1
|
Hoorn EJ, Gameiro J. Cosmic kidney disease: a spaceflight-induced tubulopathy. Clin Kidney J 2024; 17:sfae329. [PMID: 39664989 PMCID: PMC11630797 DOI: 10.1093/ckj/sfae329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Indexed: 12/13/2024] Open
Affiliation(s)
- Ewout J Hoorn
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Joana Gameiro
- ULS Santa Maria, Department of Nephrology and Renal Transplantation, Lisbon, Portugal
- Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
2
|
Min SR, Cho HS, Hong J, Cheong HI, Ahn SY. Gitelman syndrome combined with complete growth hormone deficiency. Ann Pediatr Endocrinol Metab 2013; 18:36-9. [PMID: 24904849 PMCID: PMC4027064 DOI: 10.6065/apem.2013.18.1.36] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/14/2013] [Accepted: 03/18/2013] [Indexed: 12/22/2022] Open
Abstract
Gitelman syndrome is a rare autosomal recessive hereditary salt-losing tubulopathy, that manifests as hypokalemic metabolic alkalosis, hypomagnesemia, and hypocalciuria. It is caused by mutations in the solute carrier family 12(sodium/chloride transporters), member 3 (SLC12A3) gene encoding the thiazide-sensitive sodium chloride cotransporter channel (NCCT) in the distal convoluted tubule of the kidney. It is associated with muscle weakness, cramps, tetany, vomiting, diarrhea, abdominal pain, and growth retardation. The incidence of growth retardation, the exact cause of which is unknown, is lower than that of Bartter syndrome. Herein, we discuss the case of an overweight 12.9-year-old girl of short stature presenting with hypokalemic metabolic alkalosis. The patient, on the basis of detection of a heterozygous mutation in the SLC12A3 gene and poor growth hormone (GH) responses in two provocative tests, was diagnosed with Gitelman syndrome combined with complete GH deficiency. GH treatment accompanied by magnesium oxide and potassium replacement was associated with a good clinical response.
Collapse
Affiliation(s)
- Se Ra Min
- Department of Pediatrics, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Hyun Seok Cho
- Department of Pediatrics, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Jeana Hong
- Department of Pediatrics, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Hae Il Cheong
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Korea.,Research Coordination Center for Rare Diseases, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Korea.,Kidney Research Institute, Medical Research Center, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Sung Yeon Ahn
- Department of Pediatrics, Kangwon National University School of Medicine, Chuncheon, Korea
| |
Collapse
|
3
|
Buyukcelik M, Keskin M, Kilic BD, Kor Y, Balat A. Bartter syndrome and growth hormone deficiency: three cases. Pediatr Nephrol 2012; 27:2145-2148. [PMID: 22707176 DOI: 10.1007/s00467-012-2212-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 03/07/2012] [Accepted: 04/08/2012] [Indexed: 11/24/2022]
Abstract
BACKGROUND Bartter syndrome is a rare autosomal recessive disorder characterized by hypokalemia, salt loss, and metabolic alkalosis. Short stature is one of the clinical manifestations in these children. Although polyuria, polydipsia, hypokalemia, and salt loss may be responsible for growth retardation, the exact pathogenesis of short stature in Bartter syndrome is not known. CASE DIAGNOSIS AND TREATMENT In this study, we present three children diagnosed as having Bartter syndrome with short stature and growth hormone (GH) deficiency. After recombinant human growth hormone therapy (rhGH), their growth velocities were improved. CONCLUSIONS These results indicate that GH deficiency may contribute to short stature in children with Bartter syndrome, and rhGH therapy would be an excellent adjunctive treatment for short children with this syndrome whose condition is resistant to conventional therapies in terms of growth.
Collapse
Affiliation(s)
| | - Mehmet Keskin
- Pediatric Endocrinology, Gaziantep University, Gaziantep, Turkey
| | | | - Yilmaz Kor
- Pediatric Endocrinology, Gaziantep University, Gaziantep, Turkey
| | - Ayse Balat
- Pediatric Nephrology, Gaziantep University, Gaziantep, Turkey
| |
Collapse
|
4
|
Balavoine AS, Bataille P, Vanhille P, Azar R, Noël C, Asseman P, Soudan B, Wémeau JL, Vantyghem MC. Phenotype-genotype correlation and follow-up in adult patients with hypokalaemia of renal origin suggesting Gitelman syndrome. Eur J Endocrinol 2011; 165:665-73. [PMID: 21753071 DOI: 10.1530/eje-11-0224] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Gitelman syndrome (GS) is a tubulopathy caused by SLC12A3 gene mutations, which lead to hypokalaemic alkalosis, secondary hyperaldosteronism, hypomagnesaemia and hypocalciuria. AIM The aim of this study was to assess the prevalence of SLC12A3 gene mutations in adult hypokalaemic patients; to compare the phenotype of homozygous, heterozygous and non-mutated patients; and to determine the efficiency of treatment. METHODS Clinical, biological and genetic data were recorded in 26 patients. RESULTS Screening for the SLC12A3 gene detected two mutations in 15 patients (six homozygous and nine compound heterozygous), one mutation in six patients and no mutation in five patients. There was no statistical difference in clinical symptoms at diagnosis between the three groups. Systolic blood pressure tended to be lower in patients with two mutations (P=0.16). Hypertension was unexpectedly detected in four patients. Five patients with two mutated alleles and two with heterozygosity had severe manifestations of GS. Significant differences were observed between the three groups in blood potassium, chloride, magnesium, supine aldosterone, 24 h urine chloride and magnesium levels and in modification of the diet in renal disease. Mean blood potassium levels increased from 2.8 ± 0.3, 3.5 ± 0.5 and 3.2 ± 0.3 before treatment to 3.2 ± 0.5, 3.7 ± 0.6 and 3.7 ± 0.3 mmol/l with treatment in groups with two (P=0.003), one and no mutated alleles respectively. CONCLUSION In adult patients referred for renal hypokalaemia, we confirmed the presence of mutations of the SLC12A3 gene in 80% of cases. GS was more severe in patients with two mutated alleles than in those with one or no mutated alleles. High blood pressure should not rule out the diagnosis, especially in older patients.
Collapse
Affiliation(s)
- A S Balavoine
- Service d'Endocrinologie et Maladies Métaboliques, CHRU de Lille, 59037 Lille Cedex, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Longitudinal growth in chronic hypokalemic disorders. Pediatr Nephrol 2010; 25:733-7. [PMID: 19902272 DOI: 10.1007/s00467-009-1330-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 09/18/2009] [Accepted: 09/21/2009] [Indexed: 10/20/2022]
Abstract
Growth retardation remains a major complication in children with primary tubular disorders, despite adequate supplemental treatment with electrolytes, water and bicarbonate. Chronic hypokalemia, characteristic of some tubulopathies, impairs growth by mechanisms that are not well known. Association with growth hormone deficiency has been reported in patients with Bartter's or Gitelman's syndrome. Tissue-specific alterations of growth hormone and insulin-like growth factor I axis have been described in experimental models of potassium depletion. Hypokalemic rats gain less body length and weight than pair-fed normokalemic animals and, by contrast, develop renal hypertrophy. These rats have low circulating concentrations of insulin-like growth factor I, depressed messenger ribonucleic acid (mRNA) levels of this peptide in the tibial growth plate, and they are resistant to the longitudinal growth-promoting effects of exogenous growth hormone. The reason for this resistance remains to be defined. No alterations in the intracellular signaling for growth hormone have been found in the liver of hypokalemic rats. However, treatment with high doses of growth hormone is unable to normalize hypertrophy of the epiphyseal cartilage chondrocytes, which are severely disturbed in potassium depletion and likely play an important role in the pathogenia of growth impairment in this condition.
Collapse
|
6
|
Gil-Peña H, Garcia-Lopez E, Alvarez-Garcia O, Loredo V, Carbajo-Perez E, Ordoñez FA, Rodriguez-Suarez J, Santos F. Alterations of growth plate and abnormal insulin-like growth factor I metabolism in growth-retarded hypokalemic rats: effect of growth hormone treatment. Am J Physiol Renal Physiol 2009; 297:F639-45. [DOI: 10.1152/ajprenal.00188.2009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hypokalemic tubular disorders may lead to growth retardation which is resistant to growth hormone (GH) treatment. The mechanism of these alterations is unknown. Weaning female rats were grouped ( n = 10) in control, potassium-depleted (KD), KD treated with intraperitoneal GH at 3.3 mg·kg−1·day−1 during the last week (KDGH), and control pair-fed with KD (CPF). After 2 wk, KD rats were growth retarded compared with CPF rats, the osseous front advance (±SD) being 67.07 ± 10.44 and 81.56 ± 12.70 μm/day, respectively. GH treatment did not accelerate growth rate. The tibial growth plate of KD rats had marked morphological alterations: lower heights of growth cartilage (228.26 ± 23.58 μm), hypertrophic zone (123.68 ± 13.49 μm), and terminal chondrocytes (20.8 ± 2.39 μm) than normokalemic CPF (264.21 ± 21.77, 153.18 ± 15.80, and 24.21 ± 5.86 μm). GH administration normalized these changes except for the distal chondrocyte height. Quantitative PCR of insulin-like growth factor I (IGF-I), IGF-I receptor, and GH receptor genes in KD growth plates showed downregulation of IGF-I and upregulation of IGF-I receptor mRNAs, without changes in their distribution as analyzed by immunohistochemistry and in situ hybridization. GH did not further modify IGF-I mRNA expression. KD rats had normal hepatic IGF-I mRNA levels and low serum IGF-I values. GH increased liver IGF-I mRNA, but circulating IGF-I levels remained reduced. This study discloses the structural and molecular alterations induced by potassium depletion on the growth plate and shows that the lack of response to GH administration is associated with persistence of the disturbed process of chondrocyte hypertrophy and depressed mRNA expression of local IGF-I in the growth plate.
Collapse
|
7
|
Babilonia E, Wei Y, Sterling H, Kaminski P, Wolin M, Wang WH. Superoxide anions are involved in mediating the effect of low K intake on c-Src expression and renal K secretion in the cortical collecting duct. J Biol Chem 2005; 280:10790-6. [PMID: 15644319 PMCID: PMC2825056 DOI: 10.1074/jbc.m414610200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
We previously demonstrated that low K intake stimulated the expression of c-Src and that stimulation of protein tyrosine kinase inhibited ROMK channel activity (Wei, Y., Bloom, P., Lin, D. H., Gu, R. M., and Wang, W. H. (2001) Am. J. Physiol. 281, F206-F212). Decreases in dietary K content significantly increased O(2)(-) levels and the phosphorylation of c-Jun, a transcription factor, in renal cortex and outer medulla. The role of O(2)(-) and related products such as H(2)O(2) in stimulating the expression of protein tyrosine kinase is suggested by the observation that addition of 50-200 microm H(2)O(2) increased the phosphorylation of c-Jun and the expression of c-Src in M1 cells, a mouse collecting duct principal cell line. The effect of H(2)O(2) on c-Src expression was completely abolished with cyclohexamide or actinomycin D. The treatment of animals on a K-deficient (KD) diet with tempol for 7 days significantly decreased the production of O(2)(-), c-Jun phosphorylation, and c-Src expression. Moreover, low K intake decreased the activity of ROMK-like small conductance channels from 1.37 (control K diet) to 0.5 in the cortical collecting duct and increased the tyrosine phosphorylation of ROMK in the renal cortex and outer medulla. In contrast, the tempol treatment not only increased channel activity to 1.1 in the cortical collecting duct but also decreased the tyrosine phosphorylation of ROMK from rats on a KD diet. Finally, suppressing O(2)(-) production with tempol significantly increased renal K excretion measured with metabolic cage and lowered the plasma K concentration in comparison with those on a KD diet alone without tempol. We conclude that O(2)(-) and related products play a role in mediating the effect of low K intake on c-Src expression and in suppressing ROMK channel activity and renal K secretion.
Collapse
Affiliation(s)
- Elisa Babilonia
- Department of Pharmacology, New York Medical College, Valhalla, New York 10595
| | - Yuan Wei
- Department of Pharmacology, New York Medical College, Valhalla, New York 10595
| | - Hyacinth Sterling
- Department of Pharmacology, New York Medical College, Valhalla, New York 10595
| | - Pawel Kaminski
- Department of Physiology, New York Medical College, Valhalla, New York 10595
| | - Michael Wolin
- Department of Physiology, New York Medical College, Valhalla, New York 10595
| | - Wen-Hui Wang
- Department of Pharmacology, New York Medical College, Valhalla, New York 10595
- To whom correspondence should be addressed: Dept. of Pharmacology, BSB Rm. 537, New York Medical College, Valhalla, NY 10595. Tel.: 914-594-4139; Fax: 914-347-4956;
| |
Collapse
|
8
|
Wei Y, Chen YJ, Li D, Gu R, Wang WH. Dual effect of insulin-like growth factor on the apical 70-pS K channel in the thick ascending limb of rat kidney. Am J Physiol Cell Physiol 2004; 286:C1258-63. [PMID: 15151916 DOI: 10.1152/ajpcell.00441.2003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We used the patch-clamp technique to study the effect of insulin-like growth factor I (IGF-I) on the apical 70-pS K channel in the isolated thick ascending limb (TAL) of the rat kidney. The isolated TAL was cut open to gain access to the apical membrane. Addition of 25 nM IGF-I stimulates the apical 70-pS K channel and increases channel activity, defined by the product of channel open probability and channel number, from 0.31 to 1.21. The stimulatory effect of IGF-I is not mediated by nitric oxide- or protein tyrosine phosphatase-dependent mechanisms, because inhibition of nitric oxide synthase or blocking protein tyrosine phosphatase did not abolish the stimulatory effect of IGF-I on the 70-pS K channel. In contrast, inhibition of mitogen-activated protein (MAP) kinase with PD-98059 or U0126 abolished the stimulatory effect of IGF-I. This suggests that MAP kinase is responsible for mediating the effect of IGF-I on the apical K channels. Moreover, the effect of IGF-I on the apical 70-pS K channel is biphasic because high concentrations (>200 nM) inhibit apical 70-pS K channels. Application of 400 nM IGF-I decreased channel activity from 1.45 to 0.2. The inhibitory effect of IGF-I is not blocked by calphostin C (an inhibitor of PKC), but inhibition of protein tyrosine kinase with herbimycin A abolished the IGF-induced inhibition. We conclude that IGF-I has a dual effect on the apical 70-pS K channel in the TAL: low concentrations of IGF-I stimulate, whereas high concentrations inhibit the channel activity. The stimulatory effect of IGF-I is mediated by a MAP kinase-dependent pathway, whereas the inhibitory effect is the result of stimulation of protein tyrosine kinase.
Collapse
Affiliation(s)
- Yuan Wei
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | | | |
Collapse
|
9
|
Fournier M, Huang ZS, Li H, Da X, Cercek B, Lewis MI. Insulin-like growth factor I prevents corticosteroid-induced diaphragm muscle atrophy in emphysematous hamsters. Am J Physiol Regul Integr Comp Physiol 2003; 285:R34-43. [PMID: 12689851 DOI: 10.1152/ajpregu.00177.2002] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of this study was to evaluate whether recombinant human insulin-like growth factor I (rhIGF-I) could attenuate or prevent diaphragm (DIA) fiber atrophy with corticosteroid (CS) administration to emphysematous (EMP) hamsters. DIA muscle IGF-I responses to CS administration with and without exogenous rhIGF-I administration were evaluated. Three groups were studied: 1) EMP; 2) EMP + triamcinolone (T; 0.4 mg.kg-1.day-1 im); and 3) EMP + T + IGF-I (600 microg/day by constant infusion). After 4 wk, the DIA was analyzed histochemically and biochemically (IGF-I mRNA levels by RT-PCR and endogenous and exogenous IGF-I peptide levels immunochemically). Body weights of EMP-T progressively decreased, while those of EMP and EMP-T-IGF-I remained stable despite similarly reduced food intake in both T groups. DIA weight was reduced with T but preserved with rhIGF-I infusion. DIA fiber proportions were similar among the groups. The cross-sectional areas of types I, IIa, and IIx fibers were reduced (17 to 31%) with T administration but unchanged with rhIGF-I infusion. DIA IGF-I mRNA levels were similar across all groups. By contrast, the endogenous DIA IGF-I levels were reduced (41%) in the EMP-T-IGF-I animals. Total DIA IGF-I levels (endogenous + exogenous) were still significantly reduced. IGF-I immunoreactivity confirmed this reduction in all DIA fibers. We conclude that DIA fiber atrophy with T was completely prevented by exogenous rhIGF-I administration. This effect was likely mediated by the pharmacological influences of exogenously administered rhIGF-I. We speculate that this results from increased bioavailability of free IGF-I to react with muscle receptors. Reduced endogenous IGF-I levels in the DIA likely reflect a negative-feedback influence. These results may have important clinical implications for treatment options to offset the adverse effects of CS on the respiratory muscles in patients with chronic lung disorders.
Collapse
Affiliation(s)
- Mario Fournier
- Cedars-Sinai Medical Center, 8700 Beverly Blvd., Rm. 6732, Los Angeles, CA 90048, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Brink M, Anwar A, Delafontaine P. Neurohormonal factors in the development of catabolic/anabolic imbalance and cachexia. Int J Cardiol 2002; 85:111-21, discussion 121-4. [PMID: 12163215 DOI: 10.1016/s0167-5273(02)00239-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mechanisms that lead to cachexia are still poorly understood. The neurohormonal changes that occur in severe disease states may cause an imbalance between protein synthesis and degradation at the cellular level, followed by muscle wasting. Here, we review actions of angiotensin II, TNF-alpha, corticosteroids, insulin-like growth factor-I (IGF-I), and the IGF binding proteins, factors that may each contribute to the metabolic imbalance. The complex endocrine, autocrine and intracellular interactions between these factors will be described with examples from patient, rat and cell culture studies. Moreover, some of the data supporting that each of these hormones may directly affect cellular protein degradation mechanisms will be reviewed. Knowledge on these regulatory mechanisms will facilitate the development of new pharmaceutical strategies to treat cachexia.
Collapse
Affiliation(s)
- Marijke Brink
- Division of Cardiology, Fondation pour Recherches Médicales, 64 Ave. de la Roseraie, CH-1205 Geneva, Switzerland.
| | | | | |
Collapse
|
11
|
Fervenza FC, Rabkin R. The role of growth factors and ammonia in the genesis of hypokalemic nephropathy. J Ren Nutr 2002; 12:151-9. [PMID: 12105812 DOI: 10.1053/jren.2002.33511] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Hypokalemia is a common electrolyte abnormality encountered in clinical practice. It can be identified in an asymptomatic patient undergoing routine electrolyte screening or can manifest itself as part of a number of functional abnormalities in a variety of organs and systems. Among the most commonly recognized complications are profound effects on the cardiovascular and neuromuscular systems, together with abnormalities in acid-base regulation. In humans, hypokalemia contributes to the development of hypertension and predisposes patients to a variety of ventricular arrhythmias, including ventricular fibrillation. Commonly recognized neuromuscular complications include weakness, cramping, and myalgia. Hypokalemia also affects systemic acid-base homeostasis by interfering with multiple components of the renal acid-base regulation and is a frequent cause of metabolic alkalosis. Less known, however, is the role of potassium deficiency in causing progressive renal failure. In animals, potassium deficiency stimulates renal enlargement because of cellular hypertrophy and hyperplasia. If potassium deficiency persists, interstitial infiltrates appear in the renal interstitial compartment, and eventually tubulointerstitial fibrosis develops. In humans, longstanding hypokalemia is associated with the development of renal cysts, chronic interstitial nephritis, and progressive loss of renal function, the so-called hypokalemic nephropathy. This review focuses on the potential mechanisms involved in the development of the hypokalemic nephropathy with emphasis on the role of ammonia and growth factors in its pathogenesis.
Collapse
Affiliation(s)
- Fernando C Fervenza
- Research Service Veterans Affairs, Palo Alto Health Care System, and the Division of Nephrology, Department Medicine, Stanford University, Palo Alto, CA, USA
| | | |
Collapse
|
12
|
Brink M, Price SR, Chrast J, Bailey JL, Anwar A, Mitch WE, Delafontaine P. Angiotensin II induces skeletal muscle wasting through enhanced protein degradation and down-regulates autocrine insulin-like growth factor I. Endocrinology 2001; 142:1489-96. [PMID: 11250929 DOI: 10.1210/endo.142.4.8082] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We previously showed that angiotensin II (ang II) infusion in the rat produces cachexia and decreases circulating insulin-like growth factor I (IGF-I). The weight loss derives from an anorexigenic response and a catabolic effect of ang II. In these experiments we assessed potential catabolic mechanisms and the involvement of the IGF-I system in these responses to ang II. Ang II infusion caused a significant decrease in body weight compared with that of pair-fed control rats. Kidney and left ventricular weights were significantly increased by ang II, whereas fat tissue was unchanged. Skeletal muscle mass was significantly decreased in the ang II-infused rats, and a reduction in lean muscle mass was a major reason for their overall loss of body weight. In skeletal muscles, ang II did not significantly decrease protein synthesis, but overall protein breakdown was accelerated; inhibiting lysosomal and calcium-activated proteases did not reduce the ang II-induced increase in muscle proteolysis. Circulating IGF-I levels were 33% lower in ang II rats vs. control rats, and this difference was reflected in lower IGF-I messenger RNA levels in the liver. Moreover, IGF-I, IGF-binding protein-3, and IGF-binding protein-5 messenger RNAs in the gastrocnemius were significantly reduced. To investigate whether the reduced circulating IGF-I accounts for the loss in muscle mass, we increased circulating IGF-I by coinfusing ang II and IGF-I, but this did not prevent muscle loss. Our data suggest that ang II causes a loss in skeletal muscle mass by enhancing protein degradation probably via its inhibitory effect on the autocrine IGF-I system.
Collapse
Affiliation(s)
- M Brink
- Division of Cardiology, University Hospital of Geneva, CH-1211 Geneva, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
13
|
Rabkin R, Fervenza F, Tsao T, Sibley R, Friedlaender M, Hsu F, Lassman C, Hausmann M, Huie P, Schwall RH. Hepatocyte growth factor receptor in acute tubular necrosis. J Am Soc Nephrol 2001; 12:531-540. [PMID: 11181801 DOI: 10.1681/asn.v123531] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
In acute tubular necrosis, there are early transient increases in circulating and local bioactive hepatocyte growth factor (HGF) levels and renal HGF receptor (c-MET) gene expression. It has therefore been suggested that endogenous HGF may play a role in initiating renal repair. To test this hypothesis, changes in the levels, activity, and anatomic distribution of c-MET protein were characterized in relation to the onset and localization of DNA synthesis in kidneys of rats with ischemia-induced acute tubular necrosis. Whole-kidney c-MET protein levels were significantly increased in the injured kidneys 12 h after injury and rose to a maximum after 1 d, exceeding the control values by sevenfold. Eight days after injury, c-MET levels, although decreasing, were still elevated above control values. An increase in the levels of activated c-MET, i.e., tyrosine-phosphorylated c-MET, was also evident as early as 12 h after injury. Histologic analyses demonstrated that the increase in c-MET immunoreactivity was most marked in the most severely damaged nephron segments in the outer medulla. In injured proximal tubules, the receptor was redistributed from an apical location to an intracellular location. DNA synthesis was increased in the injured kidneys, especially in the outer medulla, where the increase in c-MET protein levels was most prominent. The increase in DNA synthesis was first detected 12 h after the initial increase in activated c-MET levels. It is concluded that the early increases in the levels of c-MET protein and activated receptor support the hypothesis that HGF participates in the initiation of renal regeneration. In addition, the persistent elevation of c-Met protein levels suggests that prolonged and even late treatment with HGF may be of therapeutic value
Collapse
Affiliation(s)
- Ralph Rabkin
- Research Service Veterans Affairs Palo Alto Health Care System, Stanford University, Palo Alto, California
- Department of Medicine, Stanford University, Palo Alto, California
| | - Fernando Fervenza
- Research Service Veterans Affairs Palo Alto Health Care System, Stanford University, Palo Alto, California
- Department of Medicine, Stanford University, Palo Alto, California
| | - Tanny Tsao
- Research Service Veterans Affairs Palo Alto Health Care System, Stanford University, Palo Alto, California
- Department of Medicine, Stanford University, Palo Alto, California
| | - Richard Sibley
- Department of Pathology, Stanford University, Palo Alto, California
| | - Michael Friedlaender
- Research Service Veterans Affairs Palo Alto Health Care System, Stanford University, Palo Alto, California
- Department of Medicine, Stanford University, Palo Alto, California
| | - Fay Hsu
- Research Service Veterans Affairs Palo Alto Health Care System, Stanford University, Palo Alto, California
- Department of Medicine, Stanford University, Palo Alto, California
| | - Charles Lassman
- Department of Pathology, Stanford University, Palo Alto, California
| | - Michael Hausmann
- Research Service Veterans Affairs Palo Alto Health Care System, Stanford University, Palo Alto, California
- Department of Medicine, Stanford University, Palo Alto, California
| | - Phil Huie
- Department of Pathology, Stanford University, Palo Alto, California
| | - Ralph H Schwall
- Department of Molecular Oncology, Genentech Inc., South San Francisco, California
| |
Collapse
|
14
|
Tsao T, Fawcett J, Fervenza FC, Hsu FW, Huie P, Sibley RK, Rabkin R. Expression of insulin-like growth factor-I and transforming growth factor-beta in hypokalemic nephropathy in the rat. Kidney Int 2001; 59:96-105. [PMID: 11135062 DOI: 10.1046/j.1523-1755.2001.00470.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Potassium deficiency (KD) in the rat retards body growth but stimulates renal enlargement caused by cellular hypertrophy and hyperplasia, which is most marked in the outer medulla. If hypokalemia persists, interstitial infiltrates appear and eventually fibrosis. Since early in KD insulin-like growth factor-I (IGF-I) levels in the kidney are elevated, suggesting that it may be an early mediator of the exaggerated renal growth, and as transforming growth factor-beta (TGF-beta) promotes cellular hypertrophy and fibrosis, we examined the renal expression of these growth factors in prolonged KD. METHODS Rats were given a K-deficient diet or were pair fed or ad libitum fed a K-replete diet for 21 days. Growth factor mRNA levels were measured in whole kidney and protein expression localized by immunohistochemistry. RESULTS KD rats weighed less than pair-fed controls, while the kidneys were 49% larger. Their serum IGF-I and kidney IGF-I protein levels were depressed, as were their IGF-I mRNA levels in liver, kidney, and muscle. These changes can largely be attributed to decreased food intake. In contrast, kidney IGF binding protein-1 (IGFBP-1) mRNA and TGF-beta mRNA levels were increased significantly. Histology of outer medulla revealed marked hypertrophy and adenomatous hyperplasia of the collecting ducts and hypertrophy of the thick ascending limbs of Henle with cellular infiltrates in the interstitium. Both nephron segments immunostained strongly for IGF-I and IGFBP-1, but only the nonhyperplastic enlarged thick ascending Henle limb cells immunostained for TGF-beta, which was strongly positive. Prominent interstitial infiltrates with ED1 immunostained monocytes/macrophages were present. CONCLUSIONS These findings are consistent with a sustained role for IGF-I in promoting the exaggerated renal growth of KD and appear to be mediated through local trapping of IGF-I by the overexpressed IGFBP-1, which together with IGF-I can promote renal growth. The selective localization of TGF-beta to hypertrophied nonhyperplastic nephron segments containing IGF-I raises the possibility that TGF-beta may be serving to convert the mitogenic action of IGF-I into a hypertrophic response in these segments. It is also conceivable that TGF-beta may be a cause of the tubulointerstitial infiltrate. Finally, the low circulating IGF-I levels likely contribute to the impaired body growth.
Collapse
Affiliation(s)
- T Tsao
- Research Service Veterans Affairs Palo Alto Health Care System and Departments of Medicine and Pathology, Stanford University, Palo Alto, California, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Fawcett J, Hsu FW, Tsao T, Rabkin R. Effect of metabolic acidosis on the insulin-like growth factor-I system and cathepsins B and L gene expression in the kidney. THE JOURNAL OF LABORATORY AND CLINICAL MEDICINE 2000; 136:468-75. [PMID: 11128748 DOI: 10.1067/mlc.2000.110606] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Prolonged acidemia causes growth retardation and muscle wasting, in part because of reduced food intake, depressed growth hormone secretion, and low serum insulin-like growth factor-I (IGF-I) levels. Paradoxically, in the rat kidney, protein synthesis increases, cathepsin B and L activities decline, protein degradation falls, and the kidneys enlarge. Because IGF-I has been implicated as a cause of renal hypertrophy in a variety of conditions, we examined whether IGF-I could be playing a role in the renal hypertrophy of acidosis. Rats were gavaged with NH4Cl or water for 4 days. Water-gavaged rats either were pair-fed with the NH4Cl-loaded rats (pH 7.15) or were given free access to food and served as controls. After 2 days, kidney weight and IGF-I mRNA levels did not differ between the groups, but kidney IGF-I protein levels were significantly higher in the acidotic rats. After 4 days the kidneys of the acidotic rats were significantly larger than the kidneys in both control groups but the renal IGF-I levels did not differ between the groups. It is notable that renal cathepsin B and L mRNA levels were reduced by 30% to 50% at both times. Thus the transient increase in renal IGF-I protein levels in acidosis, before the onset of hypertrophy, suggests that IGF-I may play a role in initiating kidney growth. Furthermore, it appears that reduced cathepsin B and L gene expression is a cause of the low renal cathepsin activity seen in acidosis. This likely contributes to the depressed renal proteolysis caused by acidosis.
Collapse
Affiliation(s)
- J Fawcett
- Veterans Affairs Palo Alto Health Care System and the Department of Medicine, Stanford University, California, USA
| | | | | | | |
Collapse
|
16
|
Wood TL, Rogler LE, Czick ME, Schuller AG, Pintar JE. Selective alterations in organ sizes in mice with a targeted disruption of the insulin-like growth factor binding protein-2 gene. Mol Endocrinol 2000; 14:1472-82. [PMID: 10976924 DOI: 10.1210/mend.14.9.0517] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Insulin-like growth factor binding protein 2 (IGFBP-2) is one member of the family of IGF binding proteins believed to have both endocrine functions elicited by modulating serum IGF half-life and transport as well as autocrine/paracrine functions that result from blocking or enhancing the availability of IGFs to bind cell surface receptors. To clarify the in vivo role of IGFBP-2, we have used gene targeting to introduce a null IGFBP-2 allele into the mouse genome. Animals homozygous for the altered allele are viable and fertile, contain no IGFBP-2 mRNA, and have no detectable IGFBP-2 in the adult circulation. Heterozygous and homozygous animals showed no significant differences in prenatal or postnatal body growth. Analyses of organ weights in adult males, however, revealed that spleen weight was reduced and liver weight was increased in the absence of IGFBP-2. In addition, ligand blot analyses of sera from adult IGFBP-2 null males showed that IGFBP-1, IGFBP-3, and IGFBP-4 levels were increased relative to wild-type mice. These results demonstrate that up-regulation of multiple IGFBPs accompanies the absence of IGFBP-2 and that IGFBP-2 has a critical role, either directly or indirectly, in modulating spleen and liver size.
Collapse
Affiliation(s)
- T L Wood
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, University of Medicine and Dentistry New Jersey, Piscataway 08854, USA
| | | | | | | | | |
Collapse
|
17
|
Fervenza FC, Tsao T, Hsu F, Rabkin R. Intrarenal insulin-like growth factor-1 axis after unilateral nephrectomy in rat. J Am Soc Nephrol 1999; 10:43-50. [PMID: 9890308 DOI: 10.1681/asn.v10143] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
It has been suggested that insulin-like growth factor-1 (IGF-1) may play a role in early compensatory renal growth. Since IGF-1 action is influenced by IGF binding proteins (IGFBP), this study was conducted to characterize the changes in gene expression not only of IGF-1 and its receptor, but also of IGFBP in the hypertrophying kidney of adult and weanling rats 1 wk after removal of the other kidney. At this time, there were distinct age-dependent changes in the renal IGF-1 axis. In the mature kidney, IGF-1 mRNA levels fell without a change in kidney IGF-1 peptide content. Likewise, although IGFBP-2, -3, and -5 mRNA levels fell, membrane-associated IGFBP did not change. IGF-1 receptor mRNA levels and IGF-1 receptor number both fell. In the weanling kidneys, IGF-1 mRNA and peptide levels and IGF-1 receptor binding were unaltered. However, IGFBP-3, -4, and -5 mRNA levels were increased, as were plasma membrane-associated IGFBP. Although these changes in the intrarenal IGF-1 axis were distinct, it is difficult to conceive how in either the mature or immature rat they could contribute to the ongoing compensatory renal growth that occurs 1 wk after loss of kidney mass unless IGF-1 were acting in a synergistic manner with other growth promoters.
Collapse
Affiliation(s)
- F C Fervenza
- Research Service, Veterans Affairs Palo Alto Health Care System, California 94304, USA
| | | | | | | |
Collapse
|
18
|
Good DW. Nerve growth factor regulates HCO3- absorption in thick ascending limb: modifying effects of vasopressin. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:C931-9. [PMID: 9575789 DOI: 10.1152/ajpcell.1998.274.4.c931] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Growth factors stimulate Na+/H+ exchange activity in many cell types but their effects on acid secretion via this mechanism in renal tubules are poorly understood. We examined the regulation of HCO3- absorption by nerve growth factor (NGF) in the rat medullary thick ascending limb (MTAL), which absorbs HCO3- via apical membrane Na+/H+ exchange. MTAL were perfused in vitro with 25 mM HCO3- solutions (pH 7.4; 290 mosmol/kgH2O). Addition of 0.7 nM NGF to the bath decreased HCO3- absorption from 13.1 +/- 1.1 to 9.6 +/- 0.8 pmol.min-1.mm-1 (P < 0.001). In contrast, with 10(-10) M arginine vasopressin (AVP) in the bath, addition of NGF to the bath increased HCO3- absorption from 8.0 +/- 1.6 to 12.5 +/- 1.3 pmol.min-1.mm-1 (P < 0.01). Both effects of NGF were blocked by genistein, consistent with the involvement of tyrosine kinase pathways. However, the AVP-dependent stimulation required activation of protein kinase C (PKC), whereas the inhibition was PKC independent, indicating that the NGF-induced signaling pathways leading to inhibition and stimulation of HCO3- absorption are distinct. Hypertonicity blocked the inhibition but not the AVP-dependent stimulation, suggesting that hypertonicity and NGF may inhibit HCO3- absorption via a common mechanism. These data demonstrate that NGF inhibits HCO3- absorption in the MTAL under basal conditions but stimulates HCO3- absorption in the presence of AVP, effects that are mediated through distinct signal transduction pathways. They also show that AVP is a critical determinant of the response of the MTAL to growth factor stimulation and suggest that NGF can either inhibit or stimulate apical Na+/H+ exchange activity depending on its interactions with other regulatory factors. Locally produced growth factors such as NGF may play a role in regulating renal tubule HCO3- absorption.
Collapse
Affiliation(s)
- D W Good
- Department of Medicine, University of Texas Medical Branch, Galveston 77555, USA
| |
Collapse
|
19
|
Yap J, Tsao T, Fawcett J, Fielder PJ, Keller GA, Rabkin R. Effect of insulin-like growth factor binding proteins on the response of proximal tubular cells to insulin-like growth factor-I. Kidney Int 1997; 52:1216-23. [PMID: 9350644 DOI: 10.1038/ki.1997.446] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The insulin-like growth factor binding proteins (IGFBP) are major modulators of insulin-like growth factor-I (IGF-I) action, but relatively little is known about their production by kidney tubular cells or about their modulating effects on the action of IGF-I on these cells. In this study we demonstrated that rabbit proximal tubular cells express the genes for IGFBP-2, -4 and -5 and secrete 24 and 32 kDa size binding proteins. The rate of IGFBP production by these cells was regulated by several growth factors including hydrocortisone, which was potently stimulatory, and EGF, which was inhibitory. The overall effect of these kidney cell-secreted IGFBPs was to inhibit the mitogenic activity of IGF-I. Similarly, recombinant IGFBP-3, the major circulating IGFBP that in kidney is produced close to the proximal tubules, also inhibited IGF-I stimulated DNA synthesis in cultured rabbit proximal tubular cells and in cultured opossum kidney (OK) cells. IGFBP-3 also inhibited basal DNA synthesis in OK cells in the absence of added IGF-I, suggesting that this IGFBP may have an IGF-I independent action. These findings highlight the important effect that IGFBPs have on the action of IGF-I on kidney cells and support the notion that the changes in IGFBPs observed in various renal diseases may contribute to the pathophysiology of these diseases.
Collapse
Affiliation(s)
- J Yap
- Medicine Service Veterans Affairs Palo Alto Health Care System, California, USA
| | | | | | | | | | | |
Collapse
|