1
|
Wang C, Xu C, Liu M, Pan Y, Bai B, Chen J. C-terminus of OX2R significantly affects downstream signaling pathways. Mol Med Rep 2017; 16:159-166. [PMID: 28487995 PMCID: PMC5482145 DOI: 10.3892/mmr.2017.6557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 03/30/2017] [Indexed: 12/11/2022] Open
Abstract
The human orexin 2 receptor (OX2R) is a G-protein‑coupled receptor (GPCR) that has been implicated in a number of diverse physiological functions. Recent studies have identified a number of functions of the C‑termini of GPCRs. However, the importance of the OX2R C‑terminus in regulating signaling and surface expression remains unclear. In the present study, the function of the OX2R C‑terminus was investigated using three C‑terminal mutants, which were truncated at residues 368, 384 and 414, respectively, and the wild‑type control, which expressed the full‑length OX2R. HEK‑293 cells were transfected with the mutated and control OX2R constructs. ELISA, western blot analysis and calcium assays were used to investigate the effects of the mutations on OX2R function. The present results demonstrated that residues 385‑414 and 415‑444 exhibited a cumulative effect on the surface expression of OX2R. Residues 369‑384 exhibited a significant influence on inositol phosphate production and extracellular signal‑regulated kinase 1/2 phosphorylation. Residues 385‑414 significantly influenced agonist‑induced internalization, whereas residues 369‑384 and 385‑414 significantly influenced Ca2+ release. The results of the present study suggest that the C‑terminus of OX2R is important for its role in various physiological and pathological processes, and may therefore be associated with such disorders as depression and anorexia.
Collapse
Affiliation(s)
- Chunmei Wang
- Neurobiology Institute, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Chao Xu
- Neurobiology Institute, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Minghui Liu
- Neurobiology Institute, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Yanyou Pan
- Neurobiology Institute, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Bo Bai
- Neurobiology Institute, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Jing Chen
- Neurobiology Institute, Jining Medical University, Jining, Shandong 272067, P.R. China
| |
Collapse
|
2
|
Hunyady L, Gáborik Z, Vauquelin G, Catt KJ. Review: Structural requirements for signalling and regulation of AT1-receptors. J Renin Angiotensin Aldosterone Syst 2016; 2:S16-S23. [DOI: 10.1177/14703203010020010301] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Affiliation(s)
- László Hunyady
- Department of Physiology, Semmelweis University Medical
School, Budapest, Hungary,
| | - Zsuzsanna Gáborik
- Department of Physiology, Semmelweis University Medical
School, Budapest, Hungary
| | - Georges Vauquelin
- Department of Molecular and Biochemical Pharmacology,
Institute of Molecular Biology and Biotechnology, Free University of Brussels
(VUB), Sint-Genesius Rode, Belgium
| | - Kevin J Catt
- Endocrinology and Reproduction Research Branch, National
Institute of Child Health and Human Development, National Institutes of Health,
Bethesda, USA
| |
Collapse
|
3
|
Wang S, Li Y, Miao W, Zhao H, Zhang F, Liu N, Su G, Cai X. Angiopoietin-like protein 2 expression is suppressed by angiotensin II via the angiotensin II type 1 receptor in rat cardiomyocytes. Mol Med Rep 2016; 14:2607-13. [PMID: 27483989 PMCID: PMC4991724 DOI: 10.3892/mmr.2016.5544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 07/11/2016] [Indexed: 11/05/2022] Open
Abstract
The present study aimed to determine the inhibitory effects of angiotensin II (AngII) on angiopoietin‑like protein 2 (Angptl2) in rat primary cardiomyocytes, and to investigate the potential association between angiotensin II type 1 receptor (AT1R) and these effects. Cardiomyocytes were isolated from 3-day-old Wistar rats, and were cultured and identified. Subsequently, the expression levels of Angptl2 were detected following incubation with various concentrations of AngII for various durations using western blotting, reverse transcription‑quantitative polymerase chain reaction, enzyme-linked immunosorbent assay and immunofluorescence. Finally, under the most appropriate conditions (100 nmol/l AngII, 24 h), the cardiomyocytes were divided into six groups: Normal, AngII, AngII + losartan, normal + losartan, AngII + PD123319 and normal + PD123319 groups, in order to investigate the possible function of AT1R in Angptl2 suppression. Losartan and PD123319 are antagonists of AT1R and angiotensin II type 2 receptor, respectively. The statistical significance of the results was analyzed using Student's t‑test or one‑way analysis of variance. The results demonstrated that Angptl2 expression was evidently suppressed (P<0.05) following incubation with 100 nmol/l AngII for 24 h. Conversely, the expression levels of Angptl2 were significantly increased in the AngII + losartan group compared with the AngII group (P<0.01). However, no significant difference was detected between the AngII + PD123319, normal + losartan or normal + PD123319 groups and the normal group. The present in vitro study indicated that AngII was able to suppress Angptl2 expression, whereas losartan was able to significantly reverse this decrease by inhibiting AT1R.
Collapse
Affiliation(s)
- Shuya Wang
- Department of Cardiovascular Medicine, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| | - Ying Li
- Department of Cardiovascular Medicine, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| | - Wei Miao
- Department of Cardiovascular Medicine, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| | - Hong Zhao
- Department of Cardiovascular Medicine, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| | - Feng Zhang
- Department of Cardiovascular Medicine, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| | - Nan Liu
- Department of Cardiovascular Medicine, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| | - Guohai Su
- Department of Cardiovascular Medicine, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| | - Xiaojun Cai
- Department of Cardiovascular Medicine, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| |
Collapse
|
4
|
Karnik SS, Unal H, Kemp JR, Tirupula KC, Eguchi S, Vanderheyden PML, Thomas WG. International Union of Basic and Clinical Pharmacology. XCIX. Angiotensin Receptors: Interpreters of Pathophysiological Angiotensinergic Stimuli [corrected]. Pharmacol Rev 2015; 67:754-819. [PMID: 26315714 PMCID: PMC4630565 DOI: 10.1124/pr.114.010454] [Citation(s) in RCA: 215] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The renin angiotensin system (RAS) produced hormone peptides regulate many vital body functions. Dysfunctional signaling by receptors for RAS peptides leads to pathologic states. Nearly half of humanity today would likely benefit from modern drugs targeting these receptors. The receptors for RAS peptides consist of three G-protein-coupled receptors—the angiotensin II type 1 receptor (AT1 receptor), the angiotensin II type 2 receptor (AT2 receptor), the MAS receptor—and a type II trans-membrane zinc protein—the candidate angiotensin IV receptor (AngIV binding site). The prorenin receptor is a relatively new contender for consideration, but is not included here because the role of prorenin receptor as an independent endocrine mediator is presently unclear. The full spectrum of biologic characteristics of these receptors is still evolving, but there is evidence establishing unique roles of each receptor in cardiovascular, hemodynamic, neurologic, renal, and endothelial functions, as well as in cell proliferation, survival, matrix-cell interaction, and inflammation. Therapeutic agents targeted to these receptors are either in active use in clinical intervention of major common diseases or under evaluation for repurposing in many other disorders. Broad-spectrum influence these receptors produce in complex pathophysiological context in our body highlights their role as precise interpreters of distinctive angiotensinergic peptide cues. This review article summarizes findings published in the last 15 years on the structure, pharmacology, signaling, physiology, and disease states related to angiotensin receptors. We also discuss the challenges the pharmacologist presently faces in formally accepting newer members as established angiotensin receptors and emphasize necessary future developments.
Collapse
Affiliation(s)
- Sadashiva S Karnik
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Hamiyet Unal
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Jacqueline R Kemp
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Kalyan C Tirupula
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Satoru Eguchi
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Patrick M L Vanderheyden
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Walter G Thomas
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| |
Collapse
|
5
|
Balakumar P, Jagadeesh G. Structural determinants for binding, activation, and functional selectivity of the angiotensin AT1 receptor. J Mol Endocrinol 2014; 53:R71-92. [PMID: 25013233 DOI: 10.1530/jme-14-0125] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The renin-angiotensin system (RAS) plays an important role in the pathophysiology of cardiovascular disorders. Pharmacologic interventions targeting the RAS cascade have led to the discovery of renin inhibitors, angiotensin-converting enzyme inhibitors, and AT(1) receptor blockers (ARBs) to treat hypertension and some cardiovascular and renal disorders. Mutagenesis and modeling studies have revealed that differential functional outcomes are the results of multiple active states conformed by the AT(1) receptor upon interaction with angiotensin II (Ang II). The binding of agonist is dependent on both extracellular and intramembrane regions of the receptor molecule, and as a consequence occupies more extensive area of the receptor than a non-peptide antagonist. Both agonist and antagonist bind to the same intramembrane regions to interfere with each other's binding to exhibit competitive, surmountable interaction. The nature of interactions with the amino acids in the receptor is different for each of the ARBs given the small differences in the molecular structure between drugs. AT(1) receptors attain different conformation states after binding various Ang II analogues, resulting in variable responses through activation of multiple signaling pathways. These include both classical and non-classical pathways mediated through growth factor receptor transactivations, and provide cross-communication between downstream signaling molecules. The structural requirements for AT(1) receptors to activate extracellular signal-regulated kinases 1 and 2 through G proteins, or G protein-independently through β-arrestin, are different. We review the structural and functional characteristics of Ang II and its analogs and antagonists, and their interaction with amino acid residues in the AT(1) receptor.
Collapse
Affiliation(s)
- Pitchai Balakumar
- Pharmacology UnitFaculty of Pharmacy, AIMST University, Semeling, 08100 Bedong, Kedah Darul Aman, MalaysiaDivision of Cardiovascular and Renal ProductsCenter for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland 20993, USA
| | - Gowraganahalli Jagadeesh
- Pharmacology UnitFaculty of Pharmacy, AIMST University, Semeling, 08100 Bedong, Kedah Darul Aman, MalaysiaDivision of Cardiovascular and Renal ProductsCenter for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland 20993, USA
| |
Collapse
|
6
|
Huynh J, Thomas WG, Aguilar MI, Pattenden LK. Role of helix 8 in G protein-coupled receptors based on structure-function studies on the type 1 angiotensin receptor. Mol Cell Endocrinol 2009; 302:118-27. [PMID: 19418628 DOI: 10.1016/j.mce.2009.01.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
G protein-coupled receptors (GPCRs) are transmembrane receptors that convert extracellular stimuli to intracellular signals. The type 1 angiotensin II receptor is a widely studied GPCR with roles in blood pressure regulation,water and salt balance and cell growth. The complex molecular and structural changes that underpin receptor activation and signaling are the focus of intense research. Increasingly, there is an appreciation that the plasma membrane participates in receptor function via direct, physical interactions that reciprocally modulate both lipid and receptor and provide microdomains for specialized activities. Reversible protein:lipid interactions are commonly mediated by amphipathic -helices in proteins and one such motif - a short helix, referred to as helix VIII/8 (H8), located at the start of the carboxyl (C)-terminus of GPCRs - is gaining recognition for its importance to GPCR function. Here, we review the identification of H8 in GPCRs and examine its capacity to sense and interact with diverse proteins and lipid environment, most notably with acidic lipids that include phosphatidylinositol phosphates.
Collapse
MESH Headings
- Binding Sites
- Humans
- Lipids/chemistry
- Protein Binding
- Protein Structure, Secondary
- Receptor, Angiotensin, Type 1/chemistry
- Receptor, Angiotensin, Type 1/metabolism
- Receptor, Angiotensin, Type 1/physiology
- Receptors, G-Protein-Coupled/chemistry
- Receptors, G-Protein-Coupled/metabolism
- Receptors, G-Protein-Coupled/physiology
- Signal Transduction
Collapse
Affiliation(s)
- John Huynh
- School of Biomedical Sciences, The University of Queensland, Brisbane, St Lucia, Queensland, Australia
| | | | | | | |
Collapse
|
7
|
Thomas WG, Thekkumkara TJ, Baker KM. Proceedings of the Symposium ‘Angiotensin AT1 Receptors: From Molecular Physiology to Therapeutics’: MOLECULAR MECHANISMS OF ANGIOTENSIN II (AT1a) RECEPTOR ENDOCYTOSIS. Clin Exp Pharmacol Physiol 2007; 23 Suppl 3:S74-80. [DOI: 10.1111/j.1440-1681.1996.tb02817.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Katragadda M, Maciejewski MW, Yeagle PL. Structural studies of the putative helix 8 in the human beta(2) adrenergic receptor: an NMR study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2004; 1663:74-81. [PMID: 15157609 DOI: 10.1016/j.bbamem.2004.01.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2003] [Revised: 01/05/2004] [Accepted: 01/07/2004] [Indexed: 11/22/2022]
Abstract
The recently reported crystal structure of bovine rhodopsin revealed a cytoplasmic helix (helix 8) in addition to the seven transmembrane helices. This domain is roughly perpendicular to the transmembrane bundle in the presence of an interface and may be a loop-like structure in the absence of an interface. Several studies carried out on this domain suggested that it might act as a conformational switch between the inactive and activated states of this G-protein coupled receptor (GPCR). These results raised the question whether helix 8 may be an important feature of other GPCRs as well. To explore this question, we determined the structure of a peptide representing the putative helix 8 domain in another receptor that belongs to the rhodopsin family of GPCRs, the human beta(2) adrenergic receptor (hbeta(2)AR), using two-dimensional (1)H nuclear magnetic resonance (NMR). The key results from this structural study are that the putative helix 8 domain is helical in detergent and in DMSO while in water this region is disordered; the conformation is therefore dependent upon the environment. Comparison of data from five GPCRs suggests that these observations may be generally important for GPCR structure and function.
Collapse
Affiliation(s)
- M Katragadda
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, U-3125, Storrs, CT 06269-3125, USA
| | | | | |
Collapse
|
9
|
Hunyady L, Gáborik Z, Shah BH, Jagadeesh G, Clark AJL, Catt KJ. Structural determinants of agonist-induced signaling and regulation of the angiotensin AT1 receptor. Mol Cell Endocrinol 2004; 217:89-100. [PMID: 15134806 DOI: 10.1016/j.mce.2003.10.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Angiotensin II (Ang II) regulates aldosterone secretion by stimulating inositol phosphate production and Ca(2+) signaling in adrenal glomerulosa cells via the G(q)-coupled AT(1) receptor, which is rapidly internalized upon agonist binding. Ang II also binds to the heptahelical AT(2) receptor, which neither activates inositol phosphate signaling nor undergoes receptor internalization. The differential behaviors of the AT(1) and AT(2) receptors were analyzed in chimeric angiotensin receptors created by swapping the second (IL2), the third (IL3) intracellular loops and/or the cytoplasmic tail (CT) between these receptors. When transiently expressed in COS-7 cells, the chimeric receptors showed only minor alterations in their ligand binding properties. Measurements of the internalization kinetics and inositol phosphate responses of chimeric AT(1A) receptors indicated that the CT is required for normal receptor internalization, and IL2 is a determinant of G protein activation. In addition, the amino-terminal portion of IL3 is required for both receptor functions. However, only substitution of IL2 impaired Ang II-induced ERK activation, suggesting that alternative mechanisms are responsible for ERK activation in signaling-deficient mutant AT(1) receptors. Substitution of IL2, IL3, or CT of the AT(1A) receptor into the AT(2) receptor sequence did not endow the latter with the ability to internalize or to mediate inositol phosphate signaling responses. These data suggest that the lack of receptor internalization and inositol phosphate signal generation by the AT(2) receptor is a consequence of its different activation mechanism, rather than the inability of its cytoplasmic domains to couple to intracellular effectors.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- COS Cells
- Calcium Signaling/genetics
- Cricetinae
- GTP-Binding Proteins/genetics
- GTP-Binding Proteins/metabolism
- Inositol Phosphates/metabolism
- Mitogen-Activated Protein Kinase 3/metabolism
- Mutagenesis, Site-Directed
- Phosphorylation
- Protein Binding/genetics
- Protein Structure, Tertiary/genetics
- Rats
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 1/metabolism
- Receptor, Angiotensin, Type 2/genetics
- Receptor, Angiotensin, Type 2/metabolism
- Receptors, Interleukin-2/genetics
- Receptors, Interleukin-2/metabolism
- Receptors, Interleukin-3/genetics
- Receptors, Interleukin-3/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
Collapse
Affiliation(s)
- László Hunyady
- Department of Physiology, Semmelweis University, Faculty of Medicine, H-1088 Budapest, Hungary.
| | | | | | | | | | | |
Collapse
|
10
|
Guo DF, Chenier I, Tardif V, Orlov SN, Inagami T. Type 1 angiotensin II receptor-associated protein ARAP1 binds and recycles the receptor to the plasma membrane. Biochem Biophys Res Commun 2003; 310:1254-65. [PMID: 14559250 DOI: 10.1016/j.bbrc.2003.09.154] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The carboxyl terminus of the type 1 angiotensin II receptor (AT(1)) plays an important role in receptor phosphorylation, desensitization, and internalization. The yeast two-hybrid system was employed to isolate proteins associated with the carboxyl terminal region of the AT(1A) receptor. In the present study, we report the isolation of a novel protein, ARAP1, which promotes recycling of AT(1A) to the plasma membrane in HEK-293 cells. ARAP1 cDNA encodes a 493-amino-acid protein and its mRNA is ubiquitously expressed in rat tissues. A complex of ARAP1 and AT(1A) was observed by immunoprecipitation and Western blotting in HEK-293 cells. In the presence of ARAP1, recycled AT(1A) showed a significant Ca(2+) release response to a second stimulation by Ang II 30 min after the first treatment. Immunocytochemical analysis revealed co-localization of recycled AT(1A) and ARAP1 in the plasma membrane 45 min after the initial exposure to Ang II. Taken together, these results indicate a role for ARAP1 in the recycling of the AT(1) receptor to the plasma membrane with presumable concomitant recovery of receptor signal functions.
Collapse
Affiliation(s)
- Deng-Fu Guo
- Research Centre, Hôtel-Dieu du CHUM, Department of Medicine, Université de Montréal, Montréal, Québec, Canada H2W 1T8.
| | | | | | | | | |
Collapse
|
11
|
Miserey-Lenkei S, Parnot C, Bardin S, Corvol P, Clauser E. Constitutive internalization of constitutively active agiotensin II AT(1A) receptor mutants is blocked by inverse agonists. J Biol Chem 2002; 277:5891-901. [PMID: 11729186 DOI: 10.1074/jbc.m108398200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
As constitutively active mutants (CAMs) mimic an active conformation, they can be used to characterize the process of G protein-coupled receptor activation. Here, we used CAMs to study the link between activation and internalization of the angiotensin II AT(1A) receptor. The cellular localization of fluorescently tagged N111A, I245T, and L305Q mutants was determined by confocal microscopy. In the absence of ligand, CAMs were mostly located in intracellular vesicles, whereas the wild-type AT(1A) was found at the cell surface. After 2 h incubation with inverse agonist, losartan, CAMs were translocated to the plasma membrane. Similar observations were made in H295, a human adrenocortical cell line which expresses physiologically the AT(1) receptor. This phenomenon, which was not dependent on protein synthesis and the pharmacology and kinetics of which were similar to the recycling of the wild-type receptor, was called "externalization". After externalization and losartan removal, the L305Q CAM underwent rapid ligand-independent endocytosis, with the same kinetics and temperature sensitivity as the angiotensin II-induced internalization of the wild-type AT(1A). Moreover, the addition of a second mutation known to block internalization (Delta 329 truncation) prevented intracellular localization of the CAM. These data show that AT(1A) CAMs are constitutively and permanently internalized and recycled. This mechanism is different from the down-regulation observed for CAMs of other G protein-coupled receptors and thus defines a new paradigm for the cellular regulation of CAMs.
Collapse
|
12
|
Modrall JG, Nanamori M, Sadoshima J, Barnhart DC, Stanley JC, Neubig RR. ANG II type 1 receptor downregulation does not require receptor endocytosis or G protein coupling. Am J Physiol Cell Physiol 2001; 281:C801-9. [PMID: 11502557 DOI: 10.1152/ajpcell.2001.281.3.c801] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ANG II type 1 (AT(1)) receptors respond to sustained exposure to ANG II by undergoing downregulation of absolute receptor numbers. It has been assumed previously that downregulation involves endocytosis. The present study hypothesized that AT(1) receptor downregulation occurs independently of receptor endocytosis or G protein coupling. Mutant AT(1) receptors with carboxy-terminal deletions internalized <5% of radioligand compared with 65% for wild-type AT(1) receptors. The truncated AT(1) receptors retained the ability to undergo downregulation. These data suggest the existence of an alternative pathway to AT(1) receptor degradation that does not require endocytosis, per se. Point mutations in either the second transmembrane region or second intracellular loop impaired G protein (G(q)) coupling. These receptors exhibited a biphasic pattern of downregulation. The earliest phase of downregulation (0-2 h) was independent of coupling to G(q), but no additional downregulation was observed after 2 h of ANG II exposure in the receptors with impaired coupling to G(q). These data suggest that coupling to G(q) is required for the later phase (2-24 h) of AT(1) receptor downregulation.
Collapse
Affiliation(s)
- J G Modrall
- Department of Surgery, Dallas Veterans Affairs Medical Center and the University of Texas Southwestern Medical Center, Dallas, Texas 75235, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Merjan AJ, Kanashiro CA, Krieger JE, Han SW, Paiva AC. Ligand-induced endocytosis and nuclear localization of angiotensin II receptors expressed in CHO cells. Braz J Med Biol Res 2001; 34:1175-83. [PMID: 11514842 DOI: 10.1590/s0100-879x2001000900011] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A construct (AT1R-NF) containing a "Flag" sequence added to the N-terminus of the rat AT1 receptor was stably expressed in Chinese hamster ovary cells and quantified in the cell membrane by confocal microscopy after reaction with a fluorescein-labeled anti-Flag monoclonal antibody. Angiotensin II bound to AT1R-NF and induced endocytosis with a half-time of 2 min. After 60-90 min, fluorescence accumulated around the cell nucleus, suggesting migration of the ligand-receptor complex to the nuclear membrane. Angiotensin antagonists also induced endocytosis, suggesting that a common step in the transduction signal mechanism occurring after ligand binding may be responsible for the ligand-receptor complex internalization.
Collapse
Affiliation(s)
- A J Merjan
- Departamento de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brasil
| | | | | | | | | |
Collapse
|
14
|
Hunyady L, Catt KJ, Clark AJ, Gáborik Z. Mechanisms and functions of AT(1) angiotensin receptor internalization. REGULATORY PEPTIDES 2000; 91:29-44. [PMID: 10967200 DOI: 10.1016/s0167-0115(00)00137-3] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The type 1 (AT(1)) angiotensin receptor, which mediates the known physiological and pharmacological actions of angiotensin II, activates numerous intracellular signaling pathways and undergoes rapid internalization upon agonist binding. Morphological and biochemical studies have shown that agonist-induced endocytosis of the AT(1) receptor occurs via clathrin-coated pits, and is dependent on two regions in the cytoplasmic tail of the receptor. However, it is independent of G protein activation and signaling, and does not require the conserved NPXXY motif in the seventh transmembrane helix. The dependence of internalization of the AT(1) receptor on a cytoplasmic serine-threonine-rich region that is phosphorylated during agonist stimulation suggests that endocytosis is regulated by phosphorylation of the AT(1) receptor tail. beta-Arrestins have been implicated in the desensitization and endocytosis of several G protein-coupled receptors, but the exact nature of the adaptor protein required for association of the AT(1) receptor with clathrin-coated pits, and the role of dynamin in the internalization process, are still controversial. There is increasing evidence for a role of internalization in sustained signal generation from the AT(1) receptor. Several aspects of the mechanisms and specific function of AT(1) receptor internalization, including its precise mode and route of endocytosis, and the potential roles of cytoplasmic and nuclear receptors, remain to be elucidated.
Collapse
MESH Headings
- Animals
- Arrestins/metabolism
- Cell Nucleus/metabolism
- Cytoplasm/metabolism
- Dynamins
- Endocytosis
- GTP Phosphohydrolases/metabolism
- Humans
- Kinetics
- Ligands
- Microscopy, Confocal
- Models, Biological
- Mutation
- Phosphorylation
- Protein Structure, Secondary
- Receptor, Angiotensin, Type 1
- Receptor, Angiotensin, Type 2
- Receptors, Angiotensin/genetics
- Receptors, Angiotensin/metabolism
- Receptors, Angiotensin/physiology
- beta-Arrestins
Collapse
Affiliation(s)
- L Hunyady
- Department of Physiology, Semmelweis University, Faculty of Medicine, P.O. Box 259, H-1444 Budapest, Hungary.
| | | | | | | |
Collapse
|
15
|
Jiménez E, Caro MC, Marsigliante S, Montiel M. Angiotensin II receptor internalization and signaling in isolated rat hepatocytes. Biochem Pharmacol 1999; 57:1125-31. [PMID: 11230799 DOI: 10.1016/s0006-2952(99)00013-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Since angiotensin II (Ang II)-induced receptor internalization is required to maintain the production of certain intracellular signals in some target cells, we investigated the relationships between Ang II receptor endocytosis and the generation of second messengers in rat hepatocytes. The results of the present study demonstrate that in response to exposure of hepatocytes to Ang II, a decrease in surface Ang II receptors occurred, consistent with a rapid endocytosis of the receptor-bound hormone complex. Pretreatment of cells with okadaic acid (OA) did not have any effect on receptor-mediated internalization. In contrast, a marked reduction of the Ang II receptor endocytosis process occurred after treatment of hepatocytes with phenylarsine oxide (PAO), indicating that cysteine residues could be involved in receptor-mediated endocytosis. Stimulation of cells with Ang II blocked the generation of cyclic adenosine monophosphate (cAMP), which follows the stimulation of hepatocytes with forskolin. Moreover, Ang II increased both inositol 4,5-bisphosphate (IP2) and inositol 1,4,5-trisphosphate (IP3) generation, and enhanced intracellular calcium concentration ([Ca2+]i). Exposure of cells to PAO did not alter the effect of Ang II on the accumulation of cAMP after forskolin stimulation, indicating that endocytosis of the agonist-receptor complex is not involved in adenylate cyclase inhibition. Conversely, PAO and OA markedly reduced IP2 and IP3 synthesis, and the plateau phase of Ang II-induced Ca2+ mobilization. The relationship between Ang II-induced endocytosis and the generation of phosphoinositols and increment in [Ca2+]i indicates that sequestration of the Ang II receptor is necessary to maintain the production of these intracellular signals in rat hepatocytes.
Collapse
Affiliation(s)
- E Jiménez
- Departmento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Málaga, 2980-, Málaga, Spain.
| | | | | | | |
Collapse
|
16
|
Sealfon SC. Synthesis, Internalization, Recycling, and Regulation of Peptide Hormone Receptors. Compr Physiol 1998. [DOI: 10.1002/cphy.cp070102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
17
|
Bikhazi AB, Haddad RE, Nahle ZA, Bitar KM. Angiotensin II delivery and binding at the microvascular endothelium and cardiac myocyte surfaces in perfused rat hearts. J Pharm Sci 1998; 87:1363-7. [PMID: 9811491 DOI: 10.1021/js980061j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Peptide delivery toward its targets in an intact organ is equally as important as its routing from the systemic circulation to cell surface receptor sites. A physical model pertinent to a heart perfusion technique in Sprague-Dawley rats is presented describing reversible binding of angiotensin II and/or antagonist (DUP 753, losartan) with the microvascular endothelial receptor subtypes as well as with the cardiac myocyte receptor subtypes that are exposed to the perfusate by CHAPS-treatment. Analysis of the collected effluents are curve-fitted with a conservation equation and a first-order Bessel function. The results suggest that angiotensin II delivery and binding to the pool of receptor subtypes both at the level of the microvascular endothelium and cardiac myocyte sites differ marginally in binding affinities. The findings postulate that angiotensin II can have access to the myocyte site in an intact heart by an endothelial angiotensin II-receptor-internalization process. In addition, considering that the AT1- and AT2-receptor subtypes are present in equal proportions and have equal binding affinities with angiotensin II, the results of the 3H-DUP 753 binding indicated approximately 3-3.5 times higher affinity to the AT1-receptors subtype than angiotensin II at both the endothelial and myocyte sites. In the presence of losartan, angiotensin II binding showed higher affinity with the exposed unopposed AT2-receptor subtype than with the receptor pool, which could be due to alterations in the AT2-receptor structure and configuration. This increase in the binding affinity of angiotensin II with the AT2-receptor subtype may be categorized under the direct effect of the AT1-antagonist modality in producing cardioprotective effects.
Collapse
Affiliation(s)
- A B Bikhazi
- Departments of Physiology, Surgery, and Physics, American University of Beirut, Lebanon.
| | | | | | | |
Collapse
|
18
|
Gáborik Z, Mihalik B, Jayadev S, Jagadeesh G, Catt KJ, Hunyady L. Requirement of membrane-proximal amino acids in the carboxyl-terminal tail for expression of the rat AT1a angiotensin receptor. FEBS Lett 1998; 428:147-51. [PMID: 9654124 DOI: 10.1016/s0014-5793(98)00511-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A series of deletion mutants was created to analyze the function of the membrane-proximal region of the cytoplasmic tail of the rat type 1a (AT1a) angiotensin receptor. In transiently transfected COS-7 cells, the truncated mutant receptors showed a progressive decrease in surface expression, with no major change in binding affinity for the peptide antagonist, [Sar1,Ile8]angiotensin II. In parallel with the decrease in receptor expression, a progressive decrease in angiotensin II-induced inositol phosphate responses was observed. Alanine substitutions in the region 307-311 identified the highly conserved phenylalanine309 and adjacent lysine residues as significant determinants of AT1a receptor expression.
Collapse
Affiliation(s)
- Z Gáborik
- Department of Physiology, Semmelweis University of Medicine, Budapest, Hungary
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
Cell surface receptors play a central role in the regulation of both cellular and systemic physiology by mediating intercellular communication, facilitating protein trafficking, and regulating virtually all intracellular processes. Receptor expression is often cell specific and is determined by cellular lineage, genetics, and a variety of factors in the extracellular milieu. As receptors are generally localized on the plasma membrane and differentially expressed in certain cell types and tissues, they provide a potential target for drug delivery. However, since most receptors are integrally connected with intracellular signal transduction networks, targeting via these receptors may elicit a biological response. This review describes some established and emerging concepts regarding the structure and functions of receptors. In addition, some aspects related to the regulation and crosstalk between receptors are discussed.
Collapse
|
20
|
Ouali R, Berthelon MC, Bégeot M, Saez JM. Angiotensin II receptor subtypes AT1 and AT2 are down-regulated by angiotensin II through AT1 receptor by different mechanisms. Endocrinology 1997; 138:725-33. [PMID: 9003008 DOI: 10.1210/endo.138.2.4952] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The regulatory effects of angiotensin II (AngII) on its receptor subtypes, AT1 and AT2, were studied using cultured bovine adrenal cells (BAC), which express both receptor subtypes, and PC12W and R3T3 cells, which express only AT2 receptors. In BAC, AngII caused a decrease in AT1- and AT2-binding sites and their corresponding messenger RNAs (mRNAs), but with different kinetics. AT1-binding sites decreased by more than 50% within the first 3 h, whereas AT1 mRNA started to decline after a lag period of 3 h. Both AT2-binding sites and mRNA remained stable within the first 6 h of AngII treatment. Then, AT2 mRNA decreased rapidly with an apparent half-life of 2-3 h, whereas AT2-binding sites declined with an apparent half-life of about 16 h. Measurement of transcription rate and mRNA half-life by the [3H]uridine-thiouridine method revealed that AngII reduced by 90% the rate of AT1 transcription, but had no effect on AT1 mRNA half-life, whereas it slightly reduced AT2 transcription, but markedly reduced AT2 mRNA stability. All of the effects of AngII on both AT1 and AT2 receptors were blocked by losartan, indicating that they were mediated exclusively through the AT1 receptor. In PC12W cells, AngII was unable to modify AT2-binding sites or mRNA. Moreover, in BAC, [125I]AngII was internalized through the AT1 receptor, whereas occupancy of AT2 receptors in either BAC or PC12W did not produce internalization of the hormone. These results indicate that AngII, through the AT1 receptor, down-regulates both AT1 and AT2, but by different mechanisms; AT1 receptor is regulated through internalization-degradation of the occupied receptor and inhibition of transcription, whereas AT2 receptor is regulated mainly by decreasing the stability of its mRNA. Moreover, the phorbol ester phorbol 12-myristate 13-acetate mimicked most of the effects of AngII in BAC and decreased both AT2-binding sites and mRNA on PC12W cells, indicating that the hormonal regulation of both AT1 and AT2 receptors is mediated through protein kinase C activation.
Collapse
Affiliation(s)
- R Ouali
- INSERM-INRA U-418, Hôpital Debrousse, Lyon, France
| | | | | | | |
Collapse
|
21
|
Hunyady L, Zhang M, Jagadeesh G, Bor M, Balla T, Catt KJ. Dependence of agonist activation on a conserved apolar residue in the third intracellular loop of the AT1 angiotensin receptor. Proc Natl Acad Sci U S A 1996; 93:10040-5. [PMID: 8816747 PMCID: PMC38332 DOI: 10.1073/pnas.93.19.10040] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The coupling of agonist-activated seven transmembrane domain receptors to G proteins is known to involve the amino-terminal region of their third cytoplasmic loop. Analysis of the amino acids in this region of the rat type in angiotensin (AT1a) receptor identified Leu-222 as an essential residue in receptor activation by the physiological agonist, angiotensin II (Ang II). Nonpolar replacements for Leu-222 yielded functionally intact AT1 receptors, while polar or charged residues caused progressive impairment of Ang II-induced inositol phosphate generation. The decrease in agonist-induced signal generation was associated with a parallel reduction of receptor internalization, and was most pronounced for the Lys-222 mutant receptor. Although this mutant showed normal binding of the peptide antagonist, [Sar1,Ile6]Ang II, its affinity for Ang II was markedly reduced, consistent with its inability to adopt the high-affinity conformation. A search revealed that many Gq-coupled receptors contain an apolar amino acid (frequently leucine) in the position corresponding to Leu-222 of the AT1 receptor. These findings suggest that such a conserved apolar residue in the third intracellular loop is a crucial element in the agonist-induced activation of the AT1 and possibly many other G protein-coupled receptors.
Collapse
Affiliation(s)
- L Hunyady
- Endocrinology and Reproduction Research Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
22
|
Cardiac effects of AII. AT1A receptor signaling, desensitization, and internalization. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1996. [PMID: 8726686 DOI: 10.1007/978-1-4899-1376-0_7] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Angiotensin II receptors present in cardiomyocytes, nonmyocytes (predominantly fibroblasts), nerve terminals, and the heart vasculature mediate the multiple actions of angiotensin II (AII) in the heart, including modulation of normal and pathophysiological cardiac growth. Although the cellular processes that couple AII receptors (principally the AT1 subtype) to effector responses are not completely understood, recent studies have identified an array of signal transduction pathways activated by AII in cardiac cells. These include: the stimulation of phospholipase C which results in the activation of protein kinase C and the release of calcium from intracellular stores; an enhancement of phosphaditic acid formation; the coupling to soluble tyrosine kinase phosphorylation events; the initiation of the mitogen activated protein kinase (MAPK) cascade; and the induction of the STAT (Signal Transducers and Activators of Transcription) signaling pathway. It is tempting to speculate that these latter responses, which have been previously associated with growth factor signaling pathways, are involved in AII-induced cardiac growth. Interestingly, some of these novel pathways are apparently not under the same strict control imposed upon the more classical signaling pathways. Thus, while AII-induced calcium transients are rapidly (within minutes) desensitized following exposure to AII, the MAP kinase pathway is not, and activation of the STAT pathway requires hours of agonist exposure for maximal induction. These observations support an emerging picture in which the downstream signal transduction pathways of AII receptors are initiated and terminated with a distinct temporal arrangement. This organization allows appropriate rapid responses (e.g. vascular contraction) to transient AII exposure, some of which are rapidly terminated, perhaps for protective reasons, and others not. In contrast, additional responses (e.g. growth) probably require prolonged exposure to agonist.
Collapse
|
23
|
Balmforth AJ, Lee AJ, Bajaj BP, Dickinson CJ, Warburton P, Ball SG. Functional domains of the C-terminus of the rat angiotensin AT1A receptor. Eur J Pharmacol 1995; 291:135-41. [PMID: 8566163 DOI: 10.1016/0922-4106(95)90135-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Previous work has shown that truncating the carboxyl terminus (C-terminus) of the rat angiotensin AT1A receptor to 309 amino acids abolished G-protein coupling and receptor internalization. This suggests that domains responsible for these functions lie beyond amino acid 309 of the C-terminus. The objective of this study was to determine the effect on angiotensin AT1A receptor function and regulation of deleting 41 amino acids from the C-terminus, which include the putative protein kinase C phosphorylation sites. Using site directed mutagenesis, the codon for Tyr319 was converted to a stop codon and the resulting truncated receptor permanently expressed in cultured human kidney cells. The properties of the truncated receptor were compared to those of the full length receptor. Expression of the truncated receptor was confirmed by sodium dodecyl sulphate polyacrylamide gel electrophoresis analysis of photolabelled membrane preparations. Angiotensin II activation of both full length and truncated receptors resulted in mobilization of inositol phosphates. However, whereas this was associated with rapid internalization of the full length receptor, the truncated receptor failed to internalize. Furthermore, pretreatment of cells with phorbol 12-myristate 13-acetate, a direct activator of protein kinase C, markedly attenuated the full length, but no the truncated receptor's ability to mobilise inositol phosphates. Thus, we conclude that the domain between amino acids 309 & 318 is important for G-protein coupling; that amino acids beyond 318 regulate internalization and one or more of the putative protein kinase C phosphorylation sites, present in the C-terminus of the angiotensin At1A receptor, actively regulate the receptor.
Collapse
Affiliation(s)
- A J Balmforth
- Institute for Cardiovascular Research, University of Leeds, UK
| | | | | | | | | | | |
Collapse
|