1
|
Brandhorst D, Brandhorst H, Acreman S, Johnson PRV. Perlecan: An Islet Basement Membrane Protein with Protective Anti-Inflammatory Characteristics. Bioengineering (Basel) 2024; 11:828. [PMID: 39199786 PMCID: PMC11351669 DOI: 10.3390/bioengineering11080828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/07/2024] [Accepted: 08/10/2024] [Indexed: 09/01/2024] Open
Abstract
Throughout the isolation process, human islets are subjected to destruction of the islet basement membrane (BM) and reduced oxygen supply. Reconstruction of the BM represents an option to improve islet function and survival post-transplant and may particularly be relevant for islet encapsulation devices and scaffolds. In the present study, we assessed whether Perlecan, used alone or combined with the BM proteins (BMPs) Collagen-IV and Laminin-521, has the ability to protect isolated human islets from hypoxia-induced damage. Islets isolated from the pancreas of seven different organ donors were cultured for 4-5 days at 2% oxygen in plain CMRL (sham-treated controls) or in CMRL supplemented with BMPs used either alone or in combination. Postculture, islets were characterized regarding survival, in vitro function and production of chemokines and reactive oxygen species (ROS). Individually added BMPs significantly doubled islet survival and increased in vitro function. Combining BMPs did not provide a synergistic effect. Among the tested BMPs, Perlecan demonstrated the significantly strongest inhibitory effect on chemokine and ROS production when compared with sham-treatment (p < 0.001). Perlecan may be useful to improve islet survival prior to and after transplantation. Its anti-inflammatory potency should be considered to optimise encapsulation and scaffolds to protect isolated human islets post-transplant.
Collapse
Affiliation(s)
- Daniel Brandhorst
- Islet Transplant Research Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 9DU, UK; (H.B.)
- Oxford Consortium for Islet Transplantation, Oxford Centre for Diabetes, Endocrinology, and Metabolism (OCDEM), Churchill Hospital, University of Oxford, Oxford OX3 7LE, UK
| | - Heide Brandhorst
- Islet Transplant Research Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 9DU, UK; (H.B.)
- Oxford Consortium for Islet Transplantation, Oxford Centre for Diabetes, Endocrinology, and Metabolism (OCDEM), Churchill Hospital, University of Oxford, Oxford OX3 7LE, UK
| | - Samuel Acreman
- Islet Transplant Research Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 9DU, UK; (H.B.)
| | - Paul R. V. Johnson
- Islet Transplant Research Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 9DU, UK; (H.B.)
- Oxford Consortium for Islet Transplantation, Oxford Centre for Diabetes, Endocrinology, and Metabolism (OCDEM), Churchill Hospital, University of Oxford, Oxford OX3 7LE, UK
| |
Collapse
|
2
|
Das A, Franco JA, Mulcahy B, Wang L, Chapman D, Jaisinghani C, Pruitt BL, Zhen M, Goodman MB. C. elegans touch receptor neurons direct mechanosensory complex organization via repurposing conserved basal lamina proteins. Curr Biol 2024; 34:3133-3151.e10. [PMID: 38964319 PMCID: PMC11283674 DOI: 10.1016/j.cub.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/13/2024] [Accepted: 06/06/2024] [Indexed: 07/06/2024]
Abstract
The sense of touch is conferred by the conjoint function of somatosensory neurons and skin cells. These cells meet across a gap filled by a basal lamina, an ancient structure found in metazoans. Using Caenorhabditis elegans, we investigate the composition and ultrastructure of the extracellular matrix at the epidermis and touch receptor neuron (TRN) interface. We show that membrane-matrix complexes containing laminin, nidogen, and the MEC-4 mechano-electrical transduction channel reside at this interface and are central to proper touch sensation. Interestingly, the dimensions and spacing of these complexes correspond with the discontinuous beam-like extracellular matrix structures observed in serial-section transmission electron micrographs. These complexes fail to coalesce in touch-insensitive extracellular matrix mutants and in dissociated neurons. Loss of nidogen reduces the density of mechanoreceptor complexes and the amplitude of the touch-evoked currents they carry. Thus, neuron-epithelium cell interfaces are instrumental in mechanosensory complex assembly and function. Unlike the basal lamina ensheathing the pharynx and body wall muscle, nidogen recruitment to the puncta along TRNs is not dependent upon laminin binding. MEC-4, but not laminin or nidogen, is destabilized by point mutations in the C-terminal Kunitz domain of the extracellular matrix component, MEC-1. These findings imply that somatosensory neurons secrete proteins that actively repurpose the basal lamina to generate special-purpose mechanosensory complexes responsible for vibrotactile sensing.
Collapse
Affiliation(s)
- Alakananda Das
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA
| | - Joy A Franco
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Ben Mulcahy
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Lingxin Wang
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA
| | - Dail Chapman
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA
| | - Chandni Jaisinghani
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA
| | - Beth L Pruitt
- Departments of Mechanical Engineering and Molecular, Cellular, & Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Mei Zhen
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Miriam B Goodman
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
3
|
Wohlgemuth RP, Brashear SE, Smith LR. Alignment, cross linking, and beyond: a collagen architect's guide to the skeletal muscle extracellular matrix. Am J Physiol Cell Physiol 2023; 325:C1017-C1030. [PMID: 37661921 PMCID: PMC10635663 DOI: 10.1152/ajpcell.00287.2023] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/27/2023] [Accepted: 08/27/2023] [Indexed: 09/05/2023]
Abstract
The muscle extracellular matrix (ECM) forms a complex network of collagens, proteoglycans, and other proteins that produce a favorable environment for muscle regeneration, protect the sarcolemma from contraction-induced damage, and provide a pathway for the lateral transmission of contractile force. In each of these functions, the structure and organization of the muscle ECM play an important role. Many aspects of collagen architecture, including collagen alignment, cross linking, and packing density affect the regenerative capacity, passive mechanical properties, and contractile force transmission pathways of skeletal muscle. The balance between fortifying the muscle ECM and maintaining ECM turnover and compliance is highly dependent on the integrated organization, or architecture, of the muscle matrix, especially related to collagen. While muscle ECM remodeling patterns in response to exercise and disease are similar, in that collagen synthesis can increase in both cases, one outcome leads to a stronger muscle and the other leads to fibrosis. In this review, we provide a comprehensive analysis of the architectural features of each layer of muscle ECM: epimysium, perimysium, and endomysium. Further, we detail the importance of muscle ECM architecture to biomechanical function in the context of exercise or fibrosis, including disease, injury, and aging. We describe how collagen architecture is linked to active and passive muscle biomechanics and which architectural features are acutely dynamic and adapt over time. Future studies should investigate the significance of collagen architecture in muscle stiffness, ECM turnover, and lateral force transmission in the context of health and fibrosis.
Collapse
Affiliation(s)
- Ross P Wohlgemuth
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, California, United States
| | - Sarah E Brashear
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, California, United States
| | - Lucas R Smith
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, California, United States
- Department of Physical Medicine and Rehabilitation, University of California, Davis, California, United States
| |
Collapse
|
4
|
Abstract
The basement membrane (BM) is a thin, planar-organized extracellular matrix that underlies epithelia and surrounds most organs. During development, the BM is highly dynamic and simultaneously provides mechanical properties that stabilize tissue structure and shape organs. Moreover, it is important for cell polarity, cell migration, and cell signaling. Thereby BM diverges regarding molecular composition, structure, and modes of assembly. Different BM organization leads to various physical features. The mechanisms that regulate BM composition and structure and how this affects mechanical properties are not fully understood. Recent studies show that precise control of BM deposition or degradation can result in BMs with locally different protein densities, compositions, thicknesses, or polarization. Such heterogeneous matrices can induce temporospatial force anisotropy and enable tissue sculpting. In this Review, I address recent findings that provide new perspectives on the role of the BM in morphogenesis.
Collapse
Affiliation(s)
- Uwe Töpfer
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada, V6T 1Z3
| |
Collapse
|
5
|
Smith DW, Azadi A, Lee CJ, Gardiner BS. Spatial composition and turnover of the main molecules in the adult glomerular basement membrane. Tissue Barriers 2023; 11:2110798. [PMID: 35959954 PMCID: PMC10364650 DOI: 10.1080/21688370.2022.2110798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/31/2022] [Accepted: 08/03/2022] [Indexed: 10/15/2022] Open
Abstract
The glomerular basement membrane (GBM) is an important tissue structure in kidney function. It is the membrane through which filtrate and solutes must pass to reach the nephron tubules. This review focuses on the spatial location of the main extracellular matrix components of the GBM. It also attempts to explain this organization in terms of their synthesis, transport, and loss. The picture that emerges is that the collagen IV and laminin content of GBM are in a very slow dynamic disequilibrium, leading to GBM thickening with age, and in contrast, some heparan sulfate proteoglycans are in a dynamic equilibrium with a very rapid turnover (i.e. half-life measured in ~hours) and flow direction against the flow of filtrate. The highly rapid heparan sulfate turnover may serve several roles, including an unclogging mechanism for the GBM, compressive stiffness of the GBM fiber network, and/or enabling podocycte-endothelial crosstalk against the flow of filtrate.
Collapse
Affiliation(s)
- David W. Smith
- Faculty of Engineering and Mathematical Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Azin Azadi
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, Western Australia, Australia
| | - Chang-Joon Lee
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, Western Australia, Australia
| | - Bruce S. Gardiner
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, Western Australia, Australia
| |
Collapse
|
6
|
Schüler SC, Liu Y, Dumontier S, Grandbois M, Le Moal E, Cornelison DDW, Bentzinger CF. Extracellular matrix: Brick and mortar in the skeletal muscle stem cell niche. Front Cell Dev Biol 2022; 10:1056523. [PMID: 36523505 PMCID: PMC9745096 DOI: 10.3389/fcell.2022.1056523] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/03/2022] [Indexed: 11/30/2022] Open
Abstract
The extracellular matrix (ECM) is an interconnected macromolecular scaffold occupying the space between cells. Amongst other functions, the ECM provides structural support to tissues and serves as a microenvironmental niche that conveys regulatory signals to cells. Cell-matrix adhesions, which link the ECM to the cytoskeleton, are dynamic multi-protein complexes containing surface receptors and intracellular effectors that control various downstream pathways. In skeletal muscle, the most abundant tissue of the body, each individual muscle fiber and its associated muscle stem cells (MuSCs) are surrounded by a layer of ECM referred to as the basal lamina. The core scaffold of the basal lamina consists of self-assembling polymeric laminins and a network of collagens that tether proteoglycans, which provide lateral crosslinking, establish collateral associations with cell surface receptors, and serve as a sink and reservoir for growth factors. Skeletal muscle also contains the fibrillar collagenous interstitial ECM that plays an important role in determining tissue elasticity, connects the basal laminae to each other, and contains matrix secreting mesenchymal fibroblast-like cell types and blood vessels. During skeletal muscle regeneration fibroblast-like cell populations expand and contribute to the transitional fibronectin-rich regenerative matrix that instructs angiogenesis and MuSC function. Here, we provide a comprehensive overview of the role of the skeletal muscle ECM in health and disease and outline its role in orchestrating tissue regeneration and MuSC function.
Collapse
Affiliation(s)
- Svenja C. Schüler
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Yuguo Liu
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Simon Dumontier
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Michel Grandbois
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Emmeran Le Moal
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - DDW Cornelison
- Division of Biological Sciences Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - C. Florian Bentzinger
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
7
|
Zhang JL, Richetti S, Ramezani T, Welcker D, Lütke S, Pogoda HM, Hatzold J, Zaucke F, Keene DR, Bloch W, Sengle G, Hammerschmidt M. Vertebrate extracellular matrix protein hemicentin-1 interacts physically and genetically with basement membrane protein nidogen-2. Matrix Biol 2022; 112:132-154. [PMID: 36007682 PMCID: PMC10015821 DOI: 10.1016/j.matbio.2022.08.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/18/2022] [Accepted: 08/20/2022] [Indexed: 11/19/2022]
Abstract
Hemicentins are large proteins of the extracellular matrix that belong to the fibulin family and play pivotal roles during development and homeostasis of a variety of invertebrate and vertebrate tissues. However, bona fide interaction partners of hemicentins have not been described as yet. Here, applying surface plasmon resonance spectroscopy and co-immunoprecipitation, we identify the basement membrane protein nidogen-2 (NID2) as a binding partner of mouse and zebrafish hemicentin-1 (HMCN1), in line with the formerly described essential role of mouse HMCN1 in basement membrane integrity. We show that HMCN1 binds to the same protein domain of NID2 (G2) as formerly shown for laminins, but with an approximately 3.5-fold lower affinity and in a competitive manner. Furthermore, immunofluorescence and immunogold labeling revealed that HMCN1/Hmcn1 is localized close to basement membranes and in partial overlap with NID2/Nid2a in different tissues of mouse and zebrafish. Genetic knockout and antisense-mediated knockdown studies in zebrafish further show that loss of Nid2a leads to similar defects in fin fold morphogenesis as the loss of Laminin-α5 (Lama5) or Hmcn1. Finally, combined partial loss-of-function studies indicated that nid2a genetically interacts with both hmcn1 and lama5. Together, these findings suggest that despite their mutually exclusive physical binding, hemicentins, nidogens, and laminins tightly cooperate and support each other during formation, maintenance, and function of basement membranes to confer tissue linkage.
Collapse
Affiliation(s)
- Jin-Li Zhang
- Institute of Zoology, Developmental Biology Unit, University of Cologne, Cologne, Germany
| | - Stefania Richetti
- Institute of Zoology, Developmental Biology Unit, University of Cologne, Cologne, Germany
| | - Thomas Ramezani
- Institute of Zoology, Developmental Biology Unit, University of Cologne, Cologne, Germany
| | - Daniela Welcker
- Institute of Zoology, Developmental Biology Unit, University of Cologne, Cologne, Germany
| | - Steffen Lütke
- Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Hans-Martin Pogoda
- Institute of Zoology, Developmental Biology Unit, University of Cologne, Cologne, Germany
| | - Julia Hatzold
- Institute of Zoology, Developmental Biology Unit, University of Cologne, Cologne, Germany
| | - Frank Zaucke
- Research Unit for Osteoarthritis, Department for Orthopedics, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Douglas R Keene
- Micro-Imaging Center, Shriners Hospital for Children, Portland, OR, United States
| | - Wilhelm Bloch
- Institute of Cardiology and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Gerhard Sengle
- Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Cologne Center for Musculoskeletal Biomechanics (CCMB), University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Matthias Hammerschmidt
- Institute of Zoology, Developmental Biology Unit, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
| |
Collapse
|
8
|
Han N, Li X, Wang Y, Li H, Zhang C, Zhao X, Zhang Z, Ruan M, Zhang C. HIF-1α induced NID1 expression promotes pulmonary metastases via the PI3K-AKT pathway in salivary gland adenoid cystic carcinoma. Oral Oncol 2022; 131:105940. [DOI: 10.1016/j.oraloncology.2022.105940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/14/2022] [Accepted: 05/24/2022] [Indexed: 10/18/2022]
|
9
|
Allnoch L, Leitzen E, Zdora I, Baumgärtner W, Hansmann F. Astrocyte depletion alters extracellular matrix composition in the demyelinating phase of Theiler's murine encephalomyelitis. PLoS One 2022; 17:e0270239. [PMID: 35714111 PMCID: PMC9205503 DOI: 10.1371/journal.pone.0270239] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/07/2022] [Indexed: 12/14/2022] Open
Abstract
Astrocytes produce extracellular matrix (ECM) glycoproteins contributing to the blood-brain barrier and regulating the immune response in the central nervous system (CNS). The aim of this study was to investigate the impact of astrocyte depletion upon the clinical outcome and the composition of ECM glycoproteins in a virus-induced animal model of demyelination. Glial fibrillary acidic protein (GFAP)-thymidine-kinase transgenic SJL (GFAP-knockout) and wildtype mice were infected with Theiler’s murine encephalomyelitis virus (TMEV). Astrocyte depletion was induced during the progressive, demyelinating disease phase by ganciclovir administration once daily between 56 and 77 days post infection (dpi). At 77 dpi GFAP-knockout mice showed a significant deterioration of clinical signs associated with a reduction of azan and picrosirius red stained ECM-molecules in the thoracic spinal cord. Basement-membrane-associated ECM-molecules including laminin, entactin/nidogen-1 and Kir4.1 as well as non-basement membrane-associated ECM-molecules like collagen I, decorin, tenascin-R and CD44 were significantly reduced in the spinal cord of GFAP-knockout mice. The reduction of the investigated ECM-molecules demonstrates that astrocytes play a key role in the production of ECM-molecules. The present findings indicate that the detected loss of Kir4.1 and CD44 as well as the disruption of the integrity of perineuronal nets led to the deterioration of clinical signs in GFAP-knockout mice.
Collapse
Affiliation(s)
- Lisa Allnoch
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Eva Leitzen
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Isabel Zdora
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
- * E-mail:
| | - Florian Hansmann
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
- Institute for Veterinary Pathology, Veterinary Faculty, Leipzig University, Leipzig, Germany
| |
Collapse
|
10
|
Zhou S, Chen S, Pei YA, Pei M. Nidogen: A matrix protein with potential roles in musculoskeletal tissue regeneration. Genes Dis 2022; 9:598-609. [PMID: 35782975 PMCID: PMC9243345 DOI: 10.1016/j.gendis.2021.03.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/03/2021] [Accepted: 03/24/2021] [Indexed: 12/14/2022] Open
Abstract
Basement membrane proteins are known to guide cell structures, differentiation, and tissue repair. Although there is a wealth of knowledge on the functions of laminins, perlecan, and type IV collagen in maintaining tissue homeostasis, not much is known about nidogen. As a key molecule in the basement membrane, nidogen contributes to the formation of a delicate microenvironment that proves necessary for stem cell lineage-specific differentiation. In this review, the expression of nidogen is delineated at both cellular and tissue levels from embryonic to adult stages of development; the effect of nidogens is also summarized in the context of musculoskeletal development and regeneration, including but not limited to adipogenesis, angiogenesis, chondrogenesis, myogenesis, and neurogenesis. Furthermore, potential mechanisms underlying the role of nidogens in stem cell-based tissue regeneration are also discussed. This concise review is expected to facilitate our existing understanding and utilization of nidogen in tissue engineering and regeneration.
Collapse
|
11
|
Solarte David VA, Güiza-Argüello VR, Arango-Rodríguez ML, Sossa CL, Becerra-Bayona SM. Decellularized Tissues for Wound Healing: Towards Closing the Gap Between Scaffold Design and Effective Extracellular Matrix Remodeling. Front Bioeng Biotechnol 2022; 10:821852. [PMID: 35252131 PMCID: PMC8896438 DOI: 10.3389/fbioe.2022.821852] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/28/2022] [Indexed: 12/27/2022] Open
Abstract
The absence or damage of a tissue is the main cause of most acute or chronic diseases and are one of the appealing challenges that novel therapeutic alternatives have, in order to recover lost functions through tissue regeneration. Chronic cutaneous lesions are the most frequent cause of wounds, being a massive area of regenerative medicine and tissue engineering to have efforts to develop new bioactive medical products that not only allow an appropriate and rapid healing, but also avoid severe complications such as bacterial infections. In tissue repair and regeneration processes, there are several overlapping stages that involve the synergy of cells, the extracellular matrix (ECM) and biomolecules, which coordinate processes of ECM remodeling as well as cell proliferation and differentiation. Although these three components play a crucial role in the wound healing process, the ECM has the function of acting as a biological platform to permit the correct interaction between them. In particular, ECM is a mixture of crosslinked proteins that contain bioactive domains that cells recognize in order to promote migration, proliferation and differentiation. Currently, tissue engineering has employed several synthetic polymers to design bioactive scaffolds to mimic the native ECM, by combining biopolymers with growth factors including collagen and fibrinogen. Among these, decellularized tissues have been proposed as an alternative for reconstructing cutaneous lesions since they maintain the complex protein conformation, providing the required functional domains for cell differentiation. In this review, we present an in-depth discussion of different natural matrixes recently employed for designing novel therapeutic alternatives for treating cutaneous injuries, and overview some future perspectives in this area.
Collapse
Affiliation(s)
- Víctor Alfonso Solarte David
- Program of Medicine, Faculty of Health Sciences, Universidad Autónoma de Bucaramanga, Bucaramanga, Colombia
- Program of Biomedical Engineering, Faculty of Engineering, Universidad Autónoma de Bucaramanga, Bucaramanga, Colombia
| | - Viviana Raquel Güiza-Argüello
- Metallurgical Engineering and Materials Science Department, Faculty of Physicochemical Engineering, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Martha L. Arango-Rodríguez
- Multi-tissue Bank and Advanced Therapy Center, Fundación Oftalmológica de Santander, Clínica Carlos Ardila Lulle, Floridablanca, Colombia
| | - Claudia L. Sossa
- Program of Medicine, Faculty of Health Sciences, Universidad Autónoma de Bucaramanga, Bucaramanga, Colombia
- Multi-tissue Bank and Advanced Therapy Center, Fundación Oftalmológica de Santander, Clínica Carlos Ardila Lulle, Floridablanca, Colombia
| | - Silvia M. Becerra-Bayona
- Program of Medicine, Faculty of Health Sciences, Universidad Autónoma de Bucaramanga, Bucaramanga, Colombia
- *Correspondence: Silvia M. Becerra-Bayona,
| |
Collapse
|
12
|
Mao C, Ma Z, Jia Y, Li W, Xie N, Zhao G, Ma B, Yu F, Sun J, Zhou Y, Cui Q, Fu Y, Kong W. Nidogen-2 Maintains the Contractile Phenotype of Vascular Smooth Muscle Cells and Prevents Neointima Formation via Bridging Jagged1-Notch3 Signaling. Circulation 2021; 144:1244-1261. [PMID: 34315224 DOI: 10.1161/circulationaha.120.053361] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: How the extracellular matrix (ECM) microenvironment modulates the contractile phenotype of vascular smooth muscle cells (VSMCs) and confers vascular homeostasis remains elusive. Methods: To explore the key ECM proteins in the maintenance of the contractile phenotype of VSMCs, we applied protein-protein interaction (PPI) network analysis to explore novel ECM proteins associated with the VSMC phenotype. By combining in vitro and in vivo genetic mice vascular injury model, we identified nidogen-2, a basement membrane (BM) glycoprotein, as a key ECM protein for maintenance of vascular smooth muscle cell identity. Results: We collected a VSMC phenotype-related gene dataset (VSMCPRG dataset) by using Gene Ontology (GO) annotation combined with a literature search. A computational analysis of protein-protein interactions between ECM protein genes and the genes from the VSMCPRG dataset revealed the candidate gene nidogen-2, a BM glycoprotein involved in regulation of the VSMC phenotype. Indeed, nidogen-2-deficient VSMCs exhibited loss of contractile phenotype in vitro, and compared with wild-type (WT) mice, nidogen-2-/- mice showed aggravated post-wire injury neointima formation of carotid arteries. Further bioinformatics analysis, co-immunoprecipitation assays and luciferase assays revealed that nidogen-2 specifically interacted with Jagged1, a conventional Notch ligand. Nidogen-2 maintained the VSMC contractile phenotype via Jagged1-Notch3 signaling but not Notch1 or Notch2 signaling. Notably, nidogen-2 enhanced Jagged1 and Notch3 interaction and subsequent Notch3 activation. Reciprocally, Jagged1 and Notch3 interaction, signaling activation, and Jagged1-triggered VSMC differentiation were significantly repressed in nidogen-2-deficient VSMCs. In accordance, the suppressive effect of Jagged1 overexpression on neointima formation was attenuated in nidogen-2-/- mice compared to wild-type mice. Conclusions: Nidogen-2 maintains the contractile phenotype of VSMCs through Jagged1-Notch3 signaling in vitro and in vivo. Nidogen-2 is required for Jagged1-Notch3 signaling.
Collapse
Affiliation(s)
- Chenfeng Mao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Zihan Ma
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Yiting Jia
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Weihao Li
- Department of Vascular Surgery, Peking University People's Hospital, Peking University, Beijing, China
| | - Nan Xie
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Guizhen Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Baihui Ma
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Fang Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Jinpeng Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yuan Zhou
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Qinghua Cui
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yi Fu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Wei Kong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| |
Collapse
|
13
|
Zhang B, Xu C, Liu J, Yang J, Gao Q, Ye F. Nidogen-1 expression is associated with overall survival and temozolomide sensitivity in low-grade glioma patients. Aging (Albany NY) 2021; 13:9085-9107. [PMID: 33735110 PMCID: PMC8034893 DOI: 10.18632/aging.202789] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 02/16/2021] [Indexed: 12/23/2022]
Abstract
We investigated the prognostic significance of nidogen-1 (NID1) in glioma. Oncomine, GEPIA, UALCAN, CCGA database analyses showed that NID1 transcript levels were significantly upregulated in multiple cancer types, including gliomas. Quantitative RT-PCR analyses confirmed that NID1 expression was significantly upregulated in glioma tissues compared to paired adjacent normal brain tissue samples (n=9). NID1 silencing enhanced in vitro apoptosis and the temozolomide sensitivity of U251 and U87-MG glioma cells. Protein-protein interaction network analysis using the STRING and GeneMANIA databases showed that NID1 interacts with several extracellular matrix proteins. TIMER database analysis showed that NID1 expression in low-grade gliomas was associated with tumor infiltration of B cells, CD4+ and CD8+ T cells, macrophages, neutrophils, and dendritic cells. Kaplan-Meier survival curve analysis showed that low-grade gliomas patients with high NID1 expression were associated with shorter overall survival. However, NID1 expression was not associated with overall survival in glioblastoma multiforme patients. These findings demonstrate that NID1 expression in glioma tissues is associated with overall survival of low-grade glioma patients and temozolomide sensitivity. NID1 is thus a potential prognostic biomarker and therapeutic target in low-grade glioma patients.
Collapse
Affiliation(s)
- Baiwei Zhang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng Xu
- Cancer Biology Research Center, Key Laboratory of the Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junfeng Liu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinsheng Yang
- Department of Neurosurgery, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Qinglei Gao
- Cancer Biology Research Center, Key Laboratory of the Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Ye
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
14
|
Aumailley M. Laminins and interaction partners in the architecture of the basement membrane at the dermal-epidermal junction. Exp Dermatol 2020; 30:17-24. [PMID: 33205478 DOI: 10.1111/exd.14239] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/27/2020] [Accepted: 11/05/2020] [Indexed: 02/06/2023]
Abstract
The basement membrane at the dermal-epidermal junction keeps the epidermis attached to the dermis. This anatomical barrier is made up of four categories of extracellular matrix proteins: collagen IV, laminin, nidogen and perlecan. These proteins are precisely arranged in a well-defined architecture through specific interactions between the structural domains of the individual components. Some of the molecular constituents are provided by both fibroblasts and keratinocytes, while others are synthesized exclusively by fibroblasts or keratinocytes. It remains to be determined how the components from the fibroblasts are targeted to the dermal-epidermal junction and correctly organized and integrated with the proteins from the adjacent keratinocytes to form the basement membrane.
Collapse
Affiliation(s)
- Monique Aumailley
- Medical Faculty, Center for Biochemistry, University of Cologne, Cologne, Germany
| |
Collapse
|
15
|
Mutgan AC, Jandl K, Kwapiszewska G. Endothelial Basement Membrane Components and Their Products, Matrikines: Active Drivers of Pulmonary Hypertension? Cells 2020; 9:cells9092029. [PMID: 32899187 PMCID: PMC7563239 DOI: 10.3390/cells9092029] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/27/2020] [Accepted: 08/29/2020] [Indexed: 12/19/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a vascular disease that is characterized by elevated pulmonary arterial pressure (PAP) due to progressive vascular remodeling. Extracellular matrix (ECM) deposition in pulmonary arteries (PA) is one of the key features of vascular remodeling. Emerging evidence indicates that the basement membrane (BM), a specialized cluster of ECM proteins underlying the endothelium, may be actively involved in the progression of vascular remodeling. The BM and its steady turnover are pivotal for maintaining appropriate vascular functions. However, the pathologically elevated turnover of BM components leads to an increased release of biologically active short fragments, which are called matrikines. Both BM components and their matrikines can interfere with pivotal biological processes, such as survival, proliferation, adhesion, and migration and thus may actively contribute to endothelial dysfunction. Therefore, in this review, we summarize the emerging role of the BM and its matrikines on the vascular endothelium and further discuss its implications on lung vascular remodeling in pulmonary hypertension.
Collapse
Affiliation(s)
- Ayse Ceren Mutgan
- Otto Loewi Research Center, Division of Physiology, Medical University of Graz, 8010 Graz, Austria;
| | - Katharina Jandl
- Ludwig Boltzmann Institute for Lung Vascular Research, 8010 Graz, Austria;
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria
| | - Grazyna Kwapiszewska
- Otto Loewi Research Center, Division of Physiology, Medical University of Graz, 8010 Graz, Austria;
- Ludwig Boltzmann Institute for Lung Vascular Research, 8010 Graz, Austria;
- Correspondence:
| |
Collapse
|
16
|
Abstract
The glomerular basement membrane (GBM) is a key component of the glomerular capillary wall and is essential for kidney filtration. The major components of the GBM include laminins, type IV collagen, nidogens and heparan sulfate proteoglycans. In addition, the GBM harbours a number of other structural and regulatory components and provides a reservoir for growth factors. New technologies have improved our ability to study the composition and assembly of basement membranes. We now know that the GBM is a complex macromolecular structure that undergoes key transitions during glomerular development. Defects in GBM components are associated with a range of hereditary human diseases such as Alport syndrome, which is caused by defects in the genes COL4A3, COL4A4 and COL4A5, and Pierson syndrome, which is caused by variants in LAMB2. In addition, the GBM is affected by acquired autoimmune disorders and metabolic diseases such as diabetes mellitus. Current treatments for diseases associated with GBM involvement aim to reduce intraglomerular pressure and to treat the underlying cause where possible. As our understanding about the maintenance and turnover of the GBM improves, therapies to replace GBM components or to stimulate GBM repair could translate into new therapies for patients with GBM-associated disease.
Collapse
|
17
|
Yeow YL, Kotamraju VR, Wang X, Chopra M, Azme N, Wu J, Schoep TD, Delaney DS, Feindel K, Li J, Kennedy KM, Allen WM, Kennedy BF, Larma I, Sampson DD, Mahakian LM, Fite BZ, Zhang H, Friman T, Mann AP, Aziz FA, Kumarasinghe MP, Johansson M, Ee HC, Yeoh G, Mou L, Ferrara KW, Billiran H, Ganss R, Ruoslahti E, Hamzah J. Immune-mediated ECM depletion improves tumour perfusion and payload delivery. EMBO Mol Med 2019; 11:e10923. [PMID: 31709774 PMCID: PMC6895610 DOI: 10.15252/emmm.201910923] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 09/26/2019] [Accepted: 10/09/2019] [Indexed: 12/18/2022] Open
Abstract
High extracellular matrix (ECM) content in solid cancers impairs tumour perfusion and thus access of imaging and therapeutic agents. We have devised a new approach to degrade tumour ECM, which improves uptake of circulating compounds. We target the immune‐modulating cytokine, tumour necrosis factor alpha (TNFα), to tumours using a newly discovered peptide ligand referred to as CSG. This peptide binds to laminin–nidogen complexes in the ECM of mouse and human carcinomas with little or no peptide detected in normal tissues, and it selectively delivers a recombinant TNFα‐CSG fusion protein to tumour ECM in tumour‐bearing mice. Intravenously injected TNFα‐CSG triggered robust immune cell infiltration in mouse tumours, particularly in the ECM‐rich zones. The immune cell influx was accompanied by extensive ECM degradation, reduction in tumour stiffness, dilation of tumour blood vessels, improved perfusion and greater intratumoral uptake of the contrast agents gadoteridol and iron oxide nanoparticles. Suppressed tumour growth and prolonged survival of tumour‐bearing mice were observed. These effects were attainable without the usually severe toxic side effects of TNFα.
Collapse
Affiliation(s)
- Yen Ling Yeow
- Harry Perkins Institute of Medical Research, Centre for Medical Research, QEII Medical Centre, The University of Western Australia, Perth, WA, Australia
| | | | - Xiao Wang
- Harry Perkins Institute of Medical Research, Centre for Medical Research, QEII Medical Centre, The University of Western Australia, Perth, WA, Australia
| | - Meenu Chopra
- Harry Perkins Institute of Medical Research, Centre for Medical Research, QEII Medical Centre, The University of Western Australia, Perth, WA, Australia
| | - Nasibah Azme
- Harry Perkins Institute of Medical Research, Centre for Medical Research, QEII Medical Centre, The University of Western Australia, Perth, WA, Australia
| | - Jiansha Wu
- Harry Perkins Institute of Medical Research, Centre for Medical Research, QEII Medical Centre, The University of Western Australia, Perth, WA, Australia
| | | | - Derek S Delaney
- Harry Perkins Institute of Medical Research, Centre for Medical Research, QEII Medical Centre, The University of Western Australia, Perth, WA, Australia
| | - Kirk Feindel
- Centre for Microscopy, Characterisation & Analysis, The University of Western Australia, Perth, WA, Australia
| | - Ji Li
- Harry Perkins Institute of Medical Research, Centre for Medical Research, QEII Medical Centre, The University of Western Australia, Perth, WA, Australia
| | - Kelsey M Kennedy
- Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, Perth, WA, Australia
| | - Wes M Allen
- Harry Perkins Institute of Medical Research, Centre for Medical Research, QEII Medical Centre, The University of Western Australia, Perth, WA, Australia.,Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, Perth, WA, Australia
| | - Brendan F Kennedy
- Harry Perkins Institute of Medical Research, Centre for Medical Research, QEII Medical Centre, The University of Western Australia, Perth, WA, Australia.,Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, Perth, WA, Australia
| | - Irma Larma
- Centre for Microscopy, Characterisation & Analysis, The University of Western Australia, Perth, WA, Australia
| | - David D Sampson
- Centre for Microscopy, Characterisation & Analysis, The University of Western Australia, Perth, WA, Australia.,Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, Perth, WA, Australia
| | - Lisa M Mahakian
- Department of Biomedical Engineering, University of California Davis, Davis, CA, USA
| | - Brett Z Fite
- Department of Biomedical Engineering, University of California Davis, Davis, CA, USA
| | - Hua Zhang
- Department of Biomedical Engineering, University of California Davis, Davis, CA, USA
| | - Tomas Friman
- Cancer Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Aman P Mann
- Cancer Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Farah A Aziz
- Sir Charles Gairdner Hospital, Perth, WA, Australia
| | | | | | - Hooi C Ee
- Sir Charles Gairdner Hospital, Perth, WA, Australia
| | - George Yeoh
- Harry Perkins Institute of Medical Research, Centre for Medical Research, QEII Medical Centre, The University of Western Australia, Perth, WA, Australia
| | - Lingjun Mou
- Sir Charles Gairdner Hospital, Perth, WA, Australia
| | - Katherine W Ferrara
- Department of Biomedical Engineering, University of California Davis, Davis, CA, USA
| | - Hector Billiran
- Cancer Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Ruth Ganss
- Harry Perkins Institute of Medical Research, Centre for Medical Research, QEII Medical Centre, The University of Western Australia, Perth, WA, Australia
| | - Erkki Ruoslahti
- Cancer Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Juliana Hamzah
- Harry Perkins Institute of Medical Research, Centre for Medical Research, QEII Medical Centre, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
18
|
Hsu CW, Chang KP, Huang Y, Liu HP, Hsueh PC, Gu PW, Yen WC, Wu CC. Proteomic Profiling of Paired Interstitial Fluids Reveals Dysregulated Pathways and Salivary NID1 as a Biomarker of Oral Cavity Squamous Cell Carcinoma. Mol Cell Proteomics 2019; 18:1939-1949. [PMID: 31315917 PMCID: PMC6773556 DOI: 10.1074/mcp.ra119.001654] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Indexed: 11/06/2022] Open
Abstract
Patients with oral cavity squamous cell carcinoma (OSCC) are frequently first diagnosed at an advanced stage, leading to poor prognosis and high mortality rates. Early detection of OSCC using body fluid-accessible biomarkers may improve the prognosis and survival rate of OSCC patients. As tumor interstitial fluid is a proximal fluid enriched with cancer-related proteins, it is a useful reservoir suitable for the discovery of cancer biomarkers and dysregulated biological pathways in tumor microenvironments. Thus, paired interstitial fluids of tumor (TIF) and adjacent noncancerous (NIF) tissues from 10 OSCC patients were harvested and analyzed using one-dimensional gel electrophoresis coupled with liquid chromatography-tandem mass spectrometry (GeLC-MS/MS). Using label-free spectral counting-based quantification, 113 proteins were found to be up-regulated in the TIFs compared with the NIFs. The gene set enrichment analysis (GSEA) revealed that the differentially expressed TIF proteins were highly associated with aminoacyl tRNA biosynthesis pathway. The elevated levels of 4 proteins (IARS, KARS, WARS, and YARS) involved in the aminoacyl tRNA biosynthesis were verified in the OSCC tissues with immunohistochemistry (IHC). In addition, nidogen-1 (NID1) was selected for verification as an OSCC biomarker. Salivary level of NID1 in OSCC patients (n = 48) was significantly higher than that in the healthy individuals (n = 51) and subjects with oral potentially malignant disorder (OPMD; n = 53). IHC analysis showed that NID1 level in OSCC tissues was increased compared with adjacent noncancerous epithelium (n = 222). Importantly, the elevated NID1 level was correlated with the advanced stages of OSCC, as well as the poor survival of OSCC patients. Collectively, the results suggested that TIF analysis facilitates understanding of the OSCC microenvironment and that salivary NID1 may be a useful biomarker for OSCC.
Collapse
Affiliation(s)
- Chia-Wei Hsu
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Kai-Ping Chang
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan; Department of Otolaryngology-Head & Neck Surgery, Chang Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan
| | - Yenlin Huang
- Department of Pathology, Chang Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan
| | - Hao-Ping Liu
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan
| | - Pei-Chun Hsueh
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Po-Wen Gu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Department of Laboratory Medicine, Chang Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan; Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Wei-Chen Yen
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chih-Ching Wu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan; Department of Otolaryngology-Head & Neck Surgery, Chang Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan; Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
| |
Collapse
|
19
|
Yu ZH, Wang YM, Jiang YZ, Ma SJ, Zhong Q, Wan YY, Wang XW. NID2 can serve as a potential prognosis prediction biomarker and promotes the invasion and migration of gastric cancer. Pathol Res Pract 2019; 215:152553. [PMID: 31362888 DOI: 10.1016/j.prp.2019.152553] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/26/2019] [Accepted: 07/22/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND Nidogen-2 (NID2) is a ubiquitous component in the basement membrane and plays an important role in the development of malignant tumors. However, the specific function and mechanism of the NID2 gene in gastric cancer remains unclear. In this study, we aimed to investigate the role of NID2 in gastric cancer(GC). METHODS Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the expression of NID2 in 67 GC tissues and adjacent normal tissues. The relationship between NID2 expression and clinicopathological features was further analyzed. In addition, we evaluated the expression of NID2 in GC based on data from the GEPIA and Kaplan-Meier Plotter database and compared the database results with our own experimental results. Invasion and wound healing assays were used to detect the function of NID2 in MKN45 and SGC7901 cells. Finally, the NID2 network and its possible related genes are constructed by the bioinformatics framework. RESULTS The expression level of NID2 was found to be significantly over-expressed in gastric cancer cells and tissues compared with normal controls and positively associated with TNM stage, showing a poor prognosis of GC patients. In vitro experiments indicated that NID2 was able to promote the ability of invasion and migration in GC cells. Bioinformatics prediction showed NID2 might regulate the progression of GC via protein digestion and absorption, amoebiasis, PI3K-AKt-signaling pathway, focal adhesion and ECM-receptor interaction pathways. CONCLUSION Our study demonstrates that up-regulated NID2 plays an important role in promoting the invasion and migration of GC cells and has a potential of being a novel biomarker for diagnosis, treatment and prognosis of GC in the future.
Collapse
Affiliation(s)
- Zhi-Hao Yu
- Department of Intensive Care Unit (ICU), The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, PR China
| | - Yue-Mei Wang
- Department of Operation Anesthesiology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, PR China
| | - Yu-Zhang Jiang
- Department of Clinical Laboratory, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, PR China
| | - Shi-Jie Ma
- Department of Gastroenterology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, PR China
| | - Qing Zhong
- Department of Medical Oncology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, PR China
| | - Yi-Yuan Wan
- Department of Medical Oncology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, PR China
| | - Xiao-Wei Wang
- Department of Medical Oncology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, PR China.
| |
Collapse
|
20
|
Carrara N, Weaver M, Piedade WP, Vöcking O, Famulski JK. Temporal characterization of optic fissure basement membrane composition suggests nidogen may be an initial target of remodeling. Dev Biol 2019; 452:43-54. [PMID: 31034836 DOI: 10.1016/j.ydbio.2019.04.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/08/2019] [Accepted: 04/23/2019] [Indexed: 01/26/2023]
Abstract
Fusion of the optic fissure is necessary to complete retinal morphogenesis and ensure proper function of the optic stalk. Failure of this event leads to congenital coloboma, one of the leading causes of pediatric blindness. Mechanistically it is widely accepted that the basement membrane (BM) surrounding the maturing retina needs to be remodeled within the fissure in order to facilitate subsequent epithelial sheet fusion. However, the mechanism driving BM remodeling has yet to be elucidated. As a first step to understanding this critical molecular event we comprehensively characterized the core composition of optic fissure BMs in the zebrafish embryos. Zebrafish optic fissure BMs were found to express laminin a1, a4, b1a, c1 and c3, nidogen 1a, 1b and 2a, collagen IV a1 and a2 as well as perlecan. Furthermore, we observed that laminin, perlecan and collagen IV expression persists in the fissure during fusion, up to 56 hpf, while nidogen expression is downregulated upon initiation of fusion, at 36 hpf. Using immunohistochemistry we also show that nidogen is removed from the BM prior to that of laminin, indicating that remodeling of the BM is an ordered event. Lastly, we characterized retinal morphogenesis in the absence of nidogen function and documented retinal malformation similar to what is observed in laminin mutants. Taken together, we propose a model of BM remodeling where nidogen acts as a linchpin during initiation of optic fissure fusion.
Collapse
Affiliation(s)
| | - Megan Weaver
- Department of Biology, University of Kentucky, USA
| | | | | | - J K Famulski
- Department of Biology, University of Kentucky, USA.
| |
Collapse
|
21
|
Wolfstetter G, Dahlitz I, Pfeifer K, Töpfer U, Alt JA, Pfeifer DC, Lakes-Harlan R, Baumgartner S, Palmer RH, Holz A. Characterization of Drosophila Nidogen/ entactin reveals roles in basement membrane stability, barrier function and nervous system patterning. Development 2019; 146:dev.168948. [PMID: 30567930 DOI: 10.1242/dev.168948] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 12/10/2018] [Indexed: 12/12/2022]
Abstract
Basement membranes (BMs) are specialized layers of extracellular matrix (ECM) mainly composed of Laminin, type IV Collagen, Perlecan and Nidogen/entactin (NDG). Recent in vivo studies challenged the initially proposed role of NDG as a major ECM linker molecule by revealing dispensability for viability and BM formation. Here, we report the characterization of the single Ndg gene in Drosophila. Embryonic Ndg expression was primarily observed in mesodermal tissues and the chordotonal organs, whereas NDG protein localized to all BMs. Although loss of Laminin strongly affected BM localization of NDG, Ndg-null mutants exhibited no overt changes in the distribution of BM components. Although Drosophila Ndg mutants were viable, loss of NDG led to ultrastructural BM defects that compromised barrier function and stability in vivo Moreover, loss of NDG impaired larval crawling behavior and reduced responses to vibrational stimuli. Further morphological analysis revealed accompanying defects in the larval peripheral nervous system, especially in the chordotonal organs and the neuromuscular junction (NMJ). Taken together, our analysis suggests that NDG is not essential for BM assembly but mediates BM stability and ECM-dependent neural plasticity during Drosophila development.
Collapse
Affiliation(s)
- Georg Wolfstetter
- Justus-Liebig-Universitaet Giessen, Institut für Allgemeine und Spezielle Zoologie, Allgemeine Zoologie und Entwicklungsbiologie, Stephanstraße 24, 35390 Gießen, Germany.,The Sahlgrenska Academy at the University of Gothenburg, Institute of Biomedicine, Department of Medical Biochemistry and Cell Biology, Medicinaregatan 9A, 41390 Gothenburg, Sweden
| | - Ina Dahlitz
- Justus-Liebig-Universitaet Giessen, Institut für Allgemeine und Spezielle Zoologie, Allgemeine Zoologie und Entwicklungsbiologie, Stephanstraße 24, 35390 Gießen, Germany
| | - Kathrin Pfeifer
- The Sahlgrenska Academy at the University of Gothenburg, Institute of Biomedicine, Department of Medical Biochemistry and Cell Biology, Medicinaregatan 9A, 41390 Gothenburg, Sweden
| | - Uwe Töpfer
- Justus-Liebig-Universitaet Giessen, Institut für Allgemeine und Spezielle Zoologie, Allgemeine Zoologie und Entwicklungsbiologie, Stephanstraße 24, 35390 Gießen, Germany
| | - Joscha Arne Alt
- Justus-Liebig-Universitaet Giessen, Institut für Tierphysiologie, Integrative Sinnesphysiologie, Heinrich-Buff-Ring 26, 35392 Gießen, Germany
| | - Daniel Christoph Pfeifer
- Justus-Liebig-Universitaet Giessen, Institut für Allgemeine und Spezielle Zoologie, Allgemeine Zoologie und Entwicklungsbiologie, Stephanstraße 24, 35390 Gießen, Germany
| | - Reinhard Lakes-Harlan
- Justus-Liebig-Universitaet Giessen, Institut für Tierphysiologie, Integrative Sinnesphysiologie, Heinrich-Buff-Ring 26, 35392 Gießen, Germany
| | - Stefan Baumgartner
- Lund University, Department of Experimental Medical Sciences, BMC D10, 22184 Lund, Sweden
| | - Ruth H Palmer
- The Sahlgrenska Academy at the University of Gothenburg, Institute of Biomedicine, Department of Medical Biochemistry and Cell Biology, Medicinaregatan 9A, 41390 Gothenburg, Sweden
| | - Anne Holz
- Justus-Liebig-Universitaet Giessen, Institut für Allgemeine und Spezielle Zoologie, Allgemeine Zoologie und Entwicklungsbiologie, Stephanstraße 24, 35390 Gießen, Germany
| |
Collapse
|
22
|
Herzog C, Haun RS, Kaushal GP. Role of meprin metalloproteinases in cytokine processing and inflammation. Cytokine 2018; 114:18-25. [PMID: 30580156 DOI: 10.1016/j.cyto.2018.11.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/16/2018] [Accepted: 11/25/2018] [Indexed: 11/15/2022]
Abstract
Meprin metalloendopeptidases, comprising α and β isoforms, are widely expressed in mammalian cells and organs including kidney, intestines, lungs, skin, and bladder, and in a variety of immune cells and cancer cells. Meprins proteolytically process many inflammatory mediators, including cytokines, chemokines, and other bioactive proteins and peptides that control the function of immune cells. The knowledge of meprin-mediated processing of inflammatory mediators and other target substrates provides a pathophysiologic link for the involvement of meprins in the pathogenesis of many inflammatory disorders. Meprins are now known to play important roles in inflammatory diseases including acute kidney injury, sepsis, urinary tract infections, bladder inflammation, and inflammatory bowel disease. The proteolysis of epithelial and endothelial barriers including cell junctional proteins by meprins promotes leukocyte influx into areas of tissue damage to result in inflammation. Meprins degrade extracellular matrix proteins; this ability of meprins is implicated in the cell migration of leukocytes and the invasion of tumor cells that express meprins. Proteolytic processing and maturation of procollagens provides evidence that meprins are involved in collagen maturation and deposition in the fibrotic processes involved in the formation of keloids and hypertrophic scars and lung fibrosis. This review highlights recent progress in understanding the role of meprins in inflammatory disorders in both human and mouse models.
Collapse
Affiliation(s)
- Christian Herzog
- Central Arkansas Veterans Healthcare System and University of Arkansas for Medical Sciences, Department of Internal Medicine, Little Rock, AR, USA
| | - Randy S Haun
- Central Arkansas Veterans Healthcare System and University of Arkansas for Medical Sciences, Department of Pharmaceutical Sciences, Little Rock, AR, USA
| | - Gur P Kaushal
- Central Arkansas Veterans Healthcare System and University of Arkansas for Medical Sciences, Department of Internal Medicine, Little Rock, AR, USA; Central Arkansas Veterans Healthcare System and University of Arkansas for Medical Sciences, Department of Biochemistry, Little Rock, AR, USA.
| |
Collapse
|
23
|
James BD, Allen JB. Vascular Endothelial Cell Behavior in Complex Mechanical Microenvironments. ACS Biomater Sci Eng 2018; 4:3818-3842. [PMID: 33429612 DOI: 10.1021/acsbiomaterials.8b00628] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The vascular mechanical microenvironment consists of a mixture of spatially and temporally changing mechanical forces. This exposes vascular endothelial cells to both hemodynamic forces (fluid flow, cyclic stretching, lateral pressure) and vessel forces (basement membrane mechanical and topographical properties). The vascular mechanical microenvironment is "complex" because these forces are dynamic and interrelated. Endothelial cells sense these forces through mechanosensory structures and transduce them into functional responses via mechanotransduction pathways, culminating in behavior directly affecting vascular health. Recent in vitro studies have shown that endothelial cells respond in nuanced and unique ways to combinations of hemodynamic and vessel forces as compared to any single mechanical force. Understanding the interactive effects of the complex mechanical microenvironment on vascular endothelial behavior offers the opportunity to design future biomaterials and biomedical devices from the bottom-up by engineering for the cellular response. This review describes and defines (1) the blood vessel structure, (2) the complex mechanical microenvironment of the vascular endothelium, (3) the process in which vascular endothelial cells sense mechanical forces, and (4) the effect of mechanical forces on vascular endothelial cells with specific attention to recent works investigating the influence of combinations of mechanical forces. We conclude this review by providing our perspective on how the field can move forward to elucidate the effects of the complex mechanical microenvironment on vascular endothelial cell behavior.
Collapse
Affiliation(s)
- Bryan D James
- Department of Materials Science & Engineering, University of Florida, 100 Rhines Hall, PO Box 116400, Gainesville, Florida 32611, United States.,Institute for Computational Engineering, University of Florida, 300 Weil Hall, PO Box 116550, Gainesville, Florida 32611, United States
| | - Josephine B Allen
- Department of Materials Science & Engineering, University of Florida, 100 Rhines Hall, PO Box 116400, Gainesville, Florida 32611, United States.,Institute for Cell and Tissue Science and Engineering, 300 Weil Hall, PO Box 116550, Gainesville, Florida 32611, United States
| |
Collapse
|
24
|
Basement membranes in the cornea and other organs that commonly develop fibrosis. Cell Tissue Res 2018; 374:439-453. [PMID: 30284084 DOI: 10.1007/s00441-018-2934-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 09/20/2018] [Indexed: 12/19/2022]
Abstract
Basement membranes are thin connective tissue structures composed of organ-specific assemblages of collagens, laminins, proteoglycan-like perlecan, nidogens, and other components. Traditionally, basement membranes are thought of as structures which primarily function to anchor epithelial, endothelial, or parenchymal cells to underlying connective tissues. While this role is important, other functions such as the modulation of growth factors and cytokines that regulate cell proliferation, migration, differentiation, and fibrosis are equally important. An example of this is the critical role of both the epithelial basement membrane and Descemet's basement membrane in the cornea in modulating myofibroblast development and fibrosis, as well as myofibroblast apoptosis and the resolution of fibrosis. This article compares the ultrastructure and functions of key basement membranes in several organs to illustrate the variability and importance of these structures in organs that commonly develop fibrosis.
Collapse
|
25
|
Dissection of Nidogen function in Drosophila reveals tissue-specific mechanisms of basement membrane assembly. PLoS Genet 2018; 14:e1007483. [PMID: 30260959 PMCID: PMC6177204 DOI: 10.1371/journal.pgen.1007483] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 10/09/2018] [Accepted: 08/20/2018] [Indexed: 12/14/2022] Open
Abstract
Basement membranes (BMs) are thin sheet-like specialized extracellular matrices found at the basal surface of epithelia and endothelial tissues. They have been conserved across evolution and are required for proper tissue growth, organization, differentiation and maintenance. The major constituents of BMs are two independent networks of Laminin and Type IV Collagen in addition to the proteoglycan Perlecan and the glycoprotein Nidogen/entactin (Ndg). The ability of Ndg to bind in vitro Collagen IV and Laminin, both with key functions during embryogenesis, anticipated an essential role for Ndg in morphogenesis linking the Laminin and Collagen IV networks. This was supported by results from cultured embryonic tissue experiments. However, the fact that elimination of Ndg in C. elegans and mice did not affect survival strongly questioned this proposed linking role. Here, we have isolated mutations in the only Ndg gene present in Drosophila. We find that while, similar to C.elegans and mice, Ndg is not essential for overall organogenesis or viability, it is required for appropriate fertility. We also find, alike in mice, tissue-specific requirements of Ndg for proper assembly and maintenance of certain BMs, namely those of the adipose tissue and flight muscles. In addition, we have performed a thorough functional analysis of the different Ndg domains in vivo. Our results support an essential requirement of the G3 domain for Ndg function and unravel a new key role for the Rod domain in regulating Ndg incorporation into BMs. Furthermore, uncoupling of the Laminin and Collagen IV networks is clearly observed in the larval adipose tissue in the absence of Ndg, indeed supporting a linking role. In light of our findings, we propose that BM assembly and/or maintenance is tissue-specific, which could explain the diverse requirements of a ubiquitous conserved BM component like Nidogen. Basement membranes (BMs) are thin layers of specialized extracellular matrices present in every tissue of the human body. Its main constituents are two networks of laminin and Type IV Collagen linked by Nidogen (Ndg) and proteoglycans. They form an organized scaffold that regulates organ morphogenesis and function. Mutations affecting BM components are associated with organ dysfunction and several congenital diseases. Thus, a better comprehension of BM assembly and maintenance will not only help to learn more about organogenesis but also to a better understanding and, hopefully, treatment of these diseases. Here, we have used the fruit fly Drosophila to analyse the role of Ndg in BM formation in vivo. Elimination of Ndg in worms and mice does not affect survival, strongly questioning its proposed linking role, derived from in vitro experiments. Here, we show that in the fly, Ndg is dispensable for BM assembly and preservation in many tissues, but absolutely required in others. Furthermore, our functional study of the different Ndg domains challenges the significance of some interactions between BM components derived from in vitro experiments, while confirming others, and reveals a new key requirement for the Rod domain in Ndg function and incorporation into BMs.
Collapse
|
26
|
Rousselle P, Montmasson M, Garnier C. Extracellular matrix contribution to skin wound re-epithelialization. Matrix Biol 2018; 75-76:12-26. [PMID: 29330022 DOI: 10.1016/j.matbio.2018.01.002] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 12/04/2017] [Accepted: 01/01/2018] [Indexed: 12/11/2022]
Abstract
The ability of skin to act as a barrier is primarily determined by cells that maintain the continuity and integrity of skin and restore it after injury. Cutaneous wound healing in adult mammals is a complex multi-step process that involves overlapping stages of blood clot formation, inflammation, re-epithelialization, granulation tissue formation, neovascularization, and remodeling. Under favorable conditions, epidermal regeneration begins within hours after injury and takes several days until the epithelial surface is intact due to reorganization of the basement membrane. Regeneration relies on numerous signaling cues and on multiple cellular processes that take place both within the epidermis and in other participating tissues. A variety of modulators are involved, including growth factors, cytokines, matrix metalloproteinases, cellular receptors, and extracellular matrix components. Here we focus on the involvement of the extracellular matrix proteins that impact epidermal regeneration during wound healing.
Collapse
Affiliation(s)
- Patricia Rousselle
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR 5305, CNRS - Université Lyon 1, Institut de Biologie et Chimie des Protéines, SFR BioSciences Gerland-Lyon Sud, 7 passage du Vercors, F-69367, France.
| | - Marine Montmasson
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR 5305, CNRS - Université Lyon 1, Institut de Biologie et Chimie des Protéines, SFR BioSciences Gerland-Lyon Sud, 7 passage du Vercors, F-69367, France
| | - Cécile Garnier
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR 5305, CNRS - Université Lyon 1, Institut de Biologie et Chimie des Protéines, SFR BioSciences Gerland-Lyon Sud, 7 passage du Vercors, F-69367, France
| |
Collapse
|
27
|
Alečković M, Wei Y, LeRoy G, Sidoli S, Liu DD, Garcia BA, Kang Y. Identification of Nidogen 1 as a lung metastasis protein through secretome analysis. Genes Dev 2017; 31:1439-1455. [PMID: 28827399 PMCID: PMC5588926 DOI: 10.1101/gad.301937.117] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/31/2017] [Indexed: 11/24/2022]
Abstract
Secreted proteins play crucial roles in mediating tumor-stroma interactions during metastasis of cancer to different target organs. To comprehensively profile secreted proteins involved in lung metastasis, we applied quantitative mass spectrometry-based proteomics and identified 392 breast cancer-derived and 302 melanoma-derived proteins secreted from highly lung metastatic cells. The cancer-specific lung metastasis secretome signatures (LMSSs) displayed significant prognostic value in multiple cancer clinical data sets. Moreover, we observed a significant overlap of enriched pathways between the LMSSs of breast cancer and melanoma despite an overall small overlap of specific proteins, suggesting that common biological processes are executed by different proteins to enable the two cancer types to metastasize to the lung. Among the novel candidate lung metastasis proteins, Nidogen 1 (NID1) was confirmed to promote lung metastasis of breast cancer and melanoma, and its expression is correlated with poor clinical outcomes. In vitro functional analysis further revealed multiple prometastatic functions of NID1, including enhancing cancer cell migration and invasion, promoting adhesion to the endothelium and disrupting its integrity, and improving vascular tube formation capacity. As a secreted prometastatic protein, NID1 may be developed as a new biomarker for disease progression and therapeutic target in breast cancer and melanoma.
Collapse
Affiliation(s)
- Maša Alečković
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Yong Wei
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Gary LeRoy
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Simone Sidoli
- Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Daniel D Liu
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Benjamin A Garcia
- Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
28
|
Porter LM, Radulović ŽM, Mulenga A. A repertoire of protease inhibitor families in Amblyomma americanum and other tick species: inter-species comparative analyses. Parasit Vectors 2017; 10:152. [PMID: 28330502 PMCID: PMC5361777 DOI: 10.1186/s13071-017-2080-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 03/06/2017] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Protease inhibitors (PIs) are important regulators of physiology and represent anti-parasitic druggable and vaccine targets. We conducted bioinformatic analyses of genome and transcriptome data to determine the protease inhibitor (PI) repertoire in Amblyomma americanum and in 25 other ixodid tick species. For A. americanum, we compared the PI repertoires in fed and unfed, male and female A. americanum ticks. We also analyzed PI repertoires of female 48, 96 and 120 h-fed midgut (MG) and salivary gland (SG) tissues. RESULTS We found 1,595 putative non-redundant PI sequences across 26 ixodid tick species. Ticks express PIs from at least 18 different families: I1, I2, I4, I8, I21, I25, I29, I31, I32, I35, I39, I43, I51, I53, I63, I68, I72 and I74 (MEROPS). The largest PI families were I2, I4 and I8 and lowest in I21, I31, I32, I35 and I68. The majority (75%) of tick PIs putatively inhibit serine proteases, with ~11 and 9% putatively regulating cysteine or metalloprotease-mediated pathways, respectively, and ~4% putatively regulating multiple/mixed protease types. In A. americanum, we found 370 PIs in female and 354 in male ticks. In A. americanum we found 231 and 442 in unfed and fed ticks, respectively. In females, we found 206 and 164 PIs in SG and MG, respectively. The majority of highly cross-tick species conserved PIs were in families I1, I2, I8, I21, I25, I29, I39 and I43. CONCLUSIONS Ticks appear to express large and diverse repertoires of PIs that primarily target serine protease-mediated pathways. We speculate that PI families with the highest repertoires may contain functionally redundant members while those with the lowest repertoires are functionally non-redundant PIs. We found some highly conserved PIs in the latter category, which we propose as potential candidates for broad-spectrum anti-tick vaccine candidates or druggable targets in tick control.
Collapse
Affiliation(s)
- Lindsay M Porter
- Department of Veterinary Pathobiology, Texas A&M University College of Veterinary Medicine and Biomedical Sciences, 4647 TAMU, College Station, TX, 77843, USA
| | - Željko M Radulović
- Department of Veterinary Pathobiology, Texas A&M University College of Veterinary Medicine and Biomedical Sciences, 4647 TAMU, College Station, TX, 77843, USA
| | - Albert Mulenga
- Department of Veterinary Pathobiology, Texas A&M University College of Veterinary Medicine and Biomedical Sciences, 4647 TAMU, College Station, TX, 77843, USA.
| |
Collapse
|
29
|
Willumsen N, Bager CL, Leeming DJ, Bay-Jensen AC, Karsdal MA. Nidogen-1 Degraded by Cathepsin S can be Quantified in Serum and is Associated with Non-Small Cell Lung Cancer. Neoplasia 2017; 19:271-278. [PMID: 28282545 PMCID: PMC5344320 DOI: 10.1016/j.neo.2017.01.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/16/2017] [Accepted: 01/23/2017] [Indexed: 01/05/2023] Open
Abstract
Loss of basement membrane (BM) integrity is typically associated with cancer. Nidogen-1 is an essential component of the BM. Nidogen-1 is a substrate for cathepsin-S (CatS) which is released into the tumor microenvironment. Measuring nidogen-1 degraded by CatS may therefore have biomarker potential in cancer. The aim of this study was to investigate if CatS-degraded nidogen-1 was detectable in serum and a possible biomarker for cancer, a pathology associated with disruption of the BM. A competitive enzyme-linked immunosorbent assay (NIC) was developed with a monoclonal mouse antibody specific for a CatS cleavage site on human nidogen-1. Dilution and spiking recovery, inter- and intravariation, as well as accuracy were evaluated. Serum levels were evaluated in patients with breast cancer, small cell lung cancer (SCLC), and non-SCLC (NSCLC) and in healthy controls. The results indicated that the NIC assay was specific for nidogen-1 cleaved by CatS. Inter- and intraassay variations were 9% and 14%, respectively. NIC was elevated in NSCLC as compared to healthy controls (P<.001), breast cancer (P<.01), and SCLC (P<.5). The diagnostic power (area under the receiver operating characteristics) of NIC for NSCLC as compared to all other samples combined was 0.83 (95% confidence interval: 0.71-0.95), P<.0001. In conclusion, nidogen-1 degraded by CatS can be quantified in serum by the NIC assay. The current data strongly suggest that cathepsin-S degradation of nidogen-1 is strongly associated with NSCLC, which needs validation in larger clinical cohorts.
Collapse
Affiliation(s)
- Nicholas Willumsen
- Nordic Bioscience A/S, Biomarkers & Research, DK-2730, Herlev, Denmark; University of Southern Denmark, Campusvej 55, DK-5230, Odense M, Denmark.
| | - Cecilie L Bager
- Nordic Bioscience A/S, Biomarkers & Research, DK-2730, Herlev, Denmark
| | - Diana J Leeming
- Nordic Bioscience A/S, Biomarkers & Research, DK-2730, Herlev, Denmark
| | | | - Morten A Karsdal
- Nordic Bioscience A/S, Biomarkers & Research, DK-2730, Herlev, Denmark
| |
Collapse
|
30
|
Yao Y. Laminin: loss-of-function studies. Cell Mol Life Sci 2017; 74:1095-1115. [PMID: 27696112 PMCID: PMC11107706 DOI: 10.1007/s00018-016-2381-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/25/2016] [Accepted: 09/26/2016] [Indexed: 01/13/2023]
Abstract
Laminin, one of the most widely expressed extracellular matrix proteins, exerts many important functions in multiple organs/systems and at various developmental stages. Although its critical roles in embryonic development have been demonstrated, laminin's functions at later stages remain largely unknown, mainly due to its intrinsic complexity and lack of research tools (most laminin mutants are embryonic lethal). With the advance of genetic and molecular techniques, many new laminin mutants have been generated recently. These new mutants usually have a longer lifespan and show previously unidentified phenotypes. Not only do these studies suggest novel functions of laminin, but also they provide invaluable animal models that allow investigation of laminin's functions at late stages. Here, I first briefly introduce the nomenclature, structure, and biochemistry of laminin in general. Next, all the loss-of-function mutants/models for each laminin chain are discussed and their phenotypes compared. I hope to provide a comprehensive review on laminin functions and its loss-of-function models, which could serve as a reference for future research in this understudied field.
Collapse
Affiliation(s)
- Yao Yao
- College of Pharmacy, University of Minnesota, Duluth, MN, 55812, USA.
| |
Collapse
|
31
|
Wnuk M, Anderegg MA, Graber WA, Buergy R, Fuster DG, Djonov V. Neuropilin1 regulates glomerular function and basement membrane composition through pericytes in the mouse kidney. Kidney Int 2016; 91:868-879. [PMID: 27988210 DOI: 10.1016/j.kint.2016.10.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/04/2016] [Accepted: 10/06/2016] [Indexed: 12/28/2022]
Abstract
Neuropilin1 (Nrp1) is a co-receptor best known to regulate the development of endothelial cells and is a target of anticancer therapies. However, its role in other vascular cells including pericytes is emergent. The kidney is an organ with high pericyte density and cancer patients develop severe proteinuria following administration of NRP1B-neutralizing antibody combined with bevacizumab. Therefore, we investigated whether Nrp1 regulates glomerular capillary integrity after completion of renal development using two mouse models; tamoxifen-inducible NG2Cre to delete Nrp1 specifically in pericytes and administration of Nrp1-neutralizing antibodies. Specific Nrp1 deletion in pericytes did not affect pericyte number but mutant mice developed hematuria with glomerular basement membrane defects. Despite foot process effacement, albuminuria was absent and expression of podocyte proteins remained unchanged upon Nrp1 deletion. Additionally, these mice displayed dilation of the afferent arteriole and glomerular capillaries leading to glomerular hyperfiltration. Nidogen-1 mRNA was downregulated and collagen4α3 mRNA was upregulated with no significant effect on the expression of other basement membrane genes in the mutant mice. These features were phenocopied by treating wild-type mice with Nrp1-neutralizing antibodies. Thus, our results reveal a postdevelopmental role of Nrp1 in renal pericytes as an important regulator of glomerular basement membrane integrity. Furthermore, our study offers novel mechanistic insights into renal side effects of Nrp1 targeting cancer therapies.
Collapse
Affiliation(s)
- Monika Wnuk
- Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Manuel A Anderegg
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | | | - Regula Buergy
- Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Daniel G Fuster
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland; Division of Nephrology, Hypertension, and Clinical Pharmacology, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Valentin Djonov
- Institute of Anatomy, University of Bern, Bern, Switzerland.
| |
Collapse
|
32
|
Abstract
Biomaterials have played an increasingly prominent role in the success of biomedical devices and in the development of tissue engineering, which seeks to unlock the regenerative potential innate to human tissues/organs in a state of deterioration and to restore or reestablish normal bodily function. Advances in our understanding of regenerative biomaterials and their roles in new tissue formation can potentially open a new frontier in the fast-growing field of regenerative medicine. Taking inspiration from the role and multi-component construction of native extracellular matrices (ECMs) for cell accommodation, the synthetic biomaterials produced today routinely incorporate biologically active components to define an artificial in vivo milieu with complex and dynamic interactions that foster and regulate stem cells, similar to the events occurring in a natural cellular microenvironment. The range and degree of biomaterial sophistication have also dramatically increased as more knowledge has accumulated through materials science, matrix biology and tissue engineering. However, achieving clinical translation and commercial success requires regenerative biomaterials to be not only efficacious and safe but also cost-effective and convenient for use and production. Utilizing biomaterials of human origin as building blocks for therapeutic purposes has provided a facilitated approach that closely mimics the critical aspects of natural tissue with regard to its physical and chemical properties for the orchestration of wound healing and tissue regeneration. In addition to directly using tissue transfers and transplants for repair, new applications of human-derived biomaterials are now focusing on the use of naturally occurring biomacromolecules, decellularized ECM scaffolds and autologous preparations rich in growth factors/non-expanded stem cells to either target acceleration/magnification of the body's own repair capacity or use nature's paradigms to create new tissues for restoration. In particular, there is increasing interest in separating ECMs into simplified functional domains and/or biopolymeric assemblies so that these components/constituents can be discretely exploited and manipulated for the production of bioscaffolds and new biomimetic biomaterials. Here, following an overview of tissue auto-/allo-transplantation, we discuss the recent trends and advances as well as the challenges and future directions in the evolution and application of human-derived biomaterials for reconstructive surgery and tissue engineering. In particular, we focus on an exploration of the structural, mechanical, biochemical and biological information present in native human tissue for bioengineering applications and to provide inspiration for the design of future biomaterials.
Collapse
|
33
|
Roy S, Bae E, Amin S, Kim D. Extracellular matrix, gap junctions, and retinal vascular homeostasis in diabetic retinopathy. Exp Eye Res 2015; 133:58-68. [PMID: 25819455 DOI: 10.1016/j.exer.2014.08.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 08/19/2014] [Accepted: 08/20/2014] [Indexed: 12/15/2022]
Abstract
The vascular basement membrane (BM) contains extracellular matrix (ECM) proteins that assemble in a highly organized manner to form a supportive substratum for cell attachment facilitating myriad functions that are vital to cell survival and overall retinal homeostasis. The BM provides a microenvironment in which bidirectional signaling through integrins regulates cell attachment, turnover, and functionality. In diabetic retinopathy, the BM undergoes profound structural and functional changes, and recent studies have brought to light the implications of such changes. Thickened vascular BM in the retinal capillaries actively participate in the development and progression of characteristic changes associated with diabetic retinopathy. High glucose (HG)-induced compromised cell-cell communication via gap junctions (GJ) in retinal vascular cells may disrupt homeostasis in the retinal microenvironment. In this review, the role of altered ECM synthesis, compromised GJ activity, and disturbed retinal homeostasis in the development of retinal vascular lesions in diabetic retinopathy are discussed.
Collapse
Affiliation(s)
- Sayon Roy
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Boston University School of Medicine, Boston, MA, USA.
| | - Edward Bae
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Boston University School of Medicine, Boston, MA, USA
| | - Shruti Amin
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Boston University School of Medicine, Boston, MA, USA
| | - Dongjoon Kim
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
34
|
Pedrola N, Devis L, Llauradó M, Campoy I, Martinez-Garcia E, Garcia M, Muinelo-Romay L, Alonso-Alconada L, Abal M, Alameda F, Mancebo G, Carreras R, Castellví J, Cabrera S, Gil-Moreno A, Matias-Guiu X, Iovanna JL, Colas E, Reventós J, Ruiz A. Nidogen 1 and Nuclear Protein 1: novel targets of ETV5 transcription factor involved in endometrial cancer invasion. Clin Exp Metastasis 2015; 32:467-78. [PMID: 25924802 DOI: 10.1007/s10585-015-9720-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 04/20/2015] [Indexed: 11/28/2022]
Abstract
Endometrial cancer is the most frequent malignancy of the female genital tract in western countries. Our group has previously characterized the upregulation of the transcription factor ETV5 in endometrial cancer with a specific and significant increase in those tumor stages associated with myometrial invasion. We have shown that ETV5 overexpression in Hec1A endometrial cancer cells induces epithelial to mesenchymal transition resulting in the acquisition of migratory and invasive capabilities. In the present work, we have identified Nidogen 1 (NID1) and Nuclear Protein 1 (NUPR1) as direct transcriptional targets of ETV5 in endometrial cancer cells. Inhibition of NID1 and NUPR1 in ETV5 overexpressing cells reduced cell migration and invasion in vitro and reduced tumor growth and dissemination in an orthotopic endometrial cancer model. Importantly, we confirmed a significant increase of NUPR1 and NID1 protein expression in the invasion front of the tumor compared to their paired superficial zone, concomitant to ETV5 overexpression. Altogether, we conclude that NID1 and NUPR1 are novel targets of ETV5 and are actively cooperating with ETV5 at the invasion front of the tumor in the acquisition of an invasive phenotype to jointly drive endometrial cancer invasion.
Collapse
Affiliation(s)
- Núria Pedrola
- Biomedical Research Group in Ginaecology, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron, 119-129, 08035, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Bogdani M, Korpos E, Simeonovic CJ, Parish CR, Sorokin L, Wight TN. Extracellular matrix components in the pathogenesis of type 1 diabetes. Curr Diab Rep 2014; 14:552. [PMID: 25344787 PMCID: PMC4238291 DOI: 10.1007/s11892-014-0552-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Type 1 diabetes (T1D) results from progressive immune cell-mediated destruction of pancreatic β cells. As immune cells migrate into the islets, they pass through the extracellular matrix (ECM). This ECM is composed of different macromolecules localized to different compartments within and surrounding islets; however, the involvement of this ECM in the development of human T1D is not well understood. Here, we summarize our recent findings from human and mouse studies illustrating how specific components of the islet ECM that constitute basement membranes and interstitial matrix of the islets, and surprisingly, the intracellular composition of islet β cells themselves, are significantly altered during the pathogenesis of T1D. Our focus is on the ECM molecules laminins, collagens, heparan sulfate/heparan sulfate proteoglycans, and hyaluronan, as well as on the enzymes that degrade these ECM components. We propose that islet and lymphoid tissue ECM composition and organization are critical to promoting immune cell activation, islet invasion, and destruction of islet β cells in T1D.
Collapse
Affiliation(s)
- Marika Bogdani
- Matrix Biology Program, Benaroya Research Institute, 1201 Ninth Avenue, Seattle, WA 98101 Ph: 206-287-5666, Fax: 206-342-6567
| | - Eva Korpos
- Institute of Physiological Chemistry and Pathobiochemistry,Cells-in-Motion Cluster of Excellence (EXC 1003 – CiM), University of Münster, Münster, Germany
| | - Charmaine J. Simeonovic
- Diabetes/Transplantation Immunobiology Laboratory, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, 2601 Australia
| | - Christopher R. Parish
- Cancer and Vascular Biology Group, Department of Immunology, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Lydia Sorokin
- Institute of Physiological Chemistry and Pathobiochemistry,Cells-in-Motion Cluster of Excellence (EXC 1003 – CiM), University of Münster, Münster, Germany
| | - Thomas N. Wight
- Matrix Biology Program, Benaroya Research Institute, 1201 Ninth Avenue, Seattle, WA 98101 Ph: 206-287-5666, Fax: 206-342-6567
- Corresponding Author: Thomas N. Wight, PhD
| |
Collapse
|
36
|
Murgiano L, Jagannathan V, Calderoni V, Joechler M, Gentile A, Drögemüller C. Looking the cow in the eye: deletion in the NID1 gene is associated with recessive inherited cataract in Romagnola cattle. PLoS One 2014; 9:e110628. [PMID: 25347398 PMCID: PMC4210201 DOI: 10.1371/journal.pone.0110628] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 09/16/2014] [Indexed: 12/15/2022] Open
Abstract
Cataract is a known condition leading to opacification of the eye lens causing partial or total blindness. Mutations are known to cause autosomal dominant or recessive inherited forms of cataracts in humans, mice, rats, guinea pigs and dogs. The use of large-sized animal models instead of those using mice for the study of this condition has been discussed due to the small size of rodent lenses. Four juvenile-onset cases of bilateral incomplete immature nuclear cataract were recently observed in Romagnola cattle. Pedigree analysis suggested a monogenic autosomal recessive inheritance. In addition to the cataract, one of the cases displayed abnormal head movements. Genome-wide association and homozygosity mapping and subsequent whole genome sequencing of a single case identified two perfectly associated sequence variants in a critical interval of 7.2 Mb on cattle chromosome 28: a missense point mutation located in an uncharacterized locus and an 855 bp deletion across the exon 19/intron 19 border of the bovine nidogen 1 (NID1) gene (c.3579_3604+829del). RT-PCR showed that NID1 is expressed in bovine lenses while the transcript of the second locus was absent. The NID1 deletion leads to the skipping of exon 19 during transcription and is therefore predicted to cause a frameshift and premature stop codon (p.1164fs27X). The truncated protein lacks a C-terminal domain essential for binding with matrix assembly complexes. Nidogen 1 deficient mice show neurological abnormalities and highly irregular crystal lens alterations. This study adds NID1 to the list of candidate genes for inherited cataract in humans and is the first report of a naturally occurring mutation leading to non-syndromic catarct in cattle provides a potential large animal model for human cataract.
Collapse
Affiliation(s)
- Leonardo Murgiano
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | | | - Monika Joechler
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Italy
| | - Arcangelo Gentile
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Italy
| | - Cord Drögemüller
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- * E-mail:
| |
Collapse
|
37
|
VP08R from infectious spleen and kidney necrosis virus is a novel component of the virus-mock basement membrane. J Virol 2014; 88:5491-501. [PMID: 24599992 DOI: 10.1128/jvi.03776-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Infectious spleen and kidney necrosis virus (ISKNV), the type species of the genus Megalocytivirus, family Iridoviridae, brings great harm to fish farming. In infected tissues, ISKNV infection is characterized by a unique phenomenon, in that the infected cells are attached by lymphatic endothelial cells (LECs), which are speculated to wall off the infected cells from host immune attack. A viral membrane protein, VP23R, binds and recruits the host nidogen-1 protein to construct a basement membrane (BM)-like structure, termed virus-mock basement membrane (VMBM), on the surface of infected cells to provide attaching sites for LECs. VMBMs do not contain collagen IV protein, which is essential for maintenance of BM integrity and functions. In this study, we identified the VP08R protein encoded by ISKNV. VP08R was predicted to be a secreted protein with a signal peptide but without a transmembrane domain. However, immunofluorescence assays demonstrated that VP08R is located on the plasma membrane of infected cells and shows an expression profile similar to that of VP23R. Coimmunoprecipitation showed that VP08R interacts with both VP23R and nidogen-1, indicating that VP08R is a component of VMBM and is present on the cell membrane by binding to VP23R. Through formation of intermolecular disulfide bonds, VP08R molecules self-organized into a multimer, which may play a role in the maintenance of VMBM integrity and stability. Moreover, the VP08R multimer was easily degraded when the ISKNV-infected cells were lysed, which may be a mechanism for VMBM disassembly when necessary to free LECs and release the mature virions. IMPORTANCE Infectious spleen and kidney necrosis virus (ISKNV; genus Megalocytivirus, family Iridovirus) is most harmful to cultured fishes. In tissues, the ISKNV-infected cells are attached by lymphatic endothelial cells (LECs), which are speculated to segregate the host immune system. A viral membrane protein, VP23R, binds and recruits the host nidogen-1 protein to construct virus-mock basement membranes (VMBMs) on the surface of infected cells to provide attaching sites for LECs. Although VMBMs lack the collagen IV network, which is an essential structural part of true BMs, VMBMs still show an intact structure. An ISKNV-encoded VP08R protein can self-assemble into a multimer and bind both VP23R and nidogen-1 to maintain the integrity and stability of VMBMs. On the basis of these facts, we redrew the putative schematic illustration of the VMBM structure. Our study suggests that the virus adopts a strategy to remodel the cellular matrix and may provide an important reference to elucidate BM functions and the mechanisms of lymphangiogenesis.
Collapse
|
38
|
Siegel G, Malmsten M, Ermilov E. Anionic biopolyelectrolytes of the syndecan/perlecan superfamily: physicochemical properties and medical significance. Adv Colloid Interface Sci 2014; 205:275-318. [PMID: 24534475 DOI: 10.1016/j.cis.2014.01.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 01/18/2014] [Accepted: 01/19/2014] [Indexed: 11/19/2022]
Abstract
In the review article presented here, we demonstrate that the connective tissue is more than just a matrix for cells and a passive scaffold to provide physical support. The extracellular matrix can be subdivided into proteins (collagen, elastin), glycoconjugates (structural glycoproteins, proteoglycans) and glycosaminoglycans (hyaluronan). Our main focus rests on the anionic biopolyelectrolytes of the perlecan/syndecan superfamily which belongs to extracellular matrix and cell membrane integral proteoglycans. Though the extracellular domain of the syndecans may well be performing a structural role within the extracellular matrix, a key function of this class of membrane intercalated proteoglycans may be to act as signal transducers across the plasma membrane and thus be more appropriately included in the group of cell surface receptors. Nevertheless, there is a continuum in functions of syndecans and perlecans, especially with respect to their structural role and biomedical significance. HS/CS proteoglycans are receptor sites for lipoprotein binding thus intervening directly in lipid metabolism. We could show that among all lipoproteins, HDL has the highest affinity to these proteoglycans and thus instals a feedforward forechecking loop against atherogenic apoB100 lipoprotein deposition on surface membranes and in subendothelial spaces. Therefore, HDL is not only responsible for VLDL/IDL/LDL cholesterol exit but also controls thoroughly the entry. This way, it inhibits arteriosclerotic nanoplaque formation. The ternary complex 'lipoprotein receptor (HS/CS-PG) - lipoprotein (LDL, oxLDL, Lp(a)) - calcium' may be interpreted as arteriosclerotic nanoplaque build-up on the molecular level before any cellular reactivity, possibly representing the arteriosclerotic primary lesion combined with endothelial dysfunction. With laser-based ellipsometry we could demonstrate that nanoplaque formation is a Ca(2+)-driven process. In an in vitro biosensor application of HS-PG coated silica surfaces we tested nanoplaque formation and size in clinical trials with cardiovascular high-risk patients who underwent treatment with ginkgo or fluvastatin. While ginkgo reduced nanoplaque formation (size) by 14.3% (23.4%) in the isolated apoB100 lipid fraction at a normal blood Ca(2+) concentration, the effect of the statin with a reduction of 44.1% (25.4%) was more pronounced. In addition, ginkgo showed beneficial effects on several biomarkers of oxidative stress and inflammation. Besides acting as peripheral lipoprotein binding receptor, HS/CS-PG is crucially implicated in blood flow sensing. A sensor molecule has to fulfil certain mechanochemical and mechanoelectrical requirements. It should possess viscoelastic and cation binding properties capable of undergoing conformational changes caused both mechanically and electrostatically. Moreover, the latter should be ion-specific. Under no-flow conditions, the viscoelastic polyelectrolyte at the endothelium - blood interface assumes a random coil form. Blood flow causes a conformational change from the random coil state to the directed filament structure state. This conformational transition effects a protein unfurling and molecular elongation of the GAG side chains like in a 'stretched' spring. This configuration is therefore combined with an increase in binding sites for Na(+) ions. Counterion migration of Na(+) along the polysaccharide chain is followed by transmembrane Na(+) influx into the endothelial cell and by endothelial cell membrane depolarization. The simultaneous Ca(2+) influx releases NO and PGI2, vasodilatation is the consequence. Decrease in flow reverses the process. Binding of Ca(2+) and/or apoB100 lipoproteins (nanoplaque formation) impairs the flow sensor function. The physicochemical and functional properties of proteoglycans are due to their amphiphilicity and anionic polyelectrolyte character. Thus, they potently interact with cations, albeit in a rather complex manner. Utilizing (23)Na(+) and (39)K(+) NMR techniques, we could show that, both in HS-PG solutions and in native vascular connective tissue, the mode of interaction for monovalent cations is competition. Mg(2+) and Ca(2+) ions, however, induced a conformational change leading to an increased allosteric, cooperative K(+) and Na(+) binding, respectively. Since extracellular matrices and basement membranes form a tight-fitting sheath around the cell membrane of muscle and Schwann cells, in particular around sinus node cells of the heart, and underlie all epithelial and endothelial cell sheets and tubes, a release of cations from or an adsorption to these polyanionic macromolecules can transiently lead to fast and drastic activity changes in these tiny extracellular tissue compartments. The ionic currents underlying pacemaker and action potential of sinus node cells are fundamentally modulated. Therefore, these polyelectrolytic ion binding characteristics directly contribute to and intervene into heart rhythm.
Collapse
Affiliation(s)
- G Siegel
- Charité - University Clinic Berlin, 10117 Berlin, Germany; University of Uppsala Biomedical Center, 751 23 Uppsala, Sweden.
| | - M Malmsten
- University of Uppsala Biomedical Center, 751 23 Uppsala, Sweden; Charité - University Clinic Berlin, 10117 Berlin, Germany
| | - E Ermilov
- Charité - University Clinic Berlin, 10117 Berlin, Germany
| |
Collapse
|
39
|
Varkey M, Ding J, Tredget EE. Superficial dermal fibroblasts enhance basement membrane and epidermal barrier formation in tissue-engineered skin: implications for treatment of skin basement membrane disorders. Tissue Eng Part A 2013; 20:540-52. [PMID: 24004160 DOI: 10.1089/ten.tea.2013.0160] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Basement membrane is a highly specialized structure that binds the dermis and the epidermis of the skin, and is mainly composed of laminins, nidogen, collagen types IV and VII, and the proteoglycans, collagen type XVIII and perlecan, all of which play critical roles in the function and resilience of skin. Both dermal fibroblasts and epidermal keratinocytes contribute to the development of the basement membrane, and in turn the basement membrane and underlying dermis influence the development and function of the epidermal barrier. Disruption of the basement membrane results in skin fragility, extensive painful blistering, and severe recurring wounds as seen in skin basement membrane disorders such as epidermolysis bullosa, a family of life-threatening congenital skin disorders. Currently, there are no successful strategies for treatment of these disorders; we propose the use of tissue-engineered skin as a promising approach for effective wound coverage and to enhance healing. Fibroblasts and keratinocytes isolated from superficial and deep dermis and epidermis, respectively, of tissue from abdominoplasty patients were independently cocultured on collagen-glycosaminoglycan matrices, and the resulting tissue-engineered skin was assessed for functional differences based on the underlying specific dermal fibroblast subpopulation. Tissue-engineered skin with superficial fibroblasts and keratinocytes formed a continuous epidermis with increased epidermal barrier function and expressed higher levels of epidermal proteins, keratin-5, and E-cadherin, compared to that with deep fibroblasts and keratinocytes, which had an intermittent epidermis. Further, tissue-engineered skin with superficial fibroblasts and keratinocytes formed better basement membrane, and produced more laminin-5, nidogen, collagen type VII, compared to that with deep fibroblasts and keratinocytes. Overall, our results demonstrate that tissue-engineered skin with superficial fibroblasts and keratinocytes forms significantly better basement membrane with higher expression of dermo-epidermal adhesive and anchoring proteins, and superior epidermis with enhanced barrier function compared to that with deep fibroblasts and keratinocytes, or with superficial fibroblasts, deep fibroblasts, and keratinocytes. The specific use of superficial fibroblasts in tissue-engineered skin may thus be more beneficial to promote adhesion of newly formed skin and wound healing, and is therefore promising for the treatment of patients with basement membrane disorders and other skin blistering diseases.
Collapse
Affiliation(s)
- Mathew Varkey
- 1 Wound Healing Research Group, Division of Plastic and Reconstructive Surgery, University of Alberta , Edmonton, Canada
| | | | | |
Collapse
|
40
|
Luca AC, Mersch S, Deenen R, Schmidt S, Messner I, Schäfer KL, Baldus SE, Huckenbeck W, Piekorz RP, Knoefel WT, Krieg A, Stoecklein NH. Impact of the 3D microenvironment on phenotype, gene expression, and EGFR inhibition of colorectal cancer cell lines. PLoS One 2013; 8:e59689. [PMID: 23555746 PMCID: PMC3608563 DOI: 10.1371/journal.pone.0059689] [Citation(s) in RCA: 231] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 02/17/2013] [Indexed: 12/21/2022] Open
Abstract
Three-dimensional (3D) tumor cell cultures grown in laminin-rich-extracellular matrix (lrECM) are considered to reflect human tumors more realistic as compared to cells grown as monolayer on plastic. Here, we systematically investigated the impact of ECM on phenotype, gene expression, EGFR signaling pathway, and on EGFR inhibition in commonly used colorectal cancer (CRC) cell lines. LrECM on-top (3D) culture assays were performed with the CRC cell lines SW-480, HT-29, DLD-1, LOVO, CACO-2, COLO-205 and COLO-206F. Morphology of lrECM cultivated CRC cell lines was determined by phase contrast and confocal laser scanning fluorescence microscopy. Proliferation of cells was examined by MTT assay, invasive capacity of the cell lines was assayed using Matrigel-coated Boyden chambers, and migratory activity was determined employing the Fence assay. Differential gene expression was analyzed at the transcriptional level by the Agilent array platform. EGFR was inhibited by using the specific small molecule inhibitor AG1478. A specific spheroid growth pattern was observed for all investigated CRC cell lines. DLD-1, HT-29 and SW-480 and CACO-2 exhibited a clear solid tumor cell formation, while LOVO, COLO-205 and COLO-206F were characterized by forming grape-like structures. Although the occurrence of a spheroid morphology did not correlate with an altered migratory, invasive, or proliferative capacity of CRC cell lines, gene expression was clearly altered in cells grown on lrECM as compared to 2D cultures. Interestingly, in KRAS wild-type cell lines, inhibition of EGFR was less effective in lrECM (3D) cultures as compared to 2D cell cultures. Thus, comparing both 2D and 3D cell culture models, our data support the influence of the ECM on cancer growth. Compared to conventional 2D cell culture, the lrECM (3D) cell culture model offers the opportunity to investigate permanent CRC cell lines under more physiological conditions, i.e. in the context of molecular therapeutic targets and their pharmacological inhibition.
Collapse
Affiliation(s)
- Anna C. Luca
- Department of Surgery A, Heinrich-Heine University and University Hospital Düsseldorf, Düsseldorf, Germany
| | - Sabrina Mersch
- Department of Surgery A, Heinrich-Heine University and University Hospital Düsseldorf, Düsseldorf, Germany
| | - René Deenen
- Biological and Medical Research Center (BMFZ), Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Stephan Schmidt
- Institute of Biochemistry and Molecular Biology II, Heinrich-Heine University and University Hospital Düsseldorf, Düsseldorf, Germany
| | - Isabelle Messner
- Institute of Pathology, Heinrich-Heine University and University Hospital Düsseldorf, Düsseldorf, Germany
| | - Karl-Ludwig Schäfer
- Institute of Pathology, Heinrich-Heine University and University Hospital Düsseldorf, Düsseldorf, Germany
| | - Stephan E. Baldus
- Institute of Pathology, Heinrich-Heine University and University Hospital Düsseldorf, Düsseldorf, Germany
| | - Wolfgang Huckenbeck
- Institute of Forensic Medicine, Heinrich-Heine University and University Hospital Düsseldorf, Düsseldorf, Germany
| | - Roland P. Piekorz
- Institute of Biochemistry and Molecular Biology II, Heinrich-Heine University and University Hospital Düsseldorf, Düsseldorf, Germany
| | - Wolfram T. Knoefel
- Department of Surgery A, Heinrich-Heine University and University Hospital Düsseldorf, Düsseldorf, Germany
| | - Andreas Krieg
- Department of Surgery A, Heinrich-Heine University and University Hospital Düsseldorf, Düsseldorf, Germany
- * E-mail: (AK); (NHS)
| | - Nikolas H. Stoecklein
- Department of Surgery A, Heinrich-Heine University and University Hospital Düsseldorf, Düsseldorf, Germany
- * E-mail: (AK); (NHS)
| |
Collapse
|
41
|
Breitkreutz D, Koxholt I, Thiemann K, Nischt R. Skin basement membrane: the foundation of epidermal integrity--BM functions and diverse roles of bridging molecules nidogen and perlecan. BIOMED RESEARCH INTERNATIONAL 2013; 2013:179784. [PMID: 23586018 PMCID: PMC3618921 DOI: 10.1155/2013/179784] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 01/18/2013] [Accepted: 01/28/2013] [Indexed: 02/06/2023]
Abstract
The epidermis functions in skin as first defense line or barrier against environmental impacts, resting on extracellular matrix (ECM) of the dermis underneath. Both compartments are connected by the basement membrane (BM), composed of a set of distinct glycoproteins and proteoglycans. Herein we are reviewing molecular aspects of BM structure, composition, and function regarding not only (i) the dermoepidermal interface but also (ii) the resident microvasculature, primarily focusing on the per se nonscaffold forming components perlecan and nidogen-1 and nidogen-2. Depletion or functional deficiencies of any BM component are lethal at some stage of development or around birth, though BM defects vary between organs and tissues. Lethality problems were overcome by developmental stage- and skin-specific gene targeting or by cell grafting and organotypic (3D) cocultures of normal or defective cells, which allows recapitulating BM formation de novo. Thus, evidence is accumulating that BM assembly and turnover rely on mechanical properties and composition of the adjacent ECM and the dynamics of molecular assembly, including further "minor" local components, nidogens largely functioning as catalysts or molecular adaptors and perlecan as bridging stabilizer. Collectively, orchestration of BM assembly, remodeling, and the role of individual players herein are determined by the developmental, tissue-specific, or functional context.
Collapse
Affiliation(s)
- Dirk Breitkreutz
- Department of Dermatology, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany.
| | | | | | | |
Collapse
|
42
|
Alterations in basement membrane immunoreactivity of the diabetic retina in three diabetic mouse models. Graefes Arch Clin Exp Ophthalmol 2012; 251:763-75. [DOI: 10.1007/s00417-012-2237-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 11/19/2012] [Accepted: 12/03/2012] [Indexed: 10/27/2022] Open
|
43
|
Unsoeld T, Park JO, Hutter H. Discoidin domain receptors guide axons along longitudinal tracts in C. elegans. Dev Biol 2012; 374:142-52. [PMID: 23147028 DOI: 10.1016/j.ydbio.2012.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 11/01/2012] [Accepted: 11/03/2012] [Indexed: 10/27/2022]
Abstract
Discoidin domain receptors are a family of receptor tyrosine kinases activated by collagens. Here we characterize the role of the two discoidin domain receptors, ddr-1 and ddr-2, of the nematode C. elegans during nervous system development. ddr-2 mutant animals exhibit axon guidance defects in major longitudinal tracts most prominently in the ventral nerve cord. ddr-1 mutants show no significant phenotype on their own but significantly enhance guidance defects of ddr-2 in double mutants. ddr-1 and ddr-2 GFP-reporter constructs are expressed in neurons with axons in all affected nerve tracts. DDR-1 and DDR-2 GFP fusion proteins localize to axons. DDR-2 is required cell-autonomously in the PVPR neuron for the guidance of the PVPR pioneer axon, which establishes the left ventral nerve cord tract and serves as substrate for later outgrowing follower axons. Our results provide the first insight on discoidin domain receptor function in invertebrates and establish a novel role for discoidin domain receptors in axon navigation and axon tract formation.
Collapse
Affiliation(s)
- Thomas Unsoeld
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | | | | |
Collapse
|
44
|
May CA. Distribution of nidogen in the murine eye and ocular phenotype of the nidogen-1 knockout mouse. ISRN OPHTHALMOLOGY 2012; 2012:378641. [PMID: 24555126 PMCID: PMC3912598 DOI: 10.5402/2012/378641] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 07/03/2012] [Indexed: 11/29/2022]
Abstract
Distribution and lack of nidogen-1, part of numerous basement membranes, were studied in the mouse eye. For that purpose, eyes of C57BL/6 and nidogen-1 knockout mice were stained immunohistochemically for nidogen-1, and intraocular pressure measurements and light- and electron microscopy were used to study the nidogen-1 knockout animals. In normal mice, nidogen-1 was present in many basement membranes, but showed irregularities underneath the corneal epithelium, in Bruch's membrane and in the iris. Homozygous knockout of nidogen-1 in the mouse showed only mild pathological changes. In the anterior eye segment, small interruptions were noted in the nonpigmented ciliary epithelium without further consequences. In the posterior eye segment, interruptions of the inner limiting membrane led to small retinal ectopias and subsequent changes in the optic nerve. In summary, the knockout of nidogen-1 showed mild but significant morphological changes pointing to the importance of this protein which can in part, but not completely; be replaced by nidogen-2.
Collapse
Affiliation(s)
- Christian Albrecht May
- Department of Anatomy, Faculty of Medicine Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany
| |
Collapse
|
45
|
Singhal N, Martin PT. Role of extracellular matrix proteins and their receptors in the development of the vertebrate neuromuscular junction. Dev Neurobiol 2012; 71:982-1005. [PMID: 21766463 DOI: 10.1002/dneu.20953] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The vertebrate neuromuscular junction (NMJ) remains the best-studied model for understanding the mechanisms involved in synaptogenesis, due to its relatively large size, its simplicity of patterning, and its unparalleled experimental accessibility. During neuromuscular development, each skeletal myofiber secretes and deposits around its extracellular surface an assemblage of extracellular matrix (ECM) proteins that ultimately form a basal lamina. This is also the case at the NMJ, where the motor nerve contributes additional factors. Before most of the current molecular components were known, it was clear that the synaptic ECM of adult skeletal muscles was unique in composition and contained factors sufficient to induce the differentiation of both pre- and postsynaptic membranes. Biochemical, genetic, and microscopy studies have confirmed that agrin, laminin (221, 421, and 521), collagen IV (α3-α6), collagen XIII, perlecan, and the ColQ-bound form of acetylcholinesterase are all synaptic ECM proteins with important roles in neuromuscular development. The roles of their many potential receptors and/or binding proteins have been more difficult to assess at the genetic level due to the complexity of membrane interactions with these large proteins, but roles for MuSK-LRP4 in agrin signaling and for integrins, dystroglycan, and voltage-gated calcium channels in laminin-dependent phenotypes have been identified. Synaptic ECM proteins and their receptors are involved in almost all aspects of synaptic development, including synaptic initiation, topography, ultrastructure, maturation, stability, and transmission.
Collapse
Affiliation(s)
- Neha Singhal
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Department of Pediatrics, Ohio State University College of Medicine, Columbus, Ohio 43205, USA
| | | |
Collapse
|
46
|
Yang Z, Wu H, Li Y. Toxic effect on tissues and differentially expressed genes in hepatopancreas identified by suppression subtractive hybridization of freshwater pearl mussel (Hyriopsis cumingii) following microcystin-LR challenge. ENVIRONMENTAL TOXICOLOGY 2012; 27:393-403. [PMID: 20957730 DOI: 10.1002/tox.20652] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 08/08/2010] [Accepted: 08/10/2010] [Indexed: 05/30/2023]
Abstract
Microcystins are a family of potent hepatotoxins produced by freshwater cyanobacteria and can cause animal intoxications and human diseases. In this study, the effect of microcystin-LR (MC-LR) on the tissues of freshwater pearl mussel (Hyriopsis cumingii) was evaluated and differentially expressed genes in the hepatopancreas of the mussel exposed to MC-LR were identified. HPLC analysis of cell extracts from various tissues of the mussel indicated that the hepatopancreas had the highest MC-LR levels (55.78 ± 6.73 μg g⁻¹ DW) after 15-day exposure. The MC-LR concentration in gill or muscle was an order of magnitude less than in hepatopancreas or gonad. Subtractive cDNA library was constructed by suppression subtractive hybridization (SSH), and ∼400 positive clones were sequenced, from which 98 high quality sequences were obtained by BLAST analysis. The screening identified numerous genes involved in apoptosis, signal transduction, cytoskeletal remodel, innate immunity, material and energy metabolism, translation and transcription which were extensively discussed. The results of this study add large amount of information to the mussel genome data, and for the first time present the basic data on toxicity effect of MC-LR on mussel.
Collapse
Affiliation(s)
- Ziyan Yang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei Province 430074, China
| | | | | |
Collapse
|
47
|
Bechtel M, Keller MV, Bloch W, Sasaki T, Boukamp P, Zaucke F, Paulsson M, Nischt R. Different domains in nidogen-1 and nidogen-2 drive basement membrane formation in skin organotypic cocultures. FASEB J 2012; 26:3637-48. [PMID: 22623588 DOI: 10.1096/fj.11-194597] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Nidogen-1 and nidogen-2 are homologous proteins found in all basement membranes (BMs). They show comparable binding activities in vitro and partially redundant functions in vivo. Previously, we showed that in skin organotypic cocultures, BM formation was prevented in the absence of nidogens and that either nidogen was able to rescue this failure. We now dissected the two nidogens to identify the domains required for BM deposition. For that purpose, HaCaT cells were grown on collagen matrices containing nidogen-deficient, murine fibroblasts. After addition of nidogen-1 or nidogen-2 protein fragments comprising different binding domains, BM deposition was analyzed by immunofluorescence and electron microscopy. We could demonstrate that the rod-G3 domain of nidogen-2 was sufficient to achieve deposition of BM components at the epidermal-collagen interface. In contrast, for nidogen-1, both the G2 and G3 domains were required. Immunoblot analysis confirmed that all BM components were present in comparable amounts under all culture conditions. This finding demonstrates that nidogens, although homologous proteins, exert their effect on BM assembly through different binding domains, which may in turn result in alterations of BM structure and functions, thus providing an explanation for the phenotypical differences observed between nidogen-1 and -2 deficient mice.
Collapse
Affiliation(s)
- Manuela Bechtel
- Department of Dermatology, University Hospital of Cologne, Germany
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Belkadi A, Jacques C, Savagner F, Malthièry Y. Phylogenetic analysis of the human thyroglobulin regions. Thyroid Res 2012; 5:3. [PMID: 22549183 PMCID: PMC3464141 DOI: 10.1186/1756-6614-5-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 05/01/2012] [Indexed: 02/02/2023] Open
Abstract
Thyroglobulin is a large protein present in all vertebrates. It is synthesized in the thyrocytes and exported to lumen of the thyroid follicle, where its tyrosine residues are iodinated . The iodinated thyroglobulin is reintegrated into the cell and processed (cleaved to free its two extremities) for thyroid hormone synthesis. Thyroglobulin sequence analysis has identified four regions of the molecule: Tg1, Tg2, Tg3 and ChEL. Structural abnormalities and mutations result in different pathological consequences, depending on the thyroglobulin region affected. We carried out a bioinformatic analysis of thyroglobulin, determining the origin and the function of each region. Our results suggest that the Tg1 region acts as a binding protein on the apical membrane, the Tg2 region is involved in protein adhesion and the Tg3 region is involved in determining the three-dimensional structure of the protein. The ChEL domain is involved in thyroglobulin transport, dimerization and adhesion. The presence of repetitive domains in the Tg1, Tg2 and Tg3 regions suggests that these domains may have arisen through duplication.
Collapse
Affiliation(s)
- Abdelaziz Belkadi
- INSERM U694, Institut Biologie Santé (IBS), rue des Capucins, F-49100 Angers, France.
| | | | | | | |
Collapse
|
49
|
Behrens DT, Villone D, Koch M, Brunner G, Sorokin L, Robenek H, Bruckner-Tuderman L, Bruckner P, Hansen U. The epidermal basement membrane is a composite of separate laminin- or collagen IV-containing networks connected by aggregated perlecan, but not by nidogens. J Biol Chem 2012; 287:18700-9. [PMID: 22493504 DOI: 10.1074/jbc.m111.336073] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The basement membrane between the epidermis and the dermis is indispensable for normal skin functions. It connects, and functionally separates, the epidermis and the dermis. To understand the suprastructural and functional basis of these connections, heterotypic supramolecular aggregates were isolated from the dermal-epidermal junction zone of human skin. Individual suprastructures were separated and purified by immunomagnetic beads, each recognizing a specific, molecular component of the aggregates. The molecular compositions of the suprastructures were determined by immunogold electron microscopy and immunoblotting. A composite of two networks was obtained from fibril-free suspensions by immunobeads recognizing either laminin 332 or collagen IV. After removal of perlecan-containing suprastructures or after enzyme digestion of heparan sulfate chains, a distinct network with a diffuse electron-optical appearance was isolated with magnetic beads coated with antibodies to collagen IV. The second network was more finely grained and comprised laminin 332 and laminins with α5-chains. The core protein of perlecan was an exclusive component of this network whereas its heparan sulfate chains were integrated into the collagen IV-containing network. Nidogens 1 and 2 occurred in both networks but did not form strong molecular cross-bridges. Their incorporation into one network appeared to be masked after their incorporation into the other one. We conclude that the epidermal basement membrane is a composite of two structurally independent networks that are tightly connected in a spot-welding-like manner by perlecan-containing aggregates.
Collapse
Affiliation(s)
- Daniel Timo Behrens
- Institute for Physiological Chemistry and Pathobiochemistry, University Hospital of Münster, Münster, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Mokkapati S, Bechtel M, Reibetanz M, Miosge N, Nischt R. Absence of the basement membrane component nidogen 2, but not of nidogen 1, results in increased lung metastasis in mice. J Histochem Cytochem 2012; 60:280-9. [PMID: 22260998 DOI: 10.1369/0022155412436586] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Nidogen 1 and 2 are ubiquitous basement membrane (BM) components. They show a divergent expression pattern in certain adult tissues with a prominent localization of nidogen 2 in blood vessel BMs. Deletion of either nidogen 1 or 2 in mice had no effect on BM formation, suggesting complementary functions. However, studies in these mice revealed isoform-specific functions with nidogen 1-deficient mice showing neurological abnormalities and wound-healing defects not seen in the absence of nidogen 2. To investigate this further nidogen 1- or 2-deficient mice were intravenously injected with B16 murine melanoma cells, and lung metastasis was analyzed. The authors could show that loss of nidogen 2, but not of nidogen 1, significantly promotes lung metastasis of melanoma cells. Histological and ultrastructural analysis of nidogen 1- and 2-deficient lungs did not reveal differences in morphology and ultrastructure of BMs, including vessel BMs. Furthermore, deposition and distribution of the major BM components were indistinguishable between the two mouse strains. Taken together, these results suggest that absence of nidogen 2 might result in subtle changes of endothelial BMs in the lung, which would allow faster passage of tumor cells through these BMs, leading to a higher metastasis rate and more larger tumors.
Collapse
Affiliation(s)
- Sharada Mokkapati
- Department of Dermatology, University Hospital Cologne, Cologne, Germany
| | | | | | | | | |
Collapse
|