1
|
Lepucki A, Orlińska K, Mielczarek-Palacz A, Kabut J, Olczyk P, Komosińska-Vassev K. The Role of Extracellular Matrix Proteins in Breast Cancer. J Clin Med 2022; 11:jcm11051250. [PMID: 35268340 PMCID: PMC8911242 DOI: 10.3390/jcm11051250] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/16/2022] [Accepted: 02/22/2022] [Indexed: 12/12/2022] Open
Abstract
The extracellular matrix is a structure composed of many molecules, including fibrillar (types I, II, III, V, XI, XXIV, XXVII) and non-fibrillar collagens (mainly basement membrane collagens: types IV, VIII, X), non-collagenous glycoproteins (elastin, laminin, fibronectin, thrombospondin, tenascin, osteopontin, osteonectin, entactin, periostin) embedded in a gel of negatively charged water-retaining glycosaminoglycans (GAGs) such as non-sulfated hyaluronic acid (HA) and sulfated GAGs which are linked to a core protein to form proteoglycans (PGs). This highly dynamic molecular network provides critical biochemical and biomechanical cues that mediate the cell–cell and cell–matrix interactions, influence cell growth, migration and differentiation and serve as a reservoir of cytokines and growth factors’ action. The breakdown of normal ECM and its replacement with tumor ECM modulate the tumor microenvironment (TME) composition and is an essential part of tumorigenesis and metastasis, acting as key driver for malignant progression. Abnormal ECM also deregulate behavior of stromal cells as well as facilitating tumor-associated angiogenesis and inflammation. Thus, the tumor matrix modulates each of the classically defined hallmarks of cancer promoting the growth, survival and invasion of the cancer. Moreover, various ECM-derived components modulate the immune response affecting T cells, tumor-associated macrophages (TAM), dendritic cells and cancer-associated fibroblasts (CAF). This review article considers the role that extracellular matrix play in breast cancer. Determining the detailed connections between the ECM and cellular processes has helped to identify novel disease markers and therapeutic targets.
Collapse
Affiliation(s)
- Arkadiusz Lepucki
- Department of Community Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland; (A.L.); (K.O.)
| | - Kinga Orlińska
- Department of Community Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland; (A.L.); (K.O.)
| | - Aleksandra Mielczarek-Palacz
- Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 41-200 Sosnowiec, Poland; (A.M.-P.); (J.K.)
| | - Jacek Kabut
- Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 41-200 Sosnowiec, Poland; (A.M.-P.); (J.K.)
| | - Pawel Olczyk
- Department of Community Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland; (A.L.); (K.O.)
- Correspondence:
| | - Katarzyna Komosińska-Vassev
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 41-200 Sosnowiec, Poland;
| |
Collapse
|
2
|
Pompili S, Latella G, Gaudio E, Sferra R, Vetuschi A. The Charming World of the Extracellular Matrix: A Dynamic and Protective Network of the Intestinal Wall. Front Med (Lausanne) 2021; 8:610189. [PMID: 33937276 PMCID: PMC8085262 DOI: 10.3389/fmed.2021.610189] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 03/22/2021] [Indexed: 02/06/2023] Open
Abstract
The intestinal extracellular matrix (ECM) represents a complex network of proteins that not only forms a support structure for resident cells but also interacts closely with them by modulating their phenotypes and functions. More than 300 molecules have been identified, each of them with unique biochemical properties and exclusive biological functions. ECM components not only provide a scaffold for the tissue but also afford tensile strength and limit overstretch of the organ. The ECM holds water, ensures suitable hydration of the tissue, and participates in a selective barrier to the external environment. ECM-to-cells interaction is crucial for morphogenesis and cell differentiation, proliferation, and apoptosis. The ECM is a dynamic and multifunctional structure. The ECM is constantly renewed and remodeled by coordinated action among ECM-producing cells, degrading enzymes, and their specific inhibitors. During this process, several growth factors are released in the ECM, and they, in turn, modulate the deposition of new ECM. In this review, we describe the main components and functions of intestinal ECM and we discuss their role in maintaining the structure and function of the intestinal barrier. Achieving complete knowledge of the ECM world is an important goal to understand the mechanisms leading to the onset and the progression of several intestinal diseases related to alterations in ECM remodeling.
Collapse
Affiliation(s)
- Simona Pompili
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Giovanni Latella
- Department of Life, Health and Environmental Sciences, Gastroenterology Unit, University of L'Aquila, L'Aquila, Italy
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine, and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Roberta Sferra
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Antonella Vetuschi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
3
|
Zhang B, Xu C, Liu J, Yang J, Gao Q, Ye F. Nidogen-1 expression is associated with overall survival and temozolomide sensitivity in low-grade glioma patients. Aging (Albany NY) 2021; 13:9085-9107. [PMID: 33735110 PMCID: PMC8034893 DOI: 10.18632/aging.202789] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 02/16/2021] [Indexed: 12/23/2022]
Abstract
We investigated the prognostic significance of nidogen-1 (NID1) in glioma. Oncomine, GEPIA, UALCAN, CCGA database analyses showed that NID1 transcript levels were significantly upregulated in multiple cancer types, including gliomas. Quantitative RT-PCR analyses confirmed that NID1 expression was significantly upregulated in glioma tissues compared to paired adjacent normal brain tissue samples (n=9). NID1 silencing enhanced in vitro apoptosis and the temozolomide sensitivity of U251 and U87-MG glioma cells. Protein-protein interaction network analysis using the STRING and GeneMANIA databases showed that NID1 interacts with several extracellular matrix proteins. TIMER database analysis showed that NID1 expression in low-grade gliomas was associated with tumor infiltration of B cells, CD4+ and CD8+ T cells, macrophages, neutrophils, and dendritic cells. Kaplan-Meier survival curve analysis showed that low-grade gliomas patients with high NID1 expression were associated with shorter overall survival. However, NID1 expression was not associated with overall survival in glioblastoma multiforme patients. These findings demonstrate that NID1 expression in glioma tissues is associated with overall survival of low-grade glioma patients and temozolomide sensitivity. NID1 is thus a potential prognostic biomarker and therapeutic target in low-grade glioma patients.
Collapse
Affiliation(s)
- Baiwei Zhang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng Xu
- Cancer Biology Research Center, Key Laboratory of the Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junfeng Liu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinsheng Yang
- Department of Neurosurgery, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Qinglei Gao
- Cancer Biology Research Center, Key Laboratory of the Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Ye
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Post A, Wang E, Cosgriff-Hernandez E. A Review of Integrin-Mediated Endothelial Cell Phenotype in the Design of Cardiovascular Devices. Ann Biomed Eng 2018; 47:366-380. [PMID: 30488311 DOI: 10.1007/s10439-018-02171-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 11/20/2018] [Indexed: 12/14/2022]
Abstract
Sustained biomaterial thromboresistance has long been a goal and challenge in blood-contacting device design. Endothelialization is one of the most successful strategies to achieve long-term thromboresistance of blood-contacting devices, with the endothelial cell layer providing dynamic hemostatic regulation. It is well established that endothelial cell behavior is influenced by interactions with the underlying extracellular matrix (ECM). Numerous researchers have sought to exploit these interactions to generate improved blood-contacting devices by investigating the expression of hemostatic regulators in endothelial cells on various ECM coatings. The ability to select substrates that promote endothelial cell-mediated thromboresistance is crucial to advancing material design strategies to improve cardiovascular device outcomes. This review provides an overview of endothelial cell regulation of hemostasis, the major components found within the cardiovascular basal lamina, and the interactions of endothelial cells with prominent ECM components of the basement membrane. A summary of ECM-mimetic strategies used in cardiovascular devices is provided with a focus on the effects of key adhesion modalities on endothelial cell regulators of hemostasis.
Collapse
Affiliation(s)
- Allison Post
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Ellen Wang
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Elizabeth Cosgriff-Hernandez
- Department of Biomedical Engineering, University of Texas, 107 W. Dean Keaton, BME 3.503D, 1 University Station, C0800, Austin, TX, 78712, USA.
| |
Collapse
|
5
|
LeBleu VS, Macdonald B, Kalluri R. Structure and Function of Basement Membranes. Exp Biol Med (Maywood) 2016; 232:1121-9. [PMID: 17895520 DOI: 10.3181/0703-mr-72] [Citation(s) in RCA: 366] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Basement membranes (BMs) are present in every tissue of the human body. All epithelium and endothelium is in direct association with BMs. BMs are a composite of several large glycoproteins and form an organized scaffold to provide structural support to the tissue and also offer functional input to modulate cellular function. While collagen I is the most abundant protein in the human body, type IV collagen is the most abundant protein in BMs. Matrigel is commonly used as surrogate for BMs in many experiments, but this is a tumor-derived BM–like material and does not contain all of the components that natural BMs possess. The structure of BMs and their functional role in tissues are unique and unlike any other class of proteins in the human body. Increasing evidence suggests that BMs are unique signal input devices that likely fine tune cellular function. Additionally, the resulting endothelial and epithelial heterogeneity in human body is a direct contribution of cell-matrix interaction facilitated by the diverse compositions of BMs.
Collapse
Affiliation(s)
- Valerie S LeBleu
- Division of Matrix Biology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | |
Collapse
|
6
|
Wallingford MC, Gammill HS, Giachelli CM. Slc20a2 deficiency results in fetal growth restriction and placental calcification associated with thickened basement membranes and novel CD13 and lamininα1 expressing cells. Reprod Biol 2016; 16:13-26. [PMID: 26952749 DOI: 10.1016/j.repbio.2015.12.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 12/28/2015] [Accepted: 12/29/2015] [Indexed: 10/22/2022]
Abstract
The essential nutrient phosphorus must be taken up by the mammalian embryo during gestation. The mechanism(s) and key proteins responsible for maternal to fetal phosphate transport have not been identified. Established parameters for placental phosphate transport match those of the type III phosphate transporters, Slc20a1 and Slc20a2. Both members are expressed in human placenta, and their altered expression is linked to preeclampsia. In this study, we tested the hypothesis that Slc20a2 is required for placental function. Indeed, complete deficiency of Slc20a2 in either the maternal or embryonic placental compartment results in fetal growth restriction. We found that Slc20a2 null mice can reproduce, but are subviable; ∼50% are lost prior to weaning age. We also observed that 23% of Slc20a2 deficient females develop pregnancy complications at full term, with tremors and placental abnormalities including abnormal vascular structure, increased basement membrane deposition, abundant calcification, and accumulation of novel CD13 and lamininα1 positive cells. Together these data support that Slc20a2 deficiency impacts both maternal and neonatal health, and Slc20a2 is required for normal placental function. In humans, decreased levels of placental Slc20a1 and Slc20a2 have been correlated with early onset preeclampsia, a disorder that can manifest from placental dysfunction. In addition, preterm placental calcification has been associated with poor pregnancy outcomes. We surveyed placental calcification in human preeclamptic placenta samples, and detected basement membrane-associated placental calcification as well as a comparable lamininα1 positive cell type, indicating that similar mechanisms may underlie both human and mouse placental calcification.
Collapse
Affiliation(s)
- Mary C Wallingford
- University of Washington, Department of Bioengineering, 3720 15th Ave NE, Seattle, WA 98195, USA.
| | - Hilary S Gammill
- University of Washington, Department of Obstetrics and Gynecology, Seattle, WA 98195, USA.
| | - Cecilia M Giachelli
- University of Washington, Department of Bioengineering, 3720 15th Ave NE, Seattle, WA 98195, USA.
| |
Collapse
|
7
|
Pedrola N, Devis L, Llauradó M, Campoy I, Martinez-Garcia E, Garcia M, Muinelo-Romay L, Alonso-Alconada L, Abal M, Alameda F, Mancebo G, Carreras R, Castellví J, Cabrera S, Gil-Moreno A, Matias-Guiu X, Iovanna JL, Colas E, Reventós J, Ruiz A. Nidogen 1 and Nuclear Protein 1: novel targets of ETV5 transcription factor involved in endometrial cancer invasion. Clin Exp Metastasis 2015; 32:467-78. [PMID: 25924802 DOI: 10.1007/s10585-015-9720-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 04/20/2015] [Indexed: 11/28/2022]
Abstract
Endometrial cancer is the most frequent malignancy of the female genital tract in western countries. Our group has previously characterized the upregulation of the transcription factor ETV5 in endometrial cancer with a specific and significant increase in those tumor stages associated with myometrial invasion. We have shown that ETV5 overexpression in Hec1A endometrial cancer cells induces epithelial to mesenchymal transition resulting in the acquisition of migratory and invasive capabilities. In the present work, we have identified Nidogen 1 (NID1) and Nuclear Protein 1 (NUPR1) as direct transcriptional targets of ETV5 in endometrial cancer cells. Inhibition of NID1 and NUPR1 in ETV5 overexpressing cells reduced cell migration and invasion in vitro and reduced tumor growth and dissemination in an orthotopic endometrial cancer model. Importantly, we confirmed a significant increase of NUPR1 and NID1 protein expression in the invasion front of the tumor compared to their paired superficial zone, concomitant to ETV5 overexpression. Altogether, we conclude that NID1 and NUPR1 are novel targets of ETV5 and are actively cooperating with ETV5 at the invasion front of the tumor in the acquisition of an invasive phenotype to jointly drive endometrial cancer invasion.
Collapse
Affiliation(s)
- Núria Pedrola
- Biomedical Research Group in Ginaecology, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron, 119-129, 08035, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Futyma K, Miotła P, Różyńska K, Zdunek M, Semczuk A, Rechberger T, Wojcierowski J. Expression of genes encoding extracellular matrix proteins: a macroarray study. Oncol Rep 2014; 32:2349-53. [PMID: 25231141 PMCID: PMC4240474 DOI: 10.3892/or.2014.3493] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 08/14/2014] [Indexed: 11/06/2022] Open
Abstract
Endometrial cancer (EC) is one of the most common gynecological malignancies in Poland, with well-established risk factors. Genetic instability and molecular alterations responsible for endometrial carcinogenesis have been systematically investigated. The aim of the present study was to investigate, by means of cDNA macroarrays, the expression profiles of genes encoding extracellular matrix (ECM) proteins in ECs. Tissue specimens were collected during surgical procedures from 40 patients with EC, and control tissue was collected from 9 patients with uterine leiomyomas. RNA was isolated and RT-PCR with radioisotope-labeled cDNA was performed. The levels of ECM protein gene expression in normal endometrial tissues were compared to the expression of these genes in EC specimens. Statistically significant differences in gene expression, stratified by clinical stage of the ECs, were detected for aggrecan, vitronectin, tenascin R, nidogen and two collagen proteins: type VIII chain α1 and type XI chain α2. All of these proteins were overexpressed in stage III endometrial carcinomas compared to levels in stage I and II uterine neoplasms. In conclusion, increased expression of genes encoding ECM proteins may play an important role in facilitating accelerated disease progression of human ECs.
Collapse
Affiliation(s)
- Konrad Futyma
- Second Department of Gynecology, Medical University of Lublin, Lublin, Poland
| | - Paweł Miotła
- Second Department of Gynecology, Medical University of Lublin, Lublin, Poland
| | - Krystyna Różyńska
- Department of Clinical Genetics, Medical University of Lublin, Lublin, Poland
| | - Małgorzata Zdunek
- Department of Clinical Pathology, Medical University of Lublin, Lublin, Poland
| | - Andrzej Semczuk
- Second Department of Gynecology, Medical University of Lublin, Lublin, Poland
| | - Tomasz Rechberger
- Second Department of Gynecology, Medical University of Lublin, Lublin, Poland
| | - Jacek Wojcierowski
- Department of Medical Genetics, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
9
|
Choi BY, Kim J, Chung J, Kim AR, Mun SJ, Kang SI, Lee SH, Kim N, Oh SH. Whole-exome sequencing identifies a novel genotype-phenotype correlation in the entactin domain of the known deafness gene TECTA. PLoS One 2014; 9:e97040. [PMID: 24816743 PMCID: PMC4016231 DOI: 10.1371/journal.pone.0097040] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 04/14/2014] [Indexed: 12/18/2022] Open
Abstract
Postlingual progressive hearing loss, affecting primarily the high frequencies, is the clinical finding in most cases of autosomal dominant nonsyndromic hearing loss (ADNSHL). The molecular genetic etiology of ADNSHL is extremely heterogeneous. We applied whole-exome sequencing to reveal the genetic etiology of high-frequency hearing loss in a mid-sized Korean family without any prior linkage data. Whole-exome sequencing of four family members (two affected and two unaffected), together with our filtering strategy based on comprehensive bioinformatics analyses, identified 21 potential pathogenic candidates. Sanger validation of an additional five family members excluded 20 variants, leaving only one novel variant, TECTA c.710C>T (p.T237I), as the strongest candidate. This variant resides in the entactin (ENT) domain and co-segregated perfectly with non-progressive high-frequency hearing loss in the family. It was absent among 700 ethnically matched control chromosomes, and the T237 residue is conserved among species, which supports its pathogenicity. Interestingly, this finding contrasted with a previously proposed genotype-phenotype correlation in which variants of the ENT domain of TECTA were associated with mid-frequency hearing loss. Based upon what we observed, we propose a novel “genotype to phenotype” correlation in the ENT domain of TECTA. Our results shed light on another important application of whole-exome sequencing: the establishment of a novel genotype-phenotype in the molecular genetic diagnosis of autosomal dominant hearing loss.
Collapse
Affiliation(s)
- Byung Yoon Choi
- Department of Otorhinolaryngology, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Jiwoong Kim
- Korean Bioinformation center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Juyong Chung
- Department of Otolaryngology, Ajou University School of Medicine, Suwon, South Korea
| | - Ah Reum Kim
- Department of Otorhinolaryngology, Seoul national University College of Medicine, Seoul, South Korea
| | - Sue Jean Mun
- Department of Otorhinolaryngology, Seoul national University College of Medicine, Seoul, South Korea
| | - Seong Il Kang
- Department of Otorhinolaryngology, Seoul national University College of Medicine, Seoul, South Korea
| | - Sang-Heon Lee
- Korean Bioinformation center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
- Department of Bioinformatics, University of Science and Technology, Daejeon, South Korea
| | - Namshin Kim
- Korean Bioinformation center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
- Department of Bioinformatics, University of Science and Technology, Daejeon, South Korea
- * E-mail: (NSK); (SHO)
| | - Seung-Ha Oh
- Department of Otorhinolaryngology, Seoul national University College of Medicine, Seoul, South Korea
- * E-mail: (NSK); (SHO)
| |
Collapse
|
10
|
Hildebrand MS, Morín M, Meyer NC, Mayo F, Modamio-Hoybjor S, Mencía A, Olavarrieta L, Morales-Angulo C, Nishimura CJ, Workman H, DeLuca AP, del Castillo I, Taylor KR, Tompkins B, Goodman CW, Schrauwen I, Wesemael MV, Lachlan K, Shearer AE, Braun TA, Huygen PLM, Kremer H, Van Camp G, Moreno F, Casavant TL, Smith RJH, Moreno-Pelayo MA. DFNA8/12 caused by TECTA mutations is the most identified subtype of nonsyndromic autosomal dominant hearing loss. Hum Mutat 2011; 32:825-34. [PMID: 21520338 DOI: 10.1002/humu.21512] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 03/31/2011] [Indexed: 12/13/2022]
Abstract
The prevalence of DFNA8/DFNA12 (DFNA8/12), a type of autosomal dominant nonsyndromic hearing loss (ADNSHL), is unknown as comprehensive population-based genetic screening has not been conducted. We therefore completed unbiased screening for TECTA mutations in a Spanish cohort of 372 probands from ADNSHL families. Three additional families (Spanish, Belgian, and English) known to be linked to DFNA8/12 were also included in the screening. In an additional cohort of 835 American ADNSHL families, we preselected 73 probands for TECTA screening based on audiometric data. In aggregate, we identified 23 TECTA mutations in this process. Remarkably, 20 of these mutations are novel, more than doubling the number of reported TECTA ADNSHL mutations from 13 to 33. Mutations lie in all domains of the α-tectorin protein, including those for the first time identified in the entactin domain, as well as the vWFD1, vWFD2, and vWFD3 repeats, and the D1-D2 and TIL2 connectors. Although the majority are private mutations, four of them-p.Cys1036Tyr, p.Cys1837Gly, p.Thr1866Met, and p.Arg1890Cys-were observed in more than one unrelated family. For two of these mutations founder effects were also confirmed. Our data validate previously observed genotype-phenotype correlations in DFNA8/12 and introduce new correlations. Specifically, mutations in the N-terminal region of α-tectorin (entactin domain, vWFD1, and vWFD2) lead to mid-frequency NSHL, a phenotype previously associated only with mutations in the ZP domain. Collectively, our results indicate that DFNA8/12 hearing loss is a frequent type of ADNSHL.
Collapse
Affiliation(s)
- Michael S Hildebrand
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Ho MSP, Böse K, Mokkapati S, Nischt R, Smyth N. Nidogens-Extracellular matrix linker molecules. Microsc Res Tech 2008; 71:387-95. [PMID: 18219668 DOI: 10.1002/jemt.20567] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Nidogens/entactins are a family of highly conserved, sulfated glycoproteins. Biochemical studies have implicated them as having a major structural role in the basement membrane. However despite being ubiquitous components of this specialized extracellular matrix and having a wide spectrum of binding partners, genetic analysis has shown that they are not required for the overall architecture of the basement membrane. Rather in development they play an important role in its stabilization especially in tissues undergoing rapid growth or turnover. Nidogen breakdown has been implicated as a key event in the basement membrane degradation occurring in mammary gland involution. A number of studies, most compellingly those in C. elegans, demonstrated that nidogens may have other nonstructural roles and be involved in axonal pathfinding and synaptic transmission.
Collapse
Affiliation(s)
- Matthew S P Ho
- Center for Biochemistry and Center for Molecular Medicine, Medical Faculty, University of Cologne, D-50924 Cologne, Germany
| | | | | | | | | |
Collapse
|
12
|
Tomte LT, Annatshah Y, Schlüter NK, Miosge N, Herken R, Quondamatteo F. Hematopoietic Cells Are a Source of Nidogen-1 and Nidogen-2 during Mouse Liver Development. J Histochem Cytochem 2006; 54:593-604. [PMID: 16618944 DOI: 10.1369/jhc.5a6810.2006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nidogen-1 and −2 are key components of basement membranes (BMs). Despite the presence of nidogen molecules in the parenchyma of the developing liver, no BMs are formed therein. This suggests that, in the liver, nidogens may also have functions other than BM formation. As a first step toward the elucidation of the possible cell biological functions of nidogens in the developing liver, we aimed to study their cellular origin. We localized expression of nidogen-1 and nidogen-2 on prenatal days 12, 14, and 16 in the developing mouse liver using in situ hybridization at the light and electron microscopic level and light microscopic immunohistochemistry. Our results show that nidogens are produced both in portal anlagen and in the parenchyma during liver development. In the parenchyma, transcripts can be found in hepatocytes, precursors of stellate cells, endothelial cells and, most interestingly, hematopoietic cells. Using real-time PCR, we found that the gene expression for both proteins shows a decrease from day 14 to day 16 concomitant with a decrease in the hepatic hematopoiesis. We suggest that nidogens may, to some extent, take part in the regulation of hepatic hematopoiesis. (J Histochem Cytochem 54:593-604, 2006)
Collapse
Affiliation(s)
- Laurice T Tomte
- Department of Histology, University of Goettingen, Goettingen, Germany.
| | | | | | | | | | | |
Collapse
|
13
|
Lebel SP, Chen Y, Gingras D, Chung AE, Bendayan M. Morphofunctional studies of the glomerular wall in mice lacking entactin-1. J Histochem Cytochem 2003; 51:1467-78. [PMID: 14566019 PMCID: PMC3957556 DOI: 10.1177/002215540305101107] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The architecture of the basement membranes is essential for proper function. This architecture is based on interactions among its components, which assemble in a complex network. Entactin-1 appears to be the mastermind of this assembling. In entactin-1-null transgenic mice, immunocytochemistry established the absence of entactin-1 in the glomerular basement membrane, and morphological thickening of this membrane was demonstrated. This prompted us to investigate the organization of other components of the glomerular basement membrane in the transgenic animals. The distribution of type IV collagen and laminin remained unchanged, whereas that of anionic charges was significantly altered. We also evaluated the impact of the absence of entactin-1 on cell relays by studying the alpha(3)- and the alpha(v)-integrins along the endothelial and epithelial glomerular cell plasma membranes. Only the density of alpha(v) was found to be increased. Finally, the filtration properties of the glomerular wall were evaluated by revealing endogenous albumin distribution across the basement membrane. This was altered in transgenic animals, suggesting changes in permselectivity properties. Entactin-1 appears to be an essential component in basement membranes because its absence appears to modify the molecular organization leading to alterations in functional properties.
Collapse
Affiliation(s)
- Simon-Philippe Lebel
- Department of Pathology and Cell Biology, Université de Montréal, Montreal, Quebec, Canada (S-PL,DG,MB)
| | - Yong Chen
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania (YC,AEC)
| | - Diane Gingras
- Department of Pathology and Cell Biology, Université de Montréal, Montreal, Quebec, Canada (S-PL,DG,MB)
| | - Albert E. Chung
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania (YC,AEC)
| | - Moise Bendayan
- Department of Pathology and Cell Biology, Université de Montréal, Montreal, Quebec, Canada (S-PL,DG,MB)
- Correspondence to: M. Bendayan, Dept. of Pathology and Cell Biology, Université de Montréal, CP6128 Succ. Centre Ville, Montreal, Quebec, Canada H3C 3J7. E-mail:
| |
Collapse
|
14
|
Kang SH, Kramer JM. Nidogen is nonessential and not required for normal type IV collagen localization in Caenorhabditis elegans. Mol Biol Cell 2000; 11:3911-23. [PMID: 11071916 PMCID: PMC15046 DOI: 10.1091/mbc.11.11.3911] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Nidogen (entactin) can form a ternary complex with type IV collagen and laminin and is thought to play a critical role in basement membrane assembly. We show that the Caenorhabditis elegans nidogen homologue nid-1 generates three isoforms that differ in numbers of rod domain endothelial growth factor repeats and are differentially expressed during development. NID-1 appears at the start of embryonic morphogenesis associated with muscle cells and subsequently accumulates on pharyngeal, intestinal, and gonad primordia. In larvae and adults NID-1 is detected in most basement membranes but accumulates most strongly around the nerve ring and developing gonad. NID-1 is concentrated under dense bodies, at the edges of muscle quadrants, and on the sublateral nerves that run under muscles. Two deletions in nid-1 were isolated: cg119 is a molecular null, whereas cg118 produces truncated NID-1 missing the G2 collagen IV binding domain. Neither deletion causes overt abnormal phenotypes, except for mildly reduced fecundity. Truncated cg118 NID-1 shows wild-type localization, demonstrating that the G2 domain is not necessary for nidogen assembly. Both nid-1 mutants assemble type IV collagen in a completely wild-type pattern, demonstrating that nidogen is not essential for type IV collagen assembly into basement membranes.
Collapse
Affiliation(s)
- S H Kang
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | |
Collapse
|
15
|
Konrad L, Albrecht M, Renneberg H, Ulrix W, Hoeben E, Verhoeven G, Aumüller G. Mesenchymal entactin-1 (nidogen-1) is required for adhesion of peritubular cells of the rat testis in vitro. Eur J Cell Biol 2000; 79:112-20. [PMID: 10727019 DOI: 10.1078/s0171-9335(04)70013-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Epithelial-like Sertoli cells isolated from immature rat testis aggregate to form tubule-like structures when cultured on a monolayer of mesenchyme-derived peritubular cells. At the end of this morphogenetic process both cell types are separated by a basement membrane. In this study the gene expression of monocultures and direct cocultures of peritubular cells and Sertoli cells was examined using DD-RT-PCR. One of the isolated cDNA clones showed high homology to the cDNA encoding the basement membrane component entactin-1 (nidogen-1). Even though the entactin-1 (nidogen-1) gene is transcribed in peritubular cells, Sertoli cells, and in direct cocultures, the mRNA is translated only by the peritubular cells. No entactin-1 (nidogen-1) was detected in the Sertoli cells by Western blotting. Moreover, peritubular cell monocultures and cocultures showed the presence of one single band at 152 kDa in the supernatant, whereas in cell lysates two bands were detectable at 152 kDa and 150 kDa. Perturbation experiments using monoclonal antibodies directed against entactin-1 (nidogen-1) were performed with peritubular cells and Sertoli cells, respectively, and demonstrated loss of cell adhesion of the peritubular cells, while the Sertoli cells remained adherent. From these data we conclude that entactin-1 is exclusively produced and secreted by mesenchymal peritubular cells, and affects adhesion of peritubular cells in an autocrine manner.
Collapse
Affiliation(s)
- L Konrad
- Department of Anatomy and Cell Biology, Philipps-Universität Marburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
16
|
Oivula J, Lohi J, Tani T, Kangas L, Kiviluoto T, Kivilaakso E, Butkowski R, Virtanen I. Renal cell carcinomas and pancreatic adenocarcinomas produce nidogen in vitro and in vivo. J Pathol 1999; 187:455-61. [PMID: 10398106 DOI: 10.1002/(sici)1096-9896(199903)187:4<455::aid-path271>3.0.co;2-c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The production of nidogen by four renal cell carcinoma (RCC) and three pancreatic adenocarcinoma (PAc) cell lines has been studied in cell culture and in xenografted tumours in nude mice. In RCC cells, immunoreactivity for nidogen was seen only after exposure to monensin to induce cytoplasmic accumulation of secretory proteins. In PAc cells, immunoreaction was also detectable in control cells. Immunoblotting of control and monensin-exposed cells and immunoprecipitation of culture media of radioactively labelled cells demonstrated the production of nidogen polypeptide of Mr ca. 150000 by six of the seven cell lines. Basement membranes (BMs) and stroma of the xenografted tumours derived from these six cell lines demonstrated immunoreactivity for both human and mouse nidogen, as revealed with species-specific antibodies. The ability of the cells to produce nidogen in vitro and deposit in vivo was positively correlated with high histological grade of the xenografted tumours, although the small number of cell lines studied calls for further studies to confirm this. The distribution of nidogen in human RCC and PAc specimens was also studied by immunohistochemistry. There was strong immunoreactivity for nidogen in tumour stroma, BM of carcinoma cell nests, and endothelial basal lamina, but no conclusions could be drawn regarding histological grade and immunostaining patterns, because stromal production could not be ruled out. The results show that nidogen is produced by human carcinoma cells both in vitro and in vivo.
Collapse
Affiliation(s)
- J Oivula
- Department of Anatomy, Institute of Biomedicine, P.O. Box 9 (Siltavuorenpenger 20A), FIN-00014 University of Helsinki, Helsinki, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Walker PD, Kaushal GP, Shah SV. Meprin A, the major matrix degrading enzyme in renal tubules, produces a novel nidogen fragment in vitro and in vivo. Kidney Int 1998; 53:1673-80. [PMID: 9607199 DOI: 10.1046/j.1523-1755.1998.00949.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We examined the effect of meprin A, the major matrix degrading metalloproteinase in rat kidney, on the laminin-nidogen complex. N-terminal sequence information from the most abundant 55 kDa fragment revealed that it was a breakdown product of nidogen rather than laminin. In comparison with over 50 nidogen cleavage sites produced by other proteases, the meprin A-induced nidogen cleavage site at amino acid position 899-900, a glutamine-glycine site in the G3 domain, is unique. In addition, these data demonstrate that meprin A degrades the G3 domain of nidogen even in the presence of laminin binding, which usually accords protection from proteolytic degradation. Meprin A also degraded purified nidogen into similar breakdown products. Given that the tubular basement membrane is located on the basilar side of the cell, the location of meprin A on the apical brush border makes it difficult to envision a role for meprin A in injury-induced basement membrane component breakdown. Thus, we examined the possibility that following renal tubular epithelial cell injury, meprin A undergoes a translocation to reach the underlying basement membrane. After renal ischemia-reperfusion there was a marked alteration in meprin A staining with meprin A now distributed throughout the renal tubular cell cytoplasm and directly adherent to the tubular basement membrane. This was in contrast to the usual linear staining of the brush border of tubules in the corticomedullary junction. These data provide unequivocal evidence that following injury, meprin A undergoes redistribution and/or adherence to the tubular basement membrane. Since in our in vitro studies, we identified a distinct meprin-induced 55 kDa nidogen breakdown product, the urine was also examined for the presence of nidogen degradation products after rat renal ischemia-reperfusion injury. Western blots showed a marked increase in the urinary 55 kDa nidogen fragment as early as the first day following ischemia-reperfusion injury and continuing for six days. Taken together, these in vivo data strongly support the notion that the nidogen breakdown products are the result of partial degradation of tubular basement membrane by meprin A following renal tubular ischemia-reperfusion injury.
Collapse
Affiliation(s)
- P D Walker
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, USA.
| | | | | |
Collapse
|
18
|
Yi XY, Wayner EA, Kim Y, Fish AJ. Adhesion of cultured human kidney mesangial cells to native entactin: role of integrin receptors. CELL ADHESION AND COMMUNICATION 1998; 5:237-48. [PMID: 9686320 DOI: 10.3109/15419069809040294] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Entactin is an extracellular matrix glycoprotein which binds to laminin and is found in most renal basement membranes and in the glomerular mesangial matrix. In the present study, we have characterized specific integrin receptors on cultured human mesangial cells (CHMC) responsible for adhesion to native entactin. The integrin receptors alpha 2 beta 1, alpha 3 beta 1, alpha 5 beta 1, alpha v beta 3, alpha v beta 5, and alpha 6 complexed with either beta 1 or beta 4 could be immune precipitated from detergent extracts of metabolically labeled CHMC. Adhesion assays with inhibitory anti integrin monoclonal antibodies (mab) demonstrated that CHMC use both alpha v beta 3 and a beta 1-containing integrin to bind surfaces coated with native entactin. Optimal binding of CHMC to native entactin required the participation of cations. Using wild type and mutant recombinant entactin fragments, the binding site for the alpha v beta 3 receptor was localized to the RGD sequence on the rod or E domain of entactin. CHMC adhesion to mutant full length recombinant entactin ligands lacking the E domain RGD sequence confirmed the presence of ligand binding site(s) for beta 1 integrin receptor(s). Differences in CHMC binding characteristics to recombinant and full length entactin compared to native bovine basement membrane entactin were observed. This suggests that tertiary molecular structure may contribute to entactin ligand binding properties. Primary amino acid residue sequences and tertiary structure of entactin may play roles in forming functional cell attachment sites in native basement membrane entactin.
Collapse
Affiliation(s)
- X Y Yi
- Department of Pediatrics, University of Minnesota, Minneapolis 55455, USA
| | | | | | | |
Collapse
|
19
|
Abstract
Studies from a number of laboratories have provided information on the temporal and spatial expression of a variety of extracellular matrix (ECM) components in the developing liver and insight into their potential roles in hepatogenesis. Collagen type IV and laminin are present in the basement membranes of the capsular mesothelium, vascular structures of the portal and hepatic vein branches, and the ductular elements of the developing liver. The mesothelial, vascular, and ductular epithelial cells synthesize laminin and type IV collagen. In contrast, fibronectin and type I collagen are restricted to the adjacent or surrounding interstitium of those ductal and vascular elements, but are not within the basement membrane proper. The hepatic perisinusoidal space (Space of Disse) of the fetal rat develops a delicate extracellular matrix by 12.5 days of gestation, which is characterized by banded collagen fibrils and bundles associated with filamentous and flocculent material. Fibronectin, laminin, and collagen types I, III, and IV are present in the developing perisinusoidal space by this early gestational date, with laminin being the most prevalent component detected. The laminin chains localized to that region in the fetal/neonatal period are alpha 2, beta 1, beta 2, and gamma 1, whereas the alpha 1 chain of laminin is absent from the developing Space of Disse. Similar data have been reported on the laminin phenotype in the perisinusoidal space during hepatic regeneration. Electron microscopy immunohistochemistry studies have demonstrated that the sinusoidal lining cells and hepatocytes synthesize these ECM proteins during hepatogenesis. By 6 to 8 weeks of postnatal life, laminin is not detectable in the perisinusoidal space. Both the transient expression of laminin and the similarity of the laminin chain phenotype expressed in the perisinusoidal space in the developing and regenerating liver suggests a role for this protein in the organization of the hepatic lobule in those forms of hepatic morphogenesis.
Collapse
Affiliation(s)
- P S Amenta
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School-UMDNJ, New Brunswick 08903-0019, USA
| | | |
Collapse
|
20
|
Ancsin JB, Kisilevsky R. Characterization of high affinity binding between laminin and the acute-phase protein, serum amyloid A. J Biol Chem 1997; 272:406-13. [PMID: 8995276 DOI: 10.1074/jbc.272.1.406] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Serum amyloid A isoforms, apoSAA1 and apoSAA2, are acute-phase proteins of unknown function and can be precursors of amyloid AA peptides (AA) found in animal and human amyloid deposits. These deposits are often a complication of chronic inflammatory disorders and are associated with a local disturbance in basement membrane (BM). In the course of trying to understand the pathogenesis of this disease laminin, a major BM glycoprotein, has been discovered to bind saturably, and with high affinity to murine acute-phase apoSAA. This interaction involves a single class of binding sites, which are ionic in nature, conformation-dependent, and possibly involve sulfhydryls. Binding activity was significantly enhanced by Zn2+, an effect possibly mediated through Cys-rich zinc finger-like sequences on laminin. Collagen type IV also bound apoSAA but with lower affinity. Unexpectedly, no binding was detected for perlecan, a BM proteoglycan previously implicated in AA fibrillogenesis, although a low affinity interaction cannot be excluded. Entactin, another BM protein that functions to cross-link the BM matrix and is normally complexed with laminin, could inhibit laminin-apoSAA binding suggesting apoSAA does not bind to normal BM. Since laminin binds apoSAA with high affinity and has previously been shown to codeposit with AA amyloid fibrils, we postulate that laminin interacts with apoSAA and facilitates nucleation events leading to fibrillogenesis. This work also provides further support for the hypothesis that a disturbance in BM metabolism contributes to the genesis of amyloid. The specificity and avidity of the laminin-apoSAA interaction also implies that it may be a normal event occurring during the inflammatory process, which mediates one or more of the functions recently proposed for apoSAA.
Collapse
Affiliation(s)
- J B Ancsin
- Department of Pathology, Queen's University, Syl and Molly Apps Research Center, Kingston General Hospital, Ontario, Canada
| | | |
Collapse
|
21
|
Alexander CM, Howard EW, Bissell MJ, Werb Z. Rescue of mammary epithelial cell apoptosis and entactin degradation by a tissue inhibitor of metalloproteinases-1 transgene. J Biophys Biochem Cytol 1996; 135:1669-77. [PMID: 8978831 PMCID: PMC2133964 DOI: 10.1083/jcb.135.6.1669] [Citation(s) in RCA: 188] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We have used transgenic mice overexpressing the human tissue inhibitor of metalloproteinases (TIMP)-1 gene under the control of the ubiquitous beta-actin promoter/enhancer to evaluate matrix metalloproteinase (MMP) function in vivo in mammary gland growth and development. By crossing the TIMP-1 transgenic animals with mice expressing an autoactivating stromelysin-1 transgene targeted to mammary epithelial cells, we obtained a range of mice with genetically engineered proteolytic levels. The alveolar epithelial cells of mice expressing autoactivating stromelysin-1 underwent unscheduled apoptosis during late pregnancy. When stromelysin-1 transgenic mice were crossed with mice overexpressing TIMP-1, apoptosis was extinguished. Entactin (nidogen) was a specific target for stromelysin-1 in the extracellular matrix. The enhanced cleavage of basement membrane entactin to above-normal levels was directly related to the apoptosis of overlying mammary epithelial cells and paralleled the extracellular MMP activity. These results provide direct evidence for cleavage of an extracellular matrix molecule by an MMP in vivo.
Collapse
Affiliation(s)
- C M Alexander
- Department of Anatomy, University of California, San Francisco 94143-0750, USA
| | | | | | | |
Collapse
|
22
|
Kreidberg JA, Donovan MJ, Goldstein SL, Rennke H, Shepherd K, Jones RC, Jaenisch R. Alpha 3 beta 1 integrin has a crucial role in kidney and lung organogenesis. Development 1996; 122:3537-47. [PMID: 8951069 DOI: 10.1242/dev.122.11.3537] [Citation(s) in RCA: 462] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A mutation was targeted to the murine alpha3 integrin gene. Homozygous mutant mice survived to birth, but died during the neonatal period. The mutation caused abnormal kidney and lung development. Mutant kidneys displayed decreased branching of the medullary collecting ducts, although the number of nephrons was not altered. Proximal tubules exhibited two distinct subsets of abnormalities, with the epithelial cells either containing excess lysosomes or becoming microcystic. In addition, glomerular development was markedly affected. In mutant kidneys, the extent of branching of glomerular capillary loops was decreased, with capillary lumina being wider than normal. The glomerular basement membrane was disorganized and glomerular podocytes were unable to form mature foot processes. Branching of the bronchi in lungs of mutant mice was also decreased and the large bronchi extended to the periphery. These results indicate a role for integrin receptors in basement membrane organization and branching morphogenesis.
Collapse
Affiliation(s)
- J A Kreidberg
- Division of Nephrology, Children's Hospital, Boston, MA 02115, USA.
| | | | | | | | | | | | | |
Collapse
|
23
|
Yang Y, Todt JC, Svinarich DM, Qureshi F, Jacques SM, Graham CH, Chung AE, Gonik B, Yelian FD. Human trophoblast cell adhesion to extracellular matrix protein, entactin. Am J Reprod Immunol 1996; 36:25-32. [PMID: 8831898 DOI: 10.1111/j.1600-0897.1996.tb00135.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
PROBLEM Trophoblast interaction with endometrial extracellular matrix (ECM) is crucial during human embryo implantation and placentation. Entactin, a ubiquitous basement membrane glycoprotein, plays a central role in ECM assembly, cell attachment, and chemotaxis. The present study was conducted to examine the possible role of entactin in promoting human trophoblast adhesion. METHODS Using an extended life span first trimester trophoblast cell line HTR-8/SVneo (HTR) and a cell adhesion assay, we measured the adherence of human first trimester trophoblasts to recombinant entactin and its domains. Also, we used flow cytometry and indirect immunofluorescence to detect the presence of integrins that may be involved in human trophoblast-entactin interaction; these methods were used to analyze HTR cells, as well as tissue sections and freshly isolated human trophoblasts from first trimester and term placenta. RESULTS We found that first trimester trophoblast cells were highly adherent to entactin and its E and G2 domains but not to G1 or G3 domains. Using indirect immunofluorescence and flow cytometry, we found that both beta 1 and beta 3 integrin subunits were expressed on the surface of HTR trophoblast cells adhering to entactin; in contrast, beta 2 and beta 4 integrin subunits were not detected. In addition, we found that alpha v beta 3 was expressed on freshly isolated villous cytotrophoblasts and cytotrophoblast and syncytiotrophoblasts in tissue sections from term placenta. The beta 3 integrin subunit was expressed in cytotrophoblasts and syncytiotrophoblasts in villi of first trimester placental tissue sections. CONCLUSION Recombinant entactin promotes human trophoblast cell adhesion through both its E and G2 domains and these specific adhesive interactions may be mediated by beta 1 and/or beta 3 class integrins.
Collapse
Affiliation(s)
- Y Yang
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
De SK, Larsen DB, Soares MJ. Trophoendodermal stem cell-derived extracellular matrices: absence of detectable entactin and presence of multiple laminin species. Placenta 1995; 16:701-18. [PMID: 8710801 DOI: 10.1016/0143-4004(95)90014-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Extracellular matrices (ECM) generated by trophoendodermal stem cells transplanted into the peritoneum of host rats were investigated. Two types of trophoendodermal transplants were studied: (1) free-floating cystic structures, and (2) solid masses adherent to various abdominal organs. Trophoendodermal stem cell ECM obtained from either transplant source was dominated by the presence of laminin similar to Engelbreth-Holm-Swarm (EHS) tumour ECM. However, in contrast to EHS tumour ECM, another ECM component, entactin, was below the level of detection in trophoendodermal stem cell ECM. The laminins present in the two types of trophoendodermal stem cell transplants exhibited distinct differences. Tissues used as sources of one type of laminin were devoid of the other type of laminin. The two species of rat laminin behaved similarly on sodium dodecyl sulphate-polyacrylamide gels and had virtually identical amino acid compositions. The laminins also had similar cruciform patterns when examined by rotary shadowing. Rat laminins differed in their binding to an ion exchange resin: laminin isolated from peritoneal cysts bound to the resin (acidic laminin); laminin isolated from solid masses failed to bind (basic laminin). Acidic rat laminin showed reduced capacity to form laminin-laminin associations when compared with basic rat laminin. Acidic/soluble laminin proved to be a useful reagent in the development of a radio-immunoassay for laminin. Laminin concentrations in the peritoneal fluid of transplant-bearing rats was very high (approximately 400 micrograms/ml) and entirely of the acidic/soluble form. In summary, trophoendodermal stem cell ECM possesses a distinct composition with a lack of detectable entactin, and trophoendodermal stem cells are capable of modulating the characteristics of laminin, depending upon their organization. These features of trophoendodermal stem cell ECM may represent signals responsible for at least some of the unique features of the trophoendodermal stem cell transplants.
Collapse
Affiliation(s)
- S K De
- Department of Physiology, University of Kansas Medical Center, Kansas City 66160, USA
| | | | | |
Collapse
|
25
|
Dziadek M. Role of laminin-nidogen complexes in basement membrane formation during embryonic development. EXPERIENTIA 1995; 51:901-13. [PMID: 7556571 DOI: 10.1007/bf01921740] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Laminin and nidogen (entactin) are major glycoprotein components of basement membranes. At least seven different isoforms of laminin have been identified. Laminin and nidogen form high affinity complexes in basement membranes by specific binding between the laminin gamma 1 chain and the G3 globule of nidogen. Additional interactions between nidogen and collagen IV, perlecan and other basement membrane components result in the formation of ternary complexes between these matrix components. Nidogen is highly susceptible to proteolytic cleavage, and binding to laminin protects nidogen from degradation. Nidogen is considered to have a crucial role as a link protein in the assembly of basement membranes. Basement membrane components are synthesized at high levels during tissue growth and development, and sites of morphogenesis correlate with localized remodelling of basement membranes. The formation of distinct basement membrane matrices in the developing embryo is influenced by the laminin isoforms produced and by whether laminin and nidogen are co-expressed and secreted as a complex or are produced by cooperation between two cell layers. The potential roles of laminin-nidogen complexes, cell-matrix interactions, and other intermolecular interactions within the matrix in basement membrane assembly and stability are discussed in this review.
Collapse
Affiliation(s)
- M Dziadek
- Institute of Reproduction and Development, Monash Medical Centre, Clayton, Victoria, Australia
| |
Collapse
|
26
|
Dong LJ, Hsieh JC, Chung AE. Two distinct cell attachment sites in entactin are revealed by amino acid substitutions and deletion of the RGD sequence in the cysteine-rich epidermal growth factor repeat 2. J Biol Chem 1995; 270:15838-43. [PMID: 7797588 DOI: 10.1074/jbc.270.26.15838] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The basement membrane glycoprotein, entactin, has previously been shown to promote cell attachment and chemotaxis. We have constructed a panel of glutathione S-transferase fusion proteins that encompasses the four major structural domains of entactin, G1, G2, E, and G3. These proteins have been synthesized in bacteria and purified by affinity chromatography. The connecting stalk of entactin, E, which contains four cysteine-rich EGF homology repeats and the integrin receptor RGD recognition sequence, has been modified by deletion of the RGD sequence and substituting glutamic acid for aspartic acid. Attachment assays reveal that the RGD sequence is one of the major cell attachment sites in entactin and that this sequence is recognized by the alpha v beta 3 integrin receptor. Analysis of cell attachment on mutant forms of full-length entactin expressed in the baculovirus expression system revealed a second attachment site that was independent of the RGD sequence. This second site was localized to a peptide of 39 amino acid residues in the second globular G2 domain of entactin. This peptide represents a cysteine-rich EGF repeat. Inhibition of cell attachment by anti-integrin receptor antibodies indicates that the second attachment site is recognized by a member of the beta 1 family of integrin receptors, possibly alpha 3 beta 1.
Collapse
Affiliation(s)
- L J Dong
- Department of Biological Sciences, University of Pittsburgh, Pennsylvania 15260, USA
| | | | | |
Collapse
|
27
|
López-Ribot JL, Chaffin WL. Binding of the extracellular matrix component entactin to Candida albicans. Infect Immun 1994; 62:4564-71. [PMID: 7927722 PMCID: PMC303144 DOI: 10.1128/iai.62.10.4564-4571.1994] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We have investigated the interaction between Candida albicans and entactin, a recently characterized glycoprotein present in the extracellular matrix, especially in the basement membrane. Organisms of both the yeast and the hyphal morphologies of the fungus had the ability to bind recombinant entactin, as detected by an indirect immunofluorescence assay. Material present in the 2-mercaptoethanol cell wall extracts from both C. albicans growth forms was capable of binding to immobilized recombinant entactin in a dose-dependent manner. Binding to entactin was approximately twice that observed for laminin. Binding of an extract component(s) to entactin was partially inhibited by an Arg-Gly-Asp-Ser peptide. A polyclonal antientactin antiserum, as well as a pooled antiserum preparation raised against components present in different C. albicans cell wall extracts, completely or almost completely abolished binding. The existence of morphology-specific receptor-like molecules which bind to different domains of the entactin molecule was ruled out in a competition binding assay. The entactin-binding material(s) in the cell wall also displayed some ability to bind laminin and fibronectin, since preadsorption in the presence of these extracellular matrix components resulted in reduction of binding to entactin. Moieties with a molecular mass of approximately 25, 44, and 65 kDa present in the 2-mercaptoethanol cell wall extracts from both blastoconidia and germ tubes were detected in a ligand affinity blotting experiment as having the ability to bind entactin. Interactions between C. albicans and entactin could be important in mediating adhesion of the fungus to the host tissues and may play a role in the establishment of the disseminated form of the disease.
Collapse
Affiliation(s)
- J L López-Ribot
- Department of Microbiology and Immunology, Texas Tech University, Health Sciences Center, Lubbock 79430
| | | |
Collapse
|
28
|
Affiliation(s)
- R Kisilevsky
- Department of Pathology, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|