1
|
Ononamadu CJ, Seidel V. Exploring the Antidiabetic Potential of Salvia officinalis Using Network Pharmacology, Molecular Docking and ADME/Drug-Likeness Predictions. PLANTS (BASEL, SWITZERLAND) 2024; 13:2892. [PMID: 39458839 PMCID: PMC11510882 DOI: 10.3390/plants13202892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/04/2024] [Accepted: 10/06/2024] [Indexed: 10/28/2024]
Abstract
A combination of network pharmacology, molecular docking and ADME/drug-likeness predictions was employed to explore the potential of Salvia officinalis compounds to interact with key targets involved in the pathogenesis of T2DM. These were predicted using the SwissTargetPrediction, Similarity Ensemble Approach and BindingDB databases. Networks were constructed using the STRING online tool and Cytoscape (v.3.9.1) software. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analysis and molecular docking were performed using DAVID, SHINEGO 0.77 and MOE suite, respectively. ADME/drug-likeness parameters were computed using SwissADME and Molsoft L.L.C. The top-ranking targets were CTNNB1, JUN, ESR1, RELA, NR3C1, CREB1, PPARG, PTGS2, CYP3A4, MMP9, UGT2B7, CYP2C19, SLCO1B1, AR, CYP19A1, PARP1, CYP1A2, CYP1B1, HSD17B1, and GSK3B. Apigenin, caffeic acid, oleanolic acid, rosmarinic acid, hispidulin, and salvianolic acid B showed the highest degree of connections in the compound-target network. Gene enrichment analysis identified pathways involved in insulin resistance, adherens junctions, metabolic processes, IL-17, TNF-α, cAMP, relaxin, and AGE-RAGE in diabetic complications. Rosmarinic acid, caffeic acid, and salvianolic acid B showed the most promising interactions with PTGS2, DPP4, AMY1A, PTB1B, PPARG, GSK3B and RELA. Overall, this study enhances understanding of the antidiabetic activity of S. officinalis and provides further insights for future drug discovery purposes.
Collapse
Affiliation(s)
- Chimaobi J. Ononamadu
- Natural Products Research Laboratory, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK;
- Natural Product Research Group, Department of Biochemistry and Forensic Science, Nigeria Police Academy, Wudil P.M.B. 3474, Kano, Nigeria
| | - Veronique Seidel
- Natural Products Research Laboratory, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK;
| |
Collapse
|
2
|
Chen CY, Lin MW, Xie XY, Lin CH, Yang CW, Wu PC, Liu DH, Wu CJ, Lin CS. Studying the Roles of the Renin-Angiotensin System in Accelerating the Disease of High-Fat-Diet-Induced Diabetic Nephropathy in a db/db and ACE2 Double-Gene-Knockout Mouse Model. Int J Mol Sci 2023; 25:329. [PMID: 38203500 PMCID: PMC10779113 DOI: 10.3390/ijms25010329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Diabetic nephropathy (DN) is a crucial metabolic health problem. The renin-angiotensin system (RAS) is well known to play an important role in DN. Abnormal RAS activity can cause the over-accumulation of angiotensin II (Ang II). Angiotensin-converting enzyme inhibitor (ACEI) administration has been proposed as a therapy, but previous studies have also indicated that chymase, the enzyme that hydrolyzes angiotensin I to Ang II in an ACE-independent pathway, may play an important role in the progression of DN. Therefore, this study established a model of severe DN progression in a db/db and ACE2 KO mouse model (db and ACE2 double-gene-knockout mice) to explore the roles of RAS factors in DNA and changes in their activity after short-term (only 4 weeks) feeding of a high-fat diet (HFD) to 8-week-old mice. The results indicate that FD-fed db/db and ACE2 KO mice fed an HFD represent a good model for investigating the role of RAS in DN. An HFD promotes the activation of MAPK, including p-JNK and p-p38, as well as the RAS signaling pathway, leading to renal damage in mice. Blocking Ang II/AT1R could alleviate the progression of DN after administration of ACEI or chymase inhibitor (CI). Both ACE and chymase are highly involved in Ang II generation in HFD-induced DN; therefore, ACEI and CI are potential treatments for DN.
Collapse
Affiliation(s)
- Cheng-Yi Chen
- Division of Nephrology, Department of Internal Medicine, Mackay Memorial Hospital, Hsinchu 300, Taiwan;
- MacKay Junior College of Medicine, Nursing and Management, Taipei 112, Taiwan
| | - Meng-Wei Lin
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan; (M.-W.L.); (X.-Y.X.); (C.-H.L.)
| | - Xing-Yang Xie
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan; (M.-W.L.); (X.-Y.X.); (C.-H.L.)
| | - Cheng-Han Lin
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan; (M.-W.L.); (X.-Y.X.); (C.-H.L.)
| | - Chung-Wei Yang
- Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital Hsinchu Branch, Hsinchu 300, Taiwan;
| | - Pei-Ching Wu
- Doctoral Degree Program of Biomedical Science and Engineering, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan; (P.-C.W.); (D.-H.L.)
- Department of Chinese Medicine, China Medical University Hospital, Taichung 404, Taiwan
| | - Dung-Huan Liu
- Doctoral Degree Program of Biomedical Science and Engineering, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan; (P.-C.W.); (D.-H.L.)
- Department of Physical Medicine and Rehabilitation, China Medical University Hospital, Taichung 404, Taiwan
| | - Chih-Jen Wu
- Division of Nephrology, Department of Internal Medicine, Mackay Memorial Hospital, Taipei 100, Taiwan
- Division of Medicine, College of Medicine, Taipei Medical University, Taipei 100, Taiwan
| | - Chih-Sheng Lin
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan; (M.-W.L.); (X.-Y.X.); (C.-H.L.)
- Doctoral Degree Program of Biomedical Science and Engineering, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan; (P.-C.W.); (D.-H.L.)
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| |
Collapse
|
3
|
Wang S, Qin S, Cai B, Zhan J, Chen Q. Promising therapeutic mechanism for Chinese herbal medicine in ameliorating renal fibrosis in diabetic nephropathy. Front Endocrinol (Lausanne) 2023; 14:932649. [PMID: 37522131 PMCID: PMC10376707 DOI: 10.3389/fendo.2023.932649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/22/2023] [Indexed: 08/01/2023] Open
Abstract
Diabetic nephropathy (DN) is one of the most serious chronic microvascular abnormalities of diabetes mellitus and the major cause of uremia. Accumulating evidence has confirmed that fibrosis is a significant pathological feature that contributes to the development of chronic kidney disease in DN. However, the exact mechanism of renal fibrosis in DN is still unclear, which greatly hinders the treatment of DN. Chinese herbal medicine (CHM) has shown efficacy and safety in ameliorating inflammation and albuminuria in diabetic patients. In this review, we outline the underlying mechanisms of renal fibrosis in DN, including oxidative stress (OS) generation and OS-elicited ASK1-p38/JNK activation. Also, we briefly summarize the current status of CHM treating DN by improving renal fibrosis. The treatment of DN by inhibiting ASK1 activation to alleviate renal fibrosis in DN with CHM will promote the discovery of novel therapeutic targets for DN and provide a beneficial therapeutic method for DN.
Collapse
Affiliation(s)
- Shengju Wang
- Department of Nephrology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Shuai Qin
- Department of Nephrology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Baochao Cai
- Diabetes Department, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, Zhejiang, China
| | - Jihong Zhan
- Department of Nephrology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Qiu Chen
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Rousseau M, Denhez B, Spino C, Lizotte F, Guay A, Côté AM, Burger D, Geraldes P. Reduction of DUSP4 contributes to podocytes oxidative stress, insulin resistance and diabetic nephropathy. Biochem Biophys Res Commun 2022; 624:127-133. [DOI: 10.1016/j.bbrc.2022.07.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 07/15/2022] [Accepted: 07/15/2022] [Indexed: 11/25/2022]
|
5
|
Hu M, Ma Q, Liu B, Wang Q, Zhang T, Huang T, Lv Z. Long Non-Coding RNAs in the Pathogenesis of Diabetic Kidney Disease. Front Cell Dev Biol 2022; 10:845371. [PMID: 35517509 PMCID: PMC9065414 DOI: 10.3389/fcell.2022.845371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/08/2022] [Indexed: 01/09/2023] Open
Abstract
Diabetic kidney disease (DKD) is one of the major microvascular complications of diabetes mellitus, with relatively high morbidity and mortality globally but still in short therapeutic options. Over the decades, a large body of data has demonstrated that oxidative stress, inflammatory responses, and hemodynamic disorders might exert critical influence in the initiation and development of DKD, whereas the delicate pathogenesis of DKD remains profoundly elusive. Recently, long non-coding RNAs (lncRNAs), extensively studied in the field of cancer, are attracting increasing attentions on the development of diabetes mellitus and its complications including DKD, diabetic retinopathy, and diabetic cardiomyopathy. In this review, we chiefly focused on abnormal expression and function of lncRNAs in major resident cells (mesangial cell, endothelial cell, podocyte, and tubular epithelial cell) in the kidney, summarized the critical roles of lncRNAs in the pathogenesis of DKD, and elaborated their potential therapeutic significance, in order to advance our knowledge in this field, which might help in future research and clinical treatment for the disease.
Collapse
Affiliation(s)
- Mengsi Hu
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Nephrology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qiqi Ma
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Bing Liu
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Nephrology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qianhui Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Tingwei Zhang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Tongtong Huang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhimei Lv
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Nephrology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Zhimei Lv,
| |
Collapse
|
6
|
Obsilova V, Honzejkova K, Obsil T. Structural Insights Support Targeting ASK1 Kinase for Therapeutic Interventions. Int J Mol Sci 2021; 22:ijms222413395. [PMID: 34948191 PMCID: PMC8705584 DOI: 10.3390/ijms222413395] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 12/22/2022] Open
Abstract
Apoptosis signal-regulating kinase (ASK) 1, a member of the mitogen-activated protein kinase kinase kinase (MAP3K) family, modulates diverse responses to oxidative and endoplasmic reticulum (ER) stress and calcium influx. As a crucial cellular stress sensor, ASK1 activates c-Jun N-terminal kinases (JNKs) and p38 MAPKs. Their excessive and sustained activation leads to cell death, inflammation and fibrosis in various tissues and is implicated in the development of many neurological disorders, such as Alzheimer’s, Parkinson’s and Huntington disease and amyotrophic lateral sclerosis, in addition to cardiovascular diseases, diabetes and cancer. However, currently available inhibitors of JNK and p38 kinases either lack efficacy or have undesirable side effects. Therefore, targeted inhibition of their upstream activator, ASK1, stands out as a promising therapeutic strategy for treating such severe pathological conditions. This review summarizes recent structural findings on ASK1 regulation and its role in various diseases, highlighting prospects for ASK1 inhibition in the treatment of these pathologies.
Collapse
Affiliation(s)
- Veronika Obsilova
- Department of Structural Biology of Signaling Proteins, Division BIOCEV, Institute of Physiology of the Czech Academy of Sciences, 25250 Vestec, Czech Republic
- Correspondence: (V.O.); (T.O.); Tel.: +420-325-87-3513 (V.O.); +420-22-195-1303 (T.O.)
| | - Karolina Honzejkova
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, 12843 Prague, Czech Republic;
| | - Tomas Obsil
- Department of Structural Biology of Signaling Proteins, Division BIOCEV, Institute of Physiology of the Czech Academy of Sciences, 25250 Vestec, Czech Republic
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, 12843 Prague, Czech Republic;
- Correspondence: (V.O.); (T.O.); Tel.: +420-325-87-3513 (V.O.); +420-22-195-1303 (T.O.)
| |
Collapse
|
7
|
Sang Y, Tsuji K, Fukushima K, Takahashi K, Kitamura S, Wada J. Semaporin3A-inhibitor ameliorates renal fibrosis through the regulation of JNK signaling. Am J Physiol Renal Physiol 2021; 321:F740-F756. [PMID: 34747196 DOI: 10.1152/ajprenal.00234.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Renal fibrosis is the common pathological pathway in progressive renal diseases. In the study, we analyzed the roles of Semaphorin 3A (SEMA3A) on renal fibrosis and the effect of SEMA3A-inhibitor (SEMA3A-I) using unilateral ureteral obstruction (UUO) mouse model. The expression of SEMA3A in the proximal tubulus and neuropilin-1 (NRP1), a recepor of SEMA3A, in fibloblast and tubular cells were increased in the UUO kidneys. The increased expression of myofibroblast marker tenascin-C and fibronection as well as renal fibrosis were increased in UUO kidneys, all of which were ameliorated by SEMA3A-I. In addition, c-Jun N-terminal kinase (JNK) signaling pathway known as the target of SEMA3A signaling, was activated in proximal tubular cells and fibroblast cells after UUO surgery while SEMA3A-I significantly attenuated the activation. In vitro, treatments with SEMA3A as well as transforming growth factor-β1 (TGF-β1) in human proximal tubular cells lost epithelial cell characters while SEMA3A-I significantly ameliorated this transformation. JNK inhibitor, SP600125, partially reversed SEMA3A and TGF-β1-induced cell transformation, indicating that JNK signaling is involved in SEMA3A-induced renal fibrosis. In addition, the treatment with SEMA3A in fibroblast cells activated the expression of tenascin-C, collagen type I and fibronection, indicating that SEMA3A may accelerate renal fibrosis through the activation of fibroblast cells. The analysis of human data revealed the positive correlation between urinary SEMA3A and urinary N-acetyl-β-D-glucosaminidase, indicating the association between SEMA3A and tubular injury. In conclusion, SEMA3A signaling is involved in renal fibrosis through JNK signaling pathway and SEMA3A-I might be the therapeutic option for protecting from renal fibrosis.
Collapse
Affiliation(s)
- Yizhen Sang
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University, Okayama, Japan
| | - Kenji Tsuji
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University, Okayama, Japan
| | - Kazuhiko Fukushima
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University, Okayama, Japan
| | - Kensaku Takahashi
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University, Okayama, Japan
| | - Shinji Kitamura
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University, Okayama, Japan
| | - Jun Wada
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University, Okayama, Japan
| |
Collapse
|
8
|
Mazzoli A, Sardi C, Breasson L, Theilig F, Becattini B, Solinas G. JNK1 ablation improves pancreatic β-cell mass and function in db/db diabetic mice without affecting insulin sensitivity and adipose tissue inflammation. FASEB Bioadv 2021; 3:94-107. [PMID: 33615154 PMCID: PMC7876705 DOI: 10.1096/fba.2020-00081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/12/2020] [Accepted: 12/16/2020] [Indexed: 12/15/2022] Open
Abstract
The cJun N‐terminal Kinases (JNK) emerged as a major link between obesity and insulin resistance, but their role in the loss of pancreatic β‐cell mass and function driving the progression from insulin resistance to type‐2 diabetes and in the complications of diabetes was not investigated to the same extent. Furthermore, it was shown that pan‐JNK inhibition exacerbates kidney damage in the db/db model of obesity‐driven diabetes. Here we investigate the role of JNK1 in the db/db model of obesity‐driven type‐2 diabetes. Mice with systemic ablation of JNK1 (JNK1−/−) were backcrossed for more than 10 generations in db/+ C57BL/KS mice to generate db/db‐JNK1−/− mice and db/db control mice. To define the role of JNK1 in the loss of β‐cell mass and function occurring during obesity‐driven diabetes we performed comprehensive metabolic phenotyping, evaluated steatosis and metabolic inflammation, performed morphometric and cellular composition analysis of pancreatic islets, and evaluated kidney function in db/db‐JNK1−/− mice and db/db controls. db/db‐JNK1−/− mice and db/db control mice developed insulin resistance, fatty liver, and metabolic inflammation to a similar extent. However, db/db‐JNK1−/− mice displayed better glucose tolerance and improved insulin levels during glucose tolerance test, higher pancreatic insulin content, and larger pancreatic islets with more β‐cells than db/db mice. Finally, albuminuria, kidney histopathology, kidney inflammation and oxidative stress in db/db‐JNK1−/− mice and in db/db mice were similar. Our data indicate that selective JNK1 ablation improves glucose tolerance in db/db mice by reducing the loss of functional β‐cells occurring in the db/db mouse model of obesity‐driven diabetes, without significantly affecting metabolic inflammation, steatosis, and insulin sensitivity. Furthermore, we have found that, differently from what previously reported for pan‐JNK inhibitors, selective JNK1 ablation does not exacerbate kidney dysfunction in db/db mice. We conclude that selective JNK1 inactivation may have a superior therapeutic index than pan‐JNK inhibition in obesity‐driven diabetes.
Collapse
Affiliation(s)
- Arianna Mazzoli
- The Wallenberg Laboratory and Sahlgrenska Center for Cardiovascular and Metabolic Research Department of Molecular and Clinical Medicine Institute of Medicine University of Gothenburg Gothenburg Sweden
| | - Claudia Sardi
- The Wallenberg Laboratory and Sahlgrenska Center for Cardiovascular and Metabolic Research Department of Molecular and Clinical Medicine Institute of Medicine University of Gothenburg Gothenburg Sweden
| | - Ludovic Breasson
- The Wallenberg Laboratory and Sahlgrenska Center for Cardiovascular and Metabolic Research Department of Molecular and Clinical Medicine Institute of Medicine University of Gothenburg Gothenburg Sweden
| | - Franziska Theilig
- Institute of Anatomy Christian Albrechts-University Kiel Kiel Germany
| | - Barbara Becattini
- The Wallenberg Laboratory and Sahlgrenska Center for Cardiovascular and Metabolic Research Department of Molecular and Clinical Medicine Institute of Medicine University of Gothenburg Gothenburg Sweden
| | - Giovanni Solinas
- The Wallenberg Laboratory and Sahlgrenska Center for Cardiovascular and Metabolic Research Department of Molecular and Clinical Medicine Institute of Medicine University of Gothenburg Gothenburg Sweden
| |
Collapse
|
9
|
Brys R, Gibson K, Poljak T, Van Der Plas S, Amantini D. Discovery and development of ASK1 inhibitors. PROGRESS IN MEDICINAL CHEMISTRY 2020; 59:101-179. [PMID: 32362327 DOI: 10.1016/bs.pmch.2020.02.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Aberrant activation of mitogen-activated protein kinases (MAPKs) like c-Jun N-terminal kinase (JNK) and p38 is an event involved in the pathophysiology of numerous human diseases. The apoptosis signal-regulating kinase 1 (ASK1) is an upstream target that gets activated only under pathological conditions and as such is a promising target for therapeutic intervention. In the first part of this review the molecular mechanisms leading to ASK1 activation and regulation will be described as well as the evidences supporting a pathogenic role for ASK1 in human disease. In the second part, an update on drug discovery efforts towards the discovery and development of ASK1-targeting therapies will be provided.
Collapse
Affiliation(s)
| | - Karl Gibson
- Sandexis Medicinal Chemistry Ltd, Innovation House Discovery ParkSandwich, Kent, United Kingdom
| | | | | | | |
Collapse
|
10
|
ASK1 inhibition: a therapeutic strategy with multi-system benefits. J Mol Med (Berl) 2020; 98:335-348. [PMID: 32060587 PMCID: PMC7080683 DOI: 10.1007/s00109-020-01878-y] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/18/2019] [Accepted: 01/15/2020] [Indexed: 12/11/2022]
Abstract
p38 mitogen-activated protein kinases (P38α and β) and c-Jun N-terminal kinases (JNK1, 2, and 3) are key mediators of the cellular stress response. However, prolonged P38 and JNK signalling is associated with damaging inflammatory responses, reactive oxygen species-induced cell death, and fibrosis in multiple tissues, such as the kidney, liver, central nervous system, and cardiopulmonary systems. These responses are associated with many human diseases, including arthritis, dementia, and multiple organ dysfunctions. Attempts to prevent P38- and JNK-mediated disease using small molecule inhibitors of P38 or JNK have generally been unsuccessful. However, apoptosis signal-regulating kinase 1 (ASK1), an upstream regulator of P38 and JNK, has emerged as an alternative drug target for limiting P38- and JNK-mediated disease. Within this review, we compile the evidence that ASK1 mediates damaging cellular responses via prolonged P38 or JNK activation. We discuss the potential benefits of ASK1 inhibition as a therapeutic and summarise the studies that have tested the effects of ASK1 inhibition in cell and animal disease models, in addition to human clinical trials for a variety of disorders.
Collapse
|
11
|
Tesch GH, Ma FY, Nikolic‐Paterson DJ. Targeting apoptosis signal‐regulating kinase 1 in acute and chronic kidney disease. Anat Rec (Hoboken) 2020; 303:2553-2560. [DOI: 10.1002/ar.24373] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/27/2019] [Accepted: 12/07/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Greg H. Tesch
- Department of NephrologyMonash University Victoria Australia
- Department of MedicineMonash Medical Centre Clayton Victoria Australia
| | - Frank Y. Ma
- Department of NephrologyMonash University Victoria Australia
- Department of MedicineMonash Medical Centre Clayton Victoria Australia
| | - David J. Nikolic‐Paterson
- Department of NephrologyMonash University Victoria Australia
- Department of MedicineMonash Medical Centre Clayton Victoria Australia
| |
Collapse
|
12
|
Denhez B, Rousseau M, Dancosst DA, Lizotte F, Guay A, Auger-Messier M, Côté AM, Geraldes P. Diabetes-Induced DUSP4 Reduction Promotes Podocyte Dysfunction and Progression of Diabetic Nephropathy. Diabetes 2019; 68:1026-1039. [PMID: 30862678 DOI: 10.2337/db18-0837] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 02/25/2019] [Indexed: 11/13/2022]
Abstract
Diabetic nephropathy (DN) remains the leading cause of end-stage renal disease. Hyperglycemia-induced podocyte dysfunction is a major contributor of renal function impairment in DN. Previous studies showed that activation of mitogen-activated protein kinase (MAPK) in diabetes promotes podocyte dysfunction and cell death. Dual specificity phosphatases (DUSPs) are a family of phosphatases mainly responsible for MAPK inhibition. In this study, we demonstrated that diabetes and high glucose exposure decreased DUSP4 expression in cultured podocytes and glomeruli. Diabetes-induced DUSP4 reduction enhanced p38 and c-Jun N-terminal kinase (JNK) activity and podocyte dysfunction. The overexpression of DUSP4 prevented the activation of p38, JNK, caspase 3/7 activity, and NADPH oxidase 4 expression induced by high glucose level exposure. Deletion of DUSP4 exacerbated albuminuria and increased mesangial expansion and glomerular fibrosis in diabetic mice. These morphological changes were associated with profound podocyte foot process effacement, cell death, and sustained p38 and JNK activation. Moreover, inhibition of protein kinase C-δ prevented DUSP4 expression decline and p38/JNK activation in the podocytes and renal cortex of diabetic mice. Analysis of DUSP4 expression in the renal cortex of patients with diabetes revealed that decreased DUSP4 mRNA expression correlated with reduced estimated glomerular filtration rate (<60 mL/min/1.73 m2). Thus, this study demonstrates that preserving DUSP4 expression could protect against podocyte dysfunction and preserve glomerular function in DN.
Collapse
Affiliation(s)
- Benoit Denhez
- Research Center of the CHU de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Marina Rousseau
- Research Center of the CHU de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | | | - Farah Lizotte
- Research Center of the CHU de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Andréanne Guay
- Research Center of the CHU de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Mannix Auger-Messier
- Research Center of the CHU de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada
- Division of Cardiology, Department of Medicine, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Anne Marie Côté
- Research Center of the CHU de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada
- Division of Nephrology, Department of Medicine, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Pedro Geraldes
- Research Center of the CHU de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada
- Division of Endocrinology, Department of Medicine, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
13
|
Wasik AA, Lehtonen S. Glucose Transporters in Diabetic Kidney Disease-Friends or Foes? Front Endocrinol (Lausanne) 2018; 9:155. [PMID: 29686650 PMCID: PMC5900043 DOI: 10.3389/fendo.2018.00155] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 03/22/2018] [Indexed: 12/16/2022] Open
Abstract
Diabetic kidney disease (DKD) is a major microvascular complication of diabetes and a common cause of end-stage renal disease worldwide. DKD manifests as an increased urinary protein excretion (albuminuria). Multiple studies have shown that insulin resistance correlates with the development of albuminuria in non-diabetic and diabetic patients. There is also accumulating evidence that glomerular epithelial cells or podocytes are insulin sensitive and that insulin signaling in podocytes is essential for maintaining normal kidney function. At the cellular level, the mechanisms leading to the development of insulin resistance include mutations in the insulin receptor gene, impairments in the phosphoinositide 3-kinase (PI3K)/AKT signaling pathway, or perturbations in the trafficking of glucose transporters (GLUTs), which mediate the uptake of glucose into cells. Podocytes express several GLUTs, including GLUT1, GLUT2, GLUT3, GLUT4, and GLUT8. Of these, the most studied ones are GLUT1 and GLUT4, both shown to be insulin responsive in podocytes. In the basal state, GLUT4 is preferentially located in perinuclear and cytosolic vesicular structures and to a lesser extent at the plasma membrane. After insulin stimulation, GLUT4 is sorted into GLUT4-containing vesicles (GCVs) that translocate to the plasma membrane. GCV trafficking consists of several steps, including approaching of the GCVs to the plasma membrane, tethering, and docking, after which the lipid bilayers of the GCVs and the plasma membrane fuse, delivering GLUT4 to the cell surface for glucose uptake into the cell. Studies have revealed novel molecular regulators of the GLUT trafficking in podocytes and unraveled unexpected roles for GLUT1 and GLUT4 in the development of DKD, summarized in this review. These findings pave the way for better understanding of the mechanistic pathways associated with the development and progression of DKD and aid in the development of new treatments for this devastating disease.
Collapse
|
14
|
Doytcheva P, Bächler T, Tarasco E, Marzolla V, Engeli M, Pellegrini G, Stivala S, Rohrer L, Tona F, Camici GG, Vanhoutte PM, Matter CM, Lutz TA, Lüscher TF, Osto E. Inhibition of Vascular c-Jun N-Terminal Kinase 2 Improves Obesity-Induced Endothelial Dysfunction After Roux-en-Y Gastric Bypass. J Am Heart Assoc 2017; 6:JAHA.117.006441. [PMID: 29138180 PMCID: PMC5721746 DOI: 10.1161/jaha.117.006441] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background Roux‐en‐Y gastric bypass (RYGB) reduces obesity‐associated comorbidities and cardiovascular mortality. RYGB improves endothelial dysfunction, reducing c‐Jun N‐terminal kinase (JNK) vascular phosphorylation. JNK activation links obesity with insulin resistance and endothelial dysfunction. Herein, we examined whether JNK1 or JNK2 mediates obesity‐induced endothelial dysfunction and if pharmacological JNK inhibition can mimic RYGB vascular benefits. Methods and Results After 7 weeks of a high‐fat high‐cholesterol diet, obese rats underwent RYGB or sham surgery; sham–operated ad libitum–fed rats received, for 8 days, either the control peptide D‐TAT or the JNK peptide inhibitor D‐JNKi‐1 (20 mg/kg per day subcutaneous). JNK peptide inhibitor D‐JNKi‐1 treatment improved endothelial vasorelaxation in response to insulin and glucagon‐like peptide‐1, as observed after RYGB. Obesity increased aortic phosphorylation of JNK2, but not of JNK1. RYGB and JNK peptide inhibitor D‐JNKi‐1 treatment blunted aortic JNK2 phosphorylation via activation of glucagon‐like peptide‐1–mediated signaling. The inhibitory phosphorylation of insulin receptor substrate‐1 was reduced, whereas the protein kinase B/endothelial NO synthase pathway was increased and oxidative stress was decreased, resulting in improved vascular NO bioavailability. Conclusions Decreased aortic JNK2 phosphorylation after RYGB rapidly improves obesity‐induced endothelial dysfunction. Pharmacological JNK inhibition mimics the endothelial protective effects of RYGB. These findings highlight the therapeutic potential of novel strategies targeting vascular JNK2 against the severe cardiovascular disease associated with obesity.
Collapse
Affiliation(s)
- Petia Doytcheva
- Center for Molecular Cardiology, University of Zurich, Switzerland.,University Heart Center, Cardiology, University Hospital Zurich, Switzerland.,Institute of Veterinary Physiology, Vetsuisse Faculty University of Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Switzerland
| | - Thomas Bächler
- Department of Surgery, Cantonal Hospital Fribourg, Fribourg, Switzerland
| | - Erika Tarasco
- Institute of Veterinary Physiology, Vetsuisse Faculty University of Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Switzerland
| | - Vincenzo Marzolla
- Center for Molecular Cardiology, University of Zurich, Switzerland.,University Heart Center, Cardiology, University Hospital Zurich, Switzerland.,Laboratory of Cardiovascular Endocrinology, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Pisana, Rome, Italy
| | - Michael Engeli
- Center for Molecular Cardiology, University of Zurich, Switzerland.,University Heart Center, Cardiology, University Hospital Zurich, Switzerland
| | - Giovanni Pellegrini
- Laboratory for Animal Model Pathology, Institute for Veterinary Pathology, Vetsuisse Faculty University of Zurich, Switzerland
| | - Simona Stivala
- Center for Molecular Cardiology, University of Zurich, Switzerland.,University Heart Center, Cardiology, University Hospital Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Switzerland
| | - Lucia Rohrer
- Institute of Clinical Chemistry, University Hospital Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Switzerland
| | - Francesco Tona
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Italy
| | - Giovanni G Camici
- Center for Molecular Cardiology, University of Zurich, Switzerland.,University Heart Center, Cardiology, University Hospital Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Switzerland
| | - Paul M Vanhoutte
- State Key Laboratory for Pharmaceutical Biotechnologies & Department of Pharmacology & Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Schwerzenbach, Switzerland
| | - Christian M Matter
- Center for Molecular Cardiology, University of Zurich, Switzerland.,University Heart Center, Cardiology, University Hospital Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Switzerland
| | - Thomas A Lutz
- Zurich Center for Integrative Human Physiology, University of Zurich, Switzerland
| | - Thomas F Lüscher
- Center for Molecular Cardiology, University of Zurich, Switzerland.,University Heart Center, Cardiology, University Hospital Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Switzerland
| | - Elena Osto
- Center for Molecular Cardiology, University of Zurich, Switzerland .,University Heart Center, Cardiology, University Hospital Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Switzerland.,Laboratory of Translational Nutrition Biology Federal Institute of Technology Zurich (ETHZ), Schwerzenbach, Switzerland
| |
Collapse
|
15
|
Grynberg K, Ma FY, Nikolic-Paterson DJ. The JNK Signaling Pathway in Renal Fibrosis. Front Physiol 2017; 8:829. [PMID: 29114233 PMCID: PMC5660697 DOI: 10.3389/fphys.2017.00829] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 10/06/2017] [Indexed: 01/07/2023] Open
Abstract
Fibrosis of the glomerular and tubulointerstitial compartments is a common feature of chronic kidney disease leading to end-stage renal failure. This fibrotic process involves a number of pathologic mechanisms, including cell death and inflammation. This review focuses on the role of the c-Jun amino terminal kinase (JNK) signaling pathway in the development of renal fibrosis. The JNK pathway is activated in response to various cellular stresses and plays an important role in cell death and inflammation. Activation of JNK signaling is a common feature in most forms of human kidney injury, evident in both intrinsic glomerular and tubular cells as well as in infiltrating leukocytes. Similar patterns of JNK activation are evident in animal models of acute and chronic renal injury. Administration of JNK inhibitors can protect against acute kidney injury and suppress the development of glomerulosclerosis and tubulointerstitial fibrosis. In particular, JNK activation in tubular epithelial cells may be a pivotal mechanism in determining the outcome of both acute kidney injury and progression of chronic kidney disease. JNK signaling promotes tubular epithelial cell production of pro-inflammatory and pro-fibrotic molecules as well as tubular cell de-differentiation toward a mesenchymal phenotype. However, the role of JNK within renal fibroblasts is less well-characterized. The JNK pathway interacts with other pro-fibrotic pathways, most notable with the TGF-β/SMAD pathway. JNK activation can augment TGF-β gene transcription, induce expression of enzymes that activate the latent form of TGF-β, and JNK directly phosphorylates SMAD3 to enhance transcription of pro-fibrotic molecules. In conclusion, JNK signaling plays an integral role in several key mechanisms operating in renal fibrosis. Targeting of JNK enzymes has therapeutic potential for the treatment of fibrotic kidney diseases.
Collapse
Affiliation(s)
- Keren Grynberg
- Department of Nephrology, Monash Medical Centre, Monash University Centre for Inflammatory Diseases, Monash Health, Clayton, VIC, Australia
| | - Frank Y Ma
- Department of Nephrology, Monash Medical Centre, Monash University Centre for Inflammatory Diseases, Monash Health, Clayton, VIC, Australia
| | - David J Nikolic-Paterson
- Department of Nephrology, Monash Medical Centre, Monash University Centre for Inflammatory Diseases, Monash Health, Clayton, VIC, Australia
| |
Collapse
|
16
|
Diabetic nephropathy - is this an immune disorder? Clin Sci (Lond) 2017; 131:2183-2199. [PMID: 28760771 DOI: 10.1042/cs20160636] [Citation(s) in RCA: 171] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/04/2017] [Accepted: 07/10/2017] [Indexed: 02/06/2023]
Abstract
Chronic diabetes is associated with metabolic and haemodynamic stresses which can facilitate modifications to DNA, proteins and lipids, induce cellular dysfunction and damage, and stimulate inflammatory and fibrotic responses which lead to various types of renal injury. Approximately 30-40% of patients with diabetes develop nephropathy and this renal injury normally progresses in about a third of patients. Due to the growing incidence of diabetes, diabetic nephropathy is now the main cause of end-stage renal disease (ESRD) worldwide. Accumulating evidence from experimental and clinical studies has demonstrated that renal inflammation plays a critical role in determining whether renal injury progresses during diabetes. However, the immune response associated with diabetic nephropathy is considerably different to that seen in autoimmune kidney diseases or in acute kidney injury arising from episodes of ischaemia or infection. This review evaluates the role of the immune system in the development of diabetic nephropathy, including the specific contributions of leucocyte subsets (macrophages, neutrophils, mast cells, T and B lymphocytes), danger-associated molecular patterns (DAMPs), inflammasomes, immunoglobulin and complement. It also examines factors which may influence the development of the immune response, including genetic factors and exposure to other kidney insults. In addition, this review discusses therapies which are currently under development for targeting the immune system in diabetic nephropathy and indicates those which have proceeded into clinical trials.
Collapse
|
17
|
Dower K, Zhao S, Schlerman FJ, Savary L, Campanholle G, Johnson BG, Xi L, Nguyen V, Zhan Y, Lech MP, Wang J, Nie Q, Karsdal MA, Genovese F, Boucher G, Brown TP, Zhang B, Homer BL, Martinez RV. High resolution molecular and histological analysis of renal disease progression in ZSF1 fa/faCP rats, a model of type 2 diabetic nephropathy. PLoS One 2017; 12:e0181861. [PMID: 28746409 PMCID: PMC5529026 DOI: 10.1371/journal.pone.0181861] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 07/07/2017] [Indexed: 02/07/2023] Open
Abstract
ZSF1 rats exhibit spontaneous nephropathy secondary to obesity, hypertension, and diabetes, and have gained interest as a model system with potentially high translational value to progressive human disease. To thoroughly characterize this model, and to better understand how closely it recapitulates human disease, we performed a high resolution longitudinal analysis of renal disease progression in ZSF1 rats spanning from early disease to end stage renal disease. Analyses included metabolic endpoints, renal histology and ultrastructure, evaluation of a urinary biomarker of fibrosis, and transcriptome analysis of glomerular-enriched tissue over the course of disease. Our findings support the translational value of the ZSF1 rat model, and are provided here to assist researchers in the determination of the model’s suitability for testing a particular mechanism of interest, the design of therapeutic intervention studies, and the identification of new targets and biomarkers for type 2 diabetic nephropathy.
Collapse
Affiliation(s)
- Ken Dower
- Inflammation and Immunology, Pfizer Worldwide Research and Development, Cambridge, Massachusetts, United States of America
- * E-mail: (KD); (RVM)
| | - Shanrong Zhao
- Clinical Bioinformatics, Early Clinical Development, Pfizer Worldwide Research and Development, Cambridge, Massachusetts, United States of America
| | - Franklin J. Schlerman
- Inflammation and Immunology, Pfizer Worldwide Research and Development, Cambridge, Massachusetts, United States of America
| | - Leigh Savary
- Drug Safety, Pfizer Worldwide Research and Development, Andover, Massachusetts, United States of America
| | - Gabriela Campanholle
- Inflammation and Immunology, Pfizer Worldwide Research and Development, Cambridge, Massachusetts, United States of America
| | - Bryce G. Johnson
- Inflammation and Immunology, Pfizer Worldwide Research and Development, Cambridge, Massachusetts, United States of America
| | - Li Xi
- Clinical Bioinformatics, Early Clinical Development, Pfizer Worldwide Research and Development, Cambridge, Massachusetts, United States of America
| | - Vuong Nguyen
- Drug Safety, Pfizer Worldwide Research and Development, Andover, Massachusetts, United States of America
| | - Yutian Zhan
- Drug Safety, Pfizer Worldwide Research and Development, Andover, Massachusetts, United States of America
| | - Matthew P. Lech
- Inflammation and Immunology, Pfizer Worldwide Research and Development, Cambridge, Massachusetts, United States of America
| | - Ju Wang
- Inflammation and Immunology, Pfizer Worldwide Research and Development, Cambridge, Massachusetts, United States of America
| | - Qing Nie
- Drug Safety, Pfizer Worldwide Research and Development, Andover, Massachusetts, United States of America
| | | | | | - Germaine Boucher
- Drug Safety, Pfizer Worldwide Research and Development, Groton, Connecticut, United States of America
| | - Thomas P. Brown
- Drug Safety, Pfizer Worldwide Research and Development, Groton, Connecticut, United States of America
| | - Baohong Zhang
- Clinical Bioinformatics, Early Clinical Development, Pfizer Worldwide Research and Development, Cambridge, Massachusetts, United States of America
| | - Bruce L. Homer
- Drug Safety, Pfizer Worldwide Research and Development, Andover, Massachusetts, United States of America
| | - Robert V. Martinez
- Inflammation and Immunology, Pfizer Worldwide Research and Development, Cambridge, Massachusetts, United States of America
- * E-mail: (KD); (RVM)
| |
Collapse
|
18
|
Rehni AK, Liu A, Perez-Pinzon MA, Dave KR. Diabetic aggravation of stroke and animal models. Exp Neurol 2017; 292:63-79. [PMID: 28274862 PMCID: PMC5400679 DOI: 10.1016/j.expneurol.2017.03.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 02/03/2017] [Accepted: 03/03/2017] [Indexed: 12/16/2022]
Abstract
Cerebral ischemia in diabetics results in severe brain damage. Different animal models of cerebral ischemia have been used to study the aggravation of ischemic brain damage in the diabetic condition. Since different disease conditions such as diabetes differently affect outcome following cerebral ischemia, the Stroke Therapy Academic Industry Roundtable (STAIR) guidelines recommends use of diseased animals for evaluating neuroprotective therapies targeted to reduce cerebral ischemic damage. The goal of this review is to discuss the technicalities and pros/cons of various animal models of cerebral ischemia currently being employed to study diabetes-related ischemic brain damage. The rational use of such animal systems in studying the disease condition may better help evaluate novel therapeutic approaches for diabetes related exacerbation of ischemic brain damage.
Collapse
Affiliation(s)
- Ashish K Rehni
- Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Allen Liu
- Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Miguel A Perez-Pinzon
- Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Kunjan R Dave
- Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
19
|
Metabolism and chromatin dynamics in health and disease. Mol Aspects Med 2017; 54:1-15. [DOI: 10.1016/j.mam.2016.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 09/22/2016] [Accepted: 09/27/2016] [Indexed: 01/04/2023]
|
20
|
Zhang Y, Gao X, Chen S, Zhao M, Chen J, Liu R, Cheng S, Qi M, Wang S, Liu W. Cyclin-dependent kinase 5 contributes to endoplasmic reticulum stress induced podocyte apoptosis via promoting MEKK1 phosphorylation at Ser280 in diabetic nephropathy. Cell Signal 2016; 31:31-40. [PMID: 28024901 DOI: 10.1016/j.cellsig.2016.12.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 12/01/2016] [Accepted: 12/23/2016] [Indexed: 11/28/2022]
Abstract
Endoplasmic reticulum (ER) stress has been reported to be associated with podocyte apoptosis in diabetic nephropathy, but the mechanism of ER signaling in podocyte apoptosis hasn't been fully understood. Our previous studies have demonstrated that Cyclin-dependent kinase 5 (Cdk5) was associated with podocyte apoptosis in diabetic nephropathy. The present study was designed to examine whether and how Cdk5 activity plays a role in ER stress induced podocyte apoptosis in diabetic nephropathy. The results showed that along with induction of Cdk5 and apoptosis, GRP78 and its two sensors as well as CHOP and cleaved caspase-12 were induced in high glucose treated podocytes. These responses were attenuated by treated salubrinal. The ER stress inducer, tunicamycin, also up-regulated the kinase activity and protein expression of Cdk5 in podocytes accompanied with the increasing of GRP78. On the other hand, Cdk5 phosphorylates MEKK1 at Ser280 in tunicamycin treated podocytes, and together, they increase the JNK phosphorylation. Moreover, disruption of this pathway can decrease the podocyte apoptosis induced by tunicamycin. Therefore, our study proved that Cdk5 may play an important role in ER stress induced podocyte apoptosis through MEKK1/JNK pathway in diabetic nephropathy.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Diagnostics, Hebei Medical University, Shijiazhuang 050017, China
| | - Xiang Gao
- Department of Surgery, Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Shuanggang Chen
- Department of Pathology and Key Laboratory of Kidney Diseases of Hebei Province, Hebei Medical University, Shijiazhuang 050017, China
| | - Min Zhao
- Department of Pathology and Key Laboratory of Kidney Diseases of Hebei Province, Hebei Medical University, Shijiazhuang 050017, China
| | - Jing Chen
- Department of Pathology and Key Laboratory of Kidney Diseases of Hebei Province, Hebei Medical University, Shijiazhuang 050017, China
| | - Rui Liu
- Department of Pathology and Key Laboratory of Kidney Diseases of Hebei Province, Hebei Medical University, Shijiazhuang 050017, China
| | - Shengyang Cheng
- Department of Pathology and Key Laboratory of Kidney Diseases of Hebei Province, Hebei Medical University, Shijiazhuang 050017, China
| | - Mengyuan Qi
- Department of Pathology and Key Laboratory of Kidney Diseases of Hebei Province, Hebei Medical University, Shijiazhuang 050017, China
| | - Shuo Wang
- Department of Pathology and Key Laboratory of Kidney Diseases of Hebei Province, Hebei Medical University, Shijiazhuang 050017, China
| | - Wei Liu
- Department of Pathology and Key Laboratory of Kidney Diseases of Hebei Province, Hebei Medical University, Shijiazhuang 050017, China.
| |
Collapse
|
21
|
Solinas G, Becattini B. JNK at the crossroad of obesity, insulin resistance, and cell stress response. Mol Metab 2016; 6:174-184. [PMID: 28180059 PMCID: PMC5279903 DOI: 10.1016/j.molmet.2016.12.001] [Citation(s) in RCA: 280] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 11/28/2016] [Accepted: 12/02/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The cJun-N-terminal-kinase (JNK) plays a central role in the cell stress response, with outcomes ranging from cell death to cell proliferation and survival, depending on the specific context. JNK is also one of the most investigated signal transducers in obesity and insulin resistance, and studies have identified new molecular mechanisms linking obesity and insulin resistance. Emerging evidence indicates that whereas JNK1 and JNK2 isoforms promote the development of obesity and insulin resistance, JNK3 activity protects from excessive adiposity. Furthermore, current evidence indicates that JNK activity within specific cell types may, in specific stages of disease progression, promote cell tolerance to the stress associated with obesity and type-2 diabetes. SCOPE OF REVIEW This review provides an overview of the current literature on the role of JNK in the progression from obesity to insulin resistance, NAFLD, type-2 diabetes, and diabetes complications. MAJOR CONCLUSION Whereas current evidence indicates that JNK1/2 inhibition may improve insulin sensitivity in obesity, the role of JNK in the progression from insulin resistance to diabetes, and its complications is largely unresolved. A better understanding of the role of JNK in the stress response to obesity and type-2 diabetes, and the development of isoform-specific inhibitors with specific tissue distribution will be necessary to exploit JNK as possible drug target for the treatment of type-2 diabetes.
Collapse
Affiliation(s)
- Giovanni Solinas
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, University of Gothenburg, 41345 Gothenburg, Sweden.
| | - Barbara Becattini
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, University of Gothenburg, 41345 Gothenburg, Sweden
| |
Collapse
|
22
|
11β-Hydroxysteroid Dehydrogenase Type 1(11β-HSD1) mediates insulin resistance through JNK activation in adipocytes. Sci Rep 2016; 6:37160. [PMID: 27841334 PMCID: PMC5107914 DOI: 10.1038/srep37160] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 10/25/2016] [Indexed: 01/16/2023] Open
Abstract
Glucocorticoids are used to treat a number of human diseases but often lead to insulin resistance and metabolic syndrome. 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) is a key enzyme that catalyzes the intracellular conversion of cortisone to physiologically active cortisol. Despite the known role of 11β-HSD1 and active glucocorticoid in causing insulin resistance, the molecular mechanisms by which insulin resistance is induced remain elusive. The aim of this study is to identify these mechanisms in high fat diet (HFD) experimental models. Mice on a HFD were treated with 11β-HSD1 inhibitor as well as a JNK inhibitor. We then treated 3T3-L1-derived adipocytes with prednisone, a synthetic glucocorticoid, and cells with 11β-HSD1 overexpression to study insulin resistance. Our results show that 11β-HSD1 and JNK inhibition mitigated insulin resistance in HFD mice. Prednisone stimulation or overexpression of 11β-HSD1 also caused JNK activation in cultured adipocytes. Inhibition of 11β-HSD1 blocked the activation of JNK in adipose tissue of HFD mice as well as in cultured adipocytes. Furthermore, prednisone significantly impaired the insulin signaling pathway, and these effects were reversed by 11β-HSD1 and JNK inhibition. Our study demonstrates that glucocorticoid-induced insulin resistance was dependent on 11β-HSD1, resulting in the critical activation of JNK signaling in adipocytes.
Collapse
|
23
|
Calcineurin inhibitors cyclosporin A and tacrolimus protect against podocyte injury induced by puromycin aminonucleoside in rodent models. Sci Rep 2016; 6:32087. [PMID: 27580845 PMCID: PMC5007516 DOI: 10.1038/srep32087] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 08/02/2016] [Indexed: 12/12/2022] Open
Abstract
Podocyte injury and the appearance of proteinuria are features of minimal-change disease (MCD). Cyclosporin A (CsA) and tacrolimus (FK506) has been reported to reduce proteinuria in patients with nephrotic syndrome, but mechanisms remain unknown. We, therefore, investigated the protective mechanisms of CsA and FK506 on proteinuria in a rat model of MCD induced by puromycin aminonucleoside (PAN) and in vitro cultured mouse podocytes. Our results showed that CsA and FK506 treatment decreased proteinuria via a mechanism associated to a reduction in the foot-process fusion and desmin, and a recovery of synaptopodin and podocin. In PAN-treated mouse podocytes, pre-incubation with CsA and FK506 restored the distribution of the actin cytoskeleton, increased the expression of synaptopodin and podocin, improved podocyte viability, and reduced the migrating activities of podocytes. Treatment with CsA and FK506 also inhibited PAN-induced podocytes apoptosis, which was associated with the induction of Bcl-xL and inhibition of Bax, cleaved caspase 3, and cleaved PARP expression. Further studies revealed that CsA and FK506 inhibited PAN-induced p38 and JNK signaling, thereby protecting podocytes from PAN-induced injury. In conclusion, CsA and FK506 inhibit proteinuria by protecting against PAN-induced podocyte injury, which may be associated with inhibition of the MAPK signaling pathway.
Collapse
|
24
|
Bhattacharjee N, Barma S, Konwar N, Dewanjee S, Manna P. Mechanistic insight of diabetic nephropathy and its pharmacotherapeutic targets: An update. Eur J Pharmacol 2016; 791:8-24. [PMID: 27568833 DOI: 10.1016/j.ejphar.2016.08.022] [Citation(s) in RCA: 187] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/03/2016] [Accepted: 08/24/2016] [Indexed: 02/09/2023]
Abstract
Diabetic nephropathy (DN), a chronic complication of diabetes, is charecterized by glomerular hypertrophy, proteinuria, decreased glomerular filtration, and renal fibrosis resulting in the loss of renal function. Although the exact cause of DN remains unclear, several mechanisms have been postulated, such as hyperglycemia-induced renal hyper filtration and renal injury, AGEs-induced increased oxidative stress, activated PKC-induced increased production of cytokines, chemokines, and different inflammatory and apoptotic signals. Among various factors, oxidative stress has been suggested to play a major role underlying the onset and propagation of DN. It triggers several signaling pathways involved in DN, like AGEs, PKC cascade, JAK/STAT signaling, MAPK, mTOR, and SMAD. Oxidative stress-induced activation of both inflammatory and apoptotic signals are two major problems in the pathogenesis of DN. The FDA approved pharmacotherapeutic agents affecting against polyol pathway principally include anti-oxidants, like α-lipoic acid, vitamin E, and vitamin C. Kremezin and benfotiamine are the FDA approved AGEs inhibitors, another therapeutic target against DN. Ruboxistaurin, telmizartan, rapamycin, fenofibrate, aliskiren, and manidipine are some FDA approved pharmacotherapeutics effective against DN via diverse mechanisms. Beside this, some therapeutic agents are still waiting for FDA approval and few drugs without FDA approval are also prescribed in some countries for the management of DN. Despite the medications available in the market to treat DN, the involvement of multiple mechanisms makes it difficult to choose an optimum therapeutic agent. Therefore, much research is required to find out new therapeutic agent/strategies for an adequate pharmacotherapy of DN.
Collapse
Affiliation(s)
- Niloy Bhattacharjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Raja S C Mullick Road, Kolkata 700032, India
| | - Sujata Barma
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Raja S C Mullick Road, Kolkata 700032, India
| | - Nandita Konwar
- Biological Science and Technology Division, CSIR-NEIST, Jorhat, Assam 785006, India
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Raja S C Mullick Road, Kolkata 700032, India.
| | - Prasenjit Manna
- Biological Science and Technology Division, CSIR-NEIST, Jorhat, Assam 785006, India.
| |
Collapse
|
25
|
Tesch GH, Ma FY, Nikolic-Paterson DJ. ASK1: a new therapeutic target for kidney disease. Am J Physiol Renal Physiol 2016; 311:F373-81. [DOI: 10.1152/ajprenal.00208.2016] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 05/19/2016] [Indexed: 01/12/2023] Open
Abstract
Stress-induced activation of p38 MAPK and JNK signaling is a feature of both acute and chronic kidney disease and is associated with disease progression. Inhibitors of p38 MAPK or JNK activation provide protection against inflammation and fibrosis in animal models of kidney disease; however, clinical trials of p38 MAPK and JNK inhibitors in other diseases (rheumatoid arthritis and pulmonary fibrosis) have been disappointing. Apoptosis signal-regulating kinase 1 (ASK1) acts as an upstream regulator for the activation of p38 MAPK and JNK in kidney disease. Mice lacking the Ask1 gene are healthy with normal homeostatic functions and are protected from acute kidney injury induced by ischemia-reperfusion and from renal interstitial fibrosis induced by ureteric obstruction. Recent studies have shown that a selective ASK1 inhibitor substantially reduced renal p38 MAPK activation and halted the progression of nephropathy in diabetic mice, and this has led to a current clinical trial of an ASK1 inhibitor in patients with stage 3 or 4 diabetic kidney disease. This review explores the rationale for targeting ASK1 in kidney disease and the therapeutic potential of ASK1 inhibitors based on current experimental evidence.
Collapse
Affiliation(s)
- Greg H. Tesch
- Department of Nephrology, Monash Medical Centre, Clayton, Victoria, Australia;, Monash Medical Centre, Clayton, Victoria, Australia; and
- Monash University Department of Medicine, Monash Medical Centre, Clayton, Victoria, Australia
| | - Frank Y. Ma
- Department of Nephrology, Monash Medical Centre, Clayton, Victoria, Australia;, Monash Medical Centre, Clayton, Victoria, Australia; and
- Monash University Department of Medicine, Monash Medical Centre, Clayton, Victoria, Australia
| | - David J. Nikolic-Paterson
- Department of Nephrology, Monash Medical Centre, Clayton, Victoria, Australia;, Monash Medical Centre, Clayton, Victoria, Australia; and
- Monash University Department of Medicine, Monash Medical Centre, Clayton, Victoria, Australia
| |
Collapse
|
26
|
Pullen N, Fornoni A. Drug discovery in focal and segmental glomerulosclerosis. Kidney Int 2016; 89:1211-20. [PMID: 27165834 PMCID: PMC4875964 DOI: 10.1016/j.kint.2015.12.058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/23/2015] [Accepted: 12/29/2015] [Indexed: 11/26/2022]
Abstract
Despite the high medical burden experienced by patients with focal segmental glomerulosclerosis, the etiology of the condition remains largely unknown. Focal segmental glomerulosclerosis is highly heterogeneous in clinical and morphologic manifestations. While this presents challenges for the development of new treatments, research investments over the last 2 decades have yielded a surfeit of potential avenues for therapeutic intervention. The development of many of those ideas and concepts into new therapies, however, has been very disappointing. Here, we describe some of the factors that have potentially contributed to the poor translational performance from this research investment, including the confidence we ascribe to a target, the conduct of experimental studies, and the availability of selective reagents to test hypotheses. We will discuss the significance of genetic and systems traits as well as other methods for reducing bias. We will analyze the limitations of a successful drug development. We will use specific examples hoping that these will guide a consensus for investment and drive greater translational quality. We hope that this substrate will serve to exemplify the tremendous opportunity for intervention as well as facilitate greater collaborative effort between industry, academia, and private foundations in promoting appropriate validation of these targets. Only then will we have achieved our goal for curative therapies for this devastating disease.
Collapse
Affiliation(s)
- Nick Pullen
- Pfizer Global Research & Development, Cambridge, Massachusetts, USA.
| | - Alessia Fornoni
- Katz Family Drug Discovery Center and Division of Nephrology and Hypertension, University of Miami Miller School of Medicine, Miami, Florida, USA.
| |
Collapse
|
27
|
Hassan H, Tian X, Inoue K, Chai N, Liu C, Soda K, Moeckel G, Tufro A, Lee AH, Somlo S, Fedeles S, Ishibe S. Essential Role of X-Box Binding Protein-1 during Endoplasmic Reticulum Stress in Podocytes. J Am Soc Nephrol 2016; 27:1055-65. [PMID: 26303067 PMCID: PMC4814187 DOI: 10.1681/asn.2015020191] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 06/24/2015] [Indexed: 12/16/2022] Open
Abstract
Podocytes are terminally differentiated epithelial cells that reside along the glomerular filtration barrier. Evidence suggests that after podocyte injury, endoplasmic reticulum stress response is activated, but the molecular mechanisms involved are incompletely defined. In a mouse model, we confirmed that podocyte injury induces endoplasmic reticulum stress response and upregulated unfolded protein response pathways, which have been shown to mitigate damage by preventing the accumulation of misfolded proteins in the endoplasmic reticulum. Furthermore, simultaneous podocyte-specific genetic inactivation of X-box binding protein-1 (Xbp1), a transcription factor activated during endoplasmic reticulum stress and critically involved in the untranslated protein response, and Sec63, a heat shock protein-40 chaperone required for protein folding in the endoplasmic reticulum, resulted in progressive albuminuria, foot process effacement, and histology consistent with ESRD. Finally, loss of both Sec63 and Xbp1 induced apoptosis in podocytes, which associated with activation of the JNK pathway. Collectively, our results indicate that an intact Xbp1 pathway operating to mitigate stress in the endoplasmic reticulum is essential for the maintenance of a normal glomerular filtration barrier.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Gilbert Moeckel
- Pathology, Yale University School of Medicine, New Haven, Connecticut, and
| | | | - Ann-Hwee Lee
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York
| | | | | | | |
Collapse
|
28
|
Simon-Szabó L, Kokas M, Greff Z, Boros S, Bánhegyi P, Zsákai L, Szántai-Kis C, Vantus T, Mandl J, Bánhegyi G, Vályi-Nagy I, Őrfi L, Ullrich A, Csala M, Kéri G. Novel compounds reducing IRS-1 serine phosphorylation for treatment of diabetes. Bioorg Med Chem Lett 2015; 26:424-428. [PMID: 26704265 DOI: 10.1016/j.bmcl.2015.11.099] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 11/26/2015] [Accepted: 11/27/2015] [Indexed: 02/07/2023]
Abstract
Activation of various interacting stress kinases, particularly the c-Jun N-terminal kinases (JNK), and a concomitant phosphorylation of insulin receptor substrate 1 (IRS-1) at serine 307 play a central role both in insulin resistance and in β-cell dysfunction. IRS-1 phosphorylation is stimulated by elevated free fatty acid levels through different pathways in obesity. A series of novel pyrido[2,3-d]pyrimidin-7-one derivatives were synthesized as potential antidiabetic agents, preventing IRS-1 phosphorylation at serine 307 in a cellular model of lipotoxicity and type 2 diabetes.
Collapse
Affiliation(s)
- Laura Simon-Szabó
- MTA-SE Pathobiochemistry Research Group, Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, 1444 Budapest, Hungary
| | - Márton Kokas
- MTA-SE Pathobiochemistry Research Group, Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, 1444 Budapest, Hungary
| | - Zoltán Greff
- Vichem Chemie Research Ltd, 1022 Budapest, Hungary
| | - Sándor Boros
- Vichem Chemie Research Ltd, 1022 Budapest, Hungary
| | | | | | | | - Tibor Vantus
- MTA-SE Pathobiochemistry Research Group, Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, 1444 Budapest, Hungary; Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, 1444 Budapest, Hungary
| | - József Mandl
- MTA-SE Pathobiochemistry Research Group, Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, 1444 Budapest, Hungary; Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, 1444 Budapest, Hungary
| | - Gábor Bánhegyi
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, 1444 Budapest, Hungary
| | | | - László Őrfi
- Vichem Chemie Research Ltd, 1022 Budapest, Hungary; Department of Pharmaceutical Chemistry, Semmelweis University, 1092 Budapest, Hungary
| | - Axel Ullrich
- Department of Molecular Biology, Max-Planck-Institute of Biochemistry, 82152 Martinsried, Germany
| | - Miklós Csala
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, 1444 Budapest, Hungary
| | - György Kéri
- MTA-SE Pathobiochemistry Research Group, Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, 1444 Budapest, Hungary; Vichem Chemie Research Ltd, 1022 Budapest, Hungary.
| |
Collapse
|
29
|
Martínez-García C, Izquierdo-Lahuerta A, Vivas Y, Velasco I, Yeo TK, Chen S, Medina-Gomez G. Renal Lipotoxicity-Associated Inflammation and Insulin Resistance Affects Actin Cytoskeleton Organization in Podocytes. PLoS One 2015; 10:e0142291. [PMID: 26545114 PMCID: PMC4636358 DOI: 10.1371/journal.pone.0142291] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 10/19/2015] [Indexed: 01/01/2023] Open
Abstract
In the last few decades a change in lifestyle has led to an alarming increase in the prevalence of obesity and obesity-associated complications. Obese patients are at increased risk of developing hypertension, heart disease, insulin resistance (IR), dyslipidemia, type 2 diabetes and renal disease. The excess calories are stored as triglycerides in adipose tissue, but also may accumulate ectopically in other organs, including the kidney, which contributes to the damage through a toxic process named lipotoxicity. Recently, the evidence suggests that renal lipid accumulation leads to glomerular damage and, more specifically, produces dysfunction in podocytes, key cells that compose and maintain the glomerular filtration barrier. Our aim was to analyze the early mechanisms underlying the development of renal disease associated with the process of lipotoxicity in podocytes. Our results show that treatment of podocytes with palmitic acid produced intracellular accumulation of lipid droplets and abnormal glucose and lipid metabolism. This was accompanied by the development of inflammation, oxidative stress and endoplasmic reticulum stress and insulin resistance. We found specific rearrangements of the actin cytoskeleton and slit diaphragm proteins (Nephrin, P-Cadherin, Vimentin) associated with this insulin resistance in palmitic-treated podocytes. We conclude that lipotoxicity accelerates glomerular disease through lipid accumulation and inflammation. Moreover, saturated fatty acids specifically promote insulin resistance by disturbing the cytoarchitecture of podocytes. These data suggest that renal lipid metabolism and cytoskeleton rearrangements may serve as a target for specific therapies aimed at slowing the progression of podocyte failure during metabolic syndrome.
Collapse
Affiliation(s)
- Cristina Martínez-García
- Departamento de Ciencias Básicas de la Salud, Área de Bioquímica y Genética Molecular. Universidad Rey Juan Carlos, Avda. de Atenas s/n, Alcorcón, Madrid, Spain
| | - Adriana Izquierdo-Lahuerta
- Departamento de Ciencias Básicas de la Salud, Área de Bioquímica y Genética Molecular. Universidad Rey Juan Carlos, Avda. de Atenas s/n, Alcorcón, Madrid, Spain
| | - Yurena Vivas
- Departamento de Ciencias Básicas de la Salud, Área de Bioquímica y Genética Molecular. Universidad Rey Juan Carlos, Avda. de Atenas s/n, Alcorcón, Madrid, Spain
| | - Ismael Velasco
- Departamento de Ciencias Básicas de la Salud, Área de Bioquímica y Genética Molecular. Universidad Rey Juan Carlos, Avda. de Atenas s/n, Alcorcón, Madrid, Spain
| | - Tet-Kin Yeo
- Division of Nephrology/Hypertension, Northwestern University, Chicago, Illinois, United States of America
| | - Sheldon Chen
- Division of Nephrology/Hypertension, Northwestern University, Chicago, Illinois, United States of America
| | - Gema Medina-Gomez
- Departamento de Ciencias Básicas de la Salud, Área de Bioquímica y Genética Molecular. Universidad Rey Juan Carlos, Avda. de Atenas s/n, Alcorcón, Madrid, Spain
| |
Collapse
|
30
|
Villarreal R, Mitrofanova A, Maiguel D, Morales X, Jeon J, Grahammer F, Leibiger IB, Guzman J, Fachado A, Yoo TH, Busher Katin A, Gellermann J, Merscher S, Burke GW, Berggren PO, Oh J, Huber TB, Fornoni A. Nephrin Contributes to Insulin Secretion and Affects Mammalian Target of Rapamycin Signaling Independently of Insulin Receptor. J Am Soc Nephrol 2015; 27:1029-41. [PMID: 26400569 DOI: 10.1681/asn.2015020210] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 06/19/2015] [Indexed: 12/31/2022] Open
Abstract
Nephrin belongs to a family of highly conserved proteins with a well characterized function as modulators of cell adhesion and guidance, and nephrin may have a role in metabolic pathways linked to podocyte and pancreatic β-cell survival. However, this role is incompletely characterized. In this study, we developed floxed nephrin mice for pancreatic β-cell-specific deletion of nephrin, which had no effect on islet size and glycemia. Nephrin deficiency, however, resulted in glucose intolerance in vivo and impaired glucose-stimulated insulin release ex vivo Glucose intolerance was also observed in eight patients with nephrin mutations compared with three patients with other genetic forms of nephrotic syndrome or nine healthy controls.In vitro experiments were conducted to investigate if nephrin affects autocrine signaling through insulin receptor A (IRA) and B (IRB), which are both expressed in human podocytes and pancreatic islets. Coimmunoprecipitation of nephrin and IRB but not IRA was observed and required IR phosphorylation. Nephrin per se was sufficient to induce phosphorylation of p70S6K in an phosphatidylinositol 3-kinase-dependent but IR/Src-independent manner, which was not augmented by exogenous insulin. These results suggest a role for nephrin as an independent modulator of podocyte and pancreatic β-cell nutrient sensing in the fasting state and the potential of nephrin as a drug target in diabetes.
Collapse
Affiliation(s)
- Rodrigo Villarreal
- Katz Family Drug Discovery Center, Division of Nephrology and Hypertension and Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Alla Mitrofanova
- Katz Family Drug Discovery Center, Division of Nephrology and Hypertension and
| | - Dony Maiguel
- Katz Family Drug Discovery Center, Division of Nephrology and Hypertension and Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Ximena Morales
- Katz Family Drug Discovery Center, Division of Nephrology and Hypertension and
| | - Jongmin Jeon
- Katz Family Drug Discovery Center, Division of Nephrology and Hypertension and Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, Florida
| | | | - Ingo B Leibiger
- Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
| | - Johanna Guzman
- Katz Family Drug Discovery Center, Division of Nephrology and Hypertension and Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Alberto Fachado
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Tae H Yoo
- Katz Family Drug Discovery Center, Division of Nephrology and Hypertension and Department of Internal Medicine, Division of Nephrology, Yonsei University College of Medicine, Seoul, Korea
| | - Anja Busher Katin
- Pediatric Nephrology, Pediatrics II, University Children's Hospital Essen, Essen, Germany
| | - Jutta Gellermann
- Department of Pediatric Nephrology, Charité Children's Hospital, Berlin, Germany
| | - Sandra Merscher
- Katz Family Drug Discovery Center, Division of Nephrology and Hypertension and Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - George W Burke
- Department of Surgery, University of Miami, Miami, Florida; and
| | - Per-Olof Berggren
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, Florida; Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
| | - Jun Oh
- Pediatric Nephrology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias B Huber
- Renal Division, University Hospital Freiburg, Freiburg, Germany
| | - Alessia Fornoni
- Katz Family Drug Discovery Center, Division of Nephrology and Hypertension and Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, Florida;
| |
Collapse
|
31
|
Abstract
Despite improvements in glycaemic and blood pressure control, and the efficacy of renin-angiotensin system (RAS) blockade for proteinuria reduction, diabetic nephropathy is the most frequent cause of end-stage renal disease in developed countries. This finding is consistent with the hypothesis that key pathogenetic mechanisms leading to progression of renal disease are not modified or inactivated by current therapeutic approaches. Although extensive research has elucidated molecular signalling mechanisms that are involved in progression of diabetic kidney disease, a number of high-profile clinical trials of potentially nephroprotective agents have failed, highlighting an insufficient understanding of pathogenic pathways. These include trials of paricalcitol in early diabetic kidney disease and bardoxolone methyl in advanced-stage disease. Various strategies based on encouraging data from preclinical studies that showed renoprotective effects of receptor antagonists, neutralizing antibodies, kinase inhibitors, small compounds and peptide-based technologies are currently been tested in randomized controlled trials. Phase II clinical trials are investigating approaches targeting inflammation, fibrosis and signalling pathways. However, only one trial that aims to provide evidence for marketing approval of a potentially renoprotective drug (atrasentan) is underway-further research into the potential nephroprotective effects of novel glucose-lowering agents is required.
Collapse
|
32
|
Huang M, Wu Y, Wang N, Wang Z, Zhao P, Yang X. Is the hypoglycemic action of vanadium compounds related to the suppression of feeding? Biol Trace Elem Res 2014; 157:242-8. [PMID: 24446192 DOI: 10.1007/s12011-013-9882-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 12/29/2013] [Indexed: 11/28/2022]
Abstract
Vanadium compounds exhibit effective hypoglycemic activity in both type I and type II diabetes mellitus. However, there was one argument that the hypoglycemic action of vanadium compounds could be attributable to the suppression of feeding-one common toxic aspect of vanadium compounds. To clarify this question, we investigated in this work the effect of a vanadyl complex, BSOV (bis((5-hydroxy-4-oxo-4H-pyran-2-yl)methyl-2-hydroxy-benzoatato) oxovanadium (IV)), on diabetic obese (db/db) mice at a low dose (0.05 mmol/kg/day) when BSOV did not inhibit feeding. The experimental results showed that this dose of BSOV effectively normalized the blood glucose level in diabetic mice without affecting the body weight growth. Western blotting assays on the white adipose tissue of db/db mice further indicated that BSOV treatment significantly improved expression of peroxisome proliferator-activated receptor γ (PPARγ) and activated AMP-activated protein kinase (AMPK). In addition, vanadium treatment caused a significant suppression of phosphorylation of c-Jun N-terminal protein kinase (JNK), which plays a key role in insulin-resistance in type II diabetes. This is the first evidence that the mechanism of insulin enhancement action involves interaction of vanadium compounds with JNK. Overall, the present work indicated that vanadium compounds exhibit antidiabetic effects irrelevant to food intake suppression but by modulating the signal transductions of diabetes and other metabolic disorders.
Collapse
Affiliation(s)
- Meiling Huang
- State Key laboratories of Natural and Biomimetic Drugs and Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, People's Republic of China
| | | | | | | | | | | |
Collapse
|
33
|
Missaoui S, Ben Rhouma K, Yacoubi MT, Sakly M, Tebourbi O. Vanadyl sulfate treatment stimulates proliferation and regeneration of beta cells in pancreatic islets. J Diabetes Res 2014; 2014:540242. [PMID: 25215302 PMCID: PMC4156977 DOI: 10.1155/2014/540242] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 07/07/2014] [Accepted: 07/28/2014] [Indexed: 11/20/2022] Open
Abstract
We examined the effects of vanadium sulfate (VOSO4) treatment at 5 and 10 mg/kg for 30 days on endocrine pancreas activity and histology in nondiabetic and STZ-induced diabetic rats. In diabetic group, blood glucose levels significantly increased while insulinemia level markedly decreased. At the end of treatment, VOSO4 at a dose of 10 mg/Kg normalized blood glucose level in diabetic group, restored insulinemia, and significantly improved insulin sensitivity. VOSO4 also increased in a dose-dependent manner the number of insulin immunopositive beta cells in pancreatic islets of nondiabetic rats. Furthermore, in the STZ-diabetic group, the decrease in the number of insulin immunopositive beta cells was corrected to reach the control level mainly with the higher dose of vanadium. Therefore, VOSO4 treatment normalized plasma glucose and insulin levels and improved insulin sensitivity in STZ-experimental diabetes and induced beta cells proliferation and/or regeneration in normal or diabetic rats.
Collapse
Affiliation(s)
- Samira Missaoui
- Laboratory of Integrated Physiology, Faculty of Sciences of Bizerte, University of Carthage, 7021 Jarzouna, Tunisia
| | - Khémais Ben Rhouma
- Laboratory of Integrated Physiology, Faculty of Sciences of Bizerte, University of Carthage, 7021 Jarzouna, Tunisia
| | - Mohamed-Tahar Yacoubi
- Department of Pathological Anatomy, Farhat Hached University Hospital, 4000 Sousse, Tunisia
| | - Mohsen Sakly
- Laboratory of Integrated Physiology, Faculty of Sciences of Bizerte, University of Carthage, 7021 Jarzouna, Tunisia
- *Mohsen Sakly:
| | - Olfa Tebourbi
- Laboratory of Integrated Physiology, Faculty of Sciences of Bizerte, University of Carthage, 7021 Jarzouna, Tunisia
| |
Collapse
|
34
|
Abstract
JNK is involved in a broad range of physiological processes. Several inflammatory and neurodegenerative diseases, such as multiple sclerosis, Alzheimer's and Parkinson's disease have been linked with the dysregulated JNK pathway. Research on disease models using the relevant knockout mice has highlighted the importance of specific JNK isoformsin-particular disorders and has stimulated further efforts in the drug-discovery area. However, most of the experimental evidence for the efficacy of JNK inhibition in animal models is from studies using JNK inhibitors, which are not isoform selective. Some of the more recent compounds exhibit good oral bioavailability, CNS penetration and selectivity against the rest of the kinome. Efforts to design isoform-selective inhibitors have produced a number of examples with various selectivity profiles. This article presents recent progress in this area and comment on the role of isoform selectivity for efficacy.
Collapse
|
35
|
Abstract
It is increasingly apparent that not only is a cure for the current worldwide diabetes epidemic required, but also for its major complications, affecting both small and large blood vessels. These complications occur in the majority of individuals with both type 1 and type 2 diabetes. Among the most prevalent microvascular complications are kidney disease, blindness, and amputations, with current therapies only slowing disease progression. Impaired kidney function, exhibited as a reduced glomerular filtration rate, is also a major risk factor for macrovascular complications, such as heart attacks and strokes. There have been a large number of new therapies tested in clinical trials for diabetic complications, with, in general, rather disappointing results. Indeed, it remains to be fully defined as to which pathways in diabetic complications are essentially protective rather than pathological, in terms of their effects on the underlying disease process. Furthermore, seemingly independent pathways are also showing significant interactions with each other to exacerbate pathology. Interestingly, some of these pathways may not only play key roles in complications but also in the development of diabetes per se. This review aims to comprehensively discuss the well validated, as well as putative mechanisms involved in the development of diabetic complications. In addition, new fields of research, which warrant further investigation as potential therapeutic targets of the future, will be highlighted.
Collapse
Affiliation(s)
- Josephine M Forbes
- Diabetes Division, Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | | |
Collapse
|
36
|
Harcourt BE, Penfold SA, Forbes JM. Coming full circle in diabetes mellitus: from complications to initiation. Nat Rev Endocrinol 2013; 9:113-23. [PMID: 23296171 DOI: 10.1038/nrendo.2012.236] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Glycaemic control, reduction of blood pressure using agents that block the renin-angiotensin system and control of dyslipidaemia are the major strategies used in the clinical management of patients with diabetes mellitus. Each of these approaches interrupts a number of pathological pathways, which directly contributes to the vascular complications of diabetes mellitus, including renal disease, blindness, neuropathy and cardiovascular disease. However, research published over the past few years has indicated that many of the pathological pathways important in the development of the vascular complications of diabetes mellitus are equally relevant to the initiation of diabetes mellitus itself. These pathways include insulin signalling, generation of cellular energy, post-translational modifications and redox imbalances. This Review will examine how the development of diabetes mellitus has come full circle from initiation to complications and suggests that the development of diabetes mellitus and the progression to chronic complications both require the same mechanistic triggers.
Collapse
Affiliation(s)
- Brooke E Harcourt
- Glycation and Diabetes Complications, Mater Medical Research Institute, Raymond Terrace, South Brisbane, QLD, Australia
| | | | | |
Collapse
|
37
|
Fraker CA, Cechin S, Álvarez-Cubela S, Echeverri F, Bernal A, Poo R, Ricordi C, Inverardi L, Domínguez-Bendala J. A physiological pattern of oxygenation using perfluorocarbon-based culture devices maximizes pancreatic islet viability and enhances β-cell function. Cell Transplant 2012; 22:1723-33. [PMID: 23068091 DOI: 10.3727/096368912x657873] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Conventional culture vessels are not designed for physiological oxygen (O2) delivery. Both hyperoxia and hypoxia-commonly observed when culturing cells in regular plasticware-have been linked to reduced cellular function and death. Pancreatic islets, used for the clinical treatment of diabetes, are especially sensitive to sub- and supraphysiological O2 concentrations. A result of current culture standards is that a high percentage of islet preparations are never transplanted because of cell death and loss of function in the 24-48 h postisolation. Here, we describe a new culture system designed to provide quasiphysiological oxygenation to islets in culture. The use of dishes where islets rest atop a perfluorocarbon (PFC)-based membrane, coupled with a careful adjustment of environmental O2 concentration to target the islet physiological pO2 range, resulted in dramatic gains in viability and function. These observations underline the importance of approximating culture conditions as closely as possible to those of the native microenvironment, and fill a widely acknowledged gap in our ability to preserve islet functionality in vitro. As stem cell-derived insulin-producing cells are likely to suffer from the same limitations as those observed in real islets, our findings are especially timely in the context of current efforts to define renewable sources for transplantation.
Collapse
Affiliation(s)
- Chris A Fraker
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Diabetic nephropathy is the leading cause of end-stage kidney disease worldwide but current treatments remain suboptimal. This review examines the evidence for inflammation in the development and progression of diabetic nephropathy in both experimental and human diabetes, and provides an update on recent novel experimental approaches targeting inflammation and the lessons we have learned from these approaches. We highlight the important role of inflammatory cells in the kidney, particularly infiltrating macrophages, T-lymphocytes and the subpopulation of regulatory T cells. The possible link between immune deposition and diabetic nephropathy is explored, along with the recently described immune complexes of anti-oxidized low-density lipoproteins. We also briefly discuss some of the major inflammatory cytokines involved in the pathogenesis of diabetic nephropathy, including the role of adipokines. Lastly, we present the latest data on the pathogenic role of the stress-activated protein kinases in diabetic nephropathy, from studies on the p38 mitogen activated protein kinase and the c-Jun amino terminal kinase cell signalling pathways. The genetic and pharmacological approaches which reduce inflammation in diabetic nephropathy have not only enhanced our understanding of the pathophysiology of the disease but shown promise as potential therapeutic strategies.
Collapse
|
39
|
Sabapathy K. Role of the JNK pathway in human diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 106:145-69. [PMID: 22340717 DOI: 10.1016/b978-0-12-396456-4.00013-4] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The c-Jun-NH(2)-terminal kinase (JNK) signaling pathway plays a critical role in regulating cell fate, being implicated in a multitude of diseases ranging from cancer to neurological and immunological/inflammatory conditions. Not surprisingly, therefore, it has been sought after for therapeutic intervention, and its inhibition has been shown to ameliorate many pathological conditions in experimental systems, paving the way for initial clinical trials. However, the fundamental problem in fully harnessing the potential provided by the JNK pathway has been the lack of specificity, due to the multiple JNK forms that are involved in multiple cellular processes in various cell types. Moreover, lack of sufficient knowledge of all JNK-interacting proteins and substrates has also hindered progress. This review will therefore focus on the role of the JNKs in human diseases and appraise the efforts to inhibit JNK signaling to ameliorate disease conditions, assessing potential challenges and providing insights into possible future directions to efficiently target this pathway for therapeutic use.
Collapse
Affiliation(s)
- Kanaga Sabapathy
- Division of Cellular & Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore
| |
Collapse
|
40
|
Lim AKH, Ma FY, Nikolic-Paterson DJ, Ozols E, Young MJ, Bennett BL, Friedman GC, Tesch GH. Evaluation of JNK blockade as an early intervention treatment for type 1 diabetic nephropathy in hypertensive rats. Am J Nephrol 2011; 34:337-46. [PMID: 21876346 DOI: 10.1159/000331058] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 07/19/2011] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS The c-Jun amino-terminal kinase (JNK) signaling pathway is activated in human kidney diseases and promotes renal injury in experimental glomerulonephritis. In this study, we examined whether JNK signaling plays a role in the development of diabetic nephropathy or in regulating hypertension, which exacerbates diabetic renal injury. METHODS Diabetes was induced in spontaneously hypertensive rats (SHR) using streptozotocin. At week 16 of diabetes, rats with equivalent hyperglycemia and albuminuria were randomized into groups which received no treatment, vehicle alone or a selective JNK inhibitor (CC-930, 60 mg/kg/bid) for 10 weeks. These rats were assessed for hypertension and progression of renal damage. RESULTS At week 16, diabetic rats showed increased kidney JNK activation compared with nondiabetic controls. Effective JNK inhibition was demonstrated at week 26 by reductions in c-Jun phosphorylation. CC-930 did not affect blood pressure, kidney hypertrophy, glomerular hyperfiltration, podocyte loss, glomerular fibrosis or tubulointerstitial injury in diabetic SHR. However, CC-930 reduced macrophages and ccl2 mRNA levels in diabetic kidneys. In contrast, CC-930 exacerbated albuminuria at week 26, which was associated with reduced glomerular mRNA levels of the podocyte-specific molecules, nephrin and podocin. CONCLUSION JNK inhibition does not prevent the progression of early diabetic renal injury in hypertensive rats, which contrasts with the ability of JNK inhibition to suppress albuminuria and injury in experimental glomerulonephritis.
Collapse
Affiliation(s)
- Andy K H Lim
- Department of Nephrology, Monash Medical Centre, 246 Clayton Road, Clayton, VIC 3168, Australia
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
The stress-activated c-Jun amino-terminal kinase (JNK) plays a pivotal role in metabolic conditions such as obesity, insulin resistance, and type 2 diabetes. Intricate tissue-specific tweaking of JNK activity in preclinical models of metabolic diseases reveals a complex interplay among local and systemic effects on carbohydrate and lipid metabolism. Synthesis of these entangled effects illustrates that for JNK inhibitors to have therapeutic impact, they must function in multiple cell types to modulate JNK activity.
Collapse
Affiliation(s)
- Sara N Vallerie
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| | | |
Collapse
|
42
|
Tesch GH, Lim AKH. Recent insights into diabetic renal injury from the db/db mouse model of type 2 diabetic nephropathy. Am J Physiol Renal Physiol 2010; 300:F301-10. [PMID: 21147843 DOI: 10.1152/ajprenal.00607.2010] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The db/db mouse is the most widely used animal model of type 2 diabetic nephropathy. Recent studies have utilized genetic backcrossing with transgenic mouse strains to create novel db/db strains that either lack or overexpress specific genes. These novel strains [ICAM-1-/-, CCL2-/-, MKK3-/-, osteopontin-/-, plasminogen activator inhibitor-1 (PAI-1)-/-, endothelial nitric oxide synthase-/-, SOD-Tg, rCAT-Tg] have provided valuable insights into the molecular mechanisms which promote diabetic renal injury. In addition, surgical removal of one kidney has been shown to accelerate injury in the remaining kidney of diabetic db/db mice. A number of novel therapeutic agents have also been tested in db/db mice, including inhibitors of inflammation (chemokine receptor antagonists, anti-CCL2 RNA aptamer, anti-c-fms antibody); oxidative stress (oxykine, biliverdin); the renin-angiotensin-aldosterone system (aliskiren, angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, eplerenone); advanced glycation end products (AGE; pyridoxamine, alagebrium, soluble AGE receptor); angiogenesis (NM-3, anti-CXCL12 RNA aptamer, soluble Flt-1); lipid accumulation (statins, farnesoid X receptor agonists, Omacor); intracellular signaling pathways (PKC-β or JNK inhibitors); and fibrosis [transforming growth factor (TGF)-β antibody, TGF-βR kinase inhibitor, soluble betaglycan, SMP-534, CTGF-antisense oligonucleotide, mutant PAI-1, pirfenidone], which have identified potential therapeutic targets for clinical translation. This review summarizes the advances in knowledge gained from studies in genetically modified db/db mice and treatment of db/db mice with novel therapeutic agents.
Collapse
Affiliation(s)
- G H Tesch
- Department of Nephrology, Monash Medical Centre, Clayton, Victoria, Australia.
| | | |
Collapse
|
43
|
Gao YJ, Ji RR. Targeting astrocyte signaling for chronic pain. Neurotherapeutics 2010; 7:482-93. [PMID: 20880510 PMCID: PMC2950097 DOI: 10.1016/j.nurt.2010.05.016] [Citation(s) in RCA: 315] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2010] [Revised: 05/18/2010] [Accepted: 05/19/2010] [Indexed: 12/20/2022] Open
Abstract
Clinical management of chronic pain after nerve injury (neuropathic pain) and tumor invasion (cancer pain) is a real challenge due to our limited understanding of the cellular mechanisms that initiate and maintain chronic pain. It has been increasingly recognized that glial cells, such as microglia and astrocytes in the CNS play an important role in the development and maintenance of chronic pain. Notably, astrocytes make very close contacts with synapses and astrocyte reaction after nerve injury, arthritis, and tumor growth is more persistent than microglial reaction, and displays a better correlation with chronic pain behaviors. Accumulating evidence indicates that activated astrocytes can release pro-inflammatory cytokines (e.g., interleukin [IL]-1β) and chemokines (e.g., monocyte chemoattractant protein-1 [MCP-1]/also called CCL2) in the spinal cord to enhance and prolong persistent pain states. IL-1β can powerfully modulate synaptic transmission in the spinal cord by enhancing excitatory synaptic transmission and suppressing inhibitory synaptic transmission. IL-1β activation (cleavage) in the spinal cord after nerve injury requires the matrix metalloprotease-2. In particular, nerve injury and inflammation activate the c-Jun N-terminal kinase in spinal astrocytes, leading to a substantial increase in the expression and release of MCP-1. The MCP-1 increases pain sensitivity via direct activation of NMDA receptors in dorsal horn neurons. Pharmacological inhibition of the IL-1β, c-Jun N-terminal kinase, MCP-1, or matrix metalloprotease-2 signaling via spinal administration has been shown to attenuate inflammatory, neuropathic, or cancer pain. Therefore, interventions in specific signaling pathways in astrocytes may offer new approaches for the management of chronic pain.
Collapse
Affiliation(s)
- Yong-Jing Gao
- grid.62560.370000000403788294Department of Anesthesiology, Sensory Plasticity Laboratory, Pain Research Center, Brigham and Women’s Hospital and Harvard Medical School, 02115 Boston, Massachusetts
| | - Ru-Rong Ji
- grid.62560.370000000403788294Department of Anesthesiology, Sensory Plasticity Laboratory, Pain Research Center, Brigham and Women’s Hospital and Harvard Medical School, 02115 Boston, Massachusetts
| |
Collapse
|
44
|
|
45
|
cJun NH2-terminal kinase 1 (JNK1): roles in metabolic regulation of insulin resistance. Trends Biochem Sci 2010; 35:490-6. [PMID: 20452774 DOI: 10.1016/j.tibs.2010.04.004] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 04/08/2010] [Accepted: 04/08/2010] [Indexed: 01/12/2023]
Abstract
The cJun NH(2)-terminal kinase isoform JNK1 is implicated in the mechanism of obesity-induced insulin resistance. Feeding a high-fat diet causes activation of the JNK1 signaling pathway, insulin resistance, and obesity in mice. Germ-line ablation of Jnk1 prevents both diet-induced obesity and insulin resistance. Genetic analysis indicates that the effects of JNK1 on insulin resistance can be separated from effects of JNK1 on obesity. Emerging research indicates that JNK1 plays multiple roles in the regulation of insulin resistance, including altered gene expression, hormone/cytokine production, and lipid metabolism. Together, these studies establish JNK1 as a potential pharmacological target for the development of drugs that might be useful for the treatment of insulin resistance, metabolic syndrome, and type 2 diabetes.
Collapse
|
46
|
Bogoyevitch MA, Ngoei KR, Zhao TT, Yeap YY, Ng DC. c-Jun N-terminal kinase (JNK) signaling: Recent advances and challenges. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:463-75. [DOI: 10.1016/j.bbapap.2009.11.002] [Citation(s) in RCA: 231] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 10/30/2009] [Accepted: 11/02/2009] [Indexed: 11/28/2022]
|
47
|
Role of altered insulin signaling pathways in the pathogenesis of podocyte malfunction and microalbuminuria. Curr Opin Nephrol Hypertens 2009; 18:539-45. [PMID: 19724224 DOI: 10.1097/mnh.0b013e32832f7002] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
PURPOSE OF REVIEW In diabetic nephropathy, insulin resistance and hyperinsulinemia correlate with the development of albuminuria. The possibility that altered insulin signaling in glomerular cells and particularly podocytes contributes to the development of diabetic nephropathy will be discussed. RECENT FINDINGS Whereas normal podocytes take up glucose in response to insulin, diabetic podocytes become insulin resistant in experimental diabetic nephropathy prior to the development of significant albuminuria. Both clinical and experimental data suggest that insulin sensitizers may be renoprotective independent of their systemic effects on the metabolic control of diabetes. SUMMARY We will review the clinical and experimental evidence that altered insulin signaling correlates with the development of diabetic nephropathy in both type 1 and type 2 diabetes, and that insulin sensitizers may be superior to other hypoglycemic agents in the prevention of diabetic nephropathy. We will then review potential mechanisms by which altered podocyte insulin signaling may contribute to the development of diabetic nephropathy. Understanding the role of podocytes in glucose metabolism is important because it may lead to the discovery of novel pathogenetic mechanisms of diabetic nephropathy, it may affect current strategies for prevention and treatment of diabetic nephropathy, and it may allow the identification of novel therapeutic targets.
Collapse
|
48
|
Abstract
Hyperglycemia is commonplace in the critically ill patient and is associated with worse outcomes. It occurs after severe stress (e.g., infection or injury) and results from a combination of increased secretion of catabolic hormones, increased hepatic gluconeogenesis, and resistance to the peripheral and hepatic actions of insulin. The use of carbohydrate-based feeds, glucose containing solutions, and drugs such as epinephrine may exacerbate the hyperglycemia. Mechanisms by which hyperglycemia cause harm are uncertain. Deranged osmolality and blood flow, intracellular acidosis, and enhanced superoxide production have all been implicated. The net result is derangement of endothelial, immune and coagulation function and an association with neuropathy and myopathy. These changes can be prevented, at least in part, by the use of insulin to maintain normoglycemia.
Collapse
Affiliation(s)
- David Brealey
- Bloomsbury Institute of Intensive Care Medicine, University College London, London, United Kingdom
| | | |
Collapse
|
49
|
Wu J, Mei C, Vlassara H, Striker GE, Zheng F. Oxidative stress-induced JNK activation contributes to proinflammatory phenotype of aging diabetic mesangial cells. Am J Physiol Renal Physiol 2009; 297:F1622-31. [PMID: 19776174 DOI: 10.1152/ajprenal.00078.2009] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Chronic inflammation and increased oxidative stress (OS) play an important role in diabetic nephropathy progression. Herein, we show that mesangial cells from streptozotocin-induced aging diabetic mice, a model of progressive diabetic nephropathy, exhibited increased OS and a proinflammatory phenotype characterized by elevated chemokines and ICAM-1 expression. This phenotypic change was consistent with the extensive inflammatory lesions present in aging diabetic kidneys and was not found in mesangial cells from old and young controls or young diabetic mice. Activation of the c-Jun NH(2)-terminal kinase (JNK) pathway was a likely contributor to the proinflammatory phenotype of aging diabetic mesangial cells since 1) phosphorylated JNK levels and JNK kinase activity were increased in these cells, 2) suppression of JNK significantly decreased monocyte chemoattractant protein-1 (MCP-1) production in these cells, and 3) activation of JNK in normal mesangial cells induced inflammation. Elevated OS in aging diabetic mesangial cells may be a cause of JNK activation and inflammation, because antioxidant treatment decreased JNK phosphorylation and MCP-1 production. Additionally, decreased expression of mitogen-activated protein kinase phosphatase 5 (MKP5) may also contribute to increased JNK and inflammation in aging diabetic mesangial cells since overexpression of MKP5 in these cells normalized phosphorylated JNK levels and reversed the proinflammatory phenotype. Moreover, knocking down of MKP5 expression in old control mesangial cells resulted in JNK activation and MCP-1 production, a phenotype seen in aging diabetic mesangial cells. Interestingly, MKP5 phosphatase activity was diminished by free radicals in vitro. Thus, OS may induce inflammation in mesangial cells by activating JNK through either a direct activation of JNK or indirectly by suppression of MKP5 activity. Proinflammatory phenotype of mesangial cells may contribute to chronic inflammatory lesions and disease progression of aging diabetic mice.
Collapse
Affiliation(s)
- Jin Wu
- Divison of Experimental Diabetes and Aging, Department of Geriatrics, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | |
Collapse
|
50
|
|