.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 12/21/2016] [Accepted: 02/03/2017] [Indexed: 11/22/2022] Open
Abstract
This study was performed to examine the effects of long-term caffeine-intake, with and without exercise, on the progression of diabetic nephropathy (DN) in an obese diabetic rat model. Thirty-two male Otsuka Long-Evans Tokushima fatty (OLETF) rats were assigned to sedentary (OLETF-Sed), exercise (OLETF-Ex), caffeine-intake (OLETF-Caf), and combined (OLETF-Caf + Ex) groups. Caffeine-intake groups were fed rat chow containing caffeine (90.7 ± 4.7 mg/kg/day). The OLETF-Ex and OLETF-Caf + Ex groups were able to run voluntarily at any time using a rotatory wheel. Body weight (BW) and blood pressure (BP) were measured weekly from 24 to 29 wk of age. Pre- and posttreatment serum glucose, insulin, and creatinine concentrations were measured, and a 24 h urine sample was collected for measurement of creatinine clearance (Ccr) and albumin excretion (UEAlb). After treatment, the kidneys were removed for morphological analysis. The OLETF-Caf and OLETF-Caf + Ex groups exhibited no BP increase during the study. Both the caffeine-intake groups exhibited a significant increase in urine volume (UV), electrolyte excretion, and Ccr, and decreased UEAlb, following treatment. Furthermore, no structural damage was observed in the kidneys of rats from either caffeine-intake group, whereas the OLETF-Sed and OLETF-Ex groups exhibited DN progression. This study demonstrates that caffeine-intake alone and/or combined with exercise significantly decreases BW and improves glucose intolerance, without the progression of DN. Further research should be performed to examine whether the quantities of caffeine contained in a normal human daily intake also have a protective effect against kidney damage.NEW & NOTEWORTHY The present study showed that caffeine administration alone and/or combined with exercise results in an improvement of diabetic nephropathy (DN), including an increase in creatinine clearance and urinary Na excretion, a decrease in urinary protein excretion, and in renal morphological findings. To our knowledge, there are no other studies showing that caffeine administration inhibits DN progression.
Collapse
Affiliation(s)
- Masato Suzuki
- Department of Laboratory Medicine, The Jikei University School of Medicine, Nishi-shinbashi, Minato-ku, Tokyo, Japan;
| | - Daisuke Shindo
- Laboratory of Health and Sports Science, Department of Pharmacy, Nihon University, Narashinodai, Funabashi-shi, Chiba, Japan
| | - Ryuichiro Suzuki
- Department of Pharmacognosy and Natural Medicines, Faculty of Pharmaceutical Sciences, Josai University, Sakado, Saitama, Japan; and
| | - Yoshiaki Shirataki
- Department of Pharmacognosy and Natural Medicines, Faculty of Pharmaceutical Sciences, Josai University, Sakado, Saitama, Japan; and
| | - Hidefumi Waki
- Department of Physiology, Graduate School of Health and Sports Science, Juntendo University, Inzai, Chiba, Japan
| |
Collapse
|
15
|
Ferguson S, Steyer AM, Mayhew TM, Schwab Y, Lucocq JM. Quantifying Golgi structure using EM: combining volume-SEM and stereology for higher throughput. Histochem Cell Biol 2017; 147:653-669. [PMID: 28429122 PMCID: PMC5429891 DOI: 10.1007/s00418-017-1564-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2017] [Indexed: 12/28/2022]
Abstract
Investigating organelles such as the Golgi complex depends increasingly on high-throughput quantitative morphological analyses from multiple experimental or genetic conditions. Light microscopy (LM) has been an effective tool for screening but fails to reveal fine details of Golgi structures such as vesicles, tubules and cisternae. Electron microscopy (EM) has sufficient resolution but traditional transmission EM (TEM) methods are slow and inefficient. Newer volume scanning EM (volume-SEM) methods now have the potential to speed up 3D analysis by automated sectioning and imaging. However, they produce large arrays of sections and/or images, which require labour-intensive 3D reconstruction for quantitation on limited cell numbers. Here, we show that the information storage, digital waste and workload involved in using volume-SEM can be reduced substantially using sampling-based stereology. Using the Golgi as an example, we describe how Golgi populations can be sensed quantitatively using single random slices and how accurate quantitative structural data on Golgi organelles of individual cells can be obtained using only 5–10 sections/images taken from a volume-SEM series (thereby sensing population parameters and cell–cell variability). The approach will be useful in techniques such as correlative LM and EM (CLEM) where small samples of cells are treated and where there may be variable responses. For Golgi study, we outline a series of stereological estimators that are suited to these analyses and suggest workflows, which have the potential to enhance the speed and relevance of data acquisition in volume-SEM.
Collapse
Affiliation(s)
- Sophie Ferguson
- Structural Cell Biology Group, School of Medicine, University of St Andrews, North Haugh, Fife, KY16 9TF, Scotland, UK
| | - Anna M Steyer
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Terry M Mayhew
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Yannick Schwab
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - John Milton Lucocq
- Structural Cell Biology Group, School of Medicine, University of St Andrews, North Haugh, Fife, KY16 9TF, Scotland, UK.
| |
Collapse
|
16
|
Circulating fibronectin contributes to mesangial expansion in a murine model of type 1 diabetes. Kidney Int 2017; 91:1374-1385. [PMID: 28159318 DOI: 10.1016/j.kint.2016.12.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 11/14/2016] [Accepted: 12/01/2016] [Indexed: 01/02/2023]
Abstract
Fibronectin is ubiquitously expressed in the extracellular matrix, and its accumulation in the glomerular mesangium in diabetic nephropathy is associated with deterioration of renal function in these patients. However, the exact role of fibronectin in the pathogenesis of diabetic nephropathy remains unknown. To clarify this, we administered fluorescent-labeled plasma fibronectin to wild-type mice and found it to accumulate in the mesangium. Using liver-specific conditional-knockout mice to decrease circulating fibronectin, we reduced circulating fibronectin by more than 90%. In streptozotocin-induced diabetes of these knockout mice, the pronounced fall in circulating fibronectin resulted in a decrease in mesangial expansion by 25% and a decline in albuminuria by 30% compared to diabetic control mice. Indeed, the amount of fibronectin in the kidney was reduced, as was the total amount of collagen. In vitro experiments confirmed that matrix accumulation of fibronectin was enhanced by increasing fibronectin only, glucose only, or the combination of both. Thus, circulating fibronectin contributes to mesangial expansion and exacerbation of albuminuria in a murine model of type 1 diabetes.
Collapse
|
17
|
Eid S, Boutary S, Braych K, Sabra R, Massaad C, Hamdy A, Rashid A, Moodad S, Block K, Gorin Y, Abboud HE, Eid AA. mTORC2 Signaling Regulates Nox4-Induced Podocyte Depletion in Diabetes. Antioxid Redox Signal 2016; 25:703-719. [PMID: 27393154 PMCID: PMC5079418 DOI: 10.1089/ars.2015.6562] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
AIM Podocyte apoptosis is a critical mechanism for excessive loss of urinary albumin that eventuates in kidney fibrosis. Oxidative stress plays a critical role in hyperglycemia-induced glomerular injury. We explored the hypothesis that mammalian target of rapamycin complex 2 (mTORC2) mediates podocyte injury in diabetes. RESULTS High glucose (HG)-induced podocyte injury reflected by alterations in the slit diaphragm protein podocin and podocyte depletion/apoptosis. This was paralleled by activation of the Rictor/mTORC2/Akt pathway. HG also increased the levels of Nox4 and NADPH oxidase activity. Inhibition of mTORC2 using small interfering RNA (siRNA)-targeting Rictor in vitro decreased HG-induced Nox1 and Nox4, NADPH oxidase activity, restored podocin levels, and reduced podocyte depletion/apoptosis. Inhibition of mTORC2 had no effect on mammalian target of rapamycin complex 1 (mTORC1) activation, described by our group to be increased in diabetes, suggesting that the mTORC2 activation by HG could mediate podocyte injury independently of mTORC1. In isolated glomeruli of OVE26 mice, there was a similar activation of the Rictor/mTORC2/Akt signaling pathway with increase in Nox4 and NADPH oxidase activity. Inhibition of mTORC2 using antisense oligonucleotides targeting Rictor restored podocin levels, reduced podocyte depletion/apoptosis, and attenuated glomerular injury and albuminuria. INNOVATION Our data provide evidence for a novel function of mTORC2 in NADPH oxidase-derived reactive oxygen species generation and podocyte apoptosis that contributes to urinary albumin excretion in type 1 diabetes. CONCLUSION mTORC2 and/or NADPH oxidase inhibition may represent a therapeutic modality for diabetic kidney disease. Antioxid. Redox Signal. 25, 703-719.
Collapse
Affiliation(s)
- Stéphanie Eid
- 1 Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut , Beirut, Lebanon .,2 UMR-S 1124 INSERM, Paris Descartes University, Sorbonne Paris Cite University , Centre Interdisciplinaire Chimie Biology, Paris, France
| | - Suzan Boutary
- 1 Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut , Beirut, Lebanon
| | - Kawthar Braych
- 1 Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut , Beirut, Lebanon
| | - Ramzi Sabra
- 3 Department of Pharmacology and Toxicology, Faculty of Medicine and Medical Center, American University of Beirut , Beirut, Lebanon
| | - Charbel Massaad
- 2 UMR-S 1124 INSERM, Paris Descartes University, Sorbonne Paris Cite University , Centre Interdisciplinaire Chimie Biology, Paris, France
| | - Ahmed Hamdy
- 4 Department of Nephrology, Hamad Medical Corporation , Doha, Qatar
| | - Awad Rashid
- 4 Department of Nephrology, Hamad Medical Corporation , Doha, Qatar
| | - Sarah Moodad
- 1 Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut , Beirut, Lebanon
| | - Karen Block
- 5 Department of Medicine, South Texas Veterans Healthcare System and the University of Texas Health Science Center , San Antonio, Texas
| | - Yves Gorin
- 5 Department of Medicine, South Texas Veterans Healthcare System and the University of Texas Health Science Center , San Antonio, Texas
| | - Hanna E Abboud
- 5 Department of Medicine, South Texas Veterans Healthcare System and the University of Texas Health Science Center , San Antonio, Texas
| | - Assaad A Eid
- 1 Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut , Beirut, Lebanon
| |
Collapse
|
18
|
Sun H, Wang W, Han P, Shao M, Song G, Du H, Yi T, Li S. Astragaloside IV ameliorates renal injury in db/db mice. Sci Rep 2016; 6:32545. [PMID: 27585918 PMCID: PMC5009300 DOI: 10.1038/srep32545] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 08/10/2016] [Indexed: 01/22/2023] Open
Abstract
Diabetic nephropathy is a lethal complication of diabetes mellitus and a major type of chronic kidney disease. Dysregulation of the Akt pathway and its downstream cascades, including mTOR, NFκB, and Erk1/2, play a critical role in the development of diabetic nephropathy. Astragaloside IV is a major component of Huangqi and exerts renal protection in a mouse model of type 1 diabetes. The current study was undertaken to investigate the protective effects of diet supplementation of AS-IV on renal injury in db/db mice, a type 2 diabetic mouse model. Results showed that administration of AS-IV reduced albuminuria, ameliorated changes in the glomerular and tubular pathology, and decreased urinary NAG, NGAL, and TGF-β1 in db/db mice. AS-IV also attenuated the diabetes-related activation of Akt/mTOR, NFκB, and Erk1/2 signaling pathways without causing any detectable hepatotoxicity. Collectively, these findings showed AS-IV to be beneficial to type 2 diabetic nephropathy, which might be associated with the inhibition of Akt/mTOR, NFκB and Erk1/2 signaling pathways.
Collapse
Affiliation(s)
- Huili Sun
- Department of Nephrology, Shenzhen Affiliated Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Wenjing Wang
- Department of Nephrology, Shenzhen Affiliated Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Pengxun Han
- Department of Nephrology, Shenzhen Affiliated Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Mumin Shao
- Department of Pathology, Shenzhen Affiliated Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Gaofeng Song
- Department of Nephrology, Shenzhen Affiliated Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Heng Du
- Department of Biological Sciences, the University of Texas at Dallas, Richardson, Texas, USA
| | - Tiegang Yi
- Department of Nephrology, Shenzhen Affiliated Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Shunmin Li
- Department of Nephrology, Shenzhen Affiliated Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
19
|
Ying C, Zhou X, Chang Z, Ling H, Cheng X, Li W. Blood glucose fluctuation accelerates renal injury involved to inhibit the AKT signaling pathway in diabetic rats. Endocrine 2016; 53:81-96. [PMID: 26860515 DOI: 10.1007/s12020-016-0867-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 01/12/2016] [Indexed: 12/20/2022]
Abstract
Blood glucose fluctuation is associated with diabetic nephropathy. However, the mechanism by which blood glucose fluctuation accelerates renal injury is not fully understood. The aim of the present study was to assess the effects of blood glucose fluctuation on diabetic nephropathy in rats and investigate its underlying mechanism. Diabetes in the rats was induced by a high sugar, high-fat diet, and a single dose of STZ (35 mg/kg)-injected intraperitoneally. Unstable blood sugar models were induced by subcutaneous insulin injection and intravenous glucose injection alternately. Body weight, glycosylated hemoglobin A1c (HbAlc), blood urea nitrogen (BUN), serum creatinine (Scr), and Creatinine clearance (Ccr) were assessed. T-SOD activity and MDA level were measured by assay kit. Change in renal tissue ultrastructure was observed by light microscopy and electron microscopy. Phosphorylated ser/thr protein kinase (p-AKT) (phosphor-Ser473), phosphorylated glycogen synthase kinase-3 beta (p-GSK-3β) (phosphor-Ser9), Bcl-2-associated X protein (BAX), B cell lymphoma/leukemia 2 (BCL-2), and cleaved-cysteinyl aspartate-specific proteinase-3 (caspase-3) levels were detected by immunohistochemistry and Western blot. We observed that BUN and Scr were increased in diabetic rats, and Ccr was decreased. Furthermore, blood glucose fluctuations could exacerbate the Ccr changes. Renal tissue ultrastructure was also seriously injured by glucose variability in diabetic rats. In addition, glucose fluctuation increased the oxidative stress of renal tissue. Moreover, fluctuating blood glucose decreased p-AKT level and BCL-2, and increased p-GSK-3β, BAX, cleaved-caspase-3 levels, and ratio of BAX/BCL-2 in the kidneys of diabetic rats. In conclusion, these results suggest that blood glucose fluctuation accelerated renal injury is due, at least in part to its oxidative stress promoting and inhibiting the AKT signaling pathway in diabetic rats.
Collapse
Affiliation(s)
- Changjiang Ying
- Department of Endocrinology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, People's Republic of China
- Department of Endocrinology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Xiaoyan Zhou
- Laboratory of Morphology, Xuzhou Medical College, Xuzhou, 221004, Jiangsu, People's Republic of China
| | - Zhenzhen Chang
- Department of Endocrinology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Hongwei Ling
- Department of Endocrinology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Xingbo Cheng
- Department of Endocrinology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, People's Republic of China.
| | - Wei Li
- Department of Endocrinology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, 221002, Jiangsu, People's Republic of China.
| |
Collapse
|
20
|
Batchu SN, Majumder S, Bowskill BB, White KE, Advani SL, Brijmohan AS, Liu Y, Thai K, Azizi PM, Lee WL, Advani A. Prostaglandin I2 Receptor Agonism Preserves β-Cell Function and Attenuates Albuminuria Through Nephrin-Dependent Mechanisms. Diabetes 2016; 65:1398-409. [PMID: 26868296 DOI: 10.2337/db15-0783] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 02/01/2016] [Indexed: 11/13/2022]
Abstract
Discovery of common pathways that mediate both pancreatic β-cell function and end-organ function offers the opportunity to develop therapies that modulate glucose homeostasis and separately slow the development of diabetes complications. Here, we investigated the in vitro and in vivo effects of pharmacological agonism of the prostaglandin I2 (IP) receptor in pancreatic β-cells and in glomerular podocytes. The IP receptor agonist MRE-269 increased intracellular 3',5'-cyclic adenosine monophosphate (cAMP), augmented glucose-stimulated insulin secretion (GSIS), and increased viability in MIN6 β-cells. Its prodrug form, selexipag, augmented GSIS and preserved islet β-cell mass in diabetic mice. Determining that this preservation of β-cell function is mediated through cAMP/protein kinase A (PKA)/nephrin-dependent pathways, we found that PKA inhibition, nephrin knockdown, or targeted mutation of phosphorylated nephrin tyrosine residues 1176 and 1193 abrogated the actions of MRE-269 in MIN6 cells. Because nephrin is important to glomerular permselectivity, we next set out to determine whether IP receptor agonism similarly affects nephrin phosphorylation in podocytes. Expression of the IP receptor in podocytes was confirmed in cultured cells by immunoblotting and quantitative real-time PCR and in mouse kidneys by immunogold electron microscopy, and its agonism 1) increased cAMP, 2) activated PKA, 3) phosphorylated nephrin, and 4) attenuated albumin transcytosis. Finally, treatment of diabetic endothelial nitric oxide synthase knockout mice with selexipag augmented renal nephrin phosphorylation and attenuated albuminuria development independently of glucose change. Collectively, these observations describe a pharmacological strategy that posttranslationally modifies nephrin and the effects of this strategy in the pancreas and in the kidney.
Collapse
MESH Headings
- Acetamides/therapeutic use
- Acetates/pharmacology
- Animals
- Cell Line
- Cell Survival/drug effects
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Diabetic Nephropathies/metabolism
- Diabetic Nephropathies/pathology
- Diabetic Nephropathies/physiopathology
- Diabetic Nephropathies/prevention & control
- Humans
- Hypoglycemic Agents/pharmacology
- Hypoglycemic Agents/therapeutic use
- Insulin/agonists
- Insulin/metabolism
- Insulin Secretion
- Insulin-Secreting Cells/drug effects
- Insulin-Secreting Cells/metabolism
- Membrane Proteins/antagonists & inhibitors
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice, Inbred C57BL
- Mice, Knockout
- Mutation
- Phosphorylation/drug effects
- Podocytes/drug effects
- Podocytes/metabolism
- Podocytes/pathology
- Podocytes/ultrastructure
- Prodrugs/therapeutic use
- Protein Processing, Post-Translational/drug effects
- Pyrazines/pharmacology
- Pyrazines/therapeutic use
- RNA Interference
- Receptors, Epoprostenol/agonists
- Receptors, Epoprostenol/genetics
- Receptors, Epoprostenol/metabolism
- Renal Insufficiency/complications
- Renal Insufficiency/metabolism
- Renal Insufficiency/pathology
- Renal Insufficiency/prevention & control
Collapse
Affiliation(s)
- Sri N Batchu
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Syamantak Majumder
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Bridgit B Bowskill
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Kathryn E White
- Electron Microscopy Research Services, Newcastle University, Newcastle upon Tyne, U.K
| | - Suzanne L Advani
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Angela S Brijmohan
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Youan Liu
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Kerri Thai
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Paymon M Azizi
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Warren L Lee
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Andrew Advani
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada
| |
Collapse
|
21
|
Li SY, Huang PH, Tarng DC, Lin TP, Yang WC, Chang YH, Yang AH, Lin CC, Yang MH, Chen JW, Schmid-Schönbein GW, Chien S, Chu PH, Lin SJ. Four-and-a-Half LIM Domains Protein 2 Is a Coactivator of Wnt Signaling in Diabetic Kidney Disease. J Am Soc Nephrol 2015; 26:3072-84. [PMID: 25855776 DOI: 10.1681/asn.2014100989] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 02/23/2015] [Indexed: 01/15/2023] Open
Abstract
Diabetic kidney disease (DKD) is a microvascular complication that leads to kidney dysfunction and ESRD, but the underlying mechanisms remain unclear. Podocyte Wnt-pathway activation has been demonstrated to be a trigger mechanism for various proteinuric diseases. Notably, four-and-a-half LIM domains protein 2 (FHL2) is highly expressed in urogenital systems and has been implicated in Wnt/β-catenin signaling. Here, we used in vitro podocyte culture experiments and a streptozotocin-induced DKD model in FHL2 gene-knockout mice to determine the possible role of FHL2 in DKD and to clarify its association with the Wnt pathway. In human and mouse kidney tissues, FHL2 protein was abundantly expressed in podocytes but not in renal tubular cells. Treatment with high glucose or diabetes-related cytokines, including angiotensin II and TGF-β1, activated FHL2 protein and Wnt/β-catenin signaling in cultured podocytes. This activation also upregulated FHL2 expression and promoted FHL2 translocation from cytosol to nucleus. Genetic deletion of the FHL2 gene mitigated the podocyte dedifferentiation caused by activated Wnt/β-catenin signaling under Wnt-On, but not under Wnt-Off, conditions. Diabetic FHL2(+/+) mice developed markedly increased albuminuria and thickening of the glomerular basement membrane compared with nondiabetic FHL2(+/+) mice. However, FHL2 knockout significantly attenuated these DKD-induced changes. Furthermore, kidney samples from patients with diabetes had a higher degree of FHL2 podocyte nuclear translocation, which was positively associated with albuminuria and progressive renal function deterioration. Therefore, we conclude that FHL2 has both structural and functional protein-protein interactions with β-catenin in the podocyte nucleus and that FHL2 protein inhibition can mitigate Wnt/β-catenin-induced podocytopathy.
Collapse
Affiliation(s)
- Szu-Yuan Li
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital and Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Po-Hsun Huang
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital and Institute of Clinical Medicine, and Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Der-Cherng Tarng
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, and Institute of Physiology, National Yang-Ming University, Taipei, Taiwan
| | - Tzu-Ping Lin
- Department of Urology, Taipei Veterans General Hospital, Department of Urology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Wu-Chang Yang
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital and School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yen-Hwa Chang
- Department of Urology, Taipei Veterans General Hospital, Department of Urology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - An-Hang Yang
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, and Institute of Anatomy and Cell Biology, National Yang-Ming University, Taipei, Taiwan
| | - Chih-Ching Lin
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital and School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Muh-Hwa Yang
- Division of Hematology and Oncology, Department of Medicine, Taipei Veterans General Hospital and Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Jaw-Wen Chen
- Department of Medical Research, Taipei Veterans General Hospital, Institute and Department of Pharmacology, and Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Geert W Schmid-Schönbein
- The Institute of Engineering in Medicine, University of California San Diego, La Jolla, California
| | - Shu Chien
- Departments of Bioengineering, Nanoengineering, Institute of Engineering in Medicine, University of California San Diego, La Jolla, California; and
| | - Pao-Hsien Chu
- Division of Cardiology, Department of Internal Medicine; Healthcare Center; Heart Failure Center, Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Taipei, Taiwan
| | - Shing-Jong Lin
- Department of Medical Research, Taipei Veterans General Hospital, Institute and Department of Pharmacology, and Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
22
|
Kaur M, Bedi O, Sachdeva S, Reddy BVKK, Kumar P. Rodent animal models: from mild to advanced stages of diabetic nephropathy. Inflammopharmacology 2014; 22:279-93. [PMID: 25149089 PMCID: PMC7101706 DOI: 10.1007/s10787-014-0215-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Accepted: 08/08/2014] [Indexed: 12/13/2022]
Abstract
Diabetic nephropathy (DN) is a secondary complication of both type 1 and type 2 diabetes, resulting from uncontrolled high blood sugar. 30-40% of diabetic patients develop DN associated with a poor life expectancy and end-stage renal disease, causing serious socioeconomic problems. Although an exact pathogenesis of DN is still unknown, several factors such as hyperglycemia, hyperlipidemia, hypertension and proteinuria may contribute to the progression of renal damage in diabetic nephropathy. DN is confirmed by measuring blood urea nitrogen, serum creatinine, creatinine clearance and proteinuria. Clinical studies show that intensive control of hyperglycemia and blood pressure could successfully reduce proteinuria, which is the main sign of glomerular lesions in DN, and improve the renal prognosis in patients with DN. Diabetic rodent models have traditionally been used for doing research on pathogenesis and developing novel therapeutic strategies, but have limitations for translational research. Diabetes in animal models such as rodents are induced either spontaneously or by using chemical, surgical, genetic, or other techniques and depicts many clinical features or related phenotypes of the disease. This review discusses the merits and demerits of the models, which are used for many reasons in the research of diabetes and diabetic complications.
Collapse
Affiliation(s)
- Manpreet Kaur
- Pharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001 Punjab India
| | - Onkar Bedi
- Pharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001 Punjab India
| | - Shilpi Sachdeva
- Pharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001 Punjab India
| | - B. V. K. Krishna Reddy
- Pharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001 Punjab India
| | - Puneet Kumar
- Pharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001 Punjab India
| |
Collapse
|
23
|
Khan S, Jena G. Sodium butyrate, a HDAC inhibitor ameliorates eNOS, iNOS and TGF-β1-induced fibrogenesis, apoptosis and DNA damage in the kidney of juvenile diabetic rats. Food Chem Toxicol 2014; 73:127-39. [PMID: 25158305 DOI: 10.1016/j.fct.2014.08.010] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 08/10/2014] [Accepted: 08/18/2014] [Indexed: 12/18/2022]
Abstract
Recent reports highlighted the role of histone deacetylases (HDACs) in the pathogenesis of diabetic nephropathy (DN), but the exact molecular mechanisms by which HDAC inhibitors ameliorate DN still remain unclear. The present study was aimed to investigate the renoprotective effects of sodium butyrate (NaB) in diabetes-induced renal damages, apoptosis and fibrosis in juvenile rats. Diabetes was induced by single injection of STZ (60mg/kg), whereas NaB (500mg/kg/day) was administrated for 21days by i.p. route in a pre- and post-treatment schedule. End-points of evaluation included biochemical estimation, histology, protein expression as well as apoptosis and DNA damage examinations. Post-treatment with NaB significantly decreased plasma glucose, creatinine, urea, histological alterations including the fibrosis and collagen deposition as well as decreased the HDACs activity, expression of eNOS, iNOS, α-SMA, collagen I, fibronectin, TGFβ-1, NFκB, apoptosis and DNA damage in the diabetic kidney. These results showed that NaB treatment improved the renal function and ameliorated the histological alterations, fibrosis, apoptosis and DNA damage in the kidney of juvenile rats.
Collapse
Affiliation(s)
- Sabbir Khan
- Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, Punjab 160062, India.
| | - Gopabandhu Jena
- Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, Punjab 160062, India.
| |
Collapse
|
24
|
Riera M, Márquez E, Clotet S, Gimeno J, Roca-Ho H, Lloreta J, Juanpere N, Batlle D, Pascual J, Soler MJ. Effect of insulin on ACE2 activity and kidney function in the non-obese diabetic mouse. PLoS One 2014; 9:e84683. [PMID: 24400109 PMCID: PMC3882249 DOI: 10.1371/journal.pone.0084683] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Accepted: 11/26/2013] [Indexed: 11/18/2022] Open
Abstract
We studied the non-obese diabetic (NOD) mice model because it develops autoimmune diabetes that resembles human type 1 diabetes. In diabetic mice, urinary albumin excretion (UAE) was ten-fold increased at an "early stage" of diabetes, and twenty-fold increased at a "later stage" (21 and 40 days, respectively after diabetes diagnosis) as compared to non-obese resistant controls. In NOD Diabetic mice, glomerular enlargement, increased glomerular filtration rate (GFR) and increased blood pressure were observed in the early stage. In the late stage, NOD Diabetic mice developed mesangial expansion and reduced podocyte number. Circulating and urine ACE2 activity were markedly increased both, early and late in Diabetic mice. Insulin administration prevented albuminuria, markedly reduced GFR, blood pressure, and glomerular enlargement in the early stage; and prevented mesangial expansion and the reduced podocyte number in the late stage of diabetes. The increase in serum and urine ACE2 activity was normalized by insulin administration at the early and late stages of diabetes in Diabetic mice. We conclude that the Diabetic mice develops features of early kidney disease, including albuminuria and a marked increase in GFR. ACE2 activity is increased starting at an early stage in both serum and urine. Moreover, these alterations can be completely prevented by the chronic administration of insulin.
Collapse
Affiliation(s)
- Marta Riera
- Department of Nephrology, Hospital del Mar-IMIM, Barcelona, Spain
| | - Eva Márquez
- Department of Nephrology, Hospital del Mar-IMIM, Barcelona, Spain
| | - Sergi Clotet
- Department of Nephrology, Hospital del Mar-IMIM, Barcelona, Spain
| | - Javier Gimeno
- Department of Pathology, Hospital del Mar-IMIM, Barcelona, Spain
| | - Heleia Roca-Ho
- Department of Pathology, Hospital del Mar-IMIM, Barcelona, Spain
| | - Josep Lloreta
- Department of Pathology, Hospital del Mar-IMIM, Barcelona, Spain
| | - Nuria Juanpere
- Department of Pathology, Hospital del Mar-IMIM, Barcelona, Spain
| | - Daniel Batlle
- Division of Nephrology and Hypertension, Department of Medicine, The Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Julio Pascual
- Department of Nephrology, Hospital del Mar-IMIM, Barcelona, Spain
| | - María José Soler
- Department of Nephrology, Hospital del Mar-IMIM, Barcelona, Spain
- * E-mail:
| |
Collapse
|
25
|
Brouwers O, Niessen PMG, Miyata T, Østergaard JA, Flyvbjerg A, Peutz-Kootstra CJ, Sieber J, Mundel PH, Brownlee M, Janssen BJA, De Mey JGR, Stehouwer CDA, Schalkwijk CG. Glyoxalase-1 overexpression reduces endothelial dysfunction and attenuates early renal impairment in a rat model of diabetes. Diabetologia 2014; 57:224-35. [PMID: 24162587 DOI: 10.1007/s00125-013-3088-5] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 10/02/2013] [Indexed: 02/02/2023]
Abstract
AIMS/HYPOTHESIS In diabetes, advanced glycation end-products (AGEs) and the AGE precursor methylglyoxal (MGO) are associated with endothelial dysfunction and the development of microvascular complications. In this study we used a rat model of diabetes, in which rats transgenically overexpressed the MGO-detoxifying enzyme glyoxalase-I (GLO-I), to determine the impact of intracellular glycation on vascular function and the development of early renal changes in diabetes. METHODS Wild-type and Glo1-overexpressing rats were rendered diabetic for a period of 24 weeks by intravenous injection of streptozotocin. Mesenteric arteries were isolated to study ex vivo vascular reactivity with a wire myograph and kidneys were processed for histological examination. Glycation was determined by mass spectrometry and immunohistochemistry. Markers for inflammation, endothelium dysfunction and renal dysfunction were measured with ELISA-based techniques. RESULTS Diabetes-induced formation of AGEs in mesenteric arteries and endothelial dysfunction were reduced by Glo1 overexpression. Despite the absence of advanced nephrotic lesions, early markers of renal dysfunction (i.e. increased glomerular volume, decreased podocyte number and diabetes-induced elevation of urinary markers albumin, osteopontin, kidney-inflammation-molecule-1 and nephrin) were attenuated by Glo1 overexpression. In line with this, downregulation of Glo1 in cultured endothelial cells resulted in increased expression of inflammation and endothelium dysfunction markers. In fully differentiated cultured podocytes incubation with MGO resulted in apoptosis. CONCLUSIONS/INTERPRETATION This study shows that effective regulation of the GLO-I enzyme is important in the prevention of vascular intracellular glycation, endothelial dysfunction and early renal impairment in experimental diabetes. Modulating the GLO-I pathway therefore may provide a novel approach to prevent vascular complications in diabetes.
Collapse
Affiliation(s)
- Olaf Brouwers
- Laboratory for Metabolism and Vascular Medicine, Division of General Internal Medicine, Department of Internal Medicine, Maastricht University Medical Center, Universiteitssingel 50, P.O. Box 616 (box 14), 6200 MD, Maastricht, the Netherlands,
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Petrakis I, Mavroeidi V, Stylianou K, Andronikidi E, Lioudaki E, Perakis K, Stratigis S, Vardaki E, Zafeiri M, Giannakakis K, Plaitakis A, Amoiridis G, Saraiva MJ, Daphnis E. Hsf-1 affects podocyte markers NPHS1, NPHS2 and WT1 in a transgenic mouse model of TTRVal30Met-related amyloidosis. Amyloid 2013; 20:164-72. [PMID: 23829269 DOI: 10.3109/13506129.2013.814046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
INTRODUCTION Familial amyloid polyneuropathy is characterized by transthyretin (TTR) deposition in various tissues, including the kidneys. While deposition induces organ dysfunction, renal involvement in TTR-related amyloidosis could manifest from proteinuria to end-stage kidney failure. As proteinuria is considered result of glomerular filtration barrier injury we investigated whether TTR deposition affects either glomerular basement membrane (GBM) or podocytes. MATERIALS AND METHODS Immunohistochemistry, immunoblot and gene expression studies for nephrin, podocin and WT1 were run on renal tissue from human-TTRV30M transgenic mice hemizygous or homozygous for heat shock factor one (Hsf-1). Transmission electron microscopy was used for evaluation of podocyte foot process width (PFW) and GBM thickness in Hsf-1 hemizygous mice with or without TTRV30M or amyloid deposition. RESULTS Glomeruli of hsf-1 hemizygous transgenic mice showed lower nephrin and podocin protein levels but an increased podocyte number when compared to Hsf-1 homozygous transgenic mice. Nephrin, podocin and WT1 gene expression levels were unaffected by the Hsf-1 carrier status. TTRV30M deposition was associated with increased PFW and GBM thickness. CONCLUSIONS Under the effect of Hsf-1 hemizygosity, TTRV30M deposition has deleterious effects on GBM thickness, PFW and slit diaphragm composition, without affecting nephrin and podocin gene expression.
Collapse
|
27
|
Eid AA, Ford BM, Bhandary B, de Cassia Cavaglieri R, Block K, Barnes JL, Gorin Y, Choudhury GG, Abboud HE. Mammalian target of rapamycin regulates Nox4-mediated podocyte depletion in diabetic renal injury. Diabetes 2013; 62:2935-47. [PMID: 23557706 PMCID: PMC3717863 DOI: 10.2337/db12-1504] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Podocyte apoptosis is a critical mechanism for excessive loss of urinary albumin that eventuates in kidney fibrosis. Pharmacological doses of the mammalian target of rapamycin (mTOR) inhibitor rapamycin reduce albuminuria in diabetes. We explored the hypothesis that mTOR mediates podocyte injury in diabetes. High glucose (HG) induces apoptosis of podocytes, inhibits AMP-activated protein kinase (AMPK) activation, inactivates tuberin, and activates mTOR. HG also increases the levels of Nox4 and Nox1 and NADPH oxidase activity. Inhibition of mTOR by low-dose rapamycin decreases HG-induced Nox4 and Nox1, NADPH oxidase activity, and podocyte apoptosis. Inhibition of mTOR had no effect on AMPK or tuberin phosphorylation, indicating that mTOR is downstream of these signaling molecules. In isolated glomeruli of OVE26 mice, there is a similar decrease in the activation of AMPK and tuberin and activation of mTOR with increase in Nox4 and NADPH oxidase activity. Inhibition of mTOR by a small dose of rapamycin reduces podocyte apoptosis and attenuates glomerular injury and albuminuria. Our data provide evidence for a novel function of mTOR in Nox4-derived reactive oxygen species generation and podocyte apoptosis that contributes to urinary albumin excretion in type 1 diabetes. Thus, mTOR and/or NADPH oxidase inhibition may represent a therapeutic modality of diabetic kidney disease.
Collapse
Affiliation(s)
- Assaad A Eid
- Department of Medicine, South Texas Veterans Healthcare System and the University of Texas Health Science Center, San Antonio, Texas, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Regulation of C-type natriuretic peptides and natriuretic peptide receptor-B expression in diabetic rats renal treated by Tongluo Recipe (通络方). Chin J Integr Med 2013; 19:524-31. [DOI: 10.1007/s11655-013-1507-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Indexed: 11/27/2022]
|
29
|
Okabe C, Borges RL, de Almeida DC, Fanelli C, Barlette GP, Machado FG, Arias SCA, Malheiros DMAC, Camara NOS, Zatz R, Fujihara CK. NF-κB activation mediates crystal translocation and interstitial inflammation in adenine overload nephropathy. Am J Physiol Renal Physiol 2013; 305:F155-63. [PMID: 23657853 DOI: 10.1152/ajprenal.00491.2012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Adenine overload promotes intratubular crystal precipitation and interstitial nephritis. We showed recently that these abnormalities are strongly attenuated in mice knockout for Toll-like receptors-2, -4, MyD88, ASC, or caspase-1. We now investigated whether NF-κB activation also plays a pathogenic role in this model. Adult male Munich-Wistar rats were distributed among three groups: C (n = 17), receiving standard chow; ADE (n = 17), given adenine in the chow at 0.7% for 1 wk and 0.5% for 2 wk; and ADE + pyrrolidine dithiocarbamate (PDTC; n = 14), receiving adenine as above and the NF-κB inhibitor PDTC (120 mg·kg⁻¹·day⁻¹ in the drinking water). After 3 wk, widespread crystal deposition was seen in tubular lumina and in the renal interstitium, along with granuloma formation, collagen accumulation, intense tubulointerstitial proliferation, and increased interstitial expression of inflammatory mediators. Part of the crystals were segregated from tubular lumina by a newly formed cell layer and, at more advanced stages, appeared to be extruded to the interstitium. p65 nuclear translocation and IKK-α increased abundance indicated activation of the NF-κB system. PDTC treatment prevented p65 migration and normalized IKK-α, limited crystal shift to the interstitium, and strongly attenuated interstitial fibrosis/inflammation. These findings indicate that the complex inflammatory phenomena associated with this model depend, at least in part, on NF-κB activation, and suggest that the NF-κB system may become a therapeutic target in the treatment of chronic kidney disease.
Collapse
Affiliation(s)
- Cristiene Okabe
- Renal Division, Department of Clinical Medicine, Faculty of Medicine, University of São Paulo São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Alves MG, Martins AD, Cavaco JE, Socorro S, Oliveira PF. Diabetes, insulin-mediated glucose metabolism and Sertoli/blood-testis barrier function. Tissue Barriers 2013; 1:e23992. [PMID: 24665384 PMCID: PMC3875609 DOI: 10.4161/tisb.23992] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 02/10/2013] [Accepted: 02/12/2013] [Indexed: 02/06/2023] Open
Abstract
Blood testis barrier (BTB) is one of the tightest blood-barriers controlling the entry of substances into the intratubular fluid. Diabetes Mellitus (DM) is an epidemic metabolic disease concurrent with falling fertility rates, which provokes severe detrimental BTB alterations. It induces testicular alterations, disrupting the metabolic cooperation between the cellular constituents of BTB, with dramatic consequences on sperm quality and fertility. As Sertoli cells are involved in the regulation of spermatogenesis, providing nutritional support for germ cells, any metabolic alteration in these cells derived from DM may be responsible for spermatogenesis disruption, playing a crucial role in fertility/subfertility associated with this pathology. These cells have a glucose sensing machinery that reacts to hormonal fluctuations and several mechanisms to counteract hyper/hypoglycemic events. The role of DM on Sertoli/BTB glucose metabolism dynamics and the metabolic molecular mechanisms through which DM and insulin deregulation alter its functioning, affecting male reproductive potential will be discussed.
Collapse
Affiliation(s)
- Marco G. Alves
- CICS-UBI; Health Sciences Research Centre; University of Beira Interior; Covilhã, Portugal
| | - Ana D. Martins
- CICS-UBI; Health Sciences Research Centre; University of Beira Interior; Covilhã, Portugal
| | - José E. Cavaco
- CICS-UBI; Health Sciences Research Centre; University of Beira Interior; Covilhã, Portugal
| | - Sílvia Socorro
- CICS-UBI; Health Sciences Research Centre; University of Beira Interior; Covilhã, Portugal
| | - Pedro F. Oliveira
- CICS-UBI; Health Sciences Research Centre; University of Beira Interior; Covilhã, Portugal
| |
Collapse
|
31
|
Velic A, Laturnus D, Chhoun J, Zheng S, Epstein P, Carlson E. Diabetic basement membrane thickening does not occur in myocardial capillaries of transgenic mice when metallothionein is overexpressed in cardiac myocytes. Anat Rec (Hoboken) 2013; 296:480-7. [PMID: 23381845 DOI: 10.1002/ar.22646] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 12/06/2012] [Indexed: 11/06/2022]
Abstract
Diabetic cardiomyopathy is a clinically distinct disease characterized by impaired cardiac function as a result of reduced contractility and hypertension-induced athero- or arteriosclerosis. This may be due either to generalized vascular disease, tissue-based injury such as focal cardiomyocyte dysmorphia, or microvascular damage manifested by myocardial capillary basement membrane (CBM) thickening. Hyperglycemia-driven increases in reactive oxygen species (ROS) have been proposed to contribute to such damage. To address this hypothesis, we utilized light (LM) and transmission electron microscopy (TEM) to demonstrate cardiomyocyte morphology and myocardial CBM thickness in the left ventricles of four mouse genotypes: FVB (background Friend virus B controls), OVE (transgenic diabetics), Mt [transgenics with targeted overexpression of the antioxidant protein metallothionein (MT) in cardiomyocytes], and OVEMt (bi-transgenic cross of OVE and Mt) animals. Mice were prepared for morphometric analysis by vascular perfusion. Focal myocardial disorganization was identified in OVE mice but not in the remaining genotypes. Not unexpectedly, myocardial CBM thickness was increased significantly in OVE relative to FVB (P < 0.05) and Mt (P < 0.05) animals (+28% and +39.5%, respectively). Remarkably, however, OVEMt myocardial CBMs showed no increase in width; rather they were ~3% thinner than FVB controls. Although the molecular mechanisms regulating CBM width remain elusive, it seems possible that despite a significant hyperglycemic environment, MT antioxidant activity may mitigate local oxidative stress and reduce downstream excess microvascular extracellular matrix (ECM) formation. In addition, the reduction of intra- and perivascular ROS may protect against incipient endothelial damage and the CBM thickening that results from such injury.
Collapse
Affiliation(s)
- Ana Velic
- Department of Anatomy and Cell Biology, University of North Dakota, Grand Forks, ND 58202-9037, USA
| | | | | | | | | | | |
Collapse
|
32
|
Kiss E, Kränzlin B, Wagenblaβ K, Bonrouhi M, Thiery J, Gröne E, Nordström V, Teupser D, Gretz N, Malle E, Gröne HJ. Lipid droplet accumulation is associated with an increase in hyperglycemia-induced renal damage: prevention by liver X receptors. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 182:727-41. [PMID: 23318573 DOI: 10.1016/j.ajpath.2012.11.033] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 10/17/2012] [Accepted: 11/19/2012] [Indexed: 12/24/2022]
Abstract
Dyslipidemia is a frequent component of the metabolic disorder of diabetic patients contributing to organ damage. Herein, in low-density lipoprotein receptor-deficient hyperlipidemic and streptozotozin-induced diabetic mice, hyperglycemia and hyperlipidemia acted reciprocally, accentuating renal injury and altering renal function. In hyperglycemic-hyperlipidemic kidneys, the accumulation of Tip47-positive lipid droplets in glomeruli, tubular epithelia, and macrophages was accompanied by the concomitant presence of the oxidative stress markers xanthine oxidoreductase and nitrotyrosine, findings that could also be evidenced in renal biopsy samples of diabetic patients. As liver X receptors (LXRα,β) regulate genes linked to lipid and carbohydrate homeostasis and inhibit inflammatory gene expression in macrophages, the effects of systemic and macrophage-specific LXR activation were analyzed on renal damage in hyperlipidemic-hyperglycemic mice. LXR stimulation by GW3965 up-regulated genes involved in cholesterol efflux and down-regulated proinflammatory/profibrotic cytokines, inhibiting the pathomorphology of diabetic nephropathy, renal lipid accumulation, and improving renal function. Xanthine oxidoreductase and nitrotyrosine levels were reduced. In macrophages, GW3965 or LXRα overexpression significantly suppressed glycated or acetylated low-density lipoprotein-induced cytokines and reactive oxygen species. Specifically, in mice, transgenic expression of LXRα in macrophages significantly ameliorated hyperlipidemic-hyperglycemic nephropathy. The results demonstrate the presence of lipid droplet-induced oxidative mechanisms and the pathophysiologic role of macrophages in diabetic kidneys and indicate the potent regulatory role of LXRs in preventing renal damage in diabetes.
Collapse
Affiliation(s)
- Eva Kiss
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Machado FG, Kuriki PS, Fujihara CK, Fanelli C, Arias SCA, Malheiros DMAC, Camara NOS, Zatz R. Chronic VEGF blockade worsens glomerular injury in the remnant kidney model. PLoS One 2012; 7:e39580. [PMID: 22745791 PMCID: PMC3382123 DOI: 10.1371/journal.pone.0039580] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 05/23/2012] [Indexed: 11/18/2022] Open
Abstract
VEGF inhibition can promote renal vascular and parenchymal injury, causing proteinuria, hypertension and thrombotic microangiopathy. The mechanisms underlying these side effects are unclear. We investigated the renal effects of the administration, during 45 days, of sunitinib (Su), a VEGF receptor inhibitor, to rats with 5/6 renal ablation (Nx). Adult male Munich-Wistar rats were distributed among groups S+V, sham-operated rats receiving vehicle only; S+Su, S rats given Su, 4 mg/kg/day; Nx+V, Nx rats receiving V; and Nx+Su, Nx rats receiving Su. Su caused no change in Group S. Seven and 45 days after renal ablation, renal cortical interstitium was expanded, in association with rarefaction of peritubular capillaries. Su did not worsen hypertension, proteinuria or interstitial expansion, nor did it affect capillary rarefaction, suggesting little angiogenic activity in this model. Nx animals exhibited glomerulosclerosis (GS), which was aggravated by Su. This effect could not be explained by podocyte damage, nor could it be ascribed to tuft hypertrophy or hyperplasia. GS may have derived from organization of capillary microthrombi, frequently observed in Group Nx+Su. Treatment with Su did not reduce the fractional glomerular endothelial area, suggesting functional rather than structural cell injury. Chronic VEGF inhibition has little effect on normal rats, but can affect glomerular endothelium when renal damage is already present.
Collapse
Affiliation(s)
- Flavia G. Machado
- Laboratory of Renal Pathophysiology (LIM-16), Renal Division, Department of Clinical Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Patrícia Semedo Kuriki
- Laboratory of Immunology, Nephrology Division, Faculty of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Clarice K. Fujihara
- Laboratory of Renal Pathophysiology (LIM-16), Renal Division, Department of Clinical Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Camilla Fanelli
- Laboratory of Renal Pathophysiology (LIM-16), Renal Division, Department of Clinical Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Simone C. A. Arias
- Laboratory of Renal Pathophysiology (LIM-16), Renal Division, Department of Clinical Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Denise M. A. C. Malheiros
- Laboratory of Renal Pathophysiology (LIM-16), Renal Division, Department of Clinical Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Niels O. S. Camara
- Laboratory of Immunology, Nephrology Division, Faculty of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Roberto Zatz
- Laboratory of Renal Pathophysiology (LIM-16), Renal Division, Department of Clinical Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
34
|
Advani A, Wiggins KJ, Cox AJ, Zhang Y, Gilbert RE, Kelly DJ. Inhibition of the epidermal growth factor receptor preserves podocytes and attenuates albuminuria in experimental diabetic nephropathy. Nephrology (Carlton) 2011; 16:573-81. [PMID: 21342330 DOI: 10.1111/j.1440-1797.2011.01451.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
AIM Early renal enlargement may predict the future development of nephropathy in patients with diabetes. The epidermal growth factor (EGF)-EGF receptor (EGFR) system plays a pivotal role in mediating renal hypertrophy, where it may act to regulate cell growth and proliferation and also to mediate the actions of angiotensin II through transactivation of the EGFR. In the present study we sought to investigate the effects of long-term inhibition of the EGFR tyrosine kinase in an experimental model of diabetes that is characterized by angiotensin II dependent hypertension. METHODS Female heterozygous streptozotocin-diabetic TGR(mRen-2)27 rats were treated with the EGFR inhibitor PKI 166 by daily oral dosing for 16 weeks. RESULTS Treatment of TGR(mRen-2)27 rats with PKI 166 attenuated the increase in kidney size, glomerular hypertrophy and albuminuria that occurred with diabetes. The reduction in albuminuria, with EGFR inhibition in diabetic TGR(mRen-2)27 rats, was associated with preservation of the number of glomerular cells staining positively for the podocyte nuclear marker, WT1. Immunostaining for WT1 inversely correlated with glomerular volume in diabetic rats. In contrast to agents that block the renin-angiotensin system (RAS), EGFR inhibition had no effect on either the quantity of mesangial matrix or the magnitude of tubular injury in diabetic animals. CONCLUSION These observations indicate that inhibition of the tyrosine kinase activity of the EGFR attenuates kidney and glomerular enlargement in association with podocyte preservation and reduction in albuminuria in diabetes. Accordingly, targeting the EGF-EGFR pathway may represent a therapeutic strategy for patients who continue to progress despite RAS-blockade.
Collapse
Affiliation(s)
- Andrew Advani
- Keenan Research Centre of the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada.
| | | | | | | | | | | |
Collapse
|
35
|
Gilbert RE, Huang Q, Thai K, Advani SL, Lee K, Yuen DA, Connelly KA, Advani A. Histone deacetylase inhibition attenuates diabetes-associated kidney growth: potential role for epigenetic modification of the epidermal growth factor receptor. Kidney Int 2011; 79:1312-21. [DOI: 10.1038/ki.2011.39] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
36
|
Advani A, Huang Q, Thai K, Advani SL, White KE, Kelly DJ, Yuen DA, Connelly KA, Marsden PA, Gilbert RE. Long-term administration of the histone deacetylase inhibitor vorinostat attenuates renal injury in experimental diabetes through an endothelial nitric oxide synthase-dependent mechanism. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:2205-14. [PMID: 21514434 PMCID: PMC3081208 DOI: 10.1016/j.ajpath.2011.01.044] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 12/06/2010] [Accepted: 01/07/2011] [Indexed: 12/13/2022]
Abstract
Epigenetic changes in gene expression play a role in the development of diabetic complications, including nephropathy. Histone deacetylases (HDACs) are a group of enzymes that exert epigenetic effects by altering the acetylation status of histone and nonhistone proteins. In the current study, we investigated the action of the clinically available HDAC inhibitor vorinostat in a mouse model of diabetic nephropathy, with the following aims: to define its effect on the progression of renal injury and to explore its mechanism of action by focusing on its role in regulating the expression of endothelial nitric oxide synthase (eNOS). Control and streptozotocin-diabetic wild-type and eNOS(-/-) mice were treated with vorinostat by daily oral dosing for 18 weeks. Without affecting either blood glucose concentration or blood pressure, vorinostat decreased albuminuria, mesangial collagen IV deposition, and oxidative-nitrosative stress in streptozotocin-wild-type mice. These attenuating effects were associated with a >50% reduction in eNOS expression in mouse kidneys and in cultured human umbilical vein endothelial cells. Vorinostat treatment had no effect on albuminuria, glomerular collagen IV concentration, or mesangiolysis in diabetic mice genetically deficient in eNOS. These observations illustrate the therapeutic efficacy of long-term HDAC inhibition in diabetic nephropathy and emphasize the importance of the interplay between eNOS activity and oxidative stress in mediating these effects.
Collapse
Affiliation(s)
- Andrew Advani
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Ontario, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Greenwood MD, Ressler MJ, Audette JL, Laturnus DI, Chhoun R, Teiken JM, Carlson EC. Significant Retinal Capillary Basement Membrane Thickening in Hyperglycemic and Normoglycemic Diabetic-prone (DP) BB Wistar Rats. Ultrastruct Pathol 2011; 35:97-105. [DOI: 10.3109/01913123.2010.527037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
38
|
Kanwar YS, Venkatachalam MA. Ultrastructure of Glomerulus and Juxtaglomerular Apparatus. Compr Physiol 2011. [DOI: 10.1002/cphy.cp080101] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
39
|
Hwang SY, Siow YL, Au-Yeung KKW, House J, O K. Folic acid supplementation inhibits NADPH oxidase-mediated superoxide anion production in the kidney. Am J Physiol Renal Physiol 2010; 300:F189-98. [PMID: 20980407 DOI: 10.1152/ajprenal.00272.2010] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hyperhomocysteinemia, a condition of elevated blood homocysteine (Hcy) levels, is a metabolic disease. It is a common clinical finding in patients with chronic kidney diseases and occurs almost uniformly in patients with end-stage renal disease. Hyperhomocysteinemia is also a risk factor for cardiovascular disease. Our recent studies indicate that hyperhomocysteinemia can lead to renal injury by inducing oxidative stress. Oxidative stress is one of the important mechanisms contributing to Hcy-induced tissue injury. Folic acid supplementation is regarded as a promising approach for prevention and treatment of cardiovascular disease associated with hyperhomocysteinemia due to its Hcy-lowering effect. However, its effect on the kidney is not clear. The aim of this study was to examine the effect of folic acid supplementation on Hcy-induced superoxide anion production via nicotinamide adenine dinucleotide phosphate (NADPH) oxidase in the kidney during hyperhomocysteinemia. Hyperhomocysteinemia was induced in male Sprague-Dawley rats fed a high-methionine diet for 12 wk with or without folic acid supplementation. A group of rats fed a regular diet was used as control. There was a significant increase in levels of superoxide anions and lipid peroxides in kidneys isolated from hyperhomocysteinemic rats. Activation of NADPH oxidase was responsible for hyperhomocysteinemia-induced oxidative stress in the kidney. Folic acid supplementation effectively antagonized hyperhomocysteinemia-induced oxidative stress via its Hcy-lowering and Hcy-independent effect. In vitro study also showed that 5-methyltetrahydrofolate, an active form of folate, effectively reduced Hcy-induced superoxide anion production via NADPH oxidase. Xanthine oxidase activity was increased and superoxide dismutase (SOD) activity was decreased in the kidney of hyperhomocysteinemic rats, which might also contribute to an elevation of superoxide anion level in the kidney. Folic acid supplementation attenuated xanthine oxidase activity and restored SOD activity in the kidney of hyperhomocysteinemic rats. These results suggest that folic acid supplementation may offer renal protective effect against oxidative stress.
Collapse
Affiliation(s)
- Sun-Young Hwang
- Department of Animal Science, University of Manitoba, and Integrative Biology Laboratory, St. Boniface Hospital Research Centre, 351 Tache Ave., Winnipeg, Manitoba, Canada R2H 2A6
| | | | | | | | | |
Collapse
|
40
|
Bozkurt O, Severcan M, Severcan F. Diabetes induces compositional, structural and functional alterations on rat skeletal soleus muscle revealed by FTIR spectroscopy: a comparative study with EDL muscle. Analyst 2010; 135:3110-9. [PMID: 20967384 DOI: 10.1039/c0an00542h] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Diabetes Mellitus (DM) is a metabolic disorder, characterized by abnormally high blood glucose levels due to decreased secretion or effectiveness in function of insulin. Having a role in carbohydrate and lipid metabolism, skeletal muscle is affected by the absence of insulin in diabetic conditions. This current study reports the application of Fourier transform infrared (FTIR) spectroscopy in the determination of macromolecular alterations in streptozotocin (STZ)-induced diabetic rat skeletal Soleus (SOL) muscles, which highlight the promise of this technique in medical research. The results revealed that DM induced several alterations in macromolecular content and structure of slow-contracting SOL muscles. In diabetic SOL muscles, a decrease in the content of lipids, proteins and nucleic acids together with an increase in lipid order was observed. The decrease in the level of unsaturation and acyl chain length of lipids demonstrated the increased lipid peroxidation in DM. There were alterations in protein secondary structure in DM with a decrease in α-helix and β-sheet content of proteins, whereas the content of aggregated β-strands increased, which is generally seen when proteins denature. Besides, the integrity of collagen molecules was found to be decreased, demonstrating the alterations in its triple helical structure in diabetic muscles. Furthermore, the same alterations mentioned above were also observed in diabetic fast-contracting Extensor Digitorum Longus (EDL) muscles. However, having a high content of mitochondria and relying on an oxidative pathway, SOL muscle was found to be more affected by DM.
Collapse
Affiliation(s)
- Ozlem Bozkurt
- Department of Biological Sciences, Middle East Technical University, 06531 Ankara, Turkey
| | | | | |
Collapse
|
41
|
Eid AA, Ford BM, Block K, Kasinath BS, Gorin Y, Ghosh-Choudhury G, Barnes JL, Abboud HE. AMP-activated protein kinase (AMPK) negatively regulates Nox4-dependent activation of p53 and epithelial cell apoptosis in diabetes. J Biol Chem 2010; 285:37503-12. [PMID: 20861022 DOI: 10.1074/jbc.m110.136796] [Citation(s) in RCA: 219] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Diabetes and high glucose (HG) increase the generation of NADPH oxidase-derived reactive oxygen species and induce apoptosis of glomerular epithelial cells (podocytes). Loss of podocytes contributes to albuminuria, a major risk factor for progression of kidney disease. Here, we show that HG inactivates AMP-activated protein kinase (AMPK), up-regulates Nox4, enhances NADPH oxidase activity, and induces podocyte apoptosis. Activation of AMPK blocked HG-induced expression of Nox4, NADPH oxidase activity, and apoptosis. We also identified the tumor suppressor protein p53 as a mediator of podocyte apoptosis in cells exposed to HG. Inactivation of AMPK by HG up-regulated the expression and phosphorylation of p53, and p53 acted downstream of Nox4. To investigate the mechanism of podocyte apoptosis in vivo, we used OVE26 mice, a model of type 1 diabetes. Glomeruli isolated from these mice showed decreased phosphorylation of AMPK and enhanced expression of Nox4 and p53. Pharmacologic activation of AMPK by 5-aminoimidazole-4-carboxamide-1-riboside in OVE26 mice attenuated Nox4 and p53 expression. Administration of 5-aminoimidazole-4-carboxamide-1-riboside also prevented renal hypertrophy, glomerular basement thickening, foot process effacement, and podocyte loss, resulting in marked reduction in albuminuria. Our results uncover a novel function of AMPK that integrates metabolic input to Nox4 and provide new insight for activation of p53 to induce podocyte apoptosis. The data indicate the potential therapeutic utility of AMPK activators to block Nox4 and reactive oxygen species generation and to reduce urinary albumin excretion in type 1 diabetes.
Collapse
Affiliation(s)
- Assaad A Eid
- Department of Medicine, University of Texas Health Science Center, San Antonio, Texas 78229-3900, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Veron D, Reidy K, Marlier A, Bertuccio C, Villegas G, Jimenez J, Kashgarian M, Tufro A. Induction of podocyte VEGF164 overexpression at different stages of development causes congenital nephrosis or steroid-resistant nephrotic syndrome. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:2225-33. [PMID: 20829436 DOI: 10.2353/ajpath.2010.091146] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The tight regulation of vascular endothelial growth factor-A (VEGF-A) signaling is required for both the development and maintenance of the glomerular filtration barrier, but the pathogenic role of excessive amounts of VEGF-A detected in multiple renal diseases remains poorly defined. We generated inducible transgenic mice that overexpress podocyte VEGF164 at any chosen stage of development. In this study, we report the phenotypes that result from podocyte VEGF164 excess during organogenesis and after birth. On doxycycline induction, podocin-rtTA:tet-O-VEGF164 mice express twofold higher kidney VEGF164 levels than single transgenic mice, localized to podocytes. Podocyte VEGF164 overexpression during organogenesis resulted in albuminuria at birth and was associated with glomerulomegaly, uniform podocyte effacement, very few and wide foot processes joined by occluding junctions, almost complete absence of slit diaphragms, and swollen endothelial cells with few fenestrae as revealed by transmission electron microscopy. Podocyte VEGF164 overexpression after birth caused massive albuminuria in 70% of 2-week-old mice, glomerulomegaly, and minimal changes on light microscopy. Transmission electron microscopy showed podocyte effacement and fusion and morphologically normal endothelial cells. Podocyte VEGF164 overexpression induced nephrin down-regulation without podocyte loss. VEGF164-induced abnormalities were reversible on removal of doxycycline and were unresponsive to methylprednisolone. Collectively, the data suggest that moderate podocyte VEGF164 overexpression during organogenesis results in congenital nephrotic syndrome, whereas VEGF164 overexpression after birth induces a steroid-resistant minimal change like-disease in mice.
Collapse
Affiliation(s)
- Delma Veron
- Department of Pediatrics, Yale University School of Medicine, 333 Cedar St., P.O. Box 208064, New Haven, CT 06520-8064, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Severcan F, Bozkurt O, Gurbanov R, Gorgulu G. FT-IR spectroscopy in diagnosis of diabetes in rat animal model. JOURNAL OF BIOPHOTONICS 2010; 3:621-631. [PMID: 20575104 DOI: 10.1002/jbio.201000016] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
In recent years, Fourier Transform Infrared (FT-IR) spectroscopy has had an increasingly important role in the field of pathology and diagnosis of disease states. In the current study, FT-IR spectroscopy together with cluster analysis were used as a diagnostic tool in the discrimination of diabetic samples from control ones in rat kidney plasma membrane apical sides (brush-border membranes), liver microsomal membranes and Extensor digitorum longus (EDL) and Soleus (SOL) skeletal muscle tissues. A variety of alterations in the spectral parameters, such as frequency and signal intensity/area was observed in diabetic tissues and membranes compared to the control samples. Based on these spectral variations, using cluster analysis successful differentiation between diabetic and control groups was obtained in different spectral regions. The results of this current study further revealed the power and sensitivity of FT-IR spectroscopy in precise and automated diagnosis of diabetes.
Collapse
Affiliation(s)
- Feride Severcan
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey.
| | | | | | | |
Collapse
|
44
|
Veron D, Reidy KJ, Bertuccio C, Teichman J, Villegas G, Jimenez J, Shen W, Kopp JB, Thomas DB, Tufro A. Overexpression of VEGF-A in podocytes of adult mice causes glomerular disease. Kidney Int 2010; 77:989-99. [PMID: 20375978 DOI: 10.1038/ki.2010.64] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We sought to examine the pathogenic role of excessive VEGF-A expression in podocytes, since it has been reported that diabetic nephropathy and other glomerular diseases are associated with increased VEGF-A expression. The induction of podocyte-specific VEGF164 overexpression in adult transgenic mice led to proteinuria, glomerulomegaly, glomerular basement membrane thickening, mesangial expansion, loss of slit diaphragms, and podocyte effacement. When doxycycline-mediated VEGF164 was stopped, these abnormalities reversed. These findings were associated with reversible downregulation of metalloproteinase 9 and nephrin expression. Using transmission electron microscopy, we established that VEGF-A receptor-2 (VEGFR2) was expressed in podocytes and glomerular endothelial cells. We also found that VEGF164 induced VEGFR2 phosphorylation in podocytes. Further, we were able to co-immunoprecipitate VEGFR2 and nephrin using whole kidney lysates, confirming interaction in vivo. This implies that autocrine and paracrine VEGF-A signaling through VEGFR2 occurs in podocytes and may mediate the glomerular phenotype caused by VEGF164 overexpression. Thus, we suggest that podocyte VEGF164 overexpression in adult mice is sufficient to induce glomerular filtration barrier structural and functional abnormalities similar to those present in murine diabetic nephropathy.
Collapse
Affiliation(s)
- Delma Veron
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Reidy KJ, Villegas G, Teichman J, Veron D, Shen W, Jimenez J, Thomas D, Tufro A. Semaphorin3a regulates endothelial cell number and podocyte differentiation during glomerular development. Development 2009; 136:3979-89. [PMID: 19906865 DOI: 10.1242/dev.037267] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Semaphorin3a (Sema3a), a chemorepellant guidance protein, plays crucial roles in neural, cardiac and peripheral vascular patterning. Sema3a is expressed in the developing nephron, mature podocytes and collecting tubules. Sema3a acts as a negative regulator of ureteric bud branching, but its function in glomerular development has not been examined. Here we tested the hypothesis that Sema3a regulates glomerular vascular development using loss- and gain-of-function mouse models. Sema3a deletion resulted in defects in renal vascular patterning, excess endothelial cells within glomerular capillaries, effaced podocytes with extremely wide foot processes and albuminuria. Podocyte Sema3a overexpression during organogenesis resulted in glomerular hypoplasia, characterized by glomerular endothelial cell apoptosis, delayed and abnormal podocyte foot process development, a complete absence of slit diaphragms and congenital proteinuria. Nephrin, WT1 and VEGFR2 were downregulated in Sema3a-overexpressing kidneys. We conclude that Sema3a is an essential negative regulator of endothelial cell survival in developing glomeruli and plays a crucial role in podocyte differentiation in vivo. Hence, a tight regulation of Sema3a dosage is required for the establishment of a normal glomerular filtration barrier.
Collapse
Affiliation(s)
- Kimberly J Reidy
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Hennessy A, Gillin AG, Painter DM, Kirwan PJ, Thompson JF, Horvath JS. Evidence for Preeclampsia in a Baboon Pregnancy with Twins. Hypertens Pregnancy 2009. [DOI: 10.3109/10641959709031639] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
47
|
Schlatzer DM, Dazard JE, Dharsee M, Ewing RM, Ilchenko S, Stewart I, Christ G, Chance MR. Urinary protein profiles in a rat model for diabetic complications. Mol Cell Proteomics 2009; 8:2145-58. [PMID: 19497846 DOI: 10.1074/mcp.m800558-mcp200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Diabetes mellitus is estimated to affect approximately 24 million people in the United States and more than 150 million people worldwide. There are numerous end organ complications of diabetes, the onset of which can be delayed by early diagnosis and treatment. Although assays for diabetes are well founded, tests for its complications lack sufficient specificity and sensitivity to adequately guide these treatment options. In our study, we employed a streptozotocin-induced rat model of diabetes to determine changes in urinary protein profiles that occur during the initial response to the attendant hyperglycemia (e.g. the first two months) with the goal of developing a reliable and reproducible method of analyzing multiple urine samples as well as providing clues to early markers of disease progression. After filtration and buffer exchange, urinary proteins were digested with a specific protease, and the relative amounts of several thousand peptides were compared across rat urine samples representing various times after administration of drug or sham control. Extensive data analysis, including imputation of missing values and normalization of all data was followed by ANOVA analysis to discover peptides that were significantly changing as a function of time, treatment and interaction of the two variables. The data demonstrated significant differences in protein abundance in urine before observable pathophysiological changes occur in this animal model and as function of the measured variables. These included decreases in relative abundance of major urinary protein precursor and increases in pro-alpha collagen, the expression of which is known to be regulated by circulating levels of insulin and/or glucose. Peptides from these proteins represent potential biomarkers, which can be used to stage urogenital complications from diabetes. The expression changes of a pro-alpha 1 collagen peptide was also confirmed via selected reaction monitoring.
Collapse
Affiliation(s)
- Daniela M Schlatzer
- Center for Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Mir SH, Darzi MM. Histopathological abnormalities of prolonged alloxan-induced diabetes mellitus in rabbits. Int J Exp Pathol 2009; 90:66-73. [PMID: 19200253 DOI: 10.1111/j.1365-2613.2008.00615.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The objective of this study was to investigate the prolonged complications of untreated diabetes on histomorphology of rabbits. Diabetes mellitus was experimentally induced in one group of New Zealand white male rabbits by intraperitoneal administration of four doses of alloxan @ 80 mg/kg b.w. at weekly intervals following 12 h fasting. Other group of rabbits served as healthy controls that received isotonic saline in a similar manner. The establishment of diabetes mellitus was confirmed by fasting blood glucose levels. For histomorphological study of different organs, 50% of the animals were killed after 7 weeks and the rest after 26 weeks. Routine haematoxylin and eosin stain and Gomori's modified stain were used. The blood glucose level of diabetic rabbits increased significantly throughout the experimental period. The peak values for blood sugar were on the sixth week of the study. Further, histomorphological alterations were recorded in pancreas, kidneys, lungs, heart and brain in diabetic rabbits. However, mild changes were observed in gastrointestinal tract with proliferation of yeasts in the stomach. With the progress of untreated diabetes, the histoanatomical alterations intensify and extend to almost all organs of the body and appear to increase the susceptibility of gastric mucosa to yeast cell proliferation.
Collapse
Affiliation(s)
- Sajad Hussain Mir
- Postgraduate Department of Zoology, University of Kashmir, Srinagar, Jammu and Kashmir, India.
| | | |
Collapse
|
49
|
Drury B, Warford-Woolgar LJ, Herchak DJ, Bankovic-Calic N, Crow G, Taylor CG, Zahradka P, Ogborn MR, Aukema HM. Dietary trans-10, cis-12 conjugated linoleic acid reduces early glomerular enlargement and elevated renal cyclooxygenase-2 levels in young obese fa/fa zucker rats. J Nutr 2009; 139:285-90. [PMID: 19106330 DOI: 10.3945/jn.108.101345] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Conjugated linoleic acid (CLA) slows the progression of disease in models of chronic kidney disease. Because obesity is associated with nephropathy and increased renal cyclooxygenase (COX) levels, the effects of dietary CLA on kidney function, morphology, and COX protein levels in the kidneys of young obese (fa/fa) Zucker rats, a model of metabolic syndrome, were examined. In study 1, 6-wk-old fa/fa and lean Zucker rats were given a mixture of CLA isomers (1.5% CLA, wt:wt) or the control diet (CTL) with no CLA for 8 wk. To examine specific isomer effects, study 2 used the same model with the following diets: 0.4% (g/g) cis-9, trans-11 (c9,t11) CLA; 0.4% trans-10, cis-12 (t10,c12) CLA; a combination of these 2 isomers (0.4% each); or CTL diets with no CLA. In study 1, fa/fa rats given the CLA mixture had 11% smaller kidney weights and 28% smaller glomeruli, and feed intake and body weight did not differ from the CTL rats. In study 2, diet also did not affect body weights, but fa/fa rats given a diet containing t10,c12 CLA had 7% lower kidney weights, 20% smaller glomeruli, and 39% lower COX-2 protein levels than CTL rats. In conclusion, dietary t10,c12 CLA reduces the enlargement of glomeruli in young obesity-associated nephropathy and is associated with lower protein levels of renal COX-2. Long-term studies with CLA supplementation are required to determine whether these changes would lead to reduction in development of renal disease associated with obesity.
Collapse
Affiliation(s)
- Breanne Drury
- Department of Human Nutritional Sciences,, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Haas M. Alport syndrome and thin glomerular basement membrane nephropathy: a practical approach to diagnosis. Arch Pathol Lab Med 2009; 133:224-32. [PMID: 19195966 DOI: 10.5858/133.2.224] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2007] [Indexed: 01/18/2023]
Abstract
CONTEXT Alport syndrome and thin glomerular basement membrane nephropathy (TBMN) are genetically heterogeneous conditions characterized by structural abnormalities in the glomerular basement membrane and an initial presentation that usually involves hematuria. Approximately 40% of patients with TBMN are heterozygous carriers for autosomal recessive Alport syndrome, with mutations at the genetic locus encoding type IV collagen alpha(3) [alpha(3)(IV)] and alpha(4) chains. However, although the clinical course of TBMN is usually benign, Alport syndrome, particularly the X-linked form with mutations in the locus encoding the alpha(5) chain of type IV collagen [alpha(5)(IV)], typically results in end-stage renal disease. Electron microscopy is essential to diagnosis of TBMN and Alport syndrome on renal biopsy, although electron microscopy alone is of limited value in distinguishing between TBMN, the heterozygous carrier state of X-linked Alport syndrome, autosomal recessive Alport syndrome, and even early stages of X-linked Alport syndrome. OBJECTIVES To review diagnostic pathologic features of each of the above conditions, emphasizing the need for immunohistology for alpha(3)(IV) and alpha(5)(IV) in addition to electron microscopy to resolve this differential diagnosis on a renal biopsy. The diagnostic value of immunofluorescence studies for alpha(5)(IV) on a skin biopsy in family members of patients with Alport syndrome also is reviewed. DATA SOURCES Original and comprehensive review articles on the diagnosis of Alport syndrome and TBMN from the past 35 years, primarily the past 2 decades, and experience in our own renal pathology laboratory. CONCLUSIONS Although Alport syndrome variants and TBMN do not show characteristic light microscopic findings and can be difficult to differentiate from each other even by electron microscopy, using a combination of electron microscopy and immunohistology for alpha(3)(IV) and alpha(5)(IV) enables pathologists to definitively diagnose these disorders on renal biopsy in most cases.
Collapse
Affiliation(s)
- Mark Haas
- Department of Pathology, Johns Hopkins University School of Medicine, 600 N Wolfe Street, Baltimore, MD 21287, USA.
| |
Collapse
|