1
|
Jakhotia S, Kavvuri R, Raviraj S, Baishya S, Pasupulati AK, Reddy GB. Obesity-related glomerulopathy is associated with elevated WT1 expression in podocytes. Int J Obes (Lond) 2024; 48:1080-1091. [PMID: 38504059 DOI: 10.1038/s41366-024-01509-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 02/26/2024] [Accepted: 03/01/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND The prevalence of obesity is increasing worldwide at an alarming rate. In addition to the increased incidence of cardiovascular and metabolic diseases, obesity is the most potent risk factor for developing chronic kidney disease (CKD). Although systemic events such as hemodynamic factors, metabolic effects, and lipotoxicity were implicated in the pathophysiology of obesity-related glomerulopathy (ORG) and kidney dysfunction, the precise mechanisms underlying the association between obesity and CKD remain unexplored. METHODS In this study, we employed spontaneous WNIN/Ob rats to investigate the molecular events that promote ORG. Further, we fed a high-fat diet to mice and analyzed the incidence of ORG. Kidney functional parameters, micro-anatomical manifestations, and podocyte morphology were investigated in both experimental animal models. Gene expression analysis in the rodents was compared with human subjects by data mining using Nephroseq and Kidney Precision Medicine Project database. RESULTS WNIN/Ob rats were presented with proteinuria and several glomerular deformities, such as adaptive glomerulosclerosis, decreased expression of podocyte-specific markers, and effacement of podocyte foot process. Similarly, high-fat-fed mice also showed glomerular injury and proteinuria. Both experimental animal models showed increased expression of podocyte-specific transcription factor WT1. The altered expression of putative targets of WT1 such as E-cadherin, podocin (reduced), and α-SMA (increased) suggests elevated expression of WT1 in podocytes elicits mesenchymal phenotype. Curated data from CKD patients revealed increased expression of WT1 in the podocytes and its precursors, parietal epithelial cells. CONCLUSION WT1 is crucial during nephron development and has minimal expression in adult podocytes. Our study discovered elevated expression of WT1 in podocytes in obesity settings. Our analysis suggests a novel function for WT1 in the pathogenesis of ORG; however, the precise mechanism of WT1 induction and its involvement in podocyte pathobiology needs further investigation.
Collapse
Affiliation(s)
- Sneha Jakhotia
- Department of Biochemistry, ICMR-National Institute of Nutrition, Hyderabad, 500007, TS, India
| | - Rajesh Kavvuri
- Department of Biochemistry, University of Hyderabad, Hyderabad, 500046, TS, India
| | - Sumathi Raviraj
- Department of Biochemistry, University of Hyderabad, Hyderabad, 500046, TS, India
| | - Somorita Baishya
- Department of Biochemistry, University of Hyderabad, Hyderabad, 500046, TS, India
| | | | - G Bhanuprakash Reddy
- Department of Biochemistry, ICMR-National Institute of Nutrition, Hyderabad, 500007, TS, India.
| |
Collapse
|
2
|
Schindler M, Endlich N. Zebrafish as a model for podocyte research. Am J Physiol Renal Physiol 2024; 326:F369-F381. [PMID: 38205541 DOI: 10.1152/ajprenal.00335.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/25/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Podocytes, specialized postmitotic cells, are central players in various kidney-related diseases. Zebrafish have become a valuable model system for studying podocyte biology because they are genetically easy to manipulate, transparent, and their glomerular structure is similar to that of mammals. This review provides an overview of the knowledge of podocyte biology in zebrafish larvae, with particular focus on their essential contribution to understanding the mechanisms that underlie kidney diseases as well as supporting drug development. In addition, special attention is given to advances in live-imaging techniques allowing the observation of dynamic processes, including podocyte motility, podocyte process behavior, and glomerulus maturation. The review further addresses the functional aspects of podocytes in zebrafish larvae. This includes topics such as glomerular filtration, ultrastructural analyses, and evaluation of podocyte response to nephrotoxic insults. Studies presented in this context have provided important insights into the maintenance and resistance of the glomerular filtration barrier in zebrafish larvae and explored the potential transferability of these findings to mammals such as mice, rats, and most importantly, humans. The recent ability to identify potential therapeutic targets represents a promising new way to identify drugs that could effectively treat podocyte-associated glomerulopathies in humans. In summary, this review gives an overview about the importance of zebrafish as a model for podocyte-related disease and targeted drug development. It also highlights the key role of advanced imaging techniques in transparent zebrafish larvae, improving our understanding of glomerular diseases and the significant potential for translation of these findings to humans.
Collapse
Affiliation(s)
- Maximilian Schindler
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Nicole Endlich
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
3
|
Xu Z, Yue P, Feng JJ. Poroelastic modelling reveals the cooperation between two mechanisms for albuminuria. J R Soc Interface 2023; 20:20220634. [PMID: 36628531 PMCID: PMC9832287 DOI: 10.1098/rsif.2022.0634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 12/08/2022] [Indexed: 01/12/2023] Open
Abstract
Albuminuria occurs when albumin leaks abnormally into the urine. Its mechanism remains unclear. A gel-compression hypothesis attributes the glomerular barrier to compression of the glomerular basement membrane (GBM) as a gel layer. Loss of podocyte foot processes would allow the gel layer to expand circumferentially, enlarge its pores and leak albumin into the urine. To test this hypothesis, we develop a poroelastic model of the GBM. It predicts GBM compression in healthy glomerulus and GBM expansion in the diseased state, essentially confirming the hypothesis. However, by itself, the gel compression and expansion mechanism fails to account for two features of albuminuria: the reduction in filtration flux and the thickening of the GBM. A second mechanism, the constriction of flow area at the slit diaphragm downstream of the GBM, must be included. The cooperation between the two mechanisms produces the amount of increase in GBM porosity expected in vivo in a mutant mouse model, and also captures the two in vivo features of reduced filtration flux and increased GBM thickness. Finally, the model supports the idea that in the healthy glomerulus, gel compression may help maintain a roughly constant filtration flux under varying filtration pressure.
Collapse
Affiliation(s)
- Zelai Xu
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z2
| | - Pengtao Yue
- Department of Mathematics, Virginia Tech, Blacksburg, VA 24061, USA
| | - James J. Feng
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z2
- Department of Mathematics, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z2
| |
Collapse
|
4
|
Kriz W, Wiech T, Gröne HJ. Mesangial Injury and Capillary Ballooning Precede Podocyte Damage in Nephrosclerosis. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:1670-1682. [PMID: 36150506 DOI: 10.1016/j.ajpath.2022.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/22/2022] [Accepted: 08/30/2022] [Indexed: 06/16/2023]
Abstract
The development of focal and segmental glomerulosclerosis (FSGS) as a consequence of glomerular hypertension resulting from arterial hypertension is widely considered a podocyte disease. However, the primary damage is encountered in the mesangium. In acute settings, mesangial cells disconnect from their insertions to the glomerular basement membrane, causing a ballooning of capillaries and severe changes of the folding pattern of the glomerular basement membrane, of the arrangement of the capillaries, and thereby of the architecture of the tuft. The displacement of capillaries led to contact of podocytes and parietal epithelial cells, initiating the formation of tuft adhesions to Bowman's capsule, the committed lesion to progress to FSGS. In addition, the displacement of capillaries also caused an abnormal stretching of podocytes, resulting in podocyte damage. Thus, the podocyte damage that starts the sequence to FSGS is predicted to develop secondary to the mesangial damage. This sequence was found in two hypertensive rat models of FSGS and in human hypertensive nephrosclerosis.
Collapse
Affiliation(s)
- Wilhelm Kriz
- Department of Neuroanatomy, Medical Faculty Mannheim, University Heidelberg, Mannheim, Germany.
| | - Thorsten Wiech
- Nephropathology Section, Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hermann-Josef Gröne
- Medical Faculty, University of Heidelberg, Heidelberg, Germany; Institute of Pharmacology, University of Marburg, Marburg, Germany
| |
Collapse
|
5
|
Microencapsulated islet transplantation alleviates podocyte injury in diabetic nephropathy via inhibiting Notch-1 signaling. Transpl Immunol 2022; 72:101579. [PMID: 35278650 DOI: 10.1016/j.trim.2022.101579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/06/2022] [Accepted: 03/06/2022] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Podocyte injury has a critical role in the pathogenesis of diabetic nephropathy (DN). Microencapsulated islet transplantation (MIT) is identified as an effective method for improving the clinical condition of DN. This study aimed to explore the role and mechanism of MIT in alleviating podocyte injury in DN. METHODS A mouse model of DN was constructed using streptozotocin (STZ). Mice were divided into 3 groups: the untreated diabetic nephropathy group (DN group), the microencapsulated islet transplantation-treated group (MIT group) and the control group. The mice were raised for 6 weeks posterior to islet transplantation to identify the role of MIT. Renal function and structure of glomerular filtration barrier were assessed by urine analysis, histopathological examination, and transmission electron microscopy. The expression levels of several proteins including Caspase-3, Bcl2/Bax, β-galactosidase, Ki-67, synaptopodin, WT-1, Jagged-1, Notch-1, and Hes-1 in renal tissues were identified via immunohistochemistry (IHC), immunofluorescence (IF), and western blotting techniques. RESULTS Compared with the DN group, the MIT group presented decreased levels of blood glucose, urinary albumin/creatinine, urea nitrogen, and serum creatinine while their body weight gradually increased. Glomerular injury in the MIT group was significantly better than that in the DN group. The MIT group indicated significantly decreased expression of Caspase-3, β-galactosidase, Bax/Bcl-2, and Ki-67 when compared with DN group, while the proportion of synaptopodin- and WT-1-positive cells was significantly increased (P < 0.05). The protein expression of Jagged-1, Notch-1, and Hes-1 in the glomerulus of the MIT group was significantly lower than that in the DN group (P < 0.05). CONCLUSION MIT alleviates podocyte injury induced by DN by inhibiting Notch-1 signaling. The identification of signaling pathways influencing podocyte restoration can help evaluate personalized medicine efficacy for patients treated with islet transplantation.
Collapse
|
6
|
Löwen J, Gröne EF, Groß-Weißmann ML, Bestvater F, Gröne HJ, Kriz W. Pathomorphological sequence of nephron loss in diabetic nephropathy. Am J Physiol Renal Physiol 2021; 321:F600-F616. [PMID: 34541901 DOI: 10.1152/ajprenal.00669.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Following our previous reports on mesangial sclerosis and vascular proliferation in diabetic nephropathy (DN) (Kriz W, Löwen J, Federico G, van den Born J, Gröne E, Gröne HJ. Am J Physiol Renal Physiol 312: F1101-F1111, 2017; Löwen J, Gröne E, Gröne HJ, Kriz W. Am J Physiol Renal Physiol 317: F399-F410, 2019), we now describe the advanced stages of DN terminating in glomerular obsolescence and tubulointerstitial fibrosis based on a total of 918 biopsies. The structural aberrations emerged from two defects: 1) increased synthesis of glomerular basement membrane (GBM) components by podocytes and endothelial cells leading to an accumulation of GBM material in the mesangium and 2) a defect of glomerular vessels consisting of increased leakiness and an increased propensity to proliferate. Both defects may lead to glomerular degeneration. The progressing compaction of accumulated worn-out GBM material together with the retraction of podocytes out of the tuft and the collapse and hyalinosis of capillaries results in a shrunken tuft that fuses with Bowman's capsule (BC) to glomerular sclerosis. The most frequent pathway to glomerular decay starts with local tuft expansions that result in contacts of structurally intact podocytes to the parietal epithelium initiating the formation of tuft adhesions, which include the penetration of glomerular capillaries into BC. Exudation of plasma from such capillaries into the space between the parietal epithelium and its basement membrane causes the formation of insudative fluid accumulations within BC spreading around the glomerular circumference and, via the glomerulotubular junction, onto the tubule. Degeneration of the corresponding tubule develops secondarily to the glomerular damage, either due to cessation of filtration in cases of global sclerosis or due to encroachment of the insudative spaces. The degenerating tubules induce the proliferation of myofibroblasts resulting in interstitial fibrosis.NEW & NOTEWORTHY Based on analysis of 918 human biopsies, essential derangement in diabetic nephropathy consists of accumulation of worn-out glomerular basement membrane in the mesangium that may advance to global sclerosis. The most frequent pathway to nephron dropout starts with the penetration of glomerular capillaries into Bowman's capsule (BC), delivering an exudate into BC that spreads around the entire glomerular circumference and via the glomerulotubular junction onto the tubule, resulting in glomerular sclerosis and chronic tubulointerstitial damage.
Collapse
Affiliation(s)
- Jana Löwen
- Department of Neuroanatomy, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany.,German Cancer Research Center, Heidelberg, Germany
| | | | | | | | | | - Wilhelm Kriz
- Department of Neuroanatomy, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
7
|
Sánchez Fernández de la Vega J, Martínez-Onsurbe MP, Alonso Garcia S, Alba Losada J, Alonso Riaño M, Pardo Mindán FJ. [Reinterpretation of the Malpighian body in light of the existence of a single glomerular arteriole (Trabucco and Marquez)]. REVISTA ESPANOLA DE PATOLOGIA : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE ANATOMIA PATOLOGICA Y DE LA SOCIEDAD ESPANOLA DE CITOLOGIA 2021; 54:220-233. [PMID: 34544552 DOI: 10.1016/j.patol.2021.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 01/25/2021] [Indexed: 06/13/2023]
Abstract
INTRODUCTION In 1842 William Bowman described the microvascular system of the Malpighian body. Electron microscopic studies definitively revealed the spatial structure of its mesangial-capillary-epithelial component. In 1952-54 Trabucco and Marquez challenged the ideas of Bowman, demonstrating the existence of a single glomerular arteriole. Our study supports the finding of a single glomerular arteriole, leading to a definitive interpretation of the Malpighian body structure. MATERIALS AND METHODS Serial histological studies were carried out of the vascular pole in a case of oligomeganephrotic renal hypoplasia and the immunohistochemical study of embryonal glomerular development (15 embryos aged between 7 and 11weeks), with alpha-actin (smooth muscle marker), CD31 and CD34 (endothelial markers) and CD10 (podocyte marker). RESULTS The study of the glomerular vascular pole in the case of oligomeganephrotic renal hypoplasia supports the existence of a single glomerular arteriole. Our immunohistochemical study confirmed this finding and provided data on the morphogenesis of the mesangial-capillary-epithelial component of the Malpighian body. CONCLUSIONS There exist a single glomerular arteriole. Mesangial and endothelial cells originating from a single glomerular arteriole interact with an epithelial component derived from the nephrogenic vesicle which then generate the lobular glomerular tuft, providing the basis for a definitive interpretation of the structure of the Malpighian body. There is no scientific base to the interpretation of the glomerular microvascular system as having two glomerular arterioles with an intercalated capillary network.
Collapse
Affiliation(s)
| | - M Pilar Martínez-Onsurbe
- Anatomía Patológica, Hospital Universitario Príncipe de Asturias, Alcalá de Henares, Madrid, España
| | | | | | | | | |
Collapse
|
8
|
Butt L, Unnersjö-Jess D, Höhne M, Schermer B, Edwards A, Benzing T. A mathematical estimation of the physical forces driving podocyte detachment. Kidney Int 2021; 100:1054-1062. [PMID: 34332959 DOI: 10.1016/j.kint.2021.06.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 05/27/2021] [Accepted: 06/18/2021] [Indexed: 01/21/2023]
Abstract
Loss of podocytes, possibly through the detachment of viable cells, is a hallmark of progressive glomerular disease. Podocytes are exposed to considerable physical forces due to pressure and flow resulting in circumferential wall stress and tangential shear stress exerted on the podocyte cell body, which have been proposed to contribute to podocyte depletion. However, estimations of in vivo alterations of physical forces in glomerular disease have been hampered by a lack of quantitative functional and morphological data. Here, we used ultra-resolution data and computational analyses in a mouse model of human disease, hereditary late-onset focal segmental glomerular sclerosis, to calculate increased mechanical stress upon podocyte injury. Transversal shear stress on the lateral walls of the foot processes was prominently increased during the initial stages of podocyte detachment. Thus, our study highlights the importance of targeting glomerular hemodynamics to treat glomerular disease.
Collapse
Affiliation(s)
- Linus Butt
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - David Unnersjö-Jess
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Martin Höhne
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Bernhard Schermer
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; CECAD, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Aurelie Edwards
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Thomas Benzing
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; CECAD, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.
| |
Collapse
|
9
|
Richfield O, Cortez R, Navar LG. Simulations of Glomerular Shear and Hoop Stresses in Diabetes, Hypertension, and Reduced Renal Mass using a Network Model of a Rat Glomerulus. Physiol Rep 2021; 8:e14577. [PMID: 32951361 PMCID: PMC7507384 DOI: 10.14814/phy2.14577] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 12/15/2022] Open
Abstract
A novel anatomically accurate model of rat glomerular filtration is used to quantify shear stresses on the glomerular capillary endothelium and hoop stresses on the glomerular capillary walls. Plasma, erythrocyte volume, and plasma protein mass are distributed at network nodes using pressure differentials calculated taking into account volume loss to filtration, improving on previous models which only took into account blood apparent viscosity in calculating pressures throughout the network. Filtration is found to be heterogeneously distributed throughout the glomerular capillary network and is determined by concentration of plasma proteins and surface area of the filtering capillary segments. Hoop stress is primarily concentrated near the afferent arteriole, whereas shear stress is concentrated near the efferent arteriole. Using parameters from glomerular micropuncture studies, conditions of diabetes mellitus (DM), 5/6‐Nephrectomy (5/6‐Nx), and Angiotensin II‐induced hypertension (HTN) are simulated and compared to their own internal controls to assess the changes in mechanical stresses. Hoop stress is increased in all three conditions, while shear stress is increased in 5/6‐Nx, decreased in HTN, and maintained at control levels in DM by the hypertrophic response of the glomerular capillaries. The results indicate that these alterations in mechanical stresses and the consequent release of cytokines by or injury of the glomerular cells may play a significant role in the progression of glomerulopathy in these disease conditions.
Collapse
Affiliation(s)
- Owen Richfield
- Bioinnovation PhD Program, Tulane University, New Orleans, LA, USA.,Department of Physiology, Tulane School of Medicine, New Orleans, LA, USA
| | - Ricardo Cortez
- Department of Mathematics, Tulane University, New Orleans, LA, USA
| | - L Gabriel Navar
- Department of Physiology, Tulane School of Medicine, New Orleans, LA, USA
| |
Collapse
|
10
|
Richfield O, Cortez R, Navar LG. Simulations of increased glomerular capillary wall strain in the 5/6-nephrectomized rat. Microcirculation 2021; 28:e12721. [PMID: 34192389 PMCID: PMC9285434 DOI: 10.1111/micc.12721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/27/2021] [Accepted: 06/22/2021] [Indexed: 12/21/2022]
Abstract
Objective Chronic glomerular hypertension is associated with glomerular injury and sclerosis; however, the mechanism by which increases in pressure damage glomerular podocytes remains unclear. We tested the hypothesis that increases in glomerular pressure may deleteriously affect podocyte structural integrity by increasing the strain of the glomerular capillary walls, and that glomerular capillary wall strain may play a significant role in the perpetuation of glomerular injury in disease states that are associated with glomerular hypertension. Methods We developed an anatomically accurate mathematical model of a compliant, filtering rat glomerulus to quantify the strain of the glomerular capillary walls in a remnant glomerulus of the 5/6‐nephrectomized rat model of chronic kidney disease. In terms of estimating the mechanical stresses and strains in the glomerular capillaries, this mathematical model is a substantial improvement over previous models which do not consider pressure‐induced alterations in glomerular capillary diameters in distributing plasma and erythrocytes throughout the network. Results Using previously reported data from experiments measuring the change of glomerular volume as a function of perfusion pressure, we estimated the Young's modulus of the glomerular capillary walls in both control and 5/6‐nephrectomized conditions. We found that in 5/6‐nephrectomized conditions, the Young's modulus increased to 8.6 MPa from 7.8 MPa in control conditions, but the compliance of the capillaries increased in 5/6‐nephrectomized conditions due to a 23.3% increase in the baseline glomerular capillary diameters. We found that glomerular capillary wall strain was increased approximately threefold in 5/6‐nephrectomized conditions over control, which may deleteriously affect both mesangial cells and podocytes. The magnitudes of strain in model simulations of 5/6‐nephrectomized conditions were consistent with magnitudes of strain that elicit podocyte hypertrophy and actin cytoskeleton reorganization in vitro. Conclusions Our findings indicate that glomerular capillary wall strain may deleteriously affect podocytes directly, as well as act in concert with other mechanical changes and environmental factors inherent to the in vivo setting to potentiate glomerular injury in severe renoprival conditions.
Collapse
Affiliation(s)
- Owen Richfield
- Bioinnovation PhD Program, Tulane University, New Orleans, LA, USA.,Department of Physiology, Tulane School of Medicine, New Orleans, LA, USA
| | - Ricardo Cortez
- Department of Mathematics, Tulane University, New Orleans, LA, USA
| | - L Gabriel Navar
- Department of Physiology, Tulane School of Medicine, New Orleans, LA, USA
| |
Collapse
|
11
|
Huang C, Zhou Y, Huang H, Zheng Y, Kong L, Zhang H, Zhang Y, Wang H, Yang M, Xu X, Chen B. Islet Transplantation Reverses Podocyte Injury in Diabetic Nephropathy or Induced by High Glucose via Inhibiting RhoA/ROCK/NF- κB Signaling Pathway. J Diabetes Res 2021; 2021:9570405. [PMID: 33778085 PMCID: PMC7969114 DOI: 10.1155/2021/9570405] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/26/2020] [Accepted: 12/21/2020] [Indexed: 01/11/2023] Open
Abstract
OBJECTIVE Abnormal signaling pathways play a crucial role in the mechanisms of podocyte injury in diabetic nephropathy. They also affect the recovery of podocytes after islet transplantation (IT). However, the specific signaling abnormalities that affect the therapeutic effect of IT on podocytes remains unclear. The purpose of this study was to assess whether the RhoA/ROCK/NF-κB signaling pathway is related to podocyte restoration after IT. METHODS A mouse model of diabetic nephropathy was established in vivo using streptozotocin. The mice were then subsequently reared for 4 weeks after islet transplantation to determine the effect of IT. Islet cells, CCG-1423 (RhoA Inhibitor), and fasudil (ROCK inhibitor) were then cocultured with podocytes in vitro to assess their protective effects on podocyte injury induced by high glucose (HG). Protein expression levels of RhoA, ROCK1, synaptopodin, IL-6, and MCP-1 in kidney tissues were then measured using immunohistochemistry and Western blotting techniques. RESULTS Islet transplantation reduced the expression levels of RhoA/ROCK1 and that of related inflammatory factors such as IL-6 and MCP-1 in the kidney podocytes of diabetic nephropathy. In the same line, islet cells reduced the expression of RhoA, ROCK1, and pp65 in immortalized podocytes under high glucose (35.0 mmol/L glucose) conditions. CONCLUSIONS Islet transplantation can reverse podocyte injury in diabetes nephropathy by inhibiting the RhoA/ROCK1 signaling pathway. Islet cells have a strong protective effect on podocytes treated with high glucose (35.0 mmol/L glucose). Discovery of signaling pathways affecting podocyte recovery is helpful for individualized efficacy evaluation and targeted therapy of islet transplantation patients.
Collapse
Affiliation(s)
- Chongchu Huang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province, China
| | - Yi Zhou
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province, China
| | - Hongjian Huang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province, China
| | - Yushu Zheng
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province, China
| | - Lijun Kong
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province, China
| | - Hewei Zhang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province, China
| | - Yan Zhang
- Transplantation Centre, The First Affiliated Hospital of Wenzhou Medical University, 325015 Wenzhou, Zhejiang Province, China
| | - Hongwei Wang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province, China
| | - Mei Yang
- Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, 325015 Wenzhou, Zhejiang Province, China
| | - Xiaona Xu
- Operating Room, The First Affiliated Hospital of Wenzhou Medical University, 325015 Wenzhou, Zhejiang Province, China
| | - Bicheng Chen
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province, China
| |
Collapse
|
12
|
Meijer EM, van Dijk CGM, Kramann R, Verhaar MC, Cheng C. Implementation of Pericytes in Vascular Regeneration Strategies. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:1-21. [PMID: 33231500 DOI: 10.1089/ten.teb.2020.0229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
For the survival and integration of complex large-sized tissue-engineered (TE) organ constructs that exceed the maximal nutrients and oxygen diffusion distance required for cell survival, graft (pre)vascularization to ensure medium or blood supply is crucial. To achieve this, the morphology and functionality of the microcapillary bed should be mimicked by incorporating vascular cell populations, including endothelium and mural cells. Pericytes play a crucial role in microvascular function, blood vessel stability, angiogenesis, and blood pressure regulation. In addition, tissue-specific pericytes are important in maintaining specific functions in different organs, including vitamin A storage in the liver, renin production in the kidneys and maintenance of the blood-brain-barrier. Together with their multipotential differentiation capacity, this makes pericytes the preferred cell type for application in TE grafts. The use of a tissue-specific pericyte cell population that matches the TE organ may benefit organ function. In this review, we provide an overview of the literature for graft (pre)-vascularization strategies and highlight the possible advantages of using tissue-specific pericytes for specific TE organ grafts. Impact statement The use of a tissue-specific pericyte cell population that matches the tissue-engineered (TE) organ may benefit organ function. In this review, we provide an overview of the literature for graft (pre)vascularization strategies and highlight the possible advantages of using tissue-specific pericytes for specific TE organ grafts.
Collapse
Affiliation(s)
- Elana M Meijer
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Christian G M van Dijk
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Rafael Kramann
- Division of Nephrology and Institute of Experimental Medicine and Systems Biology, University Hospital RWTH Aachen, Aachen, Germany.,Department of Internal Medicine, Nephrology and Transplantation, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Marianne C Verhaar
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Caroline Cheng
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands.,Experimental Cardiology, Department of Cardiology, Thorax Center Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
13
|
Butt L, Unnersjö-Jess D, Höhne M, Edwards A, Binz-Lotter J, Reilly D, Hahnfeldt R, Ziegler V, Fremter K, Rinschen MM, Helmstädter M, Ebert LK, Castrop H, Hackl MJ, Walz G, Brinkkoetter PT, Liebau MC, Tory K, Hoyer PF, Beck BB, Brismar H, Blom H, Schermer B, Benzing T. A molecular mechanism explaining albuminuria in kidney disease. Nat Metab 2020; 2:461-474. [PMID: 32694662 DOI: 10.1038/s42255-020-0204-y] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 04/07/2020] [Indexed: 01/18/2023]
Abstract
Mammalian kidneys constantly filter large amounts of liquid, with almost complete retention of albumin and other macromolecules in the plasma. Breakdown of the three-layered renal filtration barrier results in loss of albumin into urine (albuminuria) across the wall of small renal capillaries, and is a leading cause of chronic kidney disease. However, exactly how the renal filter works and why its permeability is altered in kidney diseases is poorly understood. Here we show that the permeability of the renal filter is modulated through compression of the capillary wall. We collect morphometric data prior to and after onset of albuminuria in a mouse model equivalent to a human genetic disease affecting the renal filtration barrier. Combining quantitative analyses with mathematical modelling, we demonstrate that morphological alterations of the glomerular filtration barrier lead to reduced compressive forces that counteract filtration pressure, thereby resulting in capillary dilatation, and ultimately albuminuria. Our results reveal distinct functions of the different layers of the filtration barrier and expand the molecular understanding of defective renal filtration in chronic kidney disease.
Collapse
Affiliation(s)
- Linus Butt
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - David Unnersjö-Jess
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Royal Institute of Technology, Stockholm, Sweden
| | - Martin Höhne
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Aurelie Edwards
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Julia Binz-Lotter
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Dervla Reilly
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Robert Hahnfeldt
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Vera Ziegler
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Katharina Fremter
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Markus M Rinschen
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Center for Mass Spectrometry and Metabolomics, The Scripps Research Institute, La Jolla, CA, USA
| | - Martin Helmstädter
- Department of Medicine IV, Medical Center - University of Freiburg, Faculty of Medicine, and Signalling Research Centres BIOSS and CIBSS, University of Freiburg,, Freiburg, Germany
| | - Lena K Ebert
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Hayo Castrop
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Matthias J Hackl
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Gerd Walz
- Department of Medicine IV, Medical Center - University of Freiburg, Faculty of Medicine, and Signalling Research Centres BIOSS and CIBSS, University of Freiburg,, Freiburg, Germany
| | - Paul T Brinkkoetter
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Max C Liebau
- Department of Pediatrics and Center for Molecular Medicine, University of Cologne, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
| | - Kálmán Tory
- MTA-SE Lendület Nephrogenetic Laboratory, 1st Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Peter F Hoyer
- University Children's Hospital, Clinic for Pediatrics II, University of Duisburg-Essen, Essen, Germany
| | - Bodo B Beck
- Institute of Human Genetics and Center for Molecular Medicine, University of Cologne, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
| | | | - Hans Blom
- Royal Institute of Technology, Stockholm, Sweden
| | - Bernhard Schermer
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- CECAD, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Thomas Benzing
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.
- CECAD, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.
| |
Collapse
|
14
|
Nephrotic syndrome in a dish: recent developments in modeling in vitro. Pediatr Nephrol 2020; 35:1363-1372. [PMID: 30820702 PMCID: PMC7316697 DOI: 10.1007/s00467-019-4203-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/20/2018] [Accepted: 01/16/2019] [Indexed: 01/05/2023]
Abstract
Nephrotic syndrome is a heterogeneous disease, and one of the most frequent glomerular disorders among children. Depending on the etiology, it may result in end-stage renal disease and the need for renal replacement therapy. A dysfunctional glomerular filtration barrier, comprising of endothelial cells, the glomerular basement membrane and podocytes, characterizes nephrotic syndrome. Podocytes are often the primary target cells in the pathogenesis, in which not only the podocyte function but also their crosstalk with other glomerular cell types can be disturbed due to a myriad of factors. The pathophysiology of nephrotic syndrome is highly complex and studying molecular mechanisms in vitro requires state-of-the-art cell-based models resembling the in vivo situation and preferably a fully functional glomerular filtration barrier. Current advances in stem cell biology and microfluidic platforms have heralded a new era of three-dimensional (3D) cultures that might have the potential to recapitulate the glomerular filtration barrier in vitro. Here, we highlight the molecular basis of nephrotic syndrome and discuss requirements to accurately study nephrotic syndrome in vitro, including an overview of specific podocyte markers, cutting-edge stem cell organoids, and the implementation of microfluidic platforms. The development of (patho) physiologically relevant glomerular models will accelerate the identification of molecular targets involved in nephrotic syndrome and may be the harbinger of a new era of therapeutic avenues.
Collapse
|
15
|
van der Vlag J, Buijsers B. Heparanase in Kidney Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1221:647-667. [PMID: 32274730 DOI: 10.1007/978-3-030-34521-1_26] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The primary filtration of blood occurs in the glomerulus in the kidney. Destruction of any of the layers of the glomerular filtration barrier might result in proteinuric disease. The glomerular endothelial cells and especially its covering layer, the glycocalyx, play a pivotal role in development of albuminuria. One of the main sulfated glycosaminoglycans in the glomerular endothelial glycocalyx is heparan sulfate. The endoglycosidase heparanase degrades heparan sulfate, thereby affecting glomerular barrier function, immune reactivity and inflammation. Increased expression of glomerular heparanase correlates with loss of glomerular heparan sulfate in many glomerular diseases. Most importantly, heparanase knockout in mice prevented the development of albuminuria after induction of experimental diabetic nephropathy and experimental glomerulonephritis. Therefore, heparanase could serve as a pharmacological target for glomerular diseases. Several factors that regulate heparanase expression and activity have been identified and compounds aiming to inhibit heparanase activity are currently explored.
Collapse
Affiliation(s)
- Johan van der Vlag
- Department of Nephrology (480), Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands.
| | - Baranca Buijsers
- Department of Nephrology (480), Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands
| |
Collapse
|
16
|
Kriz W. The Inability of Podocytes to Proliferate: Cause, Consequences, and Origin. Anat Rec (Hoboken) 2019; 303:2588-2596. [PMID: 31606944 DOI: 10.1002/ar.24291] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/07/2019] [Accepted: 08/26/2019] [Indexed: 12/24/2022]
Abstract
This study presents a theoretical analysis of the problems related to the inability of podocytes to proliferate. The basis of these problems is the very high rate of glomerular filtration. Podocytes do not in general die by apoptosis or necrosis but are lost by detachment from the glomerular basement membrane (GBM) as viable cells. Podocytes situated on the outside of the filtration barrier and attached to the GBM only by their foot processes are permanently exposed to the flow dynamic forces of the high filtration rate tending to detach them from the GBM. The major challenge seems to consist of the high shear stresses on the foot processes within the filtration slits due to filtrate flow. Healthy podocytes are able to resist this challenge, injured podocytes are not, and may undergo foot process detachment, leading to a gap in the podocyte cover of the GBM. This represents a mortal event. Like a dam break, such a leak cannot be repaired. The ongoing exposure to filtrate flow prevents any attempt to close the gap, thus preventing any regeneration including cell proliferation. An improvement of this precarious situation consists of healing by scarring that may involve only one lobule of the glomerulus, permitting the remaining lobules to maintain filtration. An answer to the question of which waste product requires such a high filtration rate for its excretion may be in the huge quantity of circulating peptides, a problem that dates far back in evolution.
Collapse
Affiliation(s)
- Wilhelm Kriz
- Department of Neuroanatomy, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
17
|
Abstract
Finding new therapeutic targets of glomerulosclerosis treatment is an ongoing quest. Due to a living environment of various stresses and pathological stimuli, podocytes are prone to injuries; moreover, as a cell without proliferative potential, loss of podocytes is vital in the pathogenesis of glomerulosclerosis. Thus, sufficient understanding of factors and underlying mechanisms of podocyte injury facilitates the advancement of treating and prevention of glomerulosclerosis. The clinical symptom of podocyte injury is proteinuria, sometimes with loss of kidney functions progressing to glomerulosclerosis. Injury-induced changes in podocyte physiology and function are actually not a simple passive process, but a complex interaction of proteins that comprise the anatomical structure of podocytes at molecular levels. This chapter lists several aspects of podocyte injuries along with potential mechanisms, including glucose and lipid metabolism disorder, hypertension, RAS activation, micro-inflammation, immune disorder, and other factors. These aspects are not technically separated items, but intertwined with each other in the pathogenesis of podocyte injuries.
Collapse
|
18
|
Sipovsky VG, Nevorotin AI, Avsiewitsch IV, Smirnov AV. [Ultrastructural study of podocyte alterations in non proliferative glomerulopathy]. Arkh Patol 2019; 81:51-58. [PMID: 31317931 DOI: 10.17116/patol20198103151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ultrastructural changes in podocytes are an important diagnostic and prognostic marker for nephropathies. However, the biomedical understanding of detected submicroscopic changes in podocytes remains controversial. OBJECTIVE To investigate the relationship between the ultrastructural changes of podocytes (fusion of cytopodia and denudation of the basement membrane as a result of their desquamation) with a number of clinical and laboratory indicators of kidney dysfunction in case of non-proliferative glomerulopathies (NPGP). Thirty-seven patients (23 men, 14 women) with NPGP, including 8 with focal segmental glomerulosclerosis (FSGS), 17 with membranous nephropathy (MN), and 12 with minimal change disease (MCD), were examined. SUBJECT AND METHODS All the patients underwent standard laboratory and instrumental studies: determinations of the levels of total serum cholesterol (mmol/l), total serum protein (g/l); serum albumin (g/l); CKD-EPI glomerular filtration rate (GFR) (ml/min/1.73 m2), and daily protein loss (g/day). Light optical changes were measured; completely sclerotic and/or focally segmentally sclerotic glomeruli were taken into account. Quantitative ultrastructural stereological analysis was carried out estimating the cytopodium width (CPW) and the degree of glomerular basement membrane denudation (GBMD) (%). RESULTS NPGP cases showed the largest number of sclerotic glomeruli in FSGS, which was accompanied by the lowest level of daily proteinuria and GFR. Quantitative values of CPW were associated with the level of daily protein loss (r=0.47; p < 0.05) and serum albumin (r=-0.57; p <0.05) in patients with nephrotic syndrome. In MN, the absolute value of CPW was larger than that in the other two patient groups. A correlation analysis of CPW and GBMD values among patients with NPGP revealed a statistically insignificant negative relation between these morphometric parameters. However, when a subgroup of patients with podocytopathies (only MCD and FSGS) was identified in the study group, this relationship was found to be significant (r=-0.54; p=0.012). CONCLUSION The patients with NPGP exhibited a relationship between the severity of nephrotic syndrome and proteinuria/hypoalbuminemia, on the one hand, and CPW, on the other. The established negative relationship between CPW and the percentage of GBMD in the subgroup of patients with podocytopathies may be due to the early stages of podocyte injury, which are accompanied by transient GBMD.
Collapse
Affiliation(s)
- V G Sipovsky
- Acad. I.P. Pavlov First Saint Petersburg State Medical University, Ministry of Health of Russia, Saint-Petersburg, Russia
| | - A I Nevorotin
- Acad. I.P. Pavlov First Saint Petersburg State Medical University, Ministry of Health of Russia, Saint-Petersburg, Russia
| | - I V Avsiewitsch
- Acad. I.P. Pavlov First Saint Petersburg State Medical University, Ministry of Health of Russia, Saint-Petersburg, Russia
| | - A V Smirnov
- Acad. I.P. Pavlov First Saint Petersburg State Medical University, Ministry of Health of Russia, Saint-Petersburg, Russia
| |
Collapse
|
19
|
Qian T, Hernday SE, Bao X, Olson WR, Panzer SE, Shusta EV, Palecek SP. Directed Differentiation of Human Pluripotent Stem Cells to Podocytes under Defined Conditions. Sci Rep 2019; 9:2765. [PMID: 30808965 PMCID: PMC6391455 DOI: 10.1038/s41598-019-39504-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 12/10/2018] [Indexed: 01/20/2023] Open
Abstract
A major cause of chronic kidney disease (CKD) is glomerular disease, which can be attributed to a spectrum of podocyte disorders. Podocytes are non-proliferative, terminally differentiated cells. Thus, the limited supply of primary podocytes impedes CKD research. Differentiation of human pluripotent stem cells (hPSCs) into podocytes has the potential to produce podocytes for disease modeling, drug screening, and cell therapies. In the podocyte differentiation process described here, hPSCs are first induced to primitive streak-like cells by activating canonical Wnt signaling. Next, these cells progress to mesoderm precursors, proliferative nephron progenitors, and eventually become mature podocytes by culturing in a serum-free medium. Podocytes generated via this protocol adopt podocyte morphology, express canonical podocyte markers, and exhibit podocyte phenotypes, including albumin uptake and TGF-β1 triggered cell death. This study provides a simple, defined strategy to generate podocytes for in vitro modeling of podocyte development and disease or for cell therapies.
Collapse
Affiliation(s)
- Tongcheng Qian
- Department of Chemical & Biological Engineering, University of Wisconsin, Madison, WI, 53706, USA
| | - Shaenah E Hernday
- Department of Chemical & Biological Engineering, University of Wisconsin, Madison, WI, 53706, USA
| | - Xiaoping Bao
- Department of Chemical & Biological Engineering, University of Wisconsin, Madison, WI, 53706, USA
| | - William R Olson
- Department of Chemical & Biological Engineering, University of Wisconsin, Madison, WI, 53706, USA
| | - Sarah E Panzer
- School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53706, USA
| | - Eric V Shusta
- Department of Chemical & Biological Engineering, University of Wisconsin, Madison, WI, 53706, USA.
| | - Sean P Palecek
- Department of Chemical & Biological Engineering, University of Wisconsin, Madison, WI, 53706, USA.
| |
Collapse
|
20
|
Neal CR, Arkill KP, Bell JS, Betteridge KB, Bates DO, Winlove CP, Salmon AHJ, Harper SJ. Novel hemodynamic structures in the human glomerulus. Am J Physiol Renal Physiol 2018; 315:F1370-F1384. [PMID: 29923763 PMCID: PMC6293306 DOI: 10.1152/ajprenal.00566.2017] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To investigate human glomerular structure under conditions of physiological perfusion, we have analyzed fresh and perfusion-fixed normal human glomeruli at physiological hydrostatic and oncotic pressures using serial resin section reconstruction, confocal, multiphoton, and electron microscope imaging. Afferent and efferent arterioles (21.5 ± 1.2 µm and 15.9 ± 1.2 µm diameter), recognized from vascular origins, lead into previously undescribed wider regions (43.2 ± 2.8 µm and 38.4 ± 4.9 µm diameter) we have termed vascular chambers (VCs) embedded in the mesangium of the vascular pole. Afferent VC (AVC) volume was 1.6-fold greater than efferent VC (EVC) volume. From the AVC, long nonbranching high-capacity conduit vessels ( n = 7) (Con; 15.9 ± 0.7 µm diameter) led to the glomerular edge, where branching was more frequent. Conduit vessels have fewer podocytes than filtration capillaries. VCs were confirmed in fixed and unfixed specimens with a layer of banded collagen identified in AVC walls by multiphoton and electron microscopy. Thirteen highly branched efferent first-order vessels (E1; 9.9 ± 0.4 µm diameter) converge on the EVC, draining into the efferent arteriole (15.9 ± 1.2 µm diameter). Banded collagen was scarce around EVCs. This previously undescribed branching topology does not conform to the branching of minimum energy expenditure (Murray's law), suggesting that even distribution of pressure/flow to the filtration capillaries is more important than maintaining the minimum work required for blood flow. We propose that AVCs act as plenum manifolds possibly aided by vortical flow in distributing and balancing blood flow/pressure to conduit vessels supplying glomerular lobules. These major adaptations to glomerular capillary structure could regulate hemodynamic pressure and flow in human glomerular capillaries.
Collapse
Affiliation(s)
- Christopher R Neal
- Bristol Renal and School of Physiology, Pharmacology and Neuroscience, University of Bristol , Bristol , United Kingdom
| | - Kenton P Arkill
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Queen's Medical Centre , Nottingham , United Kingdom
| | - James S Bell
- Cardiff Centre for Vision Science, Cardiff University , Cardiff , United Kingdom
| | - Kai B Betteridge
- Nikon Imaging Centre, Guys Campus, Kings College London , London , United Kingdom
| | - David O Bates
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Queen's Medical Centre , Nottingham , United Kingdom
| | - C Peter Winlove
- School of Physics, University of Exeter , Exeter , United Kingdom
| | | | - Steven J Harper
- Bristol Renal and School of Physiology, Pharmacology and Neuroscience, University of Bristol , Bristol , United Kingdom.,Institute of Biomedical and Clinical Sciences, University of Exeter Medical School , Exeter , United Kingdom
| |
Collapse
|
21
|
Supriya R, Yung BY, Yu AP, Lee PH, Lai CW, Cheng KK, Yau SY, Chan LWC, Sheridan S, Siu PM. Adipokine Profiling in Adult Women With Central Obesity and Hypertension. Front Physiol 2018; 9:294. [PMID: 29636702 PMCID: PMC5881161 DOI: 10.3389/fphys.2018.00294] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 03/12/2018] [Indexed: 11/13/2022] Open
Abstract
Central obesity and hypertension are common risk factors for the metabolic syndrome, cardiovascular and renal diseases. Studies have shown that it is more difficult to control blood pressure and prevent end-organ damage in obese individuals with hypertension compared to their non-obese counterparts, especially among women. Obese females have a 6 times higher risk of developing hypertension than non-obese females while obese males are at a 1.5 times higher risk of developing hypertension, compared to their non-obese counterparts. Indeed, the inter-relationship between obesity and hypertension is unclear. Adipokines have been proposed to play a mediating role in the relationship between obesity and hypertension and are involved in the pathogenesis of metabolic diseases. Therefore, this study sought to determine the role of adipokines (adiponectin, plasminogen activator inhibitor-1, leptin, and tumor necrosis factor-α) in hypertensive Hong Kong Chinese women with central obesity. A total of 387 women aged 58 ± 11 years who were examined with a 2 × 2 factorial design for central obesity (waist circumference ≥ 80 cm) and hypertension (blood pressure ≥ 140/90 mmHg), were recruited from a pool of 1,492 Hong Kong Chinese adults who were previously screened for metabolic syndrome. Subjects with hyperglycemia, hypertriglyceridemia, and dyslipidemia were excluded to eliminate confounding effects. Our findings revealed that hypertensive women with central obesity had a lower anti-inflammatory status (adiponectin) and a higher pro-inflammatory status (TNF-α) than obese alone or hypertensive alone women. Also, women with central obesity had higher circulatory PAI-1 and leptin concentrations than their non-obese counterparts. We conclude that obesity may shift toward a more pro-inflammatory state and may become more severe in the presence of hypertension or vice versa.
Collapse
Affiliation(s)
- Rashmi Supriya
- Department of Health Technology and Informatics, Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Benjamin Y Yung
- Department of Health Technology and Informatics, Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Angus P Yu
- School of Public Health, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong
| | - Paul H Lee
- School of Nursing, Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Christopher W Lai
- Department of Health Technology and Informatics, Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Kenneth K Cheng
- Department of Health Technology and Informatics, Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Suk Y Yau
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Lawrence W C Chan
- Department of Health Technology and Informatics, Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Sinead Sheridan
- School of Public Health, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong
| | - Parco M Siu
- School of Public Health, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
22
|
Embry AE, Liu Z, Henderson JM, Byfield FJ, Liu L, Yoon J, Wu Z, Cruz K, Moradi S, Gillombardo CB, Hussain RZ, Doelger R, Stuve O, Chang AN, Janmey PA, Bruggeman LA, Miller RT. Similar Biophysical Abnormalities in Glomeruli and Podocytes from Two Distinct Models. J Am Soc Nephrol 2018; 29:1501-1512. [PMID: 29572404 DOI: 10.1681/asn.2017050475] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 02/21/2018] [Indexed: 01/19/2023] Open
Abstract
Background FSGS is a pattern of podocyte injury that leads to loss of glomerular function. Podocytes support other podocytes and glomerular capillary structure, oppose hemodynamic forces, form the slit diaphragm, and have mechanical properties that permit these functions. However, the biophysical characteristics of glomeruli and podocytes in disease remain unclear.Methods Using microindentation, atomic force microscopy, immunofluorescence microscopy, quantitative RT-PCR, and a three-dimensional collagen gel contraction assay, we studied the biophysical and structural properties of glomeruli and podocytes in chronic (Tg26 mice [HIV protein expression]) and acute (protamine administration [cytoskeletal rearrangement]) models of podocyte injury.Results Compared with wild-type glomeruli, Tg26 glomeruli became progressively more deformable with disease progression, despite increased collagen content. Tg26 podocytes had disordered cytoskeletons, markedly abnormal focal adhesions, and weaker adhesion; they failed to respond to mechanical signals and exerted minimal traction force in three-dimensional collagen gels. Protamine treatment had similar but milder effects on glomeruli and podocytes.Conclusions Reduced structural integrity of Tg26 podocytes causes increased deformability of glomerular capillaries and limits the ability of capillaries to counter hemodynamic force, possibly leading to further podocyte injury. Loss of normal podocyte mechanical integrity could injure neighboring podocytes due to the absence of normal biophysical signals required for podocyte maintenance. The severe defects in podocyte mechanical behavior in the Tg26 model may explain why Tg26 glomeruli soften progressively, despite increased collagen deposition, and may be the basis for the rapid course of glomerular diseases associated with severe podocyte injury. In milder injury (protamine), similar processes occur but over a longer time.
Collapse
Affiliation(s)
- Addie E Embry
- Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Zhenan Liu
- Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Joel M Henderson
- Department of Pathology, Boston University School of Medicine, Boston, Massachusetts
| | - F Jefferson Byfield
- Department of Physiology and Biophysics, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Liping Liu
- Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Medicine, Dallas Veterans Affairs Medical Center, Dallas, Texas
| | - Joonho Yoon
- Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Zhenzhen Wu
- Department of Medicine, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Katrina Cruz
- Department of Pathology, Boston University School of Medicine, Boston, Massachusetts
| | - Sara Moradi
- Department of Pathology, Boston University School of Medicine, Boston, Massachusetts
| | | | - Rihanna Z Hussain
- Department of Neurology, University of Texas Southwestern Medical School, Dallas, Texas; and
| | - Richard Doelger
- Department of Neurology, University of Texas Southwestern Medical School, Dallas, Texas; and
| | - Olaf Stuve
- Department of Neurology, University of Texas Southwestern Medical School, Dallas, Texas; and
| | - Audrey N Chang
- Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Paul A Janmey
- Department of Physiology and Biophysics, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Leslie A Bruggeman
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - R Tyler Miller
- Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, Texas; .,Department of Medicine, Dallas Veterans Affairs Medical Center, Dallas, Texas
| |
Collapse
|
23
|
Feng D, DuMontier C, Pollak MR. Mechanical challenges and cytoskeletal impairments in focal segmental glomerulosclerosis. Am J Physiol Renal Physiol 2018; 314:F921-F925. [PMID: 29363327 DOI: 10.1152/ajprenal.00641.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Focal segmental glomerulosclerosis (FSGS) is a histologically defined form of kidney injury typically mediated by podocyte dysfunction. Podocytes rely on their intricate actin-based cytoskeleton to maintain the glomerular filtration barrier in the face of mechanical challenges resulting from pulsatile blood flow and filtration of this blood flow. This review summarizes the mechanical challenges faced by podocytes in the form of stretch and shear stress, both of which may play a role in the progression of podocyte dysfunction and detachment. It also reviews how podocytes respond to these mechanical challenges in dynamic fashion through rearranging their cytoskeleton, triggering various biochemical pathways, and, in some disease states, altering their morphology in the form of foot process effacement. Furthermore, this review highlights the growing body of evidence identifying several mutations of important cytoskeleton proteins as causes of FSGS. Lastly, it synthesizes the above evidence to show that a better understanding of how these mutations leave podocytes vulnerable to the mechanical challenges they face is essential to better understanding the mechanisms by which they lead to disease. The review concludes with future research directions to fill this gap and some novel techniques with which to pursue these directions.
Collapse
Affiliation(s)
- Di Feng
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center , Boston, Massachusetts.,Harvard Medical School , Boston, Massachusetts
| | - Clark DuMontier
- Harvard Medical School , Boston, Massachusetts.,Division of Gerontology, Department of Medicine, Beth Israel Deaconess Medical Center , Boston, Massachusetts
| | - Martin R Pollak
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center , Boston, Massachusetts.,Harvard Medical School , Boston, Massachusetts
| |
Collapse
|
24
|
From tubular sublimate nephropathy via urinary concentrating mechanism to glomerular disease—Wilhelm Kriz’s contribution to modern nephrology. Pflugers Arch 2017. [DOI: 10.1007/s00424-017-2010-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
25
|
Endlich K, Kliewe F, Endlich N. Stressed podocytes-mechanical forces, sensors, signaling and response. Pflugers Arch 2017; 469:937-949. [PMID: 28687864 DOI: 10.1007/s00424-017-2025-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 06/22/2017] [Indexed: 02/07/2023]
Abstract
Increased glomerular capillary pressure (glomerular hypertension) and increased glomerular filtration rate (glomerular hyperfiltration) have been proven to cause glomerulosclerosis in animal models and are likely to be operative in patients. Since podocytes cover the glomerular basement membrane, they are exposed to tensile stress due to circumferential wall tension and to fluid shear stress arising from filtrate flow through the narrow filtration slits and through Bowman's space. In vitro evidence documents that podocytes respond to tensile stress as well as to fluid shear stress. Several proteins are discussed in this review that are expressed in podocytes and could act as mechanosensors converting mechanical force via a conformational change into a biochemical signal. The cation channels P2X4 and TRPC6 were shown to be involved in mechanosignaling in podocytes. P2X4 is activated by stretch-induced ATP release, while TRPC6 might be inherently mechanosensitive. Membrane, slit diaphragm and cell-matrix contact proteins are connected to the sublemmal actin network in podocytes via various linker proteins. Therefore, actin-associated proteins, like the proven mechanosensor filamin, are ideal candidates to sense forces in the podocyte cytoskeleton. Furthermore, podocytes express talin, p130Cas, and fibronectin that are known to undergo a conformational change in response to mechanical force exposing cryptic binding sites. Downstream of mechanosensors, experimental evidence suggests the involvement of MAP kinases, Ca2+ and COX2 in mechanosignaling and an emerging role of YAP/TAZ. In summary, our understanding of mechanotransduction in podocytes is still sketchy, but future progress holds promise to identify targets to alleviate conditions of increased mechanical load.
Collapse
Affiliation(s)
- Karlhans Endlich
- Department of Anatomy and Cell Biology, University Medicine Greifswald, 17489, Greifswald, Germany.
- Institut für Anatomie and Zellbiologie, Universitätsmedizin Greifswald, Friedrich-Loeffler-Str. 23c, 17489, Greifswald, Germany.
| | - Felix Kliewe
- Department of Anatomy and Cell Biology, University Medicine Greifswald, 17489, Greifswald, Germany
| | - Nicole Endlich
- Department of Anatomy and Cell Biology, University Medicine Greifswald, 17489, Greifswald, Germany
| |
Collapse
|
26
|
Abstract
In this article, I shall outline some of the most important aspects of the evidentiary basis of the so-called Kriz model for the development of glomerular sclerosis, a model that we continue to modify to this day. In my mind, the most important findings include the fact that podocytes are generally post-mitotic cells, so that loss of a significant number for any cause leads to podocyte insufficiency. Another pivotal finding is that in many experimental models and in human disease, podocytes detach from the GBM as living cells. These facts, together with biomechanical deduction, have led to the ongoing evolution of the original Heidelberg model.
Collapse
|
27
|
Rogacka D, Audzeyenka I, Rachubik P, Rychłowski M, Kasztan M, Jankowski M, Angielski S, Piwkowska A. Insulin increases filtration barrier permeability via TRPC6-dependent activation of PKGIα signaling pathways. Biochim Biophys Acta Mol Basis Dis 2017; 1863:1312-1325. [DOI: 10.1016/j.bbadis.2017.03.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 02/04/2017] [Accepted: 03/01/2017] [Indexed: 11/25/2022]
|
28
|
Falkenberg CV, Azeloglu EU, Stothers M, Deerinck TJ, Chen Y, He JC, Ellisman MH, Hone JC, Iyengar R, Loew LM. Fragility of foot process morphology in kidney podocytes arises from chaotic spatial propagation of cytoskeletal instability. PLoS Comput Biol 2017; 13:e1005433. [PMID: 28301477 PMCID: PMC5373631 DOI: 10.1371/journal.pcbi.1005433] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 03/30/2017] [Accepted: 03/01/2017] [Indexed: 12/22/2022] Open
Abstract
Kidney podocytes' function depends on fingerlike projections (foot processes) that interdigitate with those from neighboring cells to form the glomerular filtration barrier. The integrity of the barrier depends on spatial control of dynamics of actin cytoskeleton in the foot processes. We determined how imbalances in regulation of actin cytoskeletal dynamics could result in pathological morphology. We obtained 3-D electron microscopy images of podocytes and used quantitative features to build dynamical models to investigate how regulation of actin dynamics within foot processes controls local morphology. We find that imbalances in regulation of actin bundling lead to chaotic spatial patterns that could impair the foot process morphology. Simulation results are consistent with experimental observations for cytoskeletal reconfiguration through dysregulated RhoA or Rac1, and they predict compensatory mechanisms for biochemical stability. We conclude that podocyte morphology, optimized for filtration, is intrinsically fragile, whereby local transient biochemical imbalances may lead to permanent morphological changes associated with pathophysiology.
Collapse
Affiliation(s)
- Cibele V Falkenberg
- R. D. Berlin Center for Cell Analysis & Modeling, U. Connecticut School of Medicine, Farmington, CT, United States of America
| | - Evren U Azeloglu
- Department of Pharmacological Sciences, and Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Mark Stothers
- Department of Mechanical Engineering, Columbia University, New York, NY, United States of America
| | - Thomas J Deerinck
- National Center for Microscopy and Imaging Research, UCSD, San Diego, CA, United States of America
| | - Yibang Chen
- Department of Pharmacological Sciences, and Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - John C He
- Department of Pharmacological Sciences, and Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Mark H Ellisman
- National Center for Microscopy and Imaging Research, UCSD, San Diego, CA, United States of America
| | - James C Hone
- Department of Mechanical Engineering, Columbia University, New York, NY, United States of America
| | - Ravi Iyengar
- Department of Pharmacological Sciences, and Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Leslie M Loew
- R. D. Berlin Center for Cell Analysis & Modeling, U. Connecticut School of Medicine, Farmington, CT, United States of America
| |
Collapse
|
29
|
Kriz W, Lemley KV. Mechanical challenges to the glomerular filtration barrier: adaptations and pathway to sclerosis. Pediatr Nephrol 2017; 32:405-417. [PMID: 27008645 DOI: 10.1007/s00467-016-3358-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 02/03/2016] [Accepted: 02/04/2016] [Indexed: 11/30/2022]
Abstract
Podocytes are lost as viable cells by detachment from the glomerular basement membrane (GBM), possibly due to factors such as pressure and filtrate flow. Distension of glomerular capillaries in response to increased pressure is limited by the elastic resistance of the GBM. The endothelium and podocytes adapt to changes in GBM area. The slit diaphragm (SD) seems to adjust by shuttling SD components between the SD and the adjacent foot processes (FPs), resulting in changes in SD area that parallel those in perfusion pressure.Filtrate flow tends to drag podocytes towards the urinary orifice by shear forces, which are highest within the filtration slits. The SD represents an atypical adherens junction, mechanically interconnecting the cytoskeleton of opposing FPs and tending to balance the shear forces.If under pathological conditions, increased filtrate flows locally overtax the attachment of FPs, the SDs are replaced by occluding junctions that seal the slits and the attachment of podocytes to the GBM is reinforced by FP effacement. Failure of these temporary adaptive mechanisms results in a steady process of podocyte detachment due to uncontrolled filtrate flows through bare areas of the GBM and, subsequently, the labyrinthine subpodocyte spaces, presenting as pseudocysts. In our view, shear stress due to filtrate flow-not capillary hydrostatic pressure-is the major challenge to the attachment of podocytes to the GBM.
Collapse
Affiliation(s)
- Wilhelm Kriz
- Department of Neuroanatomy, Medical Faculty Mannheim, University of Heidelberg, Ludolf-Krehl-Str. 13-17, 68167, Mannheim, Germany.
| | - Kevin V Lemley
- Division of Nephrology, Children's Hospital Los Angeles, Los Angeles, CA, USA
- Department of Pediatrics, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
30
|
Embry AE, Mohammadi H, Niu X, Liu L, Moe B, Miller-Little WA, Lu CY, Bruggeman LA, McCulloch CA, Janmey PA, Miller RT. Biochemical and Cellular Determinants of Renal Glomerular Elasticity. PLoS One 2016; 11:e0167924. [PMID: 27942003 PMCID: PMC5152842 DOI: 10.1371/journal.pone.0167924] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 11/22/2016] [Indexed: 12/22/2022] Open
Abstract
The elastic properties of renal glomeruli and their capillaries permit them to maintain structural integrity in the presence of variable hemodynamic forces. Measured by micro-indentation, glomeruli have an elastic modulus (E, Young's modulus) of 2.1 kPa, and estimates from glomerular perfusion studies suggest that the E of glomeruli is between 2 and 4 kPa. F-actin depolymerization by latrunculin, inhibition of acto-myosin contractility by blebbistatin, reduction in ATP synthesis, and reduction of the affinity of adhesion proteins by EDTA reduced the glomerular E to 1.26, 1.7, 1.5, and 1.43 kPa, respectively. Actin filament stabilization with jasplakinolide and increasing integrin affinity with Mg2+ increased E to 2.65 and 2.87 kPa, respectively. Alterations in glomerular E are reflected in commensurate changes in F/G actin ratios. Disruption of vimentin intermediate filaments by withaferin A reduced E to 0.92 kPa. The E of decellularized glomeruli was 0.74 kPa, indicating that cellular components of glomeruli have dominant effects on their elasticity. The E of glomerular basement membranes measured by magnetic bead displacement was 2.4 kPa. Podocytes and mesangial cells grown on substrates with E values between 3 and 5 kPa had actin fibers and focal adhesions resembling those of podocytes in vivo. Renal ischemia and ischemia-reperfusion reduced the E of glomeruli to 1.58 kPa. These results show that the E of glomeruli is between 2 and 4 kPa. E of the GBM, 2.4 kPa, is consistent with this value, and is supported by the behavior of podocytes and mesangial cells grown on variable stiffness matrices. The podocyte cytoskeleton contributes the major component to the overall E of glomeruli, and a normal E requires ATP synthesis. The reduction in glomerular E following ischemia and in other diseases indicates that reduced glomerular E is a common feature of many forms of glomerular injury and indicative of an abnormal podocyte cytoskeleton.
Collapse
Affiliation(s)
- Addie E. Embry
- Nephrology and Medicine, U.T. Southwestern Medical School, Dallas, Texas, United States of America
| | - Hamid Mohammadi
- Center for Matrix Biology, University of Toronto, Toronto, Ontario, Canada
| | - Xinying Niu
- Nephrology and Medicine, U.T. Southwestern Medical School, Dallas, Texas, United States of America
| | - Liping Liu
- Nephrology and Medicine, U.T. Southwestern Medical School, Dallas, Texas, United States of America
| | - Borren Moe
- Nephrology and Medicine, U.T. Southwestern Medical School, Dallas, Texas, United States of America
| | - William A. Miller-Little
- Nephrology and Medicine, U.T. Southwestern Medical School, Dallas, Texas, United States of America
| | - Christopher Y. Lu
- Nephrology and Medicine, U.T. Southwestern Medical School, Dallas, Texas, United States of America
| | - Leslie A. Bruggeman
- Nephrology, MetroHealth Medical Center, Case-Western Reserve University, Cleveland, Ohio, United States of America
| | | | - Paul A. Janmey
- Physiology and Biophysics, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - R. Tyler Miller
- Nephrology and Medicine, U.T. Southwestern Medical School, Dallas, Texas, United States of America
- Medicine, Dallas VAMC, Dallas, Texas, United States of America
- * E-mail:
| |
Collapse
|
31
|
Safan MA, Elhelbawy NG, Midan DA, Khader HF. ABCB1 polymorphisms and steroid treatment in children with idiopathic nephrotic syndrome. Br J Biomed Sci 2016; 74:36-41. [PMID: 27719329 DOI: 10.1080/09674845.2016.1220707] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND The most common cause of nephrotic syndrome (NS) is idiopathic nephrotic syndrome (INS), also called nephrosis. Although most patients respond to steroid therapy, there is unequal response to treatment suggesting the involvement of genetic factors. The current study was conducted to evaluate the influence of two single nucleotide polymorphisms (SNPs) in ABCB1 (C3435T and C1236T) on the steroid treatment response in INS children. MATERIALS AND METHODS Genotyping of ABCB1 C3435T and C1236T polymorphisms by real time PCR were conducted on 120 INS children, 80 steroid sensitive (SS) and 40 steroid resistant (SR). RESULTS A significant difference in the distribution of ABCB1 C3435T and C1236T genotypes was observed between SS and SR patients. C1236T polymorphism was associated with steroid resistance in INS children (odds ratio: 2.27, 95 % confidence interval: 1.2-4.4; P = 0.012). The frequency of the T allele was significantly higher in SR than in SS patients (81.2 vs. 65.6%, respectively). The odds ratio for the C3435T polymorphism in response to steroid treatment was smaller than that of the polymorphism C1236T, and did not reach statistical significance (odds ratio: 1.1, 95 % confidence interval: 0.6-1.9; P = 0.77). CONCLUSION Our results suggested that C1236T polymorphism in ABCB1 gene was associated with steroid resistance. A higher proportion of SR children had C1236T TT genotype and T allele, these patients may require other therapeutic strategies.
Collapse
Affiliation(s)
- Manal A Safan
- a Faculty of Medicine, Medical Biochemistry Department , Menoufia University , Shebin El-Kom , Egypt
| | - Nesreen G Elhelbawy
- a Faculty of Medicine, Medical Biochemistry Department , Menoufia University , Shebin El-Kom , Egypt
| | - Dina A Midan
- b Faculty of Medicine, Pediatric Department , Menoufia University , Shebin El-Kom , Egypt
| | - Heba F Khader
- a Faculty of Medicine, Medical Biochemistry Department , Menoufia University , Shebin El-Kom , Egypt
| |
Collapse
|
32
|
Roshanravan H, Kim EY, Dryer SE. 20-Hydroxyeicosatetraenoic Acid (20-HETE) Modulates Canonical Transient Receptor Potential-6 (TRPC6) Channels in Podocytes. Front Physiol 2016; 7:351. [PMID: 27630573 PMCID: PMC5005377 DOI: 10.3389/fphys.2016.00351] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 08/02/2016] [Indexed: 01/08/2023] Open
Abstract
The arachidonic acid metabolite 20-hydroxyeicosatetraenoic acid (20-HETE) regulates renal function, including changes in glomerular function evoked during tubuloglomerular feedback (TGF). This study describes the cellular actions of 20-HETE on cultured podocytes, assessed by whole-cell recordings from cultured podocytes combined with pharmacological and cell-biological manipulations of cells. Bath superfusion of 20-HETE activates cationic currents that are blocked by the pan-TRP blocker SKF-96365 and by 50 μM La3+, and which are attenuated after siRNA knockdown of TRPC6 subunits. Similar currents are evoked by a membrane-permeable analog of diacylgycerol (OAG), but OAG does not occlude responses to maximally-activating concentrations of 20-HETE (20 μM). Exposure to 20-HETE also increased steady-state surface abundance of TRPC6 subunits in podocytes as assessed by cell-surface biotinylation assays, and increased cytosolic concentrations of reactive oxygen species (ROS). TRPC6 activation by 20-HETE was eliminated in cells pretreated with TEMPOL, a membrane-permeable superoxide dismutase mimic. Activation of TRPC6 by 20-HETE was also blocked when whole-cell recording pipettes contained GDP-βS, indicating a role for either small or heterotrimeric G proteins in the transduction cascade. Responses to 20-HETE were eliminated by siRNA knockdown of podocin, a protein that organizes NADPH oxidase complexes with TRPC6 subunits in this cell type. In summary, modulation of ionic channels in podocytes may contribute to glomerular actions of 20-HETE.
Collapse
Affiliation(s)
- Hila Roshanravan
- Department of Biology and Biochemistry, University of Houston Houston, TX, USA
| | - Eun Y Kim
- Department of Biology and Biochemistry, University of Houston Houston, TX, USA
| | - Stuart E Dryer
- Department of Biology and Biochemistry, University of HoustonHouston, TX, USA; Division of Nephrology, Baylor College of MedicineHouston, TX, USA
| |
Collapse
|
33
|
Liu X, Liu Y, Yang Y, Xu J, Dai D, Yan C, Li X, Tang R, Yu C, Ren H. Antioxidative Stress Effects of Salvia przewalskii Extract in Experimentally Injured Podocytes. Nephron Clin Pract 2016; 134:253-271. [PMID: 27529846 DOI: 10.1159/000448223] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 07/04/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Oxidative stress is a leading cause of puromycin aminonucleoside (PAN)-induced nephrosis. As the inhibition of oxidative stress may improve injury of podocyte, we aimed at examining the effect of total phenolic acid extract of Salvia przewalskii (SPE) on PAN-induced oxidative stress in vivo and in vitro. METHODS Seventy-two male Sprague-Dawley rats were randomly assigned into 6 groups (n = 12), PAN alone, tacrolimus (TAC), SPE (50, 100 and 200 mg/kg) and normal control group. Salvianolic acid B (SalB, 5.52%) and rosmarinic acid (RA, 31.58%) were isolated from SPE. The intensities of 8-oxo-2'-deoxyguanosine (8-OHdG) were evaluated by immunofluorescence. In vitro, the podocytes were assigned into groups of control, PAN alone, TAC (1 μg/ml), SPE (158, 316 μg/ml), SalB (8.5, 17 μg/ml) and RA (25, 50 μg/ml). The intracellular reactive oxygen species (ROS) production and cell apoptosis rate were measured by flow cytometry. Form factor and aspect ratio were calculated to assess mitochondrial morphology. RESULTS In vivo, PAN increased the intensity of 8-OHdG in the renal tissue in the PAN group (p < 0.05). The high-dose SPE reduced 8-OHdG significantly at levels comparable to TAC alone (p > 0.05) on day 15. The intracellular ROS production, podocytes apoptosis rate and mitochondrial fragmentation increased significantly following PAN exposure in podocytes (p < 0.05). Treatment with high-dose SalB significantly ameliorated the increase in the expression of ROS and revised the structure of mitochondria. The percentage of apoptotic cells was decreased compared with the PAN group after SPE, SalB, RA, and TAC treatment for 24 h (p < 0.05). CONCLUSION These findings suggest that high-dose SPE significantly attenuated 8-OHdG in PAN nephrosis. Antioxidative stress effects of high-dose SPE, SalB against PAN-stimulated cultured podocyte via mechanisms include suppression of ROS expression and mitochondria fission. In addition, SPE, SalB and RA can suppress PAN-induced apoptosis.
Collapse
|
34
|
Ohno S, Saitoh Y, Ohno N, Terada N. Renaissance of morphological studies: the examination of functional structures in living animal organs using the in vivo cryotechnique. Anat Sci Int 2016; 92:55-78. [DOI: 10.1007/s12565-016-0355-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 06/27/2016] [Indexed: 11/28/2022]
|
35
|
Tian J, Wang HP, Mao YY, Jin J, Chen JH. Reduced Glomerular Epithelial Protein 1 Expression and Podocyte Injury in Immunoglobulin a Nephropathy. J Int Med Res 2016; 35:338-45. [PMID: 17593862 DOI: 10.1177/147323000703500308] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Expression of glomerular epithelial protein 1 (GLEPP1), a receptor tyrosine phosphatase present on the apical cell surface of the glomerular podocyte, and podocyte morphology were investigated in renal specimens from 51 patients with biopsy-diagnosed immunoglobulin A nephropathy (IgAN) and 11 controls. Clinical parameters, such as daily proteinuria were obtained from the patients' records and pathological manifestations of IgAN in the specimens were graded. GLEPP1 was strongly expressed and diffusely distributed in the glomeruli of control specimens. GLEPP1 expression was reduced in IgAN, especially in patients with nephrotic proteinuria and severe pathological manifestations. Podocyte injury was evident in IgAN and was associated with lower GLEPP1 expression and higher pathological grade. GLEPP1 expression was also significantly associated with clinical parameters. The results of this study suggest that GLEPP1 expression may be a useful marker of podocyte injury in IgAN, and may be predictive of clinical and pathological severity.
Collapse
Affiliation(s)
- J Tian
- Kidney Disease Centre, Ministry of Public Health, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | | | | | | | | |
Collapse
|
36
|
Piwkowska A, Rogacka D, Audzeyenka I, Kasztan M, Angielski S, Jankowski M. Intracellular calcium signaling regulates glomerular filtration barrier permeability: the role of the PKGIα-dependent pathway. FEBS Lett 2016; 590:1739-48. [DOI: 10.1002/1873-3468.12228] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 05/17/2016] [Accepted: 05/24/2016] [Indexed: 11/05/2022]
Affiliation(s)
- Agnieszka Piwkowska
- Laboratory of Molecular and Cellular Nephrology; Mossakowski Medical Research Centre Polish Academy of Sciences; Gdańsk Poland
| | - Dorota Rogacka
- Laboratory of Molecular and Cellular Nephrology; Mossakowski Medical Research Centre Polish Academy of Sciences; Gdańsk Poland
| | - Irena Audzeyenka
- Laboratory of Molecular and Cellular Nephrology; Mossakowski Medical Research Centre Polish Academy of Sciences; Gdańsk Poland
| | - Małgorzata Kasztan
- Department of Medicine; Cardio-Renal Physiology and Medicine; University of Alabama at Birmingham; AL USA
| | - Stefan Angielski
- Laboratory of Molecular and Cellular Nephrology; Mossakowski Medical Research Centre Polish Academy of Sciences; Gdańsk Poland
| | - Maciej Jankowski
- Laboratory of Molecular and Cellular Nephrology; Mossakowski Medical Research Centre Polish Academy of Sciences; Gdańsk Poland
- Department of Clinical Chemistry; Medical University of Gdańsk; Poland
| |
Collapse
|
37
|
Secondary Focal Segmental Glomerulosclerosis: From Podocyte Injury to Glomerulosclerosis. BIOMED RESEARCH INTERNATIONAL 2016; 2016:1630365. [PMID: 27088082 PMCID: PMC4819087 DOI: 10.1155/2016/1630365] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Accepted: 03/10/2016] [Indexed: 11/18/2022]
Abstract
Focal segmental glomerulosclerosis (FSGS) is a common cause of proteinuria and nephrotic syndrome leading to end stage renal disease (ESRD). There are two types of FSGS, primary (idiopathic) and secondary forms. Secondary FSGS shows less severe clinical features compared to those of the primary one. However, secondary FSGS has an important clinical significance because a variety of renal diseases progress to ESRD thorough the form of secondary FSGS. The defining feature of FSGS is proteinuria. The key event of FSGS is podocyte injury which is caused by multiple factors. Unanswered questions about how these factors act on podocytes to cause secondary FSGS are various and ill-defined. In this review, we provide brief overview and new insights into FSGS, podocyte injury, and their potential linkage suggesting clues to answer for treatment of the disease.
Collapse
|
38
|
Cell biology of mesangial cells: the third cell that maintains the glomerular capillary. Anat Sci Int 2016; 92:173-186. [PMID: 26910209 DOI: 10.1007/s12565-016-0334-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 02/14/2016] [Indexed: 10/22/2022]
Abstract
The renal glomerulus consists of glomerular endothelial cells, podocytes, and mesangial cells, which cooperate with each other for glomerular filtration. We have produced monoclonal antibodies against glomerular cells in order to identify different types of glomerular cells. Among these antibodies, the E30 clone specifically recognizes the Thy1.1 molecule expressed on mesangial cells. An injection of this antibody into rats resulted in mesangial cell-specific injury within 15 min, and induced mesangial proliferative glomerulonephritis in a reproducible manner. We examined the role of mesangial cells in glomerular function using several experimental tools, including an E30-induced nephritis model, mesangial cell culture, and the deletion of specific genes. Herein, we describe the characterization of E30-induced nephritis, formation of the glomerular capillary network, mesangial matrix turnover, and intercellular signaling between glomerular cells. New molecules that are involved in a wide variety of mesangial cell functions are also introduced.
Collapse
|
39
|
Abstract
Podocytes are highly specialized cells of the kidney glomerulus that wrap around capillaries and that neighbor cells of the Bowman’s capsule. When it comes to glomerular filtration, podocytes play an active role in preventing plasma proteins from entering the urinary ultrafiltrate by providing a barrier comprising filtration slits between foot processes, which in aggregate represent a dynamic network of cellular extensions. Foot processes interdigitate with foot processes from adjacent podocytes and form a network of narrow and rather uniform gaps. The fenestrated endothelial cells retain blood cells but permit passage of small solutes and an overlying basement membrane less permeable to macromolecules, in particular to albumin. The cytoskeletal dynamics and structural plasticity of podocytes as well as the signaling between each of these distinct layers are essential for an efficient glomerular filtration and thus for proper renal function. The genetic or acquired impairment of podocytes may lead to foot process effacement (podocyte fusion or retraction), a morphological hallmark of proteinuric renal diseases. Here, we briefly discuss aspects of a contemporary view of podocytes in glomerular filtration, the patterns of structural changes in podocytes associated with common glomerular diseases, and the current state of basic and clinical research.
Collapse
Affiliation(s)
- Jochen Reiser
- Department of Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Mehmet M Altintas
- Department of Medicine, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
40
|
Puelles VG, Cullen-McEwen LA, Taylor GE, Li J, Hughson MD, Kerr PG, Hoy WE, Bertram JF. Human podocyte depletion in association with older age and hypertension. Am J Physiol Renal Physiol 2016; 310:F656-F668. [PMID: 26792066 DOI: 10.1152/ajprenal.00497.2015] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/12/2016] [Indexed: 12/27/2022] Open
Abstract
Podocyte depletion plays a major role in the development and progression of glomerulosclerosis. Many kidney diseases are more common in older age and often coexist with hypertension. We hypothesized that podocyte depletion develops in association with older age and is exacerbated by hypertension. Kidneys from 19 adult Caucasian American males without overt renal disease were collected at autopsy in Mississippi. Demographic data were obtained from medical and autopsy records. Subjects were categorized by age and hypertension as potential independent and additive contributors to podocyte depletion. Design-based stereology was used to estimate individual glomerular volume and total podocyte number per glomerulus, which allowed the calculation of podocyte density (number per volume). Podocyte depletion was defined as a reduction in podocyte number (absolute depletion) or podocyte density (relative depletion). The cortical location of glomeruli (outer or inner cortex) and presence of parietal podocytes were also recorded. Older age was an independent contributor to both absolute and relative podocyte depletion, featuring glomerular hypertrophy, podocyte loss, and thus reduced podocyte density. Hypertension was an independent contributor to relative podocyte depletion by exacerbating glomerular hypertrophy, mostly in glomeruli from the inner cortex. However, hypertension was not associated with podocyte loss. Absolute and relative podocyte depletion were exacerbated by the combination of older age and hypertension. The proportion of glomeruli with parietal podocytes increased with age but not with hypertension alone. These findings demonstrate that older age and hypertension are independent and additive contributors to podocyte depletion in white American men without kidney disease.
Collapse
Affiliation(s)
- Victor G Puelles
- Cardiovascular Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia;
| | - Luise A Cullen-McEwen
- Cardiovascular Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
| | - Georgina E Taylor
- Cardiovascular Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
| | - Jinhua Li
- Cardiovascular Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
| | - Michael D Hughson
- Department of Pathology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Peter G Kerr
- Department of Nephrology, Monash Medical Centre, and Department of Medicine, Monash University, Melbourne, Victoria, Australia; and
| | - Wendy E Hoy
- Centre for Chronic Disease, The University of Queensland, Brisbane, Queensland, Australia
| | - John F Bertram
- Cardiovascular Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
41
|
Developmental changes in the expression and function of TRPC6 channels related the F-actin organization during differentiation in podocytes. Cell Calcium 2015; 58:541-8. [PMID: 26363733 DOI: 10.1016/j.ceca.2015.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 08/02/2015] [Accepted: 09/01/2015] [Indexed: 11/20/2022]
Abstract
The transient receptor potential canonical (TRPC) 6 channel is an important ion channel located in podocytes, which plays an essential role in regulating calcium homeostasis of the cell signaling. Podocytes are specialized, terminally differentiated cells surrounding glomerular capillaries, and are the subject of keen interest because of their key roles in kidney development and disease. Here we wonder whether TRPC6 channels undergo developmental changes in the expression and function during the podocyte differentiation, and whether they contribute to the maturation of podocytes. Using morphological, immunohistochemical and electrophysiological techniques, we investigated the development of distribution and expression of TRPC6 in conditionally immortalized mouse podocyte cell line. Our results showed that the distribution of TRPC6 channels changed with the maturity of podocyte differentiation. The fluorescent intensity of TRPC6 on cell surface increased, which was accompanied by a corresponding increase in the density of current flowing through the channels. TRPC6 inhibition by TRPC6 siRNA or SKF-96365, a blocker or TRP cation channels, resulted in F-actin cytoskeleton disruption only on the developmental stage of podocytes. These results strongly support the conclusion that TPRC6 is an essential component of the slit diaphragm and is required for development of glomerulus.
Collapse
|
42
|
Piwkowska A, Rogacka D, Audzeyenka I, Kasztan M, Angielski S, Jankowski M. Insulin increases glomerular filtration barrier permeability through PKGIα-dependent mobilization of BKCa channels in cultured rat podocytes. Biochim Biophys Acta Mol Basis Dis 2015; 1852:1599-609. [DOI: 10.1016/j.bbadis.2015.04.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 04/23/2015] [Accepted: 04/27/2015] [Indexed: 12/29/2022]
|
43
|
Singh L, Singh G, Dinda AK. Understanding podocytopathy and its relevance to clinical nephrology. Indian J Nephrol 2015; 25:1-7. [PMID: 25684864 PMCID: PMC4323905 DOI: 10.4103/0971-4065.134531] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Podocytopathies are the most common group of glomerular disorder leading to proteinuria. On the basis of pathophysiology, light microscopic and ultrastructural evaluation, the podocytopathies include minimal change disease, diffuse mesangial sclerosis, focal segmental glomerulosclerosis and collapsing glomerulopathy. The present review summarizes the basic etiopathogenesis of podocytopthies, highlights the common genetic and acquired factors in its causation, puts forth various diagnostic modalities and discusses the role of emerging agents or treatment.
Collapse
Affiliation(s)
- L Singh
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - G Singh
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - A K Dinda
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
44
|
Inhibition of p53 deSUMOylation exacerbates puromycin aminonucleoside-induced apoptosis in podocytes. Int J Mol Sci 2014; 15:21314-30. [PMID: 25411797 PMCID: PMC4264227 DOI: 10.3390/ijms151121314] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 11/04/2014] [Accepted: 11/05/2014] [Indexed: 11/17/2022] Open
Abstract
Apoptosis is a major cause of reduced podocyte numbers, which leads to proteinuria and/or glomerulosclerosis. Emerging evidence has indicated that deSUMOylation, a dynamic post-translational modification that reverses SUMOylation, is involved in the apoptosis of Burkitt’s lymphoma cells and cardiomyocytes; however, the impact of deSUMOylation on podocyte apoptosis remains unexplored. The p53 protein plays a major role in the pathogenesis of podocyte apoptosis, and p53 can be SUMOylated. Therefore, in the present study, we evaluated the effect of p53 deSUMOylation, which is regulated by sentrin/SUMO-specific protease 1 (SENP1), on podocyte apoptosis. Our results showed that SENP1 deficiency significantly increases puromycin aminonucleoside (PAN)-induced podocyte apoptosis. Moreover, SENP1 knockdown results in the accumulation of SUMOylated p53 protein and the increased expression of the p53 target pro-apoptotic genes, BAX, Noxa and PUMA, in podocytes during PAN stimulation. Thus, SENP1 may be essential for preventing podocyte apoptosis, at least partly through regulating the functions of p53 protein via deSUMOylation. The regulation of deSUMOylation may provide a novel strategy for the treatment of glomerular disorders that involve podocyte apoptosis.
Collapse
|
45
|
Gao N, Wang H, Zhang X, Yang Z. The inhibitory effect of angiotensin II on BKCa channels in podocytes via oxidative stress. Mol Cell Biochem 2014; 398:217-22. [PMID: 25234195 DOI: 10.1007/s11010-014-2221-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 09/13/2014] [Indexed: 01/11/2023]
Abstract
Angiotensin II (Ang II) is an important active substance of the renin-angiotensin system (RAS). The present study has confirmed that abnormalities of Ang II may be related with cerebrovascular diseases, endocrine diseases, cardiovascular diseases, liver diseases, such as: cerebral hypoxia, diabetes, obesity, atrial fibrillation, and liver cirrhosis. However, understanding effects of Ang II on podocytes is not enough. This study was to investigate the effects of oxidative stress on the large conductance, Ca(2+)-activated K(+) channels (BKCa). Results from the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay showed that Ang II induced podocyte death in a concentration-dependent manner. The measurement of superoxide dismutase (SOD) generation demonstrated that Ang II decreased the total SOD of cellular levels. Meaningfully, pretreatment of a type of ROS scavenger formulations named N-(mercaptopropionyl)-glycine (N-MPG) could inhibit podocyte apoptosis induced by Ang II. Meanwhile, patch-clamp technique was used in this study to detect the effects of Ang II on currents of BKCa channel in podocytes. The results indicated that Ang II inhibited the current amplitude of BKCa channel and decreased the slope of I-V curve. Ang II also made the activation curves of BKCa channel shift to the left. These results may provide a theoretical basis for potential treatment of chronic glomerular disease in the future.
Collapse
Affiliation(s)
- Na Gao
- School of Medicine, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Nankai University, Tianjin, 300071, China
| | | | | | | |
Collapse
|
46
|
Kriz W, Lemley KV. A potential role for mechanical forces in the detachment of podocytes and the progression of CKD. J Am Soc Nephrol 2014; 26:258-69. [PMID: 25060060 DOI: 10.1681/asn.2014030278] [Citation(s) in RCA: 199] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Loss of podocytes underlies progression of CKD. Detachment of podocytes from the glomerular basement membrane (GBM) rather than apoptosis or necrosis seems to be the major mechanism of podocyte loss. Such detachment of viable podocytes may be caused by increased mechanical distending and shear forces and/or impaired adhesion to the GBM. This review considers the mechanical challenges that may lead to podocyte loss by detachment from the GBM under physiologic and pathophysiologic conditions, including glomerular hypertension, hyperfiltration, hypertrophy, and outflow of filtrate from subpodocyte spaces. Furthermore, we detail the cellular mechanisms by which podocytes respond to these challenges, discuss the protective effects of angiotensin blockade, and note the questions that must be addressed to better understand the relationship between podocyte detachment and progression of CKD.
Collapse
Affiliation(s)
- Wilhelm Kriz
- Institutes of Transfusion Medicine and Immunology and Neuroanatomy, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; and
| | - Kevin V Lemley
- Division of Nephrology, Children's Hospital Los Angeles, Los Angeles, California; and Department of Pediatrics, University of Southern California Keck School of Medicine, Los Angeles, California
| |
Collapse
|
47
|
Reiser J, Sever S, Faul C. Signal transduction in podocytes--spotlight on receptor tyrosine kinases. Nat Rev Nephrol 2014; 10:104-15. [PMID: 24394191 PMCID: PMC4109315 DOI: 10.1038/nrneph.2013.274] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The mammalian kidney filtration barrier is a complex multicellular, multicomponent structure that maintains homeostasis by regulating electrolytes, acid-base balance, and blood pressure (via maintenance of salt and water balance). To perform these multiple functions, podocytes--an important component of the filtration apparatus--must process a series of intercellular signals. Integrating these signals with diverse cellular responses enables a coordinated response to various conditions. Although mature podocytes are terminally differentiated and cannot proliferate, they are able to respond to growth factors. It is possible that the initial response of podocytes to growth factors is beneficial and protective, and might include the induction of hypertrophic cell growth. However, extended and/or uncontrolled growth factor signalling might be maladaptive and could result in the induction of apoptosis and podocyte loss. Growth factors signal via the activation of receptor tyrosine kinases (RTKs) on their target cells and around a quarter of the 58 RTK family members that are encoded in the human genome have been identified in podocytes. Pharmacological inhibitors of many RTKs exist and are currently used in experimental and clinical cancer therapy. The identification of pathological RTK-mediated signal transduction pathways in podocytes could provide a starting point for the development of novel therapies for glomerular disorders.
Collapse
Affiliation(s)
- Jochen Reiser
- Department of Medicine, Rush University Medical Center, 1735 West Harrison Street, Cohn Building, Suite 724, Chicago, IL 60612, USA
| | - Sanja Sever
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, 149 13th Street, Charlestown, MA 02129, USA
| | - Christian Faul
- Division of Nephrology and Hypertension, University of Miami Miller School of Medicine, 1580 North West 10th Avenue (R-762), Batchelor Building 626, Miami, FL 33136, USA
| |
Collapse
|
48
|
|
49
|
Anderson M, Kim EY, Hagmann H, Benzing T, Dryer SE. Opposing effects of podocin on the gating of podocyte TRPC6 channels evoked by membrane stretch or diacylglycerol. Am J Physiol Cell Physiol 2013; 305:C276-89. [PMID: 23657570 DOI: 10.1152/ajpcell.00095.2013] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Gain-of-function mutations in the transient receptor potential (TRP) cation channel subfamily C member 6 (TRPC6) gene and mutations in the NPHS2 gene encoding podocin result in nephrotic syndromes. The purpose of this study was to determine the functional significance of biochemical interactions between these proteins. We observed that gating of TRPC6 channels in podocytes is markedly mechanosensitive and can be activated by hyposmotic stretch or indentation of the plasma membrane. Stretch activation of cationic currents was blocked by small interfering RNA knockdown of TRPC6, as well as by SKF-96365 or micromolar La(3+). Stretch activation of podocyte TRPC6 persisted in the presence of inhibitors of phospholipase C (U-73122) and phospholipase A2 (ONO-RS-082). Robust stretch responses also persisted when recording electrodes contained guanosine 5'-O-(2-thiodiphosphate) at concentrations that completely suppressed responses to ANG II. Stretch responses were enhanced by cytochalasin D but were abolished by the peptide GsMTx4, suggesting that forces are transmitted to the channels through the plasma membrane. Podocin and TRPC6 interact at their respective COOH termini. Knockdown of podocin markedly increased stretch-evoked activation of TRPC6 but nearly abolished TRPC6 activation evoked by a diacylglycerol analog. These data suggest that podocin acts as a switch to determine the preferred mode of TRPC6 activation. They also suggest that podocin deficiencies will result in Ca(2+) overload in foot processes, as with gain-of-function mutations in the TRPC6 gene. Finally, they suggest that mechanical activation of TRP family channels and the preferred mode of TRP channel activation may depend on whether members of the stomatin/prohibitin family of hairpin loop proteins are present.
Collapse
Affiliation(s)
- Marc Anderson
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | | | | | | | | |
Collapse
|
50
|
Abstract
Glomerular hypertension (ie, increased glomerular capillary pressure), has been shown to cause podocyte damage progressing to glomerulosclerosis in animal models. Increased glomerular capillary pressure results in an increase in wall tension that acts primarily as circumferential tensile stress on the capillary wall. The elastic properties of the glomerular basement membrane (GBM) and the elastic as well as contractile properties of the cytoskeleton of the endothelium and of podocyte foot processes resist circumferential tensile stress. Whether the contractile forces generated by podocytes are able to equal circumferential tensile stress to effectively counteract wall tension is an open question. Mechanical stress is transmitted from the GBM to the actin cytoskeleton of podocyte foot processes via cell-matrix contacts that contain mainly integrin α3β1 and a variety of linker, scaffolding, and signaling proteins, which are not well characterized in podocytes. We know from in vitro studies that podocytes are sensitive to stretch, however, the crucial mechanosensor in podocytes remains unclear. On the other hand, in vitro studies have shown that in stretched podocytes specific signaling cascades are activated, the synthesis and secretion of various hormones and their receptors are increased, cell-cycle arrest is reinforced, cell adhesion is altered through secretion of matricellular proteins and changes in integrin expression, and the actin cytoskeleton is reorganized in a way that stress fibers are lost. In summary, current evidence suggests that in glomerular hypertension podocytes primarily aim to maintain the delicate architecture of interdigitating foot processes in the face of an expanding GBM area.
Collapse
Affiliation(s)
- Nicole Endlich
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | | |
Collapse
|