1
|
Kolkhof P, Hartmann E, Freyberger A, Pavkovic M, Mathar I, Sandner P, Droebner K, Joseph A, Hüser J, Eitner F. Effects of Finerenone Combined with Empagliflozin in a Model of Hypertension-Induced End-Organ Damage. Am J Nephrol 2021; 52:642-652. [PMID: 34111864 PMCID: PMC8619789 DOI: 10.1159/000516213] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/27/2021] [Indexed: 12/19/2022]
Abstract
INTRODUCTION The nonsteroidal mineralocorticoid receptor (MR) antagonist finerenone and sodium-glucose cotransporter-2 (SGLT2) inhibitors have demonstrated clinical benefits in CKD patients with type 2 diabetes. Clinical data analyzing the potential value of a combination therapy are currently limited. We therefore investigated cardiorenal protection of respective mono- and combination therapy in a preclinical model of hypertension-induced end-organ damage. METHODS Cardiovascular (CV) morbidity and mortality were studied in hypertensive, N(ω)-nitro-L-arginine methyl ester-treated, renin-transgenic (mRen2)27 rats. Rats (10- to 11-week-old females, n = 13-17/group) were treated once daily orally for up to 7 weeks with placebo, finerenone (1 and 3 mg/kg), empagliflozin (3 and 10 mg/kg), or a combination of the respective low doses. Key outcome parameters included mortality, proteinuria, plasma creatinine and uric acid, blood pressure, and cardiac and renal histology. RESULTS Placebo-treated rats demonstrated a 50% survival rate over the course of 7 weeks. Drug treatment resulted in variable degrees of survival benefit, most prominently in the low-dose combination group with a survival benefit of 93%. Monotherapies of finerenone or empagliflozin dose-dependently reduced proteinuria, while low-dose combination revealed an early, sustained, and over-additive reduction in proteinuria. Empagliflozin induced a strong and dose-dependent increase in urinary glucose excretion which was not influenced by finerenone coadministration in the combination arm. Low-dose combination but not respective low-dose monotherapies significantly reduced plasma creatinine and plasma uric acid after 6 weeks. Treatment with finerenone and the low-dose combination significantly decreased systolic blood pressure after 5 weeks. There was a dose-dependent protection from cardiac and kidney fibrosis and vasculopathy with both agents, while low-dose combination therapy was more efficient than the respective monotherapy dosages on most cardiorenal histology parameters. DISCUSSION/CONCLUSIONS Nonsteroidal MR antagonism by finerenone and SGLT2 inhibition by empagliflozin confer CV protection in preclinical hypertension-induced cardiorenal disease. Combination of these 2 independent modes of action at low dosages revealed efficacious reduction in important functional parameters such as proteinuria and blood pressure, plasma markers including creatinine and uric acid, cardiac and renal lesions as determined by histopathology, and mortality indicating a strong potential for combined clinical use in cardiorenal patient populations.
Collapse
Affiliation(s)
- Peter Kolkhof
- Cardiovascular Research, Research and Early Development, R&D Pharmaceuticals, Bayer AG, Wuppertal, Germany
| | - Elke Hartmann
- Research Pathology, Research and Early Development, R&D Pharmaceuticals, Bayer AG, Wuppertal, Germany
| | - Alexius Freyberger
- Clinical Pathology, Research and Early Development, R&D Pharmaceuticals, Bayer AG, Wuppertal, Germany
| | - Mira Pavkovic
- Biomarker Research, Research and Early Development, R&D Pharmaceuticals, Bayer AG, Wuppertal, Germany
| | - Ilka Mathar
- Cardiovascular Research, Research and Early Development, R&D Pharmaceuticals, Bayer AG, Wuppertal, Germany
| | - Peter Sandner
- Cardiovascular Research, Research and Early Development, R&D Pharmaceuticals, Bayer AG, Wuppertal, Germany
| | - Karoline Droebner
- Cardiovascular Research, Research and Early Development, R&D Pharmaceuticals, Bayer AG, Wuppertal, Germany
| | - Amer Joseph
- Clinical Development, R&D Pharmaceuticals, Bayer AG, Berlin, Germany
| | - Jörg Hüser
- Cardiovascular Research, Research and Early Development, R&D Pharmaceuticals, Bayer AG, Wuppertal, Germany
| | - Frank Eitner
- Cardiovascular Research, Research and Early Development, R&D Pharmaceuticals, Bayer AG, Wuppertal, Germany
| |
Collapse
|
2
|
Angiotensin-neprilysin inhibition confers renoprotection in rats with diabetes and hypertension by limiting podocyte injury. J Hypertens 2021; 38:755-764. [PMID: 31790054 DOI: 10.1097/hjh.0000000000002326] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVES Combined angiotensin receptor--neprilysin inhibition (ARNI) reduces glomerulosclerosis better than single angiotensin receptor blockade (ARB) in diabetic, hypertensive rats. The renoprotective mechanism remains unknown, but may depend on superior blood pressure control, improved renal hemodynamics, suppressed renal inflammation or prevention of podocyte loss. METHODS To address this, TGR(mREN2)27 rats (a model of angiotensin II-dependent hypertension) were made diabetic for 12 weeks and treated with vehicle (n = 10), valsartan (ARB; n = 7) or sacubitril/valsartan (ARNI; n = 8) for the final 3 weeks. Arterial pressure was measured via radiotelemetry. RESULTS Sacubitril/valsartan lowered mean arterial pressure by -50 ± 4 mmHg and valsartan by -43 ± 4 mmHg (P = 0.3). Both treatments lowered albuminuria, but only sacubitril/valsartan maintained high urinary atrial natriuretic peptide, improved glycemic control and protected podocyte integrity, reflected by increased nephrin expression and suppression of transient receptor potential canonical 6 and regulator of calcineurin 1. This resulted in markedly reduced glomerulosclerosis (P < 0.05 vs. control and valsartan). Despite higher effective renal plasma flow and glomerular filtration rates, sacubitril/valsartan did neither improve filtration fraction nor renal immune cell infiltration. CONCLUSION Sacubitril/valsartan offers drug-class-specific renoprotection in a preclinical model of diabetes and hypertension. Renoprotection is unrelated to antihypertensive efficacy, renal hemodynamics or inflammation, but may be related to protective effects of natriuretic peptides on podocyte integrity.
Collapse
|
3
|
Drummond GR, Vinh A, Guzik TJ, Sobey CG. Immune mechanisms of hypertension. Nat Rev Immunol 2020; 19:517-532. [PMID: 30992524 DOI: 10.1038/s41577-019-0160-5] [Citation(s) in RCA: 262] [Impact Index Per Article: 52.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hypertension affects 30% of adults and is the leading risk factor for heart attack and stroke. Traditionally, hypertension has been regarded as a disorder of two systems that are involved in the regulation of salt-water balance and cardiovascular function: the renin-angiotensin-aldosterone system (RAAS) and the sympathetic nervous system (SNS). However, current treatments that aim to limit the influence of the RAAS or SNS on blood pressure fail in ~40% of cases, which suggests that other mechanisms must be involved. This Review summarizes the clinical and experimental evidence supporting a contribution of immune mechanisms to the development of hypertension. In this context, we highlight the immune cell subsets that are postulated to either promote or protect against hypertension through modulation of cardiac output and/or peripheral vascular resistance. We conclude with an appraisal of knowledge gaps still to be addressed before immunomodulatory therapies might be applied to at least a subset of patients with hypertension.
Collapse
Affiliation(s)
- Grant R Drummond
- Centre for Cardiovascular Biology and Disease Research, Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Victoria, Australia.
| | - Antony Vinh
- Centre for Cardiovascular Biology and Disease Research, Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Victoria, Australia
| | - Tomasz J Guzik
- Department of Medicine, Jagiellonian University, Collegium Medicum, Krakow, Poland.,BHF Centre of Research Excellence, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Christopher G Sobey
- Centre for Cardiovascular Biology and Disease Research, Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Victoria, Australia
| |
Collapse
|
4
|
Hrdlička J, Neckář J, Papoušek F, Husková Z, Kikerlová S, Vaňourková Z, Vernerová Z, Akat F, Vašinová J, Hammock BD, Hwang SH, Imig JD, Falck JR, Červenka L, Kolář F. Epoxyeicosatrienoic Acid-Based Therapy Attenuates the Progression of Postischemic Heart Failure in Normotensive Sprague-Dawley but Not in Hypertensive Ren-2 Transgenic Rats. Front Pharmacol 2019; 10:159. [PMID: 30881303 PMCID: PMC6406051 DOI: 10.3389/fphar.2019.00159] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 02/11/2019] [Indexed: 12/20/2022] Open
Abstract
Epoxyeicosatrienoic acids (EETs) and their analogs have been identified as potent antihypertensive compounds with cardio- and renoprotective actions. Here, we examined the effect of EET-A, an orally active EET analog, and c-AUCB, an inhibitor of the EETs degrading enzyme soluble epoxide hydrolase, on the progression of post-myocardial infarction (MI) heart failure (HF) in normotensive Hannover Sprague-Dawley (HanSD) and in heterozygous Ren-2 transgenic rats (TGR) with angiotensin II-dependent hypertension. Adult male rats (12 weeks old) were subjected to 60-min left anterior descending (LAD) coronary artery occlusion or sham (non-MI) operation. Animals were treated with EET-A and c-AUCB (10 and 1 mg/kg/day, respectively) in drinking water, given alone or combined for 5 weeks starting 24 h after MI induction. Left ventricle (LV) function and geometry were assessed by echocardiography before MI and during the progression of HF. At the end of the study, LV function was determined by catheterization and tissue samples were collected. Ischemic mortality due to the incidence of sustained ventricular fibrillation was significantly higher in TGR than in HanSD rats (35.4 and 17.7%, respectively). MI-induced HF markedly increased LV end-diastolic pressure (Ped) and reduced fractional shortening (FS) and the peak rate of pressure development [+(dP/dt)max] in untreated HanSD compared to sham (non-MI) group [Ped: 30.5 ± 3.3 vs. 9.7 ± 1.3 mmHg; FS: 11.1 ± 1.0 vs. 40.8 ± 0.5%; +(dP/dt)max: 3890 ± 291 vs. 5947 ± 309 mmHg/s]. EET-A and c-AUCB, given alone, tended to improve LV function parameters in HanSD rats. Their combination amplified the cardioprotective effect of single therapy and reached significant differences compared to untreated HanSD controls [Ped: 19.4 ± 2.2 mmHg; FS: 14.9 ± 1.0%; +(dP/dt)max: 5278 ± 255 mmHg/s]. In TGR, MI resulted in the impairment of LV function like HanSD rats. All treatments reduced the increased level of albuminuria in TGR compared to untreated MI group, but neither single nor combined EET-based therapy improved LV function. Our results indicate that EET-based therapy attenuates the progression of post-MI HF in HanSD, but not in TGR, even though they exhibited renoprotective action in TGR hypertensive rats.
Collapse
Affiliation(s)
- Jaroslav Hrdlička
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia.,Department of Physiology, Faculty of Science, Charles University, Prague, Czechia
| | - Jan Neckář
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia.,Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - František Papoušek
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Zuzana Husková
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Soňa Kikerlová
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Zdenka Vaňourková
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Zdenka Vernerová
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Firat Akat
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia.,Department of Physiology, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Jana Vašinová
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Bruce D Hammock
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, CA, United States
| | - Sung Hee Hwang
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, CA, United States
| | - John D Imig
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - John R Falck
- Department of Biochemistry, University of Texas Southwestern, Dallas, TX, United States
| | - Luděk Červenka
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - František Kolář
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
5
|
Roksnoer LCW, Uijl E, de Vries R, Garrelds IM, Jan Danser AH. Neprilysin inhibition and endothelin-1 elevation: Focus on the kidney. Eur J Pharmacol 2018; 824:128-132. [PMID: 29432709 DOI: 10.1016/j.ejphar.2018.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/23/2018] [Accepted: 02/07/2018] [Indexed: 10/18/2022]
Abstract
Increasing the degree of renin-angiotensin system (RAS) blockade by combining ≥2 RAS blockers marginally increases efficacy, but results in more side effects. Hence, interference with other systems is currently being investigated, like potentiation of natriuretic peptides with neprilysin inhibitors. However, the neprilysin inhibitor thiorphan was recently found to increase endothelin-1 when administered to TGR(mREN2)27 (Ren2) rats on top of RAS blockade. Here we investigated whether this effect is thiorphan-specific, by comparing the neprilysin inhibitors thiorphan and sacubitril, administered by osmotic minipumps at a low or high dose for 7 days, in Ren2 rats. Plasma and urinary levels of endothelin-1, atrial and brain natriuretic peptide (ANP, BNP) and their second messenger cyclic guanosine 3'5' monophosphate (cGMP) were monitored. No significant differences were found in the plasma concentrations of endothelin-1, cGMP, ANP and BNP after treatment, although plasma ANP tended to be higher in the high-dose thiorphan treatment group and the low- and high-dose sacubitril treatment groups, compared with vehicle. Urinary endothelin-1 increased in the low-dose thiorphan and high-dose sacubitril groups, compared with baseline, although significance was reached for the former only. Urinary cGMP rose significantly in the high-dose sacubitril treatment group compared with baseline. Both urinary endothelin-1 and cGMP were significantly higher in the high-dose sacubitril group compared with the low-dose sacubitril group. In conclusion, endothelin-1 upregulation occurs with both thiorphan and sacubitril, and is particularly apparent in neprilysin-rich organs like the kidney. High renal neprilysin levels most likely also explain why sacubitril increased cGMP in urine only.
Collapse
Affiliation(s)
- Lodi C W Roksnoer
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus Medical Center, room EE1418b, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Estrellita Uijl
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus Medical Center, room EE1418b, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - René de Vries
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus Medical Center, room EE1418b, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Ingrid M Garrelds
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus Medical Center, room EE1418b, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - A H Jan Danser
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus Medical Center, room EE1418b, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands.
| |
Collapse
|
6
|
Mullins LJ, Conway BR, Menzies RI, Denby L, Mullins JJ. Renal disease pathophysiology and treatment: contributions from the rat. Dis Model Mech 2017; 9:1419-1433. [PMID: 27935823 PMCID: PMC5200898 DOI: 10.1242/dmm.027276] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The rat has classically been the species of choice for pharmacological studies and disease modeling, providing a source of high-quality physiological data on cardiovascular and renal pathophysiology over many decades. Recent developments in genome engineering now allow us to capitalize on the wealth of knowledge acquired over the last century. Here, we review rat models of hypertension, diabetic nephropathy, and acute and chronic kidney disease. These models have made important contributions to our understanding of renal diseases and have revealed key genes, such as Ace and P2rx7, involved in renal pathogenic processes. By targeting these genes of interest, researchers are gaining a better understanding of the etiology of renal pathologies, with the promised potential of slowing disease progression or even reversing the damage caused. Some, but not all, of these target genes have proved to be of clinical relevance. However, it is now possible to generate more sophisticated and appropriate disease models in the rat, which can recapitulate key aspects of human renal pathology. These advances will ultimately be used to identify new treatments and therapeutic targets of much greater clinical relevance. Summary: This Review highlights the key role that the rat continues to play in improving our understanding of the etiologies of renal pathologies, and how these insights have opened up new therapeutic avenues.
Collapse
Affiliation(s)
- Linda J Mullins
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Bryan R Conway
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Robert I Menzies
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Laura Denby
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - John J Mullins
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| |
Collapse
|
7
|
Yao Y, Davis G, Harrison JC, Walker RJ, Sammut IA. Renal functional responses in diabetic nephropathy following chronic bilateral renal denervation. Auton Neurosci 2017; 204:98-104. [DOI: 10.1016/j.autneu.2016.09.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 09/26/2016] [Accepted: 09/30/2016] [Indexed: 10/20/2022]
|
8
|
Griffin KA, Picken MM, Bakris G, Bidani AK. Relative antihypertensive and glomeruloprotective efficacies of enalapril and candesartan cilexetil in the remnant kidney model. J Renin Angiotensin Aldosterone Syst 2016; 2:S191-S195. [DOI: 10.1177/14703203010020013301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The present studies were performed to investigate whether the differences described between the two modalities for interruption of the renin-angiotensin-aldosterone system (RAAS), angiotensin-converting enzyme inhibitors (ACE-I) and angiotensin AT 1receptor antagonists (AIIA) result in differences in renoprotective efficacy in the rat remnant kidney model. Male Sprague-Dawley rats with an initial body weight of 225—300 g, underwent 5/6 renal ablation and had radiotransmitters installed for radiotelemetric blood pressure (BP) measurements, owing to the known limitations of periodic tail-cuff BP measurements to adequately reflect ambient BP profiles. After renal ablation surgery, the rats received no treatment (n=10); enalapril (n=11) or candesartan (n=9) after the first week, both administered initially at a dose of 50 mg/l of drinking water (~10 mg/kg). However, the dose of candesartan had to be reduced to 10—25 mg/l in 4/9 rats to avoid excessive hypotension. Both enalapril and candesartan produced significant reductions in average systolic BP during the subsequent approximately six weeks of observations as compared with untreated rats (187±4 mmHg, p<0.001), but candesartan was significantly more effective at these relative doses (121±3 vs. 133±4 mmHg, p<0.05). At approximately seven weeks, serum creatinine and proteinuria were measured before sacrifice for morphologic assessment of percentage glomerulosclerosis (GS). Despite the described differences between ACE-I and AIIA after acute administration, the percentage GS was reduced similarly by enalapril (down to 6.8±2.8%) and candesartan (down to 2.9±1.5%) as compared with untreated rats (37.2±4.3%). Moreover, GS in individual animals paralleled the BP reductions achieved. Proteinuria was reduced in parallel to the decrease in % GS. These data indicate that, at least in the 5/6 renal ablation model, RAAS blockade by either ACE-I or AIIA provides protection by BPdependent rather than BP-independent mechanisms. This may reflect the primarily hypertensive pathogenesis of GS in this model, and the fact that hypertension is also very angiotensin II-dependent in this model. Thus, these data suggest that models other than the 5/6 ablation model may be more appropriate to demonstrate the BP-independent protective effects of RAAS blockade.
Collapse
Affiliation(s)
- Karen A Griffin
- Department of Medicine, Loyola University Medical Center
and Hines VA Hospital, prado@research. hines.med.va.gov
| | - Maria M Picken
- Pathology, Loyola University Medical Center and Hines
VA Hospital, Maywood, IL USA
| | - George Bakris
- Department of Preventive Medicine, Rush-Presbyterian-St.
Luke's Medical Center, Chicago, IL, USA
| | - Anil K Bidani
- Department of Medicine, Loyola University Medical Center
and Hines VA Hospital
| |
Collapse
|
9
|
Antonov YV, Alexandrovich YV, Redina OE, Gilinsky MA, Markel AL. Stress and hypertensive disease: adrenals as a link. Experimental study on hypertensive ISIAH rat strain. Clin Exp Hypertens 2016; 38:415-23. [DOI: 10.3109/10641963.2015.1116546] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Yegor V. Antonov
- Laboratory of Genetics of Arterial Hypertension, Institute of Cytology and Genetics, Novosibirsk, Russia
| | - Yuriy V. Alexandrovich
- Laboratory of Genetics of Arterial Hypertension, Institute of Cytology and Genetics, Novosibirsk, Russia
| | - Olga E. Redina
- Laboratory of Genetics of Arterial Hypertension, Institute of Cytology and Genetics, Novosibirsk, Russia
| | - Michael A. Gilinsky
- Laboratory of Regulation of Adaptation Processes, Institute of Physiology and Fundamental Medicine, Novosibirsk, Russia
| | - Arcady L. Markel
- Laboratory of Genetics of Arterial Hypertension, Institute of Cytology and Genetics, Novosibirsk, Russia
- Department of Physiology, Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
10
|
Seita Y, Tsukiyama T, Iwatani C, Tsuchiya H, Matsushita J, Azami T, Okahara J, Nakamura S, Hayashi Y, Hitoshi S, Itoh Y, Imamura T, Nishimura M, Tooyama I, Miyoshi H, Saitou M, Ogasawara K, Sasaki E, Ema M. Generation of transgenic cynomolgus monkeys that express green fluorescent protein throughout the whole body. Sci Rep 2016; 6:24868. [PMID: 27109065 PMCID: PMC4843004 DOI: 10.1038/srep24868] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 04/06/2016] [Indexed: 12/13/2022] Open
Abstract
Nonhuman primates are valuable for human disease modelling, because rodents poorly recapitulate some human diseases such as Parkinson’s disease and Alzheimer’s disease amongst others. Here, we report for the first time, the generation of green fluorescent protein (GFP) transgenic cynomolgus monkeys by lentivirus infection. Our data show that the use of a human cytomegalovirus immediate-early enhancer and chicken beta actin promoter (CAG) directed the ubiquitous expression of the transgene in cynomolgus monkeys. We also found that injection into mature oocytes before fertilization achieved homogenous expression of GFP in each tissue, including the amnion, and fibroblasts, whereas injection into fertilized oocytes generated a transgenic cynomolgus monkey with mosaic GFP expression. Thus, the injection timing was important to create transgenic cynomolgus monkeys that expressed GFP homogenously in each of the various tissues. The strategy established in this work will be useful for the generation of transgenic cynomolgus monkeys for transplantation studies as well as biomedical research.
Collapse
Affiliation(s)
- Yasunari Seita
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Seta, Tsukinowa-cho, Otsu, Shiga 520-2192, Japan.,JST, ERATO, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Tomoyuki Tsukiyama
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Seta, Tsukinowa-cho, Otsu, Shiga 520-2192, Japan
| | - Chizuru Iwatani
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Seta, Tsukinowa-cho, Otsu, Shiga 520-2192, Japan.,JST, ERATO, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hideaki Tsuchiya
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Seta, Tsukinowa-cho, Otsu, Shiga 520-2192, Japan
| | - Jun Matsushita
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Seta, Tsukinowa-cho, Otsu, Shiga 520-2192, Japan.,JST, ERATO, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takuya Azami
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8577, Japan
| | - Junko Okahara
- Central Institute for Experimental Animals, 1430 Nogawa, Miyamae-ku, Kawasaki, Kanagawa 216-0001, Japan
| | - Shinichiro Nakamura
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Seta, Tsukinowa-cho, Otsu, Shiga 520-2192, Japan
| | - Yoshitaka Hayashi
- Department of Physiology, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| | - Seiji Hitoshi
- Department of Physiology, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| | - Yasushi Itoh
- Department of Pathology, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| | - Takeshi Imamura
- Department of Pharmacology, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| | - Masaki Nishimura
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu, Japan
| | - Ikuo Tooyama
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu, Japan
| | - Hiroyuki Miyoshi
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Mitinori Saitou
- JST, ERATO, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.,Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.,Department of Reprogramming Science, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin Yoshida, Sakyo-ku, Kyoto 606-8507, Japan.,Institute for Integrated Cell-Material Sciences, Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kazumasa Ogasawara
- Department of Pathology, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| | - Erika Sasaki
- Central Institute for Experimental Animals, 1430 Nogawa, Miyamae-ku, Kawasaki, Kanagawa 216-0001, Japan
| | - Masatsugu Ema
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Seta, Tsukinowa-cho, Otsu, Shiga 520-2192, Japan.,PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
11
|
Blood pressure-independent renoprotection in diabetic rats treated with AT1 receptor-neprilysin inhibition compared with AT1 receptor blockade alone. Clin Sci (Lond) 2016; 130:1209-20. [PMID: 27129187 DOI: 10.1042/cs20160197] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 04/18/2016] [Indexed: 11/17/2022]
Abstract
ARNI [dual AT1 (angiotensin II type 1) receptor-neprilysin inhibition] exerts beneficial effects on blood pressure and kidney function in heart failure, compared with ARB (AT1 receptor blockade) alone. We hypothesized that ARNI improves cardiac and kidney parameters in diabetic TGR(mREN2)27 rats, an angiotensin II-dependent hypertension model. Rats were made diabetic with streptozotocin for 5 or 12 weeks. In the final 3 weeks, rats were treated with vehicle, irbesartan (ARB) or irbesartan+thiorphan (ARNI). Blood pressure, measured by telemetry in the 5-week group, was lowered identically by ARB and ARNI. The heart weight/tibia length ratio in 12-week diabetic animals was lower after ARNI compared with after ARB. Proteinuria and albuminuria were observed from 8 weeks of diabetes onwards. ARNI reduced proteinuria more strongly than ARB, and a similar trend was seen for albuminuria. Kidneys of ARNI-treated animals showed less severe segmental glomerulosclerosis than those of ARB-treated animals. After 12 weeks, no differences between ARNI- and ARB-treated animals were found regarding diuresis, natriuresis, plasma endothelin-1, vascular reactivity (acetylcholine response) or kidney sodium transporters. Only ARNI-treated rats displayed endothelin type B receptor-mediated vasodilation. In conclusion, ARNI reduces proteinuria, glomerulosclerosis and heart weight in diabetic TGR(mREN2)27 rats more strongly than does ARB, and this occurs independently of blood pressure.
Collapse
|
12
|
Kovács Á, Fülöp GÁ, Kovács A, Csípő T, Bódi B, Priksz D, Juhász B, Beke L, Hendrik Z, Méhes G, Granzier HL, Édes I, Fagyas M, Papp Z, Barta J, Tóth A. Renin overexpression leads to increased titin-based stiffness contributing to diastolic dysfunction in hypertensive mRen2 rats. Am J Physiol Heart Circ Physiol 2016; 310:H1671-82. [PMID: 27059079 DOI: 10.1152/ajpheart.00842.2015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 03/30/2016] [Indexed: 01/09/2023]
Abstract
Hypertension (HTN) is a major risk factor for heart failure. We investigated the influence of HTN on cardiac contraction and relaxation in transgenic renin overexpressing rats (carrying mouse Ren-2 renin gene, mRen2, n = 6). Blood pressure (BP) was measured. Cardiac contractility was characterized by echocardiography, cellular force measurements, and biochemical assays were applied to reveal molecular mechanisms. Sprague-Dawley (SD) rats (n = 6) were used as controls. Transgenic rats had higher circulating renin activity and lower cardiac angiotensin-converting enzyme two levels. Systolic BP was elevated in mRen2 rats (235.11 ± 5.32 vs. 127.03 ± 7.56 mmHg in SD, P < 0.05), resulting in increased left ventricular (LV) weight/body weight ratio (4.05 ± 0.09 vs. 2.77 ± 0.08 mg/g in SD, P < 0.05). Transgenic renin expression had no effect on the systolic parameters, such as LV ejection fraction, cardiomyocyte Ca(2+)-activated force, and Ca(2+) sensitivity of force production. In contrast, diastolic dysfunction was observed in mRen2 compared with SD rats: early and late LV diastolic filling ratio (E/A) was lower (1.14 ± 0.04 vs. 1.87 ± 0.08, P < 0.05), LV isovolumetric relaxation time was longer (43.85 ± 0.89 vs. 28.55 ± 1.33 ms, P < 0.05), cardiomyocyte passive tension was higher (1.74 ± 0.06 vs. 1.28 ± 0.18 kN/m(2), P < 0.05), and lung weight/body weight ratio was increased (6.47 ± 0.24 vs. 5.78 ± 0.19 mg/g, P < 0.05), as was left atrial weight/body weight ratio (0.21 ± 0.03 vs. 0.14 ± 0.03 mg/g, P < 0.05). Hyperphosphorylation of titin at Ser-12742 within the PEVK domain and a twofold overexpression of protein kinase C-α in mRen2 rats were detected. Our data suggest a link between the activation of renin-angiotensin-aldosterone system and increased titin-based stiffness through phosphorylation of titin's PEVK element, contributing to diastolic dysfunction.
Collapse
Affiliation(s)
- Árpád Kovács
- Division of Clinical Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gábor Á Fülöp
- Division of Clinical Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Andrea Kovács
- Division of Clinical Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tamás Csípő
- Division of Clinical Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Beáta Bódi
- Division of Clinical Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Dániel Priksz
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Béla Juhász
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Lívia Beke
- Department of Pathology, Medical Center, University of Debrecen, Debrecen, Hungary
| | - Zoltán Hendrik
- Department of Pathology, Medical Center, University of Debrecen, Debrecen, Hungary
| | - Gábor Méhes
- Department of Pathology, Medical Center, University of Debrecen, Debrecen, Hungary
| | - Henk L Granzier
- Department of Physiology, University of Arizona, Tucson, Arizona; and
| | - István Édes
- Department of Cardiology, Medical Center, University of Debrecen, Debrecen, Hungary; Research Center for Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - Miklós Fagyas
- Division of Clinical Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Department of Cardiology, Medical Center, University of Debrecen, Debrecen, Hungary
| | - Zoltán Papp
- Division of Clinical Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Research Center for Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - Judit Barta
- Department of Cardiology, Medical Center, University of Debrecen, Debrecen, Hungary;
| | - Attila Tóth
- Division of Clinical Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Research Center for Molecular Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
13
|
Optimum AT1 receptor-neprilysin inhibition has superior cardioprotective effects compared with AT1 receptor blockade alone in hypertensive rats. Kidney Int 2015; 88:109-20. [PMID: 25830765 DOI: 10.1038/ki.2015.107] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 01/27/2015] [Accepted: 02/20/2015] [Indexed: 12/11/2022]
Abstract
Neprilysin inhibitors prevent the breakdown of bradykinin and natriuretic peptides, promoting vasodilation and natriuresis. However, they also increase angiotensin II and endothelin-1. Here we studied the effects of a low and a high dose of the neprilysin inhibitor thiorphan on top of AT1 receptor blockade with irbesartan versus vehicle in TGR(mREN2)27 rats with high renin hypertension. Mean arterial blood pressure was unaffected by vehicle or thiorphan alone. Irbesartan lowered blood pressure, but after 7 days pressure started to increase again. Low- but not high-dose thiorphan prevented this rise. Only during exposure to low-dose thiorphan plus irbesartan did heart weight/body weight ratio, cardiac atrial natriuretic peptide expression, and myocyte size decrease significantly. Circulating endothelin-1 was not affected by low-dose thiorphan with or without irbesartan, but increased after treatment with high-dose thiorphan plus irbesartan. This endothelin-1 rise was accompanied by an increase in renal sodium-hydrogen exchanger 3 protein abundance, and an upregulation of constrictor vascular endothelin type B receptors. Consequently, the endothelin type B receptor antagonist BQ788 no longer enhanced endothelin-1-induced vasoconstriction (indicative of endothelin type B receptor-mediated vasodilation), but prevented it. Thus, optimal neprilysin inhibitor dosing reveals additional cardioprotective effects on top of AT1 receptor blockade in renin-dependent hypertension.
Collapse
|
14
|
Yao Y, Fomison-Nurse IC, Harrison JC, Walker RJ, Davis G, Sammut IA. Chronic bilateral renal denervation attenuates renal injury in a transgenic rat model of diabetic nephropathy. Am J Physiol Renal Physiol 2014; 307:F251-62. [PMID: 24899056 DOI: 10.1152/ajprenal.00578.2013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Bilateral renal denervation (BRD) has been shown to reduce hypertension and improve renal function in both human and experimental studies. We hypothesized that chronic intervention with BRD may also attenuate renal injury and fibrosis in diabetic nephropathy. This hypothesis was examined in a female streptozotocin-induced diabetic (mRen-2)27 rat (TGR) shown to capture the cardinal features of human diabetic nephropathy. Following diabetic induction, BRD/sham surgeries were conducted repeatedly (at the week 3, 6, and 9 following induction) in both diabetic and normoglycemic animals. Renal denervation resulted in a progressive decrease in systolic blood pressure from first denervation to termination (at 12 wk post-diabetic induction) in both normoglycemic and diabetic rats. Renal norepinephrine content was significantly raised following diabetic induction and ablated in denervated normoglycemic and diabetic groups. A significant increase in glomerular basement membrane thickening and mesangial expansion was seen in the diabetic kidneys; this morphological appearance was markedly reduced by BRD. Immunohistochemistry and protein densitometric analysis of diabetic innervated kidneys confirmed the presence of significantly increased levels of collagens I and IV, α-smooth muscle actin, the ANG II type 1 receptor, and transforming growth factor-β. Renal denervation significantly reduced protein expression of these fibrotic markers. Furthermore, BRD attenuated albuminuria and prevented the loss of glomerular podocin expression in these diabetic animals. In conclusion, BRD decreases systolic blood pressure and reduces the development of renal fibrosis, glomerulosclerosis, and albuminuria in this model of diabetic nephropathy. The evidence presented strongly suggests that renal denervation may serve as a therapeutic intervention to attenuate the progression of renal injury in diabetic nephropathy.
Collapse
Affiliation(s)
- Yimin Yao
- Department of Pharmacology, University of Otago, Dunedin, New Zealand; Australian School of Advanced Medicine, Macquarie University, New South Wales, Australia
| | | | - Joanne C Harrison
- Department of Pharmacology, University of Otago, Dunedin, New Zealand
| | - Robert J Walker
- Department of Medicine, University of Otago, Dunedin, New Zealand
| | - Gerard Davis
- Department of Physiology, University of Otago, Dunedin, New Zealand; and
| | - Ivan A Sammut
- Department of Pharmacology, University of Otago, Dunedin, New Zealand;
| |
Collapse
|
15
|
Abstract
Aging is associated with an imbalance in sympathetic and parasympathetic outflow to cardiovascular effector organs. This autonomic imbalance contributes to the decline in cardiovagal baroreceptor reflex function during aging, which allows for unrestrained activation of the sympathetic nervous system to negatively impact resting systolic blood pressure and its variability. Further, impaired baroreflex function can contribute to the development of insulin resistance and other features of the metabolic syndrome during aging through overlap in autonomic neural pathways that regulate both cardiovascular and metabolic functions. Increasing evidence supports a widespread influence of the renin-angiotensin system (RAS) on both sympathetic and parasympathetic activity through receptors distributed to peripheral and central sites of action. Indeed, therapeutic interventions to block the RAS are well established for the treatment of hypertension in elderly patients, and reduce the incidence of new-onset diabetes in clinical trials. Further, RAS blockade increases lifespan and improves numerous age-related pathologies in rodents, often independent of blood pressure. The beneficial effects of these interventions are at least in part attributed to suppression of angiotensin II formed locally within the brain. In particular, recent insights from transgenic rodents provide evidence that long-term alteration in the brain RAS modulates the balance between angiotensin II and angiotensin-(1-7), and related intracellular signaling pathways, to influence cardiovascular and metabolic function in the context of hypertension and aging.
Collapse
|
16
|
Abstract
Hypertension is one of the leading causes of disability or death due to stroke, heart attack and kidney failure. Because the etiology of essential hypertension is not known and may be multifactorial, the use of experimental animal models has provided valuable information regarding many aspects of the disease, which include etiology, pathophysiology, complications and treatment. The models of hypertension are various, and in this review, we provide a brief overview of the most widely used animal models, their features and their importance.
Collapse
Affiliation(s)
- Waleska C Dornas
- Research in Biological Sciences-NUPEB, School of Nutrition, Ouro Preto University, Minas Gerais, Brazil
| | | |
Collapse
|
17
|
Hayden MR, Sowers KM, Pulakat L, Joginpally T, Krueger B, Whaley-Connell A, Sowers JR. Possible Mechanisms of Local Tissue Renin-Angiotensin System Activation in the Cardiorenal Metabolic Syndrome and Type 2 Diabetes Mellitus. Cardiorenal Med 2011; 1:193-210. [PMID: 22096455 DOI: 10.1159/000329926] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 06/07/2011] [Indexed: 01/08/2023] Open
Abstract
The role of local tissue renin-angiotensin system (tRAS) activation in the cardiorenal metabolic syndrome (CRS) and type 2 diabetes mellitus (T2DM) is not well understood. To this point, we posit that early redox stress-mediated injury to tissues and organs via accumulation of excessive reactive oxygen species (ROS) and associated wound healing responses might serve as a paradigm to better understand how tRAS is involved. There are at least five common categories responsible for generating ROS that may result in a positive feedback ROS-tRAS axis. These mechanisms include metabolic substrate excess, hormonal excess, hypoxia-ischemia/reperfusion, trauma, and inflammation. Because ROS are toxic to proteins, lipids, and nucleic acids they may be the primary instigator, serving as the injury nidus to initiate the wound healing process. Insulin resistance is central to the development of the CRS and T2DM, and there are now thought to be four major organ systems important in their development. In states of overnutrition and tRAS activation, adipose tissue, skeletal muscle (SkM), islet tissues, and liver (the quadrumvirate) are individually and synergistically related to the development of insulin resistance, CRS, and T2DM. The obesity epidemic is thought to be the driving force behind the CRS and T2DM, which results in the impairment of multiple end-organs, including the cardiovascular system, pancreas, kidney, retina, liver, adipose tissue, SkM, and nervous system. A better understanding of the complex mechanisms leading to local tRAS activation and increases in tissue ROS may lead to new therapies emphasizing global risk reduction of ROS resulting in decreased morbidity and mortality.
Collapse
Affiliation(s)
- Melvin R Hayden
- Department of Internal Medicine, University of Missouri-Columbia School of Medicine, Columbia, Mo., USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Cardiac overexpression of human VEGF(165) by recombinant Semliki Forest virus leads to adverse effects in pressure-induced heart failure. Neth Heart J 2011; 15:335-41. [PMID: 18167566 DOI: 10.1007/bf03086011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Semliki Forest virus (SFV) is an efficient vector for cardiac gene delivery. The relatively short transgene expression induced by SFV seems appropriate for angiogenic gene therapy. We tested the effects of SFV expressing vascular endothelial growth factor (VEGF) on cardiac angiogenesis and heart failure in the mRen2 transgenic rat.Six-week-old mRen2 rats received SFV-VEGF or control virus (n=7 each) administered intracoronarily. Twelve days after transfection, cardiac capillary density and function were assessed. Capillary density in cardiac regions where SFV expression was highest had decreased by 20% in the SFV-VEGF-treated group. The decrease in capillary density was accompanied by impaired systolic function as illustrated by increased endsystolic volumes and a 34% decrease in cardiac output.We conclude that the time frame of SFV expression is sufficient to induce structural alterations, but that VEGF in mRen2 transgenic rats did not elicit the expected angiogenic effect. Rather, capillary density was decreased and subsequently cardiac function was impaired. This paradoxical finding is possibly related to the pathophysiology associated with this model and warrants caution if one is to pursue VEGF-mediated, angiogenic therapy before proceeding to a clinical setting. (Neth Heart J 2007;15:335-41.).
Collapse
|
19
|
Vijayaraghavan K, Deedwania P. Renin-angiotensin-aldosterone blockade for cardiovascular disease prevention. Cardiol Clin 2011; 29:137-56. [PMID: 21257105 DOI: 10.1016/j.ccl.2010.11.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The renin-angiotensin-aldosterone system (RAAS) plays a significant role in pathophysiology of multiple disease states. RAAS blockade is beneficial in patients with hypertension, acute myocardial infarction, chronic heart failure, stroke, and diabetic renal disease. RAAS blockade with the combination angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs) has demonstrated conflicting results in recent clinical trials. This article reviews the latest evidence of isolated ACEI or ARB use, their combination, and the role of aldosterone blockers and direct renin inhibitors in patients at risk, and makes recommendations for their use in the prevention of morbidity and mortality in cardiovascular disease.
Collapse
|
20
|
Pohl M, Kaminski H, Castrop H, Bader M, Himmerkus N, Bleich M, Bachmann S, Theilig F. Intrarenal renin angiotensin system revisited: role of megalin-dependent endocytosis along the proximal nephron. J Biol Chem 2010; 285:41935-46. [PMID: 20966072 PMCID: PMC3009920 DOI: 10.1074/jbc.m110.150284] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 10/14/2010] [Indexed: 12/16/2022] Open
Abstract
The existence of a local renin angiotensin system (RAS) of the kidney has been established. Angiotensinogen (AGT), renin, angiotensin-converting enzyme (ACE), angiotensin receptors, and high concentrations of luminal angiotensin II have been found in the proximal tubule. Although functional data have documented the relevance of a local RAS, the dualism between biosynthesis and endocytotic uptake of its components and their cellular processing has been incompletely understood. To resolve this, we have selectively analyzed their distribution, endocytosis, transcytosis, and biosynthesis in the proximal tubule. The presence of immunoreactive AGT, restricted to the early proximal tubule, was due to its retrieval from the ultrafiltrate and storage in endosomal and lysosomal compartments. Cellular uptake was demonstrated by autoradiography of radiolabeled AGT and depended on intact endocytosis. AGT was identified as a ligand of the multiple ligand-binding repeats of megalin. AGT biosynthesis was restricted to the proximal straight tubule, revealing substantial AGT mRNA expression. Transgenic AGT overexpression under the control of an endogenous promoter was also restricted to the late proximal tubule. Proximal handling of renin largely followed the patterns of AGT, whereas its local biosynthesis was not significant. Transcytotic transport of AGT in a proximal cell line revealed a 5% recovery rate after 1 h. ACE was expressed along late proximal brush-border membrane, whereas ACE2 was present along the entire segment. Surface expression of ACE and ACE2 differed as a function of endocytosis. Our data on the localization and cellular processing of RAS components provide new aspects of the functional concept of a "self-contained" renal RAS.
Collapse
Affiliation(s)
- Marcus Pohl
- From the Institute of Anatomy, Charité Universitätsmedizin, 10115 Berlin, Germany
| | - Henriette Kaminski
- From the Institute of Anatomy, Charité Universitätsmedizin, 10115 Berlin, Germany
| | - Hayo Castrop
- the Institute of Physiology, University Regensburg, 93053 Regensburg, Germany
| | - Michael Bader
- the Max-Delbrück-Center for Molecular Medicine, 13092 Berlin, Germany, and
| | | | | | - Sebastian Bachmann
- From the Institute of Anatomy, Charité Universitätsmedizin, 10115 Berlin, Germany
| | - Franziska Theilig
- From the Institute of Anatomy, Charité Universitätsmedizin, 10115 Berlin, Germany
| |
Collapse
|
21
|
Ma TKW, Kam KKH, Yan BP, Lam YY. Renin-angiotensin-aldosterone system blockade for cardiovascular diseases: current status. Br J Pharmacol 2010; 160:1273-92. [PMID: 20590619 DOI: 10.1111/j.1476-5381.2010.00750.x] [Citation(s) in RCA: 250] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Activation of the renin-angiotensin-aldosterone system (RAAS) results in vasoconstriction, muscular (vascular and cardiac) hypertrophy and fibrosis. Established arterial stiffness and cardiac dysfunction are key factors contributing to subsequent cardiovascular and renal complications. Blockade of RAAS has been shown to be beneficial in patients with hypertension, acute myocardial infarction, chronic systolic heart failure, stroke and diabetic renal disease. An aggressive approach for more extensive RAAS blockade with combination of two commonly used RAAS blockers [ACE inhibitors (ACEIs) and angiotensin receptor blockers (ARBs)] yielded conflicting results in different patient populations. Combination therapy is also associated with more side effects, in particular hypotension, hyperkalaemia and renal impairment. Recently published ONTARGET study showed ACEI/ARB combination therapy was associated with more adverse effects without any increase in benefit. The Canadian Hypertension Education Program responded with a new warning: 'Do not use ACEI and ARB in combination'. However, the European Society of Cardiology in their updated heart failure treatment guidelines still recommended ACEI/ARB combo as a viable option. This apparent inconsistency among guidelines generates debate as to which approach of RAAS inhibition is the best. The current paper reviews the latest evidence of isolated ACEI or ARB use and their combination in cardiovascular diseases, and makes recommendations for their prescriptions in specific patient populations.
Collapse
Affiliation(s)
- Terry K W Ma
- Department of Medicine & Therapeutics, Chinese University of Hong Kong, Hong Kong
| | | | | | | |
Collapse
|
22
|
Differential contribution of diabetes and the Ren2 gene to glomerular pathology in diabetic (mREN-2)27 rats. J Transl Med 2010; 90:1225-35. [PMID: 20458279 DOI: 10.1038/labinvest.2010.96] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The effect of diabetes mellitus vs the effect of the Ren2 gene on the glomerular pathology of (mREN-2)27 heterozygous male rats is controversial. As discrete diabetes-induced glomerular lesions may have been overlooked, we performed a detailed morphometric analysis of glomeruli in diabetic and non-diabetic heterozygous male (mREN-2)27 rats and their normotensive (non-diabetic and diabetic Sprague-Dawley) controls. Glomeruli were scored by light microscopy for nine discrete histological parameters, some of which were graded for extent and/or severity. Mesangiolysis, segmental hypocellularity, and severe tuft-to-capsule adhesions were specific to diabetes; severe mesangial matrix expansion, glomerulosclerosis, thickening of Bowman's capsule, and dilatation of the urinary space were specific to the Ren2 gene. Hyalinosis and hypercellularity were associated with both diabetes and the Ren2 gene: the effect was additive for hyalinosis and synergistic for hypercellularity. The histological parameters were then combined with two physiological indices (systolic blood pressure and proteinuria) and principle components analysis (PCA) was used to detect correlations between the variables. Four discrete patterns of pathology were identified; three were statistically associated with diabetes and/or the Ren2 gene. These findings suggest that both diabetes and the Ren2 gene make significant, albeit different, contributions to the glomerular pathology of diabetic heterozygous male (mREN-2)27 rats. Despite defining the contribution of diabetes, our work does not support the (mREN-2)27 rat as a model of diabetic nephropathy (DN). Rather, it suggests that these animals remain useful for investigating a particular and limited constellation of DN features.
Collapse
|
23
|
Hill JV, Findon G, Appelhoff RJ, Endre ZH. Renal autoregulation and passive pressure-flow relationships in diabetes and hypertension. Am J Physiol Renal Physiol 2010; 299:F837-44. [PMID: 20660017 DOI: 10.1152/ajprenal.00727.2009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We investigated renal hemodynamics in isolated, perfused kidneys from rat models of diabetes and hypertension. Autoregulation and passive vascular responses were measured using stepped pressure ramps in the presence of angiotensin II (pEC50) or papaverine (0.1 mM), respectively. Male diabetic heterozygote m(Ren2)27 rats were compared with three male control groups: nondiabetic, normotensive Sprague-Dawley (SD) rats; nondiabetic, hypertensive heterozygote m(Ren2)27 rats; and diabetic, normotensive SD rats. Kidney function (proteinuria, creatinine clearance) was monitored before induction and at monthly intervals. Vascular function was measured in vitro in rats of induction age (6-8 wk) and at 2 and 4 mo postinduction. Renal flow correlated with age, but not diabetes or the Ren2 gene. Kidney weight-specific and body weight-specific renal flow differed between diabetic and nondiabetic rats because diabetic rats had higher kidney but lower body weights. Kidneys from all groups showed effective autoregulation in the presence of angiotensin II. The autoregulatory pressure threshold of m(Ren2)27 rats was higher, and the autoregulation pressure range was wider, compared with SD rats. When vascular smooth muscle activity was blocked with papaverine, pressure-flow responses differed between groups and with time. The m(Ren2)27 rat groups showed higher renal vascular resistance at lower pressures, suggesting greater vascular stiffness. In contrast, diabetic SD rat kidneys demonstrated reduced vessel stiffness. Flow was impaired in diabetic m(Ren2)27 rats at 4 mo, and this correlated with a decline in creatinine clearance. The results suggest that the characteristic late decline in renal filtration function in diabetes- and hypertension-related renal disease follows changes in renal vascular compliance.
Collapse
Affiliation(s)
- J V Hill
- Christchurch Kidney Research Group, Department of Medicine, University of Otago-Christchurch, Christchurch, New Zealand
| | | | | | | |
Collapse
|
24
|
Krsková L, Vrabcová M, Talarovicová A, Zeman M. Influence of up-regulated renin-angiotensin system on the exploration, anxiety-related behavior and object recognition. ACTA BIOLOGICA HUNGARICA 2010; 60:369-83. [PMID: 20015829 DOI: 10.1556/abiol.60.2009.4.4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The renin-angiotensin system (RAS) plays an important role in the development of hypertension and has serious consequences on behaviour. The aim of our study was to investigate the effect of hypertension, induced by up-regulated RAS, on the exploration, anxiety-related behaviour and object recognition in laboratory rats. In the experiment, 12 weeks old normotensive Sprague-Dawley (SD) and hypertensive TGR(mREN2)27 (TGR) male rats with up-regulated RAS were used. In the open-field test, the TGR rats were less active in ambulating, rearing and sniffing and more active in self-grooming and urinating than SD ones. In the elevated plus-maze test, the TGR rats showed lower frequency of total arm entries, closed arm entries and higher frequency of defecation than in controls. In the emergence test, TGR rats did not show significant differences. In the novel object recognition task, the TGR rats spent less time with exploration of both familiar and unfamiliar objects but preferred the novel object over the familiar one and exhibited higher percentage of the total exploring time spent with novel object exploration than SD rats. Our results indicate that the TGR rats are less actively exploring, show some modifications of emotional/anxiety-related behavior and exhibited better recognition abilities.
Collapse
Affiliation(s)
- Lucia Krsková
- Comenius University Department of Animal Physiology and Ethology, Faculty of Natural Sciences 842 15 Bratislava Slovak Republic.
| | | | | | | |
Collapse
|
25
|
Jessup JA, Westwood BM, Chappell MC, Groban L. Dual ACE-inhibition and AT1 receptor antagonism improves ventricular lusitropy without affecting cardiac fibrosis in the congenic mRen2.Lewis rat. Ther Adv Cardiovasc Dis 2009; 3:245-57. [PMID: 19531557 DOI: 10.1177/1753944709338489] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Hypertension and left ventricular (LV) hypertrophy often precede diastolic dysfunction and are risk factors for diastolic heart failure. Although pharmacologic inhibition of the renin-angiotensin system (RAS) improves diastolic function and functional capacity in hypertensive patients with LV hypertrophy, the effects of combination therapy with an angiotensin converting enzyme inhibitor (ACEi) and an angiotensin receptor blocker (ARB) are unclear. METHOD We assessed the effects of the combined 10-week administration of lisinopril (10 mg/kg/ day, p.o.) and losartan (10 mg/kg/day, p.o.) (LIS/LOS) on diastolic function and LV structure in seven young (5 weeks), prehypertensive congenic mRen2.Lewis male rat, a model of tissue renin overexpression and angiotensin II (Ang II)-dependent hypertension compared to vehicle (VEH) treated (n = 7), age-matched rats. RESULTS Systolic blood pressures were 64% lower with the combination therapy (p < 0.001), but there were no differences in heart rate or systolic function between groups. RAS inhibition increased myocardial relaxation, defined by tissue Doppler mitral annular descent (e') by 2.2 fold (p < 0.001). The preserved lusitropy in the LIS/LOS-treated rats was accompanied by a reduction in phospholamban-to-SERCA2 ratio (p < 0.001). Despite lower relative wall thicknesses (VEH: 1.56+/-0.17 versus LIS/LOS: 0.78+/-0.05) and filling pressures, defined by the transmitral Doppler-to-mitral annular descent ratio (E/e', VEH: 28.7+/-1.9 versus LIS/LOS: 17.96+/-1.5), no differences in cardiac collagen were observed. CONCLUSION We conclude that the lusitropic benefit of early dual RAS blockade may be due to improved vascular hemodynamics and/or cardiac calcium handling rather than effects on extracellular matrix reduction.
Collapse
Affiliation(s)
- Jewell A Jessup
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston Salem, North Carolina, USA
| | | | | | | |
Collapse
|
26
|
Pendergrass KD, Pirro NT, Westwood BM, Ferrario CM, Brosnihan KB, Chappell MC. Sex differences in circulating and renal angiotensins of hypertensive mRen(2). Lewis but not normotensive Lewis rats. Am J Physiol Heart Circ Physiol 2008; 295:H10-20. [PMID: 18456730 PMCID: PMC2494740 DOI: 10.1152/ajpheart.01277.2007] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Accepted: 04/28/2008] [Indexed: 01/05/2023]
Abstract
Sex differences in blood pressure are evident in experimental models and human subjects, yet the mechanisms underlying this disparity remain equivocal. The current study sought to define the extent of male-female differences in the circulating and tissue renin-angiotensin aldosterone systems (RAASs) of congenic mRen(2). Lewis and control Lewis rats. Male congenics exhibited higher systolic blood pressure than females [200 +/- 4 vs. 146 +/- 7 mmHg, P < 0.01] or Lewis males and females [113 +/- 2 vs. 112 +/- 2 mmHg, P > 0.05]. Plasma ANG II levels were twofold higher in male congenics [47 +/- 3 vs. 19 +/- 3 pM, P < 0.01] and fivefold higher than in male or female Lewis rats [6 +/- 1 vs. 6 +/- 1 pM]. ANG I levels were also highest in the males; however, plasma ANG-(1-7) was higher in female congenics. Male congenics exhibited greater circulating renin and angiotensin-converting enzyme (ACE) activities, as well as angiotensinogen, than female littermates. Renal cortical and medullary ANG II levels were also higher in the male congenics versus all the other groups; ANG I was lower in the males. Cortical ACE2 activity was higher in male congenics, yet neprilysin activity and protein were greater in the females, which may contribute to reduced renal levels of ANG II. These data reveal that sex differences in both the circulating and renal RAAS are apparent primarily in the hypertensive group. The enhanced activity of the RAAS in male congenics may contribute to the higher pressure and tissue injury evident in the strain.
Collapse
Affiliation(s)
- Karl D Pendergrass
- Hypertension & Vascular Disease Ctr., Wake Forest Univ. Health Sciences, Winston-Salem, NC 27157-1095, USA
| | | | | | | | | | | |
Collapse
|
27
|
DeMarco VG, Habibi J, Whaley-Connell AT, Schneider RI, Heller RL, Bosanquet JP, Hayden MR, Delcour K, Cooper SA, Andresen BT, Sowers JR, Dellsperger KC. Oxidative stress contributes to pulmonary hypertension in the transgenic (mRen2)27 rat. Am J Physiol Heart Circ Physiol 2008; 294:H2659-68. [PMID: 18424632 DOI: 10.1152/ajpheart.00953.2007] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The transgenic (mRen2)27 (Ren2) rat overexpresses mouse renin in extrarenal tissues, causing increased local synthesis of ANG II, oxidative stress, and hypertension. However, little is known about the role of oxidative stress induced by the tissue renin-angiotensin system (RAS) as a contributing factor in pulmonary hypertension (PH). Using male Ren2 rats, we test the hypothesis that lung tissue RAS overexpression and resultant oxidative stress contribute to PH and pulmonary vascular remodeling. Mean arterial pressure (MAP), right ventricular systolic pressure (RVSP), and wall thickness of small pulmonary arteries (PA), as well as intrapulmonary NADPH oxidase activity and subunit protein expression and reactive oxygen species (ROS), were compared in age-matched Ren2 and Sprague-Dawley (SD) rats pretreated with the SOD/catalase mimetic tempol for 21 days. In placebo-treated Ren2 rats, MAP and RVSP, as well as intrapulmonary NADPH oxidase activity and subunits (Nox2, p22phox, and Rac-1) and ROS, were elevated compared with placebo-treated SD rats (P < 0.05). Tempol decreased RVSP (P < 0.05), but not MAP, in Ren2 rats. Tempol also reduced intrapulmonary NADPH oxidase activity, Nox2, p22phox, and Rac-1 protein expression, and ROS in Ren2 rats (P < 0.05). Compared with SD rats, the cross-sectional surface area of small PA was 38% greater (P < 0.001) and luminal surface area was 54% less (P < 0.001) in Ren2 rats. Wall surface area was reduced and luminal area was increased in tempol-treated SD and Ren2 rats compared with untreated controls (P < 0.05). Collectively, the results of this investigation support a seminal role for enhanced tissue RAS/oxidative stress as factors in development of PH and pulmonary vascular remodeling.
Collapse
Affiliation(s)
- Vincent G DeMarco
- Department of Child Health, University of Missouri School of Medicine, Columbia, Missouri 65210, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Peters J. Secretory and cytosolic (pro)renin in kidney, heart, and adrenal gland. J Mol Med (Berl) 2008; 86:711-4. [PMID: 18368380 DOI: 10.1007/s00109-008-0328-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2008] [Revised: 02/12/2008] [Accepted: 02/13/2008] [Indexed: 10/22/2022]
Abstract
Renin is commonly known as a secretory glycoprotein, which is expressed, stored, and secreted in a regulated manner by the kidney. The rat kidney exclusively expresses secretory renin. In this organ, renin regulates glomerular filtration rate, vascular resistance, and sodium reabsorbtion. In the adult rat heart, secretory preprorenin is not expressed. Instead, an alternative renin transcript is expressed that encodes for a previously unrecognized cytosolic renin. The expression of cytosolic but not of secretory renin increases markedly after myocardial infarction, indicating a role specifically for cytosolic renin in postischemic repair processes. In the adrenal gland, secretory renin is expressed and provides the basis for an intra-adrenal angiotensin (ANG) II amplification system. This amplification system reduces the demand for circulating ANGII to stimulate aldosterone production and thus minimizes any detrimental effects of circulating ANGII in other tissues. The adrenal gland additionally expresses cytosolic renin, which is targeted to mitochondria. Adrenal cytosolic renin increases aldosterone production plasma renin independently.
Collapse
Affiliation(s)
- Jörg Peters
- Institute of Physiology, University of Greifswald, Greifswalder Strasse 11C, Karlsburg, Germany.
| |
Collapse
|
29
|
Bader M, Ganten D. Proceedings of the Symposium ‘Angiotensin AT1 Receptors: From Molecular Physiology to Therapeutics’: TRANSGENIC RATS: TOOLS TO STUDY THE FUNCTION OF THE RENIN-ANGIOTENSIN SYSTEM. Clin Exp Pharmacol Physiol 2007; 23 Suppl 3:S81-7. [DOI: 10.1111/j.1440-1681.1996.tb02818.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
Abstract
Preeclampsia is a hypertensive disorder that is unique to pregnancy, with consistent involvement of the kidney. The renin-angiotensin system (RAS) has been implicated in the pathogenesis of preeclampsia. In the gravid state, in addition to the RAS in the kidney, there is a tissue-based RAS in the uteroplacental unit. Increased renin expression in human preeclampsia and in transgenic mouse models with a human preeclampsia-like syndrome shows that activation of the uteroplacental RAS, with angiotensin II entering the systemic circulation, may mediate the pathogenesis of preeclampsia. Vascular maladaptation in preeclampsia with increased vasomotor tone, endothelial dysfunction, and increased sensitivity to angiotensin II and norepinephrine in manifest preeclampsia may be explained on the basis of angiotensin II-mediated mechanisms through angiotensin receptor type I (AT1) activation. Recently, novel angiotensin II-related biomolecular mechanisms have been described in preeclampsia. These include AT1 and bradykinin B2 receptor heterodimerization and the production of autoantibody against AT1. Various organ systems with predilection for involvement in preeclampsia are sites of tissue-based RAS. Angiotensin II-mediated mechanisms may explain the primary clinicopathologic features of preeclampsia. In this review, these various aspects are critically examined and an integrated concept on the role of RAS in preeclampsia is presented.
Collapse
Affiliation(s)
- Dinesh M Shah
- Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, University of Wisconsin/Meriter, 202 S. Park Street, Madison, WI 53715, USA.
| |
Collapse
|
31
|
Barton M, Mullins JJ, Bailey MA, Kretzler M. Role of Endothelin Receptors for Renal Protection and Survival in Hypertension. Hypertension 2006; 48:834-7. [PMID: 17015776 DOI: 10.1161/01.hyp.0000245138.09687.8a] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
32
|
Seccia TM, Belloni AS, Guidolin D, Sticchi D, Nussdorfer GG, Pessina AC, Rossi GP. The renal antifibrotic effects of angiotensin-converting enzyme inhibition involve bradykinin B2 receptor activation in angiotensin II-dependent hypertension. J Hypertens 2006; 24:1419-27. [PMID: 16794493 DOI: 10.1097/01.hjh.0000234124.94013.ac] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The renoprotective action of angiotensin I-converting enzyme inhibitors (ACE-Is) is well established, but the role played by bradykinin (BK) remains unclear. We therefore investigated whether an enhanced BK effect on B2 receptor subtype mediated the antifibrotic effect of ACE-Is and whether neutral endopeptidase (NEP) inhibition, which can blunt BK degradation more effectively than ACE inhibition, provided further renoprotection in a rat model of angiotensin (Ang) II-dependent renal damage. METHODS Five-week-old Ren-2 transgenic rats (TGRen2) received, for 8 weeks, a placebo, ramipril (5 mg/kg body weight) or the dual ACE + NEP inhibitor MDL 100,240 (MDL) (40 mg/kg body weight). After 4 weeks, the B2 receptor antagonist icatibant (0.5 mg/kg body weight) was administered on top of active treatment for 4 weeks to 50% of the TGRen2 rats. Blood pressure was measured weekly by a tail-cuff method and, after sacrifice, kidney weight, glomerular volume, density of glomerular profiles were measured; tubulo-interstitial fibrosis, glomerular and perivascular fibrosis were quantified by histomorphometry. RESULTS The development of hypertension and tubulo-interstitial fibrosis was prevented by both ramipril and MDL (P = 0.0001 versus placebo); icatibant annulled the latter effect. Glomerular and perivascular fibrosis were unaffected by either ramipril or MDL alone; however, combined treatment with icatibant enhanced glomerular fibrosis (P = 0.0001 versus placebo). CONCLUSION Enhanced BK effect on B2 subtype receptors is essential for the prevention of tubulo-interstitial fibrosis with ACE or dual ACE + NEP inhibition in TGRen2 rats.
Collapse
Affiliation(s)
- Teresa M Seccia
- Department of Clinical Methodology, University of Bari, Italy
| | | | | | | | | | | | | |
Collapse
|
33
|
Opocenský M, Kramer HJ, Bäcker A, Vernerová Z, Eis V, Cervenka L, Certíková Chábová V, Tesar V, Vanecková I. Late-onset endothelin-A receptor blockade reduces podocyte injury in homozygous Ren-2 rats despite severe hypertension. Hypertension 2006; 48:965-71. [PMID: 17015777 DOI: 10.1161/01.hyp.0000245117.57524.d6] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We have recently found in male homozygous hypertensive Ren-2 transgenic rats (TGRs) fed a high-salt diet that early onset selective endothelin (ET) A (ET(A)) or nonselective ET(A)/ET B (ET(B)) receptor blockade improved survival rate and reduced proteinuria, glomerulosclerosis, and cardiac hypertrophy, whereas selective ET(A) receptor blockade also significantly attenuated the rise in blood pressure. Because antihypertensive therapy in general is known to be more efficient when started at early age, our study was performed to determine whether onset of ET receptor blockade at a later age in animals with established hypertension will have similar protective effects as does early-onset therapy. Male homozygous TGRs and age-matched normotensive Hannover Sprague-Dawley rats were fed a high-salt diet between days 51 and 90 of age. TGRs received vehicle (untreated), the selective ET(A) receptor blocker atrasentan (ABT-627), or the nonselective ET(A)/ET(B) receptor blocker bosentan. Survival rates in untreated and bosentan-treated TGRs were 50% and 64%, respectively, whereas with atrasentan, survival rate of TGR was 96%, thus, similar to 93% in Hannover Sprague-Dawley rats. From day 60 on, systolic blood pressure in atrasentan-treated TGRs was transiently lower (P<0.05) than in untreated or bosentan-treated TGRs. Glomerular podocyte injury was substantially reduced with atrasentan treatment independent of severe hypertension and strongly correlated with survival (P<0.001). Our data indicate that in homozygous TGR ET receptors play an important role also in established hypertension. Selective ET(A) receptor blockade not only reduces podocyte injury and end-organ damage but also improves growth and survival independently of hypertension.
Collapse
Affiliation(s)
- Martin Opocenský
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Videnska 1958/9, CZ-140 21, Prague 4, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Kasper SO, Ferrario CM, Ganten D, Diz DI. Rats with low brain angiotensinogen do not exhibit insulin resistance during early aging. Endocrine 2006; 30:167-74. [PMID: 17322575 DOI: 10.1385/endo:30:2:167] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Revised: 09/07/2006] [Accepted: 10/01/2006] [Indexed: 11/11/2022]
Abstract
During aging increases in body weight, insulin resistance, and elevated systolic pressure contribute to the development of metabolic syndrome. Long-term systemic blockade of the renin-angiotensin system (RAS) with either an angiotensin (Ang) II type 1 (AT1) receptor antagonist or angiotensin converting enzyme inhibitor improves insulin sensitivity and decreases risk of new onset (type II) diabetes. However, the role of the brain RAS in mediating development of insulin insensitivity during aging is not known. Therefore, we compared responses to an oral glucose load in transgenic rats with selective antisense suppression of brain angiotensinogen (ASrAogen); (mRen2)27 rats with high brain angiotensin II; and control Hannover Sprague-Dawley (SD) rats, at wk 16 and 68 of age. ASrAogen animals had lower body weight than either SD or (mRen2)27 rats at both ages (p < 0.001). The oral glucose tolerance test at 16 wk in (mRen2)27 animals revealed a higher glucose-insulin index (154,421 +/- 11,231 units; p < 0.05) and a lower glucose-insulin index in ASrAogen rats (41,580 +/- 10,923 units, p < 0.05) compared to SD rats (97,134 +/- 19,822 units), suggesting insulin resistance in the (mRen2)27 and enhanced insulin sensitivity in the ASrAogen relative to SD rats. At 68 wk, the glucose-insulin index remained low in the ASrAogen rats as evidence of maintained insulin sensitivity during aging compared with either SD or (mRen2)27 (p < 0.05). SD animals do not differ from (mRen2)27 rats at 68 wk indicating the development of a state of relative insulin resistance with increased age in the SD rats. Moreover, there was a positive correlation (r = 0.44; p < 0.05) between body weight and the glucose-insulin index in SD, but not ASrAogen or (mRen2)27 rats. The relationships between insulin and leptin, insulin and glucose, and leptin and body weight observed in SD rats were absent in ASrAogen and (mRen2)27 rats. We conclude that the glial RAS plays a role in development of insulin resistance as well as influencing weight gain associated with early aging.
Collapse
Affiliation(s)
- Sherry O Kasper
- The Hypertension & Vascular Disease Center and Physiology/Pharmacology Department, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1032, USA
| | | | | | | |
Collapse
|
35
|
Jessup JA, Gallagher PE, Averill DB, Brosnihan KB, Tallant EA, Chappell MC, Ferrario CM. Effect of angiotensin II blockade on a new congenic model of hypertension derived from transgenic Ren-2 rats. Am J Physiol Heart Circ Physiol 2006; 291:H2166-72. [PMID: 16766648 DOI: 10.1152/ajpheart.00061.2006] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The generation of the Lew.Tg(mRen2) congenic hypertensive rat strain, developed through a backcross of the hypertensive (mRen2)27 transgenic rat with normotensive Lewis rats, provides a new model by which primary hypertension can be studied without the genetic variability found in the original strain. The purpose of this study was to characterize the Lew.Tg(mRen2) rats by dually investigating the effects of type 1 angiotensin II (ANG II) receptor (AT(1)) blockade and angiotensin-converting enzyme (ACE) activity inhibition on the ANG-(1-7)/ACE2 axis of the renin-angiotensin system in this new hypertensive model. The control of blood pressure elicited by 12-day administration of either lisinopril (mean difference change = 92 +/- 2, P < 0.05) or losartan (mean difference change = 69 +/- 2, P < 0.05) was associated with 54% and 33% increases in cardiac ACE2 mRNA and 54% and 43% increases in cardiac ACE mRNA, respectively. Lisinopril induced a 3.1-fold (P < 0.05) increase in renal cortical expression of ACE2, whereas losartan increased ACE2 mRNA 3.5-fold (P < 0.05). Both treatment regimens increased renal ACE mRNA 2.6-fold (P < 0.05). The two therapies augmented ACE2 protein activity, as well as increased cardiac and renal AT(1) receptor mRNAs. ACE inhibition reduced plasma ANG II levels (81%, P < 0.05) and increased plasma ANG-(1-7) (265%, P < 0.05), whereas losartan had no effect on the peptides. In contrast with what had been shown in normotensive rats, ACE inhibition decreased renal ANG II excretion and transiently decreased ANG-(1-7) excretion, whereas losartan treatment was associated with a consistent decrease in ANG-(1-7) urinary excretion rates. In response to the treatments, the expression of both renal cortical renin and angiotensinogen mRNAs was significantly augmented. The paradoxical effects of blockade of ANG II synthesis and activity on urinary excretion rates of the peptides and plasma angiotensins levels suggest that, in Lew.Tg(mRen2) congenic rats, a failure of compensatory ACE2 and ANG-(1-7)-dependent vasodepressor mechanisms may contribute both to the development and progression of hypertension driven by increased formation of endogenous ANG II.
Collapse
Affiliation(s)
- Jewell A Jessup
- Hypertension and Vascular Disease Center, Wake Forest Univ. School of Medicine, Winston-Salem, NC 27157, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Amstislavsky S, Welker P, Frühauf JH, Maslova L, Ivanova L, Jensen B, Markel AL, Bachmann S. Renal and endocrine changes in rats with inherited stress-induced arterial hypertension (ISIAH). Histochem Cell Biol 2005; 125:651-9. [PMID: 16341522 DOI: 10.1007/s00418-005-0118-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2005] [Indexed: 10/25/2022]
Abstract
Hypertensive inbred rats (ISIAH; inherited stress-induced arterial hypertension) present with baseline hypertension (>170 mmHg in adult rats), but attain substantially higher values upon mild emotional stress. We aimed to characterize key parameters related to hypertension in ISIAH. Kidneys, adrenals, and systemic endocrine parameters were studied in ISIAH of different ages and compared to normotensive Wistar albino Glaxo (WAG) rats. Native organs were obtained for Western and PCR analysis. Perfusion-fixed organs were prepared for histopathology and quantitative histochemistry. Plasma renin and adrenal hormones were measured. Renal morphology was unaltered in ISIAH. The hypothalamic-pituitary-adrenocortical (HPA) axis was constitutively upregulated with enlarged adrenal cortices and enhanced plasma corticosterone levels. Plasma renin activity was not different between groups, whereas aldosterone levels were in part reduced. Juxtaglomerular NO synthase type 1, cyclooxygenase type 2, and renin expression were significantly reduced, whereas tubular gene products related to sodium transport (bumetanide-sensitive Na, K, 2Cl cotransporter type 2; thiazide-sensitive Na, Cl cotransporter; epithelial Na channel-alpha; 11beta-hydroxysteroid dehydrogenase type 2) were increased. These data suggest enhanced volume conservation by the kidney. Our data define ISIAH as an attractive model for the renal components determining salt and water homeostasis in hypertension. The specific condition of a basally stimulated HPA axis is highlighted, including the option to study effects superimposed by emotional stress.
Collapse
Affiliation(s)
- Sergej Amstislavsky
- Institute of Cytology and Genetics, Lavrentyev Avenue 10, 630090, Novosibirsk, Russia
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Vanêcková I, Kramer HJ, Bäcker A, Vernerová Z, Opocensky M, Cervenka L. Early endothelin-A receptor blockade decreases blood pressure and ameliorates end-organ damage in homozygous Ren-2 rats. Hypertension 2005; 46:969-74. [PMID: 16157796 DOI: 10.1161/01.hyp.0000173426.06832.b5] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We have recently found that nonselective endothelin ETA/ETB receptor blockade markedly improves survival rate and ameliorates end-organ damage in male homozygous rats transgenic (TGR) for the mouse Ren-2 renin gene without lowering blood pressure. Because activation of the ETA receptor may be responsible for the detrimental effects of ET in the development of hypertension, this study was performed to determine whether ETA or ETA/ETB receptor blockade exerts these beneficial effects. TGR and age-matched normotensive Hannover Sprague-Dawley rats fed a high-salt diet received either vehicle or bosentan and atrasentan (ABT-627) as nonselective ETA/ETB and selective ETA receptor blockers, respectively, from 29 until 90 days of age. The survival rate of 48% in untreated TGR was significantly (P<0.01) improved to 79% by bosentan and to 92% by ABT-627 (ABT-627 versus bosentan P<0.05). Proteinuria, glomerulosclerosis, and cardiac hypertrophy, as well as ET-1 content in left ventricular tissue, were significantly reduced by bosentan and to a greater degree by ABT-627, which also significantly attenuated the rise in blood pressure (P<0.05). Our data indicate that the ET system, especially via ETA receptors, plays an important role in the development of hypertensive end-organ damage and confirm the concept that the predominant role of ETB receptors within the peripheral vasculature is to mediate the vasorelaxant actions of ET-1. They also demonstrate that selective blockade of ETA receptors is superior to nonselective ETA/ETB in attenuating hypertension, hypertensive organ damage, and survival rate.
Collapse
Affiliation(s)
- Ivana Vanêcková
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague 4, Czech Republic.
| | | | | | | | | | | |
Collapse
|
38
|
Kasper SO, Carter CS, Ferrario CM, Ganten D, Ferder LF, Sonntag WE, Gallagher PE, Diz DI. Growth, metabolism, and blood pressure disturbances during aging in transgenic rats with altered brain renin-angiotensin systems. Physiol Genomics 2005; 23:311-7. [PMID: 16131528 DOI: 10.1152/physiolgenomics.00163.2005] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Transgenic rats with targeted decreased glial expression of angiotensinogen (ASrAogen rats) did not show an increase in systolic pressure compared with Sprague-Dawley (SD) rats during aging (15-69 wk of age). ASrAogen animals had lower body weights throughout the study, similar to reports for animals with systemic knockout of angiotensinogen or treated long term with renin-angiotensin system (RAS) blockers. Further characterization of indexes of growth and metabolism in ASrAogen rats compared with (mRen2)27 and SD rats, which express elevated versus normal brain and tissue angiotensin II levels, respectively, revealed that serum leptin was 100-200% higher in SD and (mRen2)27 rats at 46 wk and 69 wk of age. Consistent with low serum leptin, ASrAogen rats had higher food intake (73%) compared with SD or (mRen2)27 rats. (mRen2)27 rats had higher resting insulin levels than ASrAogen rats at all ages. Insulin levels were constant during aging in ASrAogen rats, whereas an increase occurred in SD rats, leading to higher insulin levels at 46 and 69 wk of age compared with ASrAogen rats. IGF-1 was comparable among strains at all ages, but (mRen2)27 rats had longer and ASrAogen rats had shorter tail lengths versus SD rats at 15 wk of age. In conclusion, reduced expression of glial angiotensinogen blunts the age-dependent rise in insulin levels and weight gain, findings that mimic the effects of long-term systemic blockade of the RAS or systemic knockout of angiotensinogen. These data implicate glial angiotensinogen in the regulation of body metabolism as well as hormonal mechanisms regulating blood pressure.
Collapse
Affiliation(s)
- Sherry O Kasper
- Hypertension and Vascular Disease Center, Physiology and Pharmacology Department, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157-1032, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Preeclampsia is a hypertensive disorder unique to pregnancy with consistent involvement of the kidney. The renin-angiotensin system (RAS) has been implicated in the pathogenesis of preeclampsia. In the gravid state, in addition to the RAS in the kidney, there is a tissue-based RAS in the uteroplacental unit. Increased renin expression observed both in human preeclampsia and in a transgenic mouse model with a human preeclampsia-like syndrome supports the concept that activation of the uteroplacental RAS, with angiotensin II entering the systemic circulation, may mediate the pathogenesis of preeclampsia. A novel disease paradigm of the two-kidney one-clip (2K-1C) Goldblatt model is presented for preeclampsia, wherein the gravid uterus is the clipped “kidney” and the two maternal kidneys represent the unclipped kidney. Validation of the 2K-1C Goldblatt model analogy requires evidence of elevated angiotensin II in the peripheral circulation before vascular maladaptation in preeclampsia. Convincing evidence of the elevation of angiotensin II in preeclampsia does not exist despite the fact that much of vascular pathogenesis appears to be due to angiotensin type I (AT1) receptor activation. Vascular maladaptation with increased vasomotor tone, endothelial dysfunction, and increased sensitivity to angiotensin II and norepinephrine in manifest preeclampsia may be explained on the basis of angiotensin II-mediated mechanisms. Recently, novel angiotensin II-related biomolecular mechanisms have been described in preeclampsia. These include AT1and bradykinin B2receptor heterodimerization and the production of an autoantibody against AT1. Various organ systems with a predilection for involvement in preeclampsia are each a site of a tissue-based RAS. How angiotensin II-mediated mechanisms may explain the primary clinical-pathological features of preeclampsia is described. Future investigations are proposed to more precisely define the role of activation of the uteroplacental RAS in the mechanisms underlying preeclampsia.
Collapse
Affiliation(s)
- Dinesh M Shah
- Univ. of Wisconsin Medical School, Dept. of Obstetrics and Gynecology, 202 S. Park Str., Madison, WI 53715, USA.
| |
Collapse
|
40
|
Abstract
There is compelling physiological evidence of binding and uptake of renin and prorenin in tissues. A number of molecules with the ability to bind renin and prorenin have been identified and have been characterized to varying degrees. It remains unclear, however, just how many renin/prorenin binding proteins and receptors exist and what their physiological functions may be. The possible functions of renin/prorenin binding and uptake are manifold, and include clearance of renin and prorenin from the circulation, local generation of angiotensins, activation of prorenin on the cell surface, trafficking of prorenin between cellular and extracellular compartments as part of a complex processing machinery, and signal transduction both via direct receptor mediated signaling, and via modulation of O-linkage of N-acetyl-glucosamine to cellular proteins. Some of these functions may involve single renin/prorenin binding sites or receptors, while others may require multiple binding sites and receptors. This review describes the physiological studies that have provided evidence of renin/prorenin uptake from the circulation, summarizes our knowledge of renin/prorenin binding proteins and receptors, and postulates new roles for renin/prorenin binding and uptake in tissues.
Collapse
Affiliation(s)
- Daniel F Catanzaro
- Department of Cardiothoracic Surgery, Weill Medical College, Cornell University, New York, USA.
| |
Collapse
|
41
|
Yabuki A, Matsumoto M, Kamimura R, Taniguchi K, Suzuki S. Renin, cyclooxygenase-2 and neuronal nitric oxide synthase in the kidneys of transgenic Tsukuba hypertensive mouse. Exp Anim 2004; 53:387-90. [PMID: 15297714 DOI: 10.1538/expanim.53.387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The transgenic Tsukuba hypertensive mouse (THM), which expresses the human renin and angiotensinogen genes, develops hypertension secondary to increased renin-angiotensin system activity. The aim of the present study was to assess expression of the renin, cyclooxygenase-2 (COX-2), and neuronal nitric oxide synthase (nNOS) proteins in THM kidneys by immunohistochemical stainings. Renin expression was decreased in the THM kidneys when compared to kidneys from heterozygotes or control mice. Although no differences were observed in nNOS expression, overexpression of the COX-2 protein was observed in the macula densa cells in THM kidneys.
Collapse
Affiliation(s)
- Akira Yabuki
- Department of Veterinary Anatomy, Faculty of Agriculture, Kagoshima University, Japan
| | | | | | | | | |
Collapse
|
42
|
Mifsud SA, Burrell LM, Kubota E, Jaworski K, Cooper ME, Wilkinson-Berka JL. Cardiorenal protective effects of vasopeptidase inhibition with omapatrilat in hypertensive transgenic (mREN-2)27 rats. Clin Exp Hypertens 2004; 26:69-80. [PMID: 15000298 DOI: 10.1081/ceh-120027332] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Vasopeptidase inhibitors simultaneously inhibit both angiotensin-converting enzyme (ACE) and neutral endopeptidase (NEP). The aim of this study was to determine the cardiorenal effects of the vasopeptidase inhibitor omapatrilat in the transgenic m(Ren-2)27 rat which exhibits fulminant hypertension and severe organ pathology. At 6 weeks of age, male Ren-2 rats were randomized to receive no treatment (N = 10), the ACE inhibitor fosinopril 10 mg/kg/day (N = 10), or omapatrilat 10 mg/kg/day (N = 10) or 40 mg/kg/day (N = 10) by daily gavage for 24 weeks. Various cardiorenal functional and structural parameters were assessed. Compared to controls, all treatment groups reduced hypertension in control Ren-2 rats, with both doses of omapatrilat reducing systolic blood pressure significantly more than fosinopril (control, 178 +/- 3 mmHg; fosinopril 10 mg/kg/day, 130 +/- 4 mmHg; omapatrilat 10 mg/kg/day, 110 +/- 3 mmHg; omapatrilat 40 mg/kg/day, 91 +/- 3 mmHg). Omapatrilat dose-dependently reduced cardiac hypertrophy, caused a greater inhibition of renal ACE than fosinopril, and was the only treatment to inhibit renal NEP. Attenuation of albuminuria, glomerulosclerosis and cardiorenal fibrosis occurred to a similar degree with omapatrilat and fosinopril. Omapatrilat confers cardiorenal protection in the hypertensive Ren-2 rat. Although inhibition of tissue NEP may contribute to the superior blood pressure reduction by omapatrilat, overall, the results are consistent with the central role that angiotensin II plays in renal and cardiac fibrosis in this model of hypertension.
Collapse
Affiliation(s)
- Sally A Mifsud
- Department of Physiology, The University of Melbourne, Parkville, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
43
|
Diedrichs H, Mei C, Frank KF, Boelck B, Schwinger RHG. Calcineurin independent development of myocardial hypertrophy in transgenic rats overexpressing the mouse renin gene, TGR(mREN2)27. J Mol Med (Berl) 2004; 82:688-95. [PMID: 15322704 DOI: 10.1007/s00109-004-0581-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2003] [Accepted: 07/01/2004] [Indexed: 10/26/2022]
Abstract
Myocardial hypertrophy is an independent risk factor for development of heart failure. The intracellular calcium homeostasis is altered in myocardial hypertrophy, and recent studies in animal models have confirmed an interaction between the Ca2+/calmodulin-dependent calcineurin signaling cascade and development of cardiac hypertrophy. There is evidence for the involvement of various pathways in development of hypertrophy. A transgenic rat model overexpressing the mouse renin gene, TGR(mREN2)27 has been shown to progress profound cardiac hypertrophy, possibly due to a monogenetic disorder. However, the exact mode of action is not known. To study a possible involvement of calcineurin and its downstream pathway in development of cardiac hypertrophy in this transgenic rat model we measured the protein expression of marker proteins of the calcineurin cascade (calcineurin, NFAT-3, GATA-4) and calcineurin phosphatase activity and GATA-4 DNA binding in TGR ( n=10) compared to age-matched Sprague-Dawley rats ( n=10). In our study there was no significant difference in calcineurin activity between the transgenic hearts and the hearts of Sprague-Dawley rats. Furthermore, we found neither an increase in protein expression of calcineurin B nor a rise in nuclear translocated NFAT-3 DU. Interestingly, the protein expression of GATA-4 and its DNA binding activity were significantly higher in hypertrophied myocardium than in control hearts. In transgenic rats overexpressing the mouse renin gene and thereby developing pronounced cardiac hypertrophy [TGR(mREN2)27] we thus found no activation of calcineurin or its downstream pathway. However, the expression of the transcriptional factor GATA-4 and its DNA binding activity were significantly increased in hearts of transgenic rats. Thus GATA-4 seems to be a marker of hypertrophy independently of calcineurin activation, possibly activated by various pathways.
Collapse
Affiliation(s)
- H Diedrichs
- Laboratory for Muscle Research and Molecular Cardiology, Department of Internal Medicine III, University of Cologne, Joseph-Stelzmann-Strasse 9, 50924 Cologne, Germany.
| | | | | | | | | |
Collapse
|
44
|
Kopkan L, Kramer HJ, Husková Z, Vanourková Z, Bäcker A, Bader M, Ganten D, Cervenka L. Plasma and kidney angiotensin II levels and renal functional responses to AT1 receptor blockade in hypertensive Ren-2 transgenic rats. J Hypertens 2004; 22:819-25. [PMID: 15126925 DOI: 10.1097/00004872-200404000-00026] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The first aim of the present study was to assess plasma and kidney angiotensin II (ANG II) levels and renal cortical ANG II receptor subtype 1A (AT1A) mRNA expression in hypertensive Ren-2 transgenic rats (TGR) and in normotensive Hannover Sprague-Dawley (HanSD) rats. The second aim was to investigate potential differences between TGR and HanSD in blood pressure (BP) and renal functional responses to either intravenous (i.v.), i.e. systemic, or intrarenal (i.r.) AT1 receptor blockade with candesartan. METHODS Rats were anesthetized and prepared for clearance experiments. In series 1, ANG II concentrations were assayed by radioimmunoassay and renal cortical AT1A mRNA expression by semiquantitative reverse transcriptase-polyacrylamide gel electrophoresis. In series 2, BP and renal functional responses were evaluated after either i.v. or i.r. bolus administration of candesartan. RESULTS Plasma and kidney ANG II levels were significantly lower in TGR than in HanSD (39 +/- 5 versus 107 +/- 19 fmol/ml and 251 +/- 41 versus 571 +/- 95 fmol/g, respectively, P < 0.05). Renal AT1A mRNA expression was not different between TGR and HanSD. Intravenous candesartan caused comparable decreases in BP in TGR and HanSD and did not change renal plasma flow (RPF) or absolute and fractional sodium excretion in HanSD. In contrast, i.v. candesartan significantly increased RPF (+27 +/- 6%, P < 0.05) and absolute and fractional sodium excretion (+49 +/- 10 and + 42 +/- 9%, respectively P < 0.05) in TGR without changing glomerular filtration rate (GFR). Acute i.r. candesartan increased RPF by +36 +/- 6% (P < 0.05) in TGR but not in HanSD with a greater rise in absolute and fractional sodium excretion in TGR (+124 +/-8 and 97 +/- 9%, respectively) than in HanSD (+81 +/- 9 and +69 +/- 8%, respectively) (P < 0.05). CONCLUSIONS The enhanced responses of RPF and sodium excretion to AT1 receptor blockade in TGR suggest that renal hemodynamics and sodium excretion in TGR are under strong ANG II influence. The compromised ability of the kidney to respond to BP elevations by appropriate increases in sodium excretion may contribute to the maintenance of high BP in TGR. Thus, the present findings provide new insights into the pathophysiology of hypertension in this model.
Collapse
Affiliation(s)
- Libor Kopkan
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, 1958/9 Vídenská, CZ-140 21 Prague 4, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Collidge TA, Lammie GA, Fleming S, Mullins JJ. The role of the renin–angiotensin system in malignant vascular injury affecting the systemic and cerebral circulations. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2004; 84:301-19. [PMID: 14769441 DOI: 10.1016/j.pbiomolbio.2003.11.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Malignant hypertension is a rare but serious syndrome complicating 1% of essential hypertension and causing neurological, renal and cardiac complications. Despite improved anti-hypertensive medication, the incidence of this condition fails to decline. In the first part of this review, we discuss transgenic rat models of malignant hypertension, generated by over-expressing renin, to illustrate the role of the renin-angiotensin system in the development of systemic hypertensive vascular remodelling and hypertension. In the second part, we focus on the cerebrovascular response to hypertension and discuss new data using a conditional, transgenic model of malignant hypertension, the inducible hypertensive rat (IHR). Cerebral infarction associates strongly with hypertension in man and the mechanisms by which hypertension predisposes to different types of stroke remains poorly understood. Rats have similar cerebrovascular anatomy and structure to humans and as such provide a good experimental tool. To date, such models lack controllability and blood-pressure matched controls. Using the IHR, we have manipulated dietary salt and water intake to generate a novel, controllable stroke phenotype. Hypertensive small-vessel stroke develops over a predictable time period, permitting the study of developing cerebrovascular lesions. Systemic end-organ injury and hypertension are not affected. Dissociation of the systemic and central vascular responses in this way, will allow for comparative study of animals with equivalent hypertension, genetic background and systemic features of hypertension with or without stroke.
Collapse
Affiliation(s)
- Tara A Collidge
- Molecular Physiology Laboratory, University of Edinburgh Medical School, Wilkie Building, Teviot Place, Edinburgh EH8 9AG, UK
| | | | | | | |
Collapse
|
46
|
Rothermund L, Kossmehl P, Neumayer HH, Paul M, Kreutz R. Renal damage is not improved by blockade of endothelin receptors in primary renin-dependent hypertension. J Hypertens 2003; 21:2389-97. [PMID: 14654760 DOI: 10.1097/00004872-200312000-00028] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
OBJECTIVE Secondary activation of the renin-angiotensin system plays a major role in the progression of chronic nephropathies, and blockade of endothelin (ET) receptors has been shown to confer nephroprotection in experimental models of proteinuric renal disease. We tested the nephroprotective potential of selective endothelin A receptor (ETA) and non-selective ETA and endothelin B (ETA/B) receptor blockade in the TGR(mRen2)27 transgenic rat model with renin-dependent hypertension (Ren2). DESIGN Ren2 animals were treated between 10 and 30 weeks of age with the selective ETA receptor antagonist darusentan (Ren2-ETA) and the ETA/B receptor antagonist Lu420627 (Ren2-ETA/B), and compared with transgene negative Sprague-Dawley (SD) controls. Since the elevated systolic blood pressure in Ren2 was not affected in either Ren2-ETA or Ren2-ETA/ETB, an additional Ren-2 group was treated with a non-antihypertensive dose of the angiotensin II type 1 receptor blocker eprosartan (Ren2-AT1). RESULTS During the 20-week observation period 35% of untreated Ren2, 30% of Ren2-ETA/B, 50% of Ren2-ETA, and 83% of Ren2-AT1 animals survived compared with 100% of SD rats. Renal endothelin-1 mRNA expression and proteinuria (4.1-fold) were significantly elevated in Ren2 compared with SD rats (P < 0.05, respectively). Proteinuria was normalized to SD control levels in Ren2-AT1 (P < 0.05) but increased further in Ren2-ETA (7.7-fold) and Ren2-ETA/B (15-fold) (P < 0.05, respectively). Glomerulosclerosis, tubulointerstitial damage and renal osteopontin mRNA expression were reduced in Ren2-AT1 (P < 0.05, respectively) but remained unchanged or increased further in Ren2-ETA and Ren2-ETA/B compared with Ren2. CONCLUSION ET receptor blockade fails to improve renal damage and mortality in primary renin-dependent hypertension.
Collapse
MESH Headings
- Acrylates/therapeutic use
- Animals
- Antihypertensive Agents/pharmacology
- Aspartic Acid Endopeptidases/biosynthesis
- Aspartic Acid Endopeptidases/drug effects
- Blood Pressure/drug effects
- Disease Models, Animal
- Endothelin A Receptor Antagonists
- Endothelin B Receptor Antagonists
- Endothelin-1/biosynthesis
- Endothelin-1/drug effects
- Endothelin-Converting Enzymes
- Glomerulosclerosis, Focal Segmental/metabolism
- Glomerulosclerosis, Focal Segmental/physiopathology
- Glomerulosclerosis, Focal Segmental/prevention & control
- Hypertension, Renal/metabolism
- Hypertension, Renal/physiopathology
- Imidazoles/therapeutic use
- Kidney/metabolism
- Kidney/pathology
- Male
- Metalloendopeptidases
- Models, Cardiovascular
- Nephritis, Interstitial/metabolism
- Nephritis, Interstitial/physiopathology
- Nephritis, Interstitial/prevention & control
- Organ Size/drug effects
- Osteopontin
- Proteinuria/urine
- RNA, Messenger/biosynthesis
- RNA, Messenger/drug effects
- Rats
- Rats, Sprague-Dawley
- Receptor, Endothelin A/metabolism
- Receptor, Endothelin B/metabolism
- Renin/metabolism
- Renin-Angiotensin System/drug effects
- Sialoglycoproteins/biosynthesis
- Sialoglycoproteins/drug effects
- Systole/drug effects
- Thiophenes
Collapse
Affiliation(s)
- Lars Rothermund
- Institut für Klinische Pharmakologie und Toxikologie and Medizinische Klinik IV Nephrologie, Campus Benjamin Franklin, Charité Universitätsmedizin Berlin, Freie Universität Berlin, Germany
| | | | | | | | | |
Collapse
|
47
|
Rong P, Campbell DJ, Skinner SL. Hypertension in the (mRen-2)27 Rat Is Not Explained by Enhanced Kinetics of Transgenic Ren-2 Renin. Hypertension 2003; 42:523-7. [PMID: 14517223 DOI: 10.1161/01.hyp.0000093383.18302.a7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Enhanced efficiency of the reaction between transgenic Ren-2 mouse renin and endogenous rat angiotensinogen has been suggested as 1 mechanism that contributes to the accelerated hypertension and increased tissue angiotensin of the (mRen-2)27 transgenic rat. This was tested in a study conducted at pH 7.4 in vitro that compared the kinetic constants of purified mouse Ren-2 and rat renin (each at 100, 75, 50, and 25 pmol/L) reacting with physiologic concentrations of rat angiotensinogen (0 to 4 μmol/L). Under these conditions, the kinetic constants for Ren-2 (
K
m
, 1.8 μmol/L;
K
cat
, 0.07/s; and
K
cat
/
K
m
, 0.04 L · μmol
−1
· s
−1
) were not different from rat renin. However, Ren-2 renin acting on its homologous mouse angiotensinogen was confirmed as being much slower. We conclude that hypertension in the Ren-2 rat is not related to renin kinetics. Other mechanisms are considered, with reference to human essential hypertension.
Collapse
Affiliation(s)
- Pei Rong
- Department of Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | | | | |
Collapse
|
48
|
Lemmer B, Witte K, Enzminger H, Schiffer S, Hauptfleisch S. Transgenic TGR(mREN2)27 rats as a model for disturbed circadian organization at the level of the brain, the heart, and the kidneys. Chronobiol Int 2003; 20:711-38. [PMID: 12916722 DOI: 10.1081/cbi-120022407] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In transgenic hypertensive TGR(mREN2)27 rats (TGR) harboring the murine Ren-2 gene an inverse 24h blood pressure (BP) profile was described in relation to a normal pattern in heart rate (HR) and motility (MA), normotensive Sprague-Dawley rats (SDR) were used as controls. Transgenic rats as an animal model of human secondary hypertension (non-dipper) was studied in detail at different levels: (1) Radiotelemetry was applied to document gross circadian rhythms/rhythm disturbances in cardiovascular functions, MA and body temperature under normal LD conditions, under DD and after a light pulse. (2) Signal transduction of the overexpressed renin-angiotensin in TGR was studied by determation of AT1-receptors in kidney glomeruli together with kidney functions. (3) Expression of key processes involved in increased sympathetic regulation in TGR, mRNAs, the tyrosine-hydroxylase (TH) and norepinephrine (NE) reuptake1-carrier were determined. (4) In the SCN mRNA of c-fos and c-jun were determined under LD and after light pulse. (5) In primary cultures of pinealocytes the effects of adrenergic agonists and antagonists were evaluated on second messenger (cAMP, cGMP) accumulation and melatonin release. The results of these studies clearly demonstrate that the additional mouse renin genin in TGR greatly affected not only the renin-angiotensin-system and led--as expected--to an increased BP in this rat but also disturbed circadian rhythms from the BP pattern down to the level of hormones, processes of signal transduction, and expression of transcription factors and clock genes. In conclusion, the expression of a single additional gene is able to disturb the circadian system of an animal in a highly complex way. These findings are importance for chronobiologic as well as pharmacologic research.
Collapse
Affiliation(s)
- Björn Lemmer
- Institute of Pharmacology and Toxicology, Ruprecht-Karls-University of Heidelberg, Mannheim, Germany.
| | | | | | | | | |
Collapse
|
49
|
Seccia TM, Belloni AS, Kreutz R, Paul M, Nussdorfer GG, Pessina AC, Rossi GP. Cardiac fibrosis occurs early and involves endothelin and AT-1 receptors in hypertension due to endogenous angiotensin II. J Am Coll Cardiol 2003; 41:666-73. [PMID: 12598081 DOI: 10.1016/s0735-1097(02)02860-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVES We investigated if endothelin (ET)-1 and the renin-angiotensin-aldosterone system play a role in cardiac fibrosis. BACKGROUND Angiotensin II (Ang II) can induce cardiac fibrosis, but the underlying mechanisms are incompletely understood. METHODS Four-week-old transgenic (mRen2)27 rat (TGRen2) received for four weeks a placebo, the mixed ET(A)/ET(B) endothelin receptor antagonist bosentan, the angiotensin II type I receptor (AT-1) antagonist irbesartan, the ET(A) endothelin receptor antagonist BMS-182874, and a combined treatment with irbesartan plus BMS-182874. We measured collagen density on Sirius red-stained serial sections of the left ventricle (LV) with a photomicroscope equipped with specific software and assessed the gene expression of procollagen alpha1(I), atrial natriuretic peptide (ANP), transforming growth factor-beta 1 (TGFbeta1), endothelin converting enzyme, and ET(B) receptor. RESULTS In the placebo group, hypertension was associated with LV hypertrophy and cardiac fibrosis (LV weight: 4.0 +/- 0.3 mg/g body weight; collagen density: 2.21 +/- 0.16%), which were all prevented with irbesartan (2.3 +/- 0.1, 1.30 +/- 0.13, p < 0.001), but not with BMS-182874 (4.0 +/- 0.2, 2.41 +/- 0.22). Bosentan also prevented fibrosis (1.39 +/- 0.18) but not hypertension and LV hypertrophy (3.38 +/- 0.27). Combined irbesartan and BMS-182874 treatment prevented LV hypertrophy (2.9 +/- 0.1) but not fibrosis (2.52 +/- 0.16). Collagen density correlated (r = 0.414, p < 0.05) with plasma aldosterone levels. In TGRen2 with LV hypertrophy, the gene expression of ANP and ET(B) but not that of TGFbeta1 and procollagen alpha1(I) was increased. CONCLUSIONS In Ang II-dependent hypertension, cardiac fibrosis was associated with LV hypertrophy and was hindered by both mixed ET(A)/ET(B) blockade and AT-1 blockade. Only the latter treatment prevented both hypertension and LV hypertrophy. Thus, there is a dissociation between the mechanisms of cardiac fibrosis and hypertension, which do and do not entail ET-1, respectively.
Collapse
Affiliation(s)
- Teresa M Seccia
- Department of Clinical Methodology and Clinical-Surgical Technologies, University of Bari, Bari, Italy
| | | | | | | | | | | | | |
Collapse
|
50
|
Wilkinson-Berka JL, Kelly DJ, Rong P, Campbell DJ, Skinner SL. Characterisation of a thymic renin-angiotensin system in the transgenic m(Ren-2)27 rat. Mol Cell Endocrinol 2002; 194:201-9. [PMID: 12242043 DOI: 10.1016/s0303-7207(02)00217-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We previously showed the rat thymus contains and secretes active renin. However, the cellular location of the thymic renin-angiotensin system (RAS) is unknown. To more easily study the thymic RAS we used the hypertensive transgenic (mRen-2)27 rat which overexpresses renin and angiotensin in extra-renal tissues. Comparisons were made with normotensive Sprague Dawley (SD) rats. All rats exhibited intense immunolabeling for renin protein and angiotensin in macrophages and thymic epithelial cells, however renin prosequence was not detected. In each rat strain, thymic renin was predominately active and highest in Ren-2 rats (Ren-2, 22.6+/-4.2, SD 0.8+/-0.1 mGoldblatt Units/g, mean+/-SEM). Renin mRNA was identified in Ren-2 and SD rat thymus by RT-PCR. Thymic angiotensin II concentrations/wet weight in Ren-2 (20.1+/-1.1 fmol/g) and SD (15.8+/-2.3 fmol/g) rats were similar to plasma. In conclusion, macrophages and epithelial cells are the source of active renin in the rat thymus. The thymic RAS may have actions systemically and may also influence local processes such as blood flow and cell growth.
Collapse
Affiliation(s)
- Jennifer L Wilkinson-Berka
- Department of Physiology, The University of Melbourne, Grattan Street, Parkville 3010, Victoria, Australia.
| | | | | | | | | |
Collapse
|