1
|
Hamamoto FK, do Carmo Franco M, Jardim MFS, de Camargo MFC, Nogueira PCK. Cardiovascular Risk in Pediatric Renal Transplant Recipients. Pediatr Transplant 2024; 28:e14831. [PMID: 39206805 DOI: 10.1111/petr.14831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 06/28/2024] [Accepted: 07/12/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND The survival of pediatric chronic kidney disease (CKD) patients has improved in recent decades due to advances in dialysis and transplantation. However, cardiovascular disease (CVD) emerges as the main cause of mortality in patients with CKD. OBJECTIVES To estimate cardiovascular risk in children with CKD at least 1 year after kidney transplantation. In addition, the possible association of cardiovascular risk with classic biochemical markers and potential new markers of this outcome was investigated. METHODS An observational ambidirectional (retrospective capture of risk factors and prospective study of outcomes) research including 75 patients who underwent renal transplant between 2003 and 2013 with postoperative follow-up of at least 1 year was conducted. The outcome variables adopted were the LV mass Z-score and the presence of coronary calcification on computed tomography using calcium Agatston score. RESULT Only one patient had an elevated calcium score, and three children (4%) had an LV mass Z-score ≥ 2.0. After multivariable analysis, only gender, serum triglyceride, and serum renalase concentration remained significantly associated with LV mass. CONCLUSION The low incidence of cardiovascular changes in the population studied confirms the benefit of transplantation for the cardiovascular health of children. Nevertheless, long-term follow-up of these patients is recommended, given the limited duration of kidney function provided by transplantation and the high likelihood of further dialysis and kidney transplants being required in these children.
Collapse
Affiliation(s)
| | | | | | | | - Paulo C Koch Nogueira
- Pediatric Kidney Transplantation Department, Hospital Samaritano de São Paulo, São Paulo, Brazil
- Pediatrics Department, Federal University of São Paulo-UNIFESP, São Paulo, Brazil
| |
Collapse
|
2
|
Jin L, Wang W, Zhang R, Shen J, Li Y, Zhang Y. The early diagnostic value of serum renalase level in diabetic kidney disease and diabetic macroangiopathy: a retrospective case-control study. Ther Adv Chronic Dis 2024; 15:20406223241286677. [PMID: 39429975 PMCID: PMC11487514 DOI: 10.1177/20406223241286677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 08/30/2024] [Indexed: 10/22/2024] Open
Abstract
Background Diabetic kidney disease (DKD) is a severe complication of diabetes mellitus and is associated with an increased risk of end-stage renal disease (ESRD) and cardiovascular events. Early diagnosis and monitoring of DKD are crucial for implementing appropriate interventions. This study aimed to investigate the relationship between serum renalase (RNLS) levels, DKD, and diabetic macroangiopathy in patients with type 2 diabetes mellitus (T2DM). Objectives This study aims to evaluate the diagnostic value of serum renalase levels in DKD and diabetic macroangiopathy. Design This is a retrospective case-control study. Methods A total of 233 participants were recruited for the study, including 115 T2DM patients without DKD or diabetic retinopathy, and 118 T2DM patients with DKD. Serum RNLS levels were measured using an enzyme-linked immunosorbent assay. Kidney function parameters and diabetic macroangiopathy risk factors were evaluated in relation to serum RNLS levels. Results Serum RNLS levels were significantly higher in DKD patients compared to T2DM controls (34.82 (31.68, 39.37) vs 30.52 (28.58, 33.16), p < 0.01). Multiple linear regression analysis indicated that kidney function parameters and carotid intima-media thickness were independently related to RNLS levels. The study population was divided into four groups: no DKD and no diabetic macroangiopathy, DKD without diabetic macroangiopathy, diabetic macroangiopathy without DKD, and both DKD and diabetic macroangiopathy. Analysis results showed that patients with both DKD and diabetic macroangiopathy had the highest RNLS levels. Receiver operating characteristic curve analysis demonstrated the diagnostic value of RNLS for DKD (0.76 (95% confidence interval (CI) = 0.70-0.82, p < 0.01)) and diabetic macroangiopathy (0.75 (95% CI = 0.66-0.84, p < 0.01)). Conclusion Circulating RNLS levels were significantly increased in patients with DKD and diabetic macroangiopathy, suggesting that RNLS may serve as an early diagnostic marker.
Collapse
Affiliation(s)
- Li Jin
- Department of Endocrinology and Metabolism, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wensu Wang
- Department of Geriatrics, The Second Affiliated Hospital of Guizhou University of TCM, Guizhou, Guiyang, China
| | - Rong Zhang
- Shanghai Diabetes Institute, Shanghai Key Clinical Center for Metabolic Diseases, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Jianguo Shen
- Department of Endocrinology and Metabolism, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yangyang Li
- Shanghai Diabetes Institute, Shanghai Key Clinical Center for Metabolic Diseases, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Yi Zhang
- Shanghai Diabetes Institute, Shanghai Key Clinical Center for Metabolic Diseases, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| |
Collapse
|
3
|
Żórawik A, Hajdusianek W, Kusnerż A, Markiewicz-Górka I, Jaremków A, Martynowicz H, Pawlas K, Mazur G, Poręba R, Gać P. Relation Between Exposure to Tobacco Smoke Assessed by Serum Cotinine Concentration and Questionnaire Method, and Serum Renalase Concentration-the Importance of the Coexistence of Arterial Hypertension and Other Cardiovascular Diseases. Cardiovasc Toxicol 2024; 24:737-746. [PMID: 38748312 PMCID: PMC11300532 DOI: 10.1007/s12012-024-09868-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/26/2024] [Indexed: 08/07/2024]
Abstract
Exposure to tobacco smoke (ETS) is one of the main risk factors for cardiovascular disease (CVD). Renalase is a protein that may play a role in the pathogenesis of CVD. The aim of the study was to assess the relationship between ETS and serum renalase concentration. A group of 109 patients was recruited for this study (49.7 ± 14.7 years). In accordance with the questionnaire, patients were divided into the following subgroups: subgroup A- declaring themselves active smokers (n = 36), subgroup B- declaring themselves non-smokers and exposed to environmental tobacco smoke (n = 35), subgroup C- declaring themselves non-smokers and not exposed to environmental tobacco smoke (n = 38). The same patients were divided based on cotinine concentration into the following subgroups: subgroup D- active smokers (n = 42), subgroup E- non-smokers exposed to environmental tobacco smoke (n = 66), and subgroup F- non-smokers not exposed to environmental tobacco smoke (n = 1). Serum cotinine concentration and serum renalase concentration were measured using ELISA tests. Serum renalase concentration was statistically significantly higher in subgroup C than in subgroups A and B and in subgroup E and F than in D. There was a negative correlation between serum cotinine concentration and serum renalase concentration (r = -0.41, p < 0.05). Regression analysis showed that higher BMI, higher diastolic blood pressure, coronary artery disease and higher serum cotinine concentration are independent risk factors of lower serum renalase concentration. The questionnaire method of assessing exposure to tobacco smoke was characterized by high sensitivity, but only moderate specificity, especially in terms of assessing environmental exposure to tobacco smoke. In summary, the study showed an independent relationship between exposure to tobacco smoke and lower serum renalase concentration.
Collapse
Affiliation(s)
- Aleksandra Żórawik
- Division of Environmental Health and Occupational Medicine, Department of Population Health, Wroclaw Medical University, Mikulicza-Radeckiego 7, PL 50-368, Wroclaw, Poland
| | - Wojciech Hajdusianek
- Division of Environmental Health and Occupational Medicine, Department of Population Health, Wroclaw Medical University, Mikulicza-Radeckiego 7, PL 50-368, Wroclaw, Poland
| | - Agnieszka Kusnerż
- Division of Environmental Health and Occupational Medicine, Department of Population Health, Wroclaw Medical University, Mikulicza-Radeckiego 7, PL 50-368, Wroclaw, Poland
| | - Iwona Markiewicz-Górka
- Division of Environmental Health and Occupational Medicine, Department of Population Health, Wroclaw Medical University, Mikulicza-Radeckiego 7, PL 50-368, Wroclaw, Poland
| | - Aleksandra Jaremków
- Division of Environmental Health and Occupational Medicine, Department of Population Health, Wroclaw Medical University, Mikulicza-Radeckiego 7, PL 50-368, Wroclaw, Poland
| | - Helena Martynowicz
- Department of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, Borowska 213, PL 50-556, Wroclaw, Poland
| | - Krystyna Pawlas
- Division of Environmental Health and Occupational Medicine, Department of Population Health, Wroclaw Medical University, Mikulicza-Radeckiego 7, PL 50-368, Wroclaw, Poland
| | - Grzegorz Mazur
- Department of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, Borowska 213, PL 50-556, Wroclaw, Poland
| | - Rafał Poręba
- Department of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, Borowska 213, PL 50-556, Wroclaw, Poland
| | - Paweł Gać
- Division of Environmental Health and Occupational Medicine, Department of Population Health, Wroclaw Medical University, Mikulicza-Radeckiego 7, PL 50-368, Wroclaw, Poland.
| |
Collapse
|
4
|
Serban-Feier LF, Cuiban E, Gogosoiu EB, Stepan E, Radulescu D. Renalase Potential as a Marker and Therapeutic Target in Chronic Kidney Disease. Biomedicines 2024; 12:1715. [PMID: 39200179 PMCID: PMC11351300 DOI: 10.3390/biomedicines12081715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 09/02/2024] Open
Abstract
Hypertension and cardiovascular disease are prominent features of chronic kidney disease, and they are associated with premature mortality and progression toward end-stage kidney disease. Renalase, an enzyme secreted predominantly by the kidney and identified in 2005, seems to be one of the missing pieces in the puzzle of heart and kidney interaction in chronic kidney disease by lowering blood pressure and reducing the overactivity of sympathetic tone. This review aims to summarize evidence from clinical studies performed on subjects with CKD in order to explore the value of renalase as a marker and/or a therapeutic target in this disease.
Collapse
Affiliation(s)
- Larisa Florina Serban-Feier
- Department of Nephrology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (L.F.S.-F.); (E.S.); (D.R.)
- Department of Nephrology, Sfantul Ioan Clinical Emergency Hospital, 042122 Bucharest, Romania;
| | - Elena Cuiban
- Department of Nephrology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (L.F.S.-F.); (E.S.); (D.R.)
- Department of Nephrology, Sfantul Ioan Clinical Emergency Hospital, 042122 Bucharest, Romania;
| | - Elena Bianca Gogosoiu
- Department of Nephrology, Sfantul Ioan Clinical Emergency Hospital, 042122 Bucharest, Romania;
| | - Elena Stepan
- Department of Nephrology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (L.F.S.-F.); (E.S.); (D.R.)
| | - Daniela Radulescu
- Department of Nephrology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (L.F.S.-F.); (E.S.); (D.R.)
- Department of Nephrology, Sfantul Ioan Clinical Emergency Hospital, 042122 Bucharest, Romania;
| |
Collapse
|
5
|
Fu R, You N, Li R, Zhao X, Li Y, Li X, Jiang W. Renalase mediates macrophage-to-fibroblast crosstalk to attenuate pressure overload-induced pathological myocardial fibrosis. J Hypertens 2024; 42:629-643. [PMID: 38230609 DOI: 10.1097/hjh.0000000000003635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
A potential antifibrotic mechanism in pathological myocardial remodeling is the recruitment of beneficial functional subpopulations of macrophages or the transformation of their phenotype. Macrophages are required to activate molecular cascades that regulate fibroblast behavior. Identifying mediators that activate the antifibrotic macrophage phenotype is tantamount to identifying the button that retards pathological remodeling of the myocardium; however, relevant studies are inadequate. Circulating renalase (RNLS) is mainly of renal origin, and cardiac myocytes also secrete it autonomously. Our previous studies revealed that RNLS delivers cell signaling to exert multiple cardiovascular protective effects, including the improvement of myocardial ischemia, and heart failure. Here, we further investigated the potential mechanism by which macrophage phenotypic transformation is targeted by RNLS to mediate stress load-induced myocardial fibrosis. Mice subjected to transverse aortic constriction (TAC) were used as a model of myocardial fibrosis. The co-incubation of macrophages and cardiac fibroblasts was used to study intercellular signaling. The results showed that RNLS co-localized with macrophages and reduced protein expression after cardiac pressure overload. TAC mice exhibited improved cardiac function and alleviated left ventricular fibrosis when exogenous RNLS was administered. Flow sorting showed that RNLS is essential for macrophage polarization towards a restorative phenotype (M2-like), thereby inhibiting myofibroblast activation, as proven by both mouse RAW264.7 and bone marrow-derived macrophage models. Mechanistically, we found that activated protein kinase B is a major pathway by which RNLS promotes M2 polarization in macrophages. RNLS may serve as a prognostic biomarker and a potential clinical candidate for the treatment of myocardial fibrosis.
Collapse
Affiliation(s)
- Ru Fu
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | | | | | | | | | | | | |
Collapse
|
6
|
Żórawik A, Hajdusianek W, Markiewicz-Górka I, Jaremków A, Pawlas K, Martynowicz H, Mazur G, Poręba R, Gać P. Coexistence of Cardiovascular Risk Factors and Blood Renalase Concentration. Int J Mol Sci 2023; 24:16666. [PMID: 38068986 PMCID: PMC10705922 DOI: 10.3390/ijms242316666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Cardiovascular diseases (CVDs) are one of the biggest health challenges facing health systems around the world. There are certain risk factors (CVRFs) that contribute to CVD. Risk factors associated with lifestyle such as tobacco consumption are particularly essential. Renalase is a recently discovered flavoprotein that may be involved in the progression of cardiometabolic diseases. The aim of the study was to investigate the relation between CVRFs and blood renalase concentration (BRC). The study group consisted of 96 people (51% women) who were hospitalized in the internal medicine department. CVRFs were measured using the AHA Life 7 scale. The E3109Hu ELISA kit was used to assess BRC. We found higher BRC in groups with a lower number of CVRFs (p < 0.05). We found a negative correlation between BRC and the number of CVRFs (r = -0.41). With the regression analysis, obesity, smoking, and a lack of physical activity (LoPE) were independently associated with lower blood renalase concentration. ROC analysis indicated the highest accuracy of BRC < 38.98 ng/mL in patients with ≥5 CVRFs. In conclusion, patients with a higher number of CVRFs had lower BRCs. The CVRFs particularly associated with a lower BRC were obesity, smoking, and LoPE.
Collapse
Affiliation(s)
- Aleksandra Żórawik
- Department of Population Health, Division of Environmental Health and Occupational Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 7, PL 50-368 Wroclaw, Poland
| | - Wojciech Hajdusianek
- Department of Population Health, Division of Environmental Health and Occupational Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 7, PL 50-368 Wroclaw, Poland
| | - Iwona Markiewicz-Górka
- Department of Population Health, Division of Environmental Health and Occupational Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 7, PL 50-368 Wroclaw, Poland
| | - Aleksandra Jaremków
- Department of Population Health, Division of Environmental Health and Occupational Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 7, PL 50-368 Wroclaw, Poland
| | - Krystyna Pawlas
- Department of Population Health, Division of Environmental Health and Occupational Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 7, PL 50-368 Wroclaw, Poland
| | - Helena Martynowicz
- Department of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, Borowska 213, PL 50-556 Wroclaw, Poland
| | - Grzegorz Mazur
- Department of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, Borowska 213, PL 50-556 Wroclaw, Poland
| | - Rafał Poręba
- Department of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, Borowska 213, PL 50-556 Wroclaw, Poland
| | - Paweł Gać
- Department of Population Health, Division of Environmental Health and Occupational Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 7, PL 50-368 Wroclaw, Poland
| |
Collapse
|
7
|
Sienkiewicz-Szłapka E, Fiedorowicz E, Król-Grzymała A, Kordulewska N, Rozmus D, Cieślińska A, Grzybowski A. The Role of Genetic Polymorphisms in Diabetic Retinopathy: Narrative Review. Int J Mol Sci 2023; 24:15865. [PMID: 37958858 PMCID: PMC10650381 DOI: 10.3390/ijms242115865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Diabetic retinopathy (DR) is renowned as a leading cause of visual loss in working-age populations with its etiopathology influenced by the disturbance of biochemical metabolic pathways and genetic factors, including gene polymorphism. Metabolic pathways considered to have an impact on the development of the disease, as well as genes and polymorphisms that can affect the gene expression, modify the quantity and quality of the encoded product (protein), and significantly alter the metabolic pathway and its control, and thus cause changes in the functioning of metabolic pathways. In this article, the screening of chromosomes and the most important genes involved in the etiology of diabetic retinopathy is presented. The common databases with manuscripts published from January 2000 to June 2023 have been taken into consideration and chosen. This article indicates the role of specific genes in the development of diabetic retinopathy, as well as polymorphic changes within the indicated genes that may have an impact on exacerbating the symptoms of the disease. The collected data will allow for a broader look at the disease and help to select candidate genes that can become markers of the disease.
Collapse
Affiliation(s)
- Edyta Sienkiewicz-Szłapka
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, 10-719 Olsztyn, Poland; (E.S.-S.); (E.F.); (A.K.-G.); (N.K.); (D.R.)
| | - Ewa Fiedorowicz
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, 10-719 Olsztyn, Poland; (E.S.-S.); (E.F.); (A.K.-G.); (N.K.); (D.R.)
| | - Angelika Król-Grzymała
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, 10-719 Olsztyn, Poland; (E.S.-S.); (E.F.); (A.K.-G.); (N.K.); (D.R.)
| | - Natalia Kordulewska
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, 10-719 Olsztyn, Poland; (E.S.-S.); (E.F.); (A.K.-G.); (N.K.); (D.R.)
| | - Dominika Rozmus
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, 10-719 Olsztyn, Poland; (E.S.-S.); (E.F.); (A.K.-G.); (N.K.); (D.R.)
| | - Anna Cieślińska
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, 10-719 Olsztyn, Poland; (E.S.-S.); (E.F.); (A.K.-G.); (N.K.); (D.R.)
| | - Andrzej Grzybowski
- Institute for Research in Ophthalmology, Foundation for Ophthalmology Development, Gorczyczewskiego 2/3, 61-553 Poznań, Poland;
| |
Collapse
|
8
|
Khater MH, Abd El-Hassib DM, Sabry JH, Elkilany RM, Ameen SG. Association Between Renalase Gene Polymorphism (rs2296545) and Hypertension in Egyptian Chronic Kidney Disease Patients. Cureus 2023; 15:e47903. [PMID: 37905164 PMCID: PMC10613451 DOI: 10.7759/cureus.47903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2023] [Indexed: 11/02/2023] Open
Abstract
Background Renalase gene polymorphisms are associated with an increased risk of essential hypertension, chronic kidney disease (CKD), heart disease, diabetes, and stroke. One of these polymorphisms is a common missense (rs2296545) polymorphism, which was reported to be related to hypertension. The aim of this work was to investigate the possible relation between renalase gene polymorphism (rs2296545) and hypertension in patients with CKD patients. Subjects and methods Ninety patients were included in this case-control study: 30 normotensive CKD patients, 30 hypertensive CKD patients, and 30 apparently healthy controls. Genomic deoxyribonucleic acid (DNA) was extracted from peripheral whole blood, and renalase gene (rs2296545) polymorphism was genotyped in all patients and controls by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Odds ratios (OR) and their 95% CIs were calculated. Results We found that the CC genotype and the C allele renalase (rs2296545) were statistically associated with the risk of CKD (OR= 9.4; 95%CI 1.2-7.2; P= 0.036) and (OR= 3.78; 95%CI 1.57-9.08; P= 0.003), respectively. There was a statistically significant difference between the hypertensive CKD patients and the controls regarding the CC genotypes and the C allele, (26.7% versus 3.3%, P= 0.018) and (40% versus 11.7%, P< 0.001) for the CC genotype and the C allele, respectively. The mean values of systolic and diastolic blood pressure were higher in the normotensive CKD patients with the CC genotype compared to other genotypes (P= 0.014 and P= 0.022, respectively) and also were higher in hypertensive CKD patients with the CC genotype when compared to other genotypes (P= 0.001 for both). Conclusion This study demonstrated a statistically significant increase in the renalase gene (rs2296545) CC genotype and the C allele in CKD patients, especially hypertensive CKD.
Collapse
Affiliation(s)
- Mohamed H Khater
- General Surgery, Nile Health Insurance Hospital, Shubra El-Kheima, EGY
- General Surgery, Northwick Park Hospital, Harrow, GBR
| | | | - Jehan H Sabry
- Clinical and Chemical Pathology, Faculty of Medicine Benha University, Benha, EGY
| | - Rania M Elkilany
- Clinical and Chemical Pathology, Faculty of Medicine Benha University, Benha, EGY
| | - Seham G Ameen
- Clinical and Chemical Pathology, Faculty of Medicine Benha University, Benha, EGY
| |
Collapse
|
9
|
Heydarpour M, Parksook WW, Hopkins PN, Pojoga LH, Williams GH, Williams JS. A candidate locus in the renalase gene and susceptibility to blood pressure responses to the dietary salt. J Hypertens 2023; 41:723-732. [PMID: 36789764 PMCID: PMC10079562 DOI: 10.1097/hjh.0000000000003391] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/05/2023] [Accepted: 01/20/2023] [Indexed: 02/16/2023]
Abstract
BACKGROUND High dietary salt confers a risk of elevating blood pressure (BP) and the development of hypertension. BP to salt intake may be determined in part by individual genetic predisposition. Identifying these genetic underpinnings will enhance our understanding of the biological mechanisms of BP regulation. This study aims to assess the genetic association with salt sensitivity of BP (SSBP) within two well-phenotyped multinational cohorts. METHODS A total of 720 white participants from the HyperPATH consortium program were selected and genotyped using a multiethnic genotyping array. Individuals consumed two study diets containing high (>200 mEq/day) and low (<10 mEq/day) sodium content, after which SSBP, aldosterone, and plasma renin activity (PRA) were assessed in a controlled inpatient research setting. RESULTS A top signal (rs10887801; beta = 4.57, P = 5.03E - 07) at the renalase gene ( RNLS ) region was significantly associated with SSBP. We also identified seven single nucleotide variants with linkage disequilibrium to the top signal at this region that comprised a significant haplotype (TCTTAGTT, P = 0.00081). Homozygous carriers of the T-risk allele of the key single nucleotide variant had higher SSBP ( P ≤ 0.00001) and lower PRA ( P = 0.0076) compared with the nonrisk allele. CONCLUSION We identified significant associations between genetic variants of the RNLS gene and BP responses to dietary salt intervention and PRA that suggest susceptibility to volume-driven hypertension. These findings may contribute to a better understanding of the genetic mechanisms underlying BP regulation, support the role of RNLS in the pathogenesis of SSBP, and identify individuals who may be at risk from excess dietary salt intake.
Collapse
Affiliation(s)
- Mahyar Heydarpour
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Wasita W. Parksook
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Division of Endocrinology and Metabolism, and Division of General Internal Medicine, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Paul N. Hopkins
- Cardiovascular Genetics Research Unit, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Luminita H. Pojoga
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Gordon H. Williams
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jonathan S. Williams
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
10
|
Ersak B, Özakşit G, Tugrul D, Doğanay M, Ustun Y, Kokanalı MK. Role of serum renalase levels in predicting the presence of metabolic syndrome in patients with polycystic ovary syndrome. Taiwan J Obstet Gynecol 2023; 62:417-422. [PMID: 37188446 DOI: 10.1016/j.tjog.2022.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2022] [Indexed: 05/17/2023] Open
Abstract
OBJECTIVE This study was designed to compare the serum renalase levels of polycystic ovary syndrome (PCOS) women with and without metabolic syndrome (MS) and those of healthy non-PCOS women. MATERIALS AND METHODS Seventy-two patients diagnosed with PCOS and age-matched 72 healthy non-PCOS were included in the study. The PCOS group was divided into two groups as having metabolic syndrome or not. General gynecological and physical examination findings and laboratory results were recorded. Renalase levels in serum samples were determined using Enyzme-Linked ImmunoSorbent Assay method. RESULTS Mean serum renalase level was significantly higher in PCOS patients with MS compared with both PCOS patients without MS and healthy controls. Additionally, serum renalase correlates positively with body mass index, systolic and diastolic blood pressure, serum triglyceride and homeostasis model assessment-insulin resistance values among PCOS women. However, systolic blood pressure was found to be the only significant independent factor that can affect the serum renalase levels. A serum renalase level of 79.86 ng/L had a sensitivity of 94.7% and specificity of 46.4% in discriminating PCOS patients with metabolic syndrome from healthy women. CONCLUSIONS Serum renalase level increases in women with PCOS in the presence of metabolic syndrome. Therefore, monitoring the serum renalase level in women with PCOS can predict the metabolic syndrome that may develop.
Collapse
Affiliation(s)
- Burak Ersak
- Department of Obstetrics and Gynecology, University of Health Sciences, Zekai Tahir Burak Women Health Care, Training and Research Hospital, Ankara, Turkey.
| | - Gülnur Özakşit
- Department of Obstetrics and Gynecology, University of Health Sciences, Zekai Tahir Burak Women Health Care, Training and Research Hospital, Ankara, Turkey
| | - Duygu Tugrul
- Department of Obstetrics and Gynecology, University of Health Sciences, Zekai Tahir Burak Women Health Care, Training and Research Hospital, Ankara, Turkey
| | - Melike Doğanay
- Department of Obstetrics and Gynecology, University of Health Sciences, Zekai Tahir Burak Women Health Care, Training and Research Hospital, Ankara, Turkey
| | - Yaprak Ustun
- Department of Obstetrics and Gynecology, Etlik Zubeyde Hanım Women's Health and Research Hospital, Ankara, Turkey
| | - Mahmut Kuntay Kokanalı
- Department of Obstetrics and Gynecology, University of Health Sciences, Zekai Tahir Burak Women Health Care, Training and Research Hospital, Ankara, Turkey
| |
Collapse
|
11
|
Wang Y, Bai L, Wen J, Zhang F, Gu S, Wang F, Yin J, Wang N. Cardiac-specific renalase overexpression alleviates CKD-induced pathological cardiac remodeling in mice. Front Cardiovasc Med 2022; 9:1061146. [PMID: 36588579 PMCID: PMC9798007 DOI: 10.3389/fcvm.2022.1061146] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction CKD-induced pathological cardiac remodeling is characterized by myocardial hypertrophy and cardiac fibrosis. The available therapeutic options are limited, it is thus urgently needed to identify novel therapeutic targets. Renalase (RNLS) is a newly discovered protein secreted by the kidney and was found beneficial in many renal diseases. But whether it exerts protective effects on cardiac remodeling in CKD remains unclear. Methods RNLS knockout (KO) and wild-type (WT) mice were both used to build CKD models and the adeno-associated virus (AAV9) system was used to overexpress RNLS cardiac specifically. Echocardiography was performed to detect cardiac structural changes every 6 weeks until 18 weeks post-surgery. High throughput sequencing was performed to understand the underlying mechanisms and the effects of RNLS on cardiac fibroblasts were validated in vitro. Results Knockout of RNLS aggravated cardiac remodeling in CKD, while RNLS cardiac-specific overexpression significantly reduced left ventricular hypertrophy and cardiac fibrosis induced by CKD. The following RNA-sequencing analysis revealed that RNLS significantly downregulated the extracellular matrix (ECM) receptor interaction pathway, ECM organization, and several ECM-related proteins. GSEA results showed RNLS significantly downregulated several profibrotic biological processes of cardiac fibroblasts which were upregulated by CKD, including fibroblast proliferation, leukocyte migration, antigen presentation, cytokine production, and epithelial-mesenchymal transition (EMT). In vitro, we validated that RNLS reduced the primary cardiac fibroblast proliferation and α-SMA expression stimulated by TGF-β. Conclusion In this study, we examined the cardioprotective role of RNLS in CKD-induced cardiac remodeling. RNLS may be a potential therapeutic factor that exerts an anti-fibrotic effect in pathological cardiac remodeling.
Collapse
Affiliation(s)
- Yi Wang
- Department of Nephrology, Shanghai Sixth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Linnan Bai
- Department of Nephrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiejun Wen
- Department of Nephrology, Shanghai Sixth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fangfei Zhang
- Department of Nephrology, Shanghai Sixth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sijie Gu
- Department of Nephrology, Shanghai Sixth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Wang
- Department of Nephrology, Shanghai Sixth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianyong Yin
- Department of Nephrology, Shanghai Sixth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,*Correspondence: Jianyong Yin,
| | - Niansong Wang
- Department of Nephrology, Shanghai Sixth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Niansong Wang,
| |
Collapse
|
12
|
Ameer OZ. Hypertension in chronic kidney disease: What lies behind the scene. Front Pharmacol 2022; 13:949260. [PMID: 36304157 PMCID: PMC9592701 DOI: 10.3389/fphar.2022.949260] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/26/2022] [Indexed: 12/04/2022] Open
Abstract
Hypertension is a frequent condition encountered during kidney disease development and a leading cause in its progression. Hallmark factors contributing to hypertension constitute a complexity of events that progress chronic kidney disease (CKD) into end-stage renal disease (ESRD). Multiple crosstalk mechanisms are involved in sustaining the inevitable high blood pressure (BP) state in CKD, and these play an important role in the pathogenesis of increased cardiovascular (CV) events associated with CKD. The present review discusses relevant contributory mechanisms underpinning the promotion of hypertension and their consequent eventuation to renal damage and CV disease. In particular, salt and volume expansion, sympathetic nervous system (SNS) hyperactivity, upregulated renin–angiotensin–aldosterone system (RAAS), oxidative stress, vascular remodeling, endothelial dysfunction, and a range of mediators and signaling molecules which are thought to play a role in this concert of events are emphasized. As the control of high BP via therapeutic interventions can represent the key strategy to not only reduce BP but also the CV burden in kidney disease, evidence for major strategic pathways that can alleviate the progression of hypertensive kidney disease are highlighted. This review provides a particular focus on the impact of RAAS antagonists, renal nerve denervation, baroreflex stimulation, and other modalities affecting BP in the context of CKD, to provide interesting perspectives on the management of hypertensive nephropathy and associated CV comorbidities.
Collapse
Affiliation(s)
- Omar Z. Ameer
- Department of Pharmaceutical Sciences, College of Pharmacy, Alfaisal University, Riyadh, Saudi Arabia
- Department of Biomedical Sciences, Faculty of Medicine, Macquarie University, Sydney, NSW, Australia
- *Correspondence: Omar Z. Ameer,
| |
Collapse
|
13
|
Clemmer JS, Shafi T, Obi Y. Physiological Mechanisms of Hypertension and Cardiovascular Disease in End-Stage Kidney Disease. Curr Hypertens Rep 2022; 24:413-424. [PMID: 35708820 PMCID: PMC10041674 DOI: 10.1007/s11906-022-01203-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE OF REVIEW In this article, we summarize recent advances in understanding hypertension and cardiovascular disease in patients with end-stage kidney disease. RECENT FINDINGS Factors such as anemia, valvular and vascular calcification, vasoconstrictors, uremic toxins, hypoglycemia, carbamylated proteins, oxidative stress, and inflammation have all been associated with the progression of cardiovascular disease in end-stage kidney disease but the causality of these mechanisms has not been proven. The high risk of cardiovascular mortality has not improved as in the general population despite many advancements in cardiovascular care over the last two decades. Mechanisms that increase hypertension risk in these patients are centered on the control of extracellular fluid volume; however, over-correction of volume with dialysis can increase risks of intradialytic hypotension and death in these patients. This review presents both recent and classic work that increases our understanding of hypertension and cardiovascular disease in end-stage kidney disease.
Collapse
Affiliation(s)
- John S Clemmer
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA
| | - Tariq Shafi
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA.,Division of Nephrology, University of Mississippi Medical Center, 2500 North State Street, Suite L-504, Jackson, MS, 39216, USA
| | - Yoshitsugu Obi
- Division of Nephrology, University of Mississippi Medical Center, 2500 North State Street, Suite L-504, Jackson, MS, 39216, USA.
| |
Collapse
|
14
|
Chaudhary NS, Armstrong ND, Hidalgo BA, Gutiérrez OM, Hellwege JN, Limdi NA, Reynolds RJ, Judd SE, Nadkarni GN, Lange L, Winkler CA, Kopp JB, Arnett DK, Tiwari HK, Irvin MR. SMOC2 gene interacts with APOL1 in the development of end-stage kidney disease: A genome-wide association study. Front Med (Lausanne) 2022; 9:971297. [PMID: 36250097 PMCID: PMC9554233 DOI: 10.3389/fmed.2022.971297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Background Some but not all African-Americans (AA) who carry APOL1 nephropathy risk variants (APOL1) develop kidney failure (end-stage kidney disease, ESKD). To identify genetic modifiers, we assessed gene-gene interactions in a large prospective cohort of the REasons for Geographic and Racial Differences in Stroke (REGARDS) study. Methods Genotypes from 8,074 AA participants were obtained from Illumina Infinium Multi-Ethnic AMR/AFR Extended BeadChip. We compared 388 incident ESKD cases with 7,686 non-ESKD controls, using a two-locus interaction approach. Logistic regression was used to examine the effect of APOL1 risk status (using recessive and additive models), single nucleotide polymorphism (SNP), and APOL1*SNP interaction on incident ESKD, adjusting for age, sex, and ancestry. APOL1 *SNP interactions that met the threshold of 1.0 × 10-5 were replicated in the Genetics of Hypertension Associated Treatment (GenHAT) study (626 ESKD cases and 6,165 controls). In a sensitivity analysis, models were additionally adjusted for diabetes status. We conducted additional replication in the BioVU study. Results Two APOL1 risk alleles prevalence (recessive model) was similar in the REGARDS and GenHAT studies. Only one APOL1-SNP interaction, for rs7067944 on chromosome 10, ~10 KB from the PCAT5 gene met the genome-wide statistical threshold (P interaction = 3.4 × 10-8), but this interaction was not replicated in the GenHAT study. Among other relevant top findings (with P interaction < 1.0 × 10-5), a variant (rs2181251) near SMOC2 on chromosome six interacted with APOL1 risk status (additive) on ESKD outcomes (REGARDS study, P interaction =5.3 × 10-6) but the association was not replicated (GenHAT study, P interaction = 0.07, BioVU study, P interaction = 0.53). The association with the locus near SMOC2 persisted further in stratified analyses. Among those who inherited ≥1 alternate allele of rs2181251, APOL1 was associated with an increased risk of incident ESKD (OR [95%CI] = 2.27[1.53, 3.37]) but APOL1 was not associated with ESKD in the absence of the alternate allele (OR [95%CI] = 1.34[0.96, 1.85]) in the REGARDS study. The associations were consistent after adjusting for diabetes. Conclusion In a large genome-wide association study of AAs, a locus SMOC2 exhibited a significant interaction with the APOL1 locus. SMOC2 contributes to the progression of fibrosis after kidney injury and the interaction with APOL1 variants may contribute to an explanation for why only some APOLI high-risk individuals develop ESKD.
Collapse
Affiliation(s)
- Ninad S. Chaudhary
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Nicole D. Armstrong
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Bertha A. Hidalgo
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Orlando M. Gutiérrez
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jacklyn N. Hellwege
- Division of Genetic Medicine, Department of Medicine, Vanderbilt Genetics Institute, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Nita A. Limdi
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Richard J. Reynolds
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Suzanne E. Judd
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Girish N. Nadkarni
- Division of Data-Driven and Digital Medicine (D3M), Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Leslie Lange
- Department of Medicine, University of Colorado Denver - Anschutz Medical Campus, Denver, CO, United States
| | - Cheryl A. Winkler
- Basic Research Program, National Cancer Institute, National Institutes of Health, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Jeffrey B. Kopp
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Donna K. Arnett
- Deans Office, College of Public Health, University of Kentucky, Lexington, KY, United States
| | - Hemant K. Tiwari
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Marguerite R. Irvin
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
15
|
Renalase: a novel regulator of cardiometabolic and renal diseases. Hypertens Res 2022; 45:1582-1598. [PMID: 35941358 PMCID: PMC9358379 DOI: 10.1038/s41440-022-00986-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/26/2022] [Accepted: 06/05/2022] [Indexed: 11/13/2022]
Abstract
Renalase is a ~38 kDa flavin-adenine dinucleotide (FAD) domain-containing protein that can function as a cytokine and an anomerase. It is emerging as a novel regulator of cardiometabolic diseases. Expressed mainly in the kidneys, renalase has been reported to have a hypotensive effect and may control blood pressure through regulation of sympathetic tone. Furthermore, genetic variations in the renalase gene, such as a functional missense polymorphism (Glu37Asp), have implications in the cardiovascular and renal systems and can potentially increase the risk of cardiometabolic disorders. Research on the physiological functions and biochemical actions of renalase over the years has indicated a role for renalase as one of the key proteins involved in various disease states, such as diabetes, impaired lipid metabolism, and cancer. Recent studies have identified three transcription factors (viz., Sp1, STAT3, and ZBP89) as key positive regulators in modulating the expression of the human renalase gene. Moreover, renalase is under the post-transcriptional regulation of two microRNAs (viz., miR-29b, and miR-146a), which downregulate renalase expression. While renalase supplementation may be useful for treating hypertension, inhibition of renalase signaling may be beneficial to patients with cancerous tumors. However, more incisive investigations are required to unravel the potential therapeutic applications of renalase. Based on the literature pertaining to the function and physiology of renalase, this review attempts to consolidate and comprehend the role of renalase in regulating cardiometabolic and renal disorders. ![]()
Collapse
|
16
|
Luo M, Cao S, Lv D, He L, He Z, Li L, Li Y, Luo S, Chang Q. Aerobic Exercise Training Improves Renal Injury in Spontaneously Hypertensive Rats by Increasing Renalase Expression in Medulla. Front Cardiovasc Med 2022; 9:922705. [PMID: 35898283 PMCID: PMC9309879 DOI: 10.3389/fcvm.2022.922705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
We aimed to examine the effects of aerobic exercise training on renal function in spontaneously hypertensive rats (SHR) and elucidate their possible mechanisms. Adult male SHR and age-matched Wistar-Kyoto rats (WKY) were divided into four groups: WKY sedentary group, SHR sedentary group, low-intensity training group, and medium-intensity training group. Using molecular and biochemical approaches, we investigated the effects of 14-week training on renalase (RNLS) protein levels, renal function, and apoptosis and oxidative stress modulators in kidney tissues. In vitro, angiotensin II (Ang II)-induced human kidney proximal epithelial cells (HK-2) were treated with RNLS, and changes in apoptosis and oxidative stress levels were observed. Our results show that moderate training improved renal function decline in SHR. In addition, aerobic exercise therapy significantly increased levels of RNLS in the renal medulla of SHR. We observed in vitro that RNLS significantly inhibited the increase of Ang II-inducedapoptosis and oxidative stress levels in HK-2. In conclusion, aerobic exercise training effectively improved renal function in SHR by promoting RNLS expression in the renal medulla. These results explain the possible mechanism in which exercise improves renal injury in hypertensive patients and suggest RNLS as a novel therapy for kidney injury patients.
Collapse
Affiliation(s)
- Minghao Luo
- The Affiliated Rehabilitation Hospital of Chongqing Medical University, Chongqing, China
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical UniversityChongqing, China
| | - Shuyuan Cao
- The Affiliated Rehabilitation Hospital of Chongqing Medical University, Chongqing, China
| | - Dingyi Lv
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical UniversityChongqing, China
| | - Longlin He
- The Affiliated Rehabilitation Hospital of Chongqing Medical University, Chongqing, China
| | - Zhou He
- The Affiliated Rehabilitation Hospital of Chongqing Medical University, Chongqing, China
| | - Lingang Li
- The Affiliated Rehabilitation Hospital of Chongqing Medical University, Chongqing, China
| | - Yongjian Li
- The Affiliated Rehabilitation Hospital of Chongqing Medical University, Chongqing, China
| | - Suxin Luo
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical UniversityChongqing, China
| | - Qing Chang
- The Affiliated Rehabilitation Hospital of Chongqing Medical University, Chongqing, China
- The College of Exercise Medicine, Chongqing Medical University, Chongqing, China
- *Correspondence: Qing Chang
| |
Collapse
|
17
|
Safdar B, Wang M, Guo X, Cha C, Chun HJ, Deng Y, Dziura J, El-Khoury JM, Gorelick F, Ko AI, Lee AI, Safirstein R, Simonov M, Zhou B, Desir GV. Association of renalase with clinical outcomes in hospitalized patients with COVID-19. PLoS One 2022; 17:e0264178. [PMID: 35259186 PMCID: PMC8903289 DOI: 10.1371/journal.pone.0264178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 02/04/2022] [Indexed: 12/27/2022] Open
Abstract
Renalase is a secreted flavoprotein with anti-inflammatory and pro-cell survival properties. COVID-19 is associated with disordered inflammation and apoptosis. We hypothesized that blood renalase levels would correspond to severe COVID-19 and survival. In this retrospective cohort study, clinicopathologic data and blood samples were collected from hospitalized COVID-19 subjects (March—June 2020) at a single institution tertiary hospital. Plasma renalase and cytokine levels were measured and clinical data abstracted from health records. Of 3,450 COVID-19 patients, 458 patients were enrolled. Patients were excluded if <18 years, or opted out of research. The primary composite outcome was intubation or death within 180 days. Secondary outcomes included mortality alone, intensive care unit admission, use of vasopressors, and CPR. Enrolled patients had mean age 64 years (SD±17), were 53% males, and 48% non-whites. Mean renalase levels was 14,108·4 ng/ml (SD±8,137 ng/ml). Compared to patients with high renalase, those with low renalase (< 8,922 ng/ml) were more likely to present with hypoxia, increased ICU admission (54% vs. 33%, p < 0.001), and cardiopulmonary resuscitation (10% vs. 4%, p = 0·023). In Cox proportional hazard model, every 1000 ng/ml increase in renalase decreased the risk of death or intubation by 5% (HR 0·95; 95% CI 0·91–0·98) and increased survival alone by 6% (HR 0·95; CI 0·90–0·98), after adjusting for socio-demographics, initial disease severity, comorbidities and inflammation. Patients with high renalase-low IL-6 levels had the best survival compared to other groups (p = 0·04). Renalase was independently associated with reduced intubation and mortality in hospitalized COVID-19 patients. Future studies should assess the pathophysiological relevance of renalase in COVID-19 disease.
Collapse
Affiliation(s)
- Basmah Safdar
- Department of Emergency Medicine, Yale School of Medicine, New Haven, Connecticut, United States of America
- * E-mail:
| | - Melinda Wang
- Department of Medicine, Yale School of Medicine, New Haven, Connecticut, United States of America
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Xiaojia Guo
- Department of Medicine, Yale School of Medicine, New Haven, Connecticut, United States of America
- VA CT HealthCare, West Haven, Connecticut, United States of America
| | - Charles Cha
- Department of Surgery, Hartford HealthCare, Hartford, Connecticut, United States of America
| | - Hyung J. Chun
- Department of Medicine, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Yanhong Deng
- Yale Center of Analytics Sciences, New Haven, Connecticut, United States of America
| | - James Dziura
- Department of Emergency Medicine, Yale School of Medicine, New Haven, Connecticut, United States of America
- Yale Center of Analytics Sciences, New Haven, Connecticut, United States of America
| | - Joe M. El-Khoury
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Fred Gorelick
- Department of Medicine, Yale School of Medicine, New Haven, Connecticut, United States of America
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut, United States of America
- Yale Center of Analytics Sciences, New Haven, Connecticut, United States of America
| | - Albert I. Ko
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Alfred I. Lee
- Department of Medicine, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Robert Safirstein
- Department of Medicine, Yale School of Medicine, New Haven, Connecticut, United States of America
- VA CT HealthCare, West Haven, Connecticut, United States of America
| | - Michael Simonov
- Yale Center of Analytics Sciences, New Haven, Connecticut, United States of America
| | - Bin Zhou
- Yale Center of Analytics Sciences, New Haven, Connecticut, United States of America
| | - Gary V. Desir
- Department of Medicine, Yale School of Medicine, New Haven, Connecticut, United States of America
- VA CT HealthCare, West Haven, Connecticut, United States of America
| |
Collapse
|
18
|
Wang Y, Chen C, Hu GL, Chu C, Zhang XY, Du MF, Zou T, Zhou Q, Liao YY, Ma Q, Wang KK, Sun Y, Wang D, Yan Y, Li Y, Jia H, Niu ZJ, Zhang X, Wang L, Man ZY, Gao WH, Li CH, Zhang J, Gao K, Li HX, Chang J, Desir GV, Lu WH, Mu JJ. Associations of Renalase With Blood Pressure and Hypertension in Chinese Adults. Front Cardiovasc Med 2022; 9:800427. [PMID: 35282385 PMCID: PMC8907541 DOI: 10.3389/fcvm.2022.800427] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 01/31/2022] [Indexed: 12/11/2022] Open
Abstract
Objective Renalase, a novel secretory flavoprotein with amine oxidase activity, is secreted into the blood by the kidneys and is hypothesized to participate in blood pressure (BP) regulation. We investigated the associations of renalase with BP and the risk of hypertension by examining renalase single nucleopeptide polymorphism (SNPs), serum renalase levels, and renal expression of renalase in humans. Methods ① Subjects (n = 514) from the original Baoji Salt-Sensitive Study cohort were genotyped to investigate the association of renalase SNPs with longitudinal BP changes and the risk of hypertension during 14 years of follow-up. ② Two thousand three hundred and ninety two participants from the Hanzhong Adolescent Hypertension Study cohort were used to examine the association of serum renalase levels with hypertension. Renalase expression in renal biopsy specimens from 193 patients were measured by immunohistochemistry. ③ Renalase expression was compared in hypertensive vs. normotensive patients. Results ① SNP rs7922058 was associated with 14-year change in systolic BP, and rs10887800, rs796945, rs1935582, rs2296545, and rs2576178 were significantly associated with 14-year change in diastolic BP while rs1935582 and rs2576178 were associated with mean arterial pressure change over 14 years. In addition, SNPs rs796945, rs1935582, and rs2576178 were significantly associated with hypertension incidence. Gene-based analysis found that renalase gene was significantly associated with hypertension incidence over 14-year follow-up after adjustment for multiple measurements. ② Hypertensive subjects had higher serum renalase levels than normotensive subjects (27.2 ± 0.4 vs. 25.1 ± 0.2 μg/mL). Serum renalase levels and BPs showed a linear correlation. In addition, serum renalase was significantly associated with the risk of hypertension [OR = 1.018 (1.006–1.030)]. ③ The expression of renalase in human renal biopsy specimens significantly decreased in hypertensive patients compared to non-hypertensive patients (0.030 ± 0.001 vs. 0.038 ± 0.004). Conclusions These findings indicate that renalase may play an important role in BP progression and development of hypertension.
Collapse
Affiliation(s)
- Yang Wang
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Key Laboratory of Molecular Cardiology of Shaanxi Province, Xi'an, China
| | - Chen Chen
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Key Laboratory of Molecular Cardiology of Shaanxi Province, Xi'an, China
| | - Gui-Lin Hu
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chao Chu
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Key Laboratory of Molecular Cardiology of Shaanxi Province, Xi'an, China
| | - Xiao-Yu Zhang
- Department of Cardiology, Northwest Women's and Children's Hospital of Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Ming-Fei Du
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ting Zou
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qing Zhou
- National Engineering Research Center for Beijing Biochip Technology, Beijing, China
| | - Yue-Yuan Liao
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Key Laboratory of Molecular Cardiology of Shaanxi Province, Xi'an, China
| | - Qiong Ma
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Key Laboratory of Molecular Cardiology of Shaanxi Province, Xi'an, China
| | - Ke-Ke Wang
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Key Laboratory of Molecular Cardiology of Shaanxi Province, Xi'an, China
| | - Yue Sun
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Key Laboratory of Molecular Cardiology of Shaanxi Province, Xi'an, China
| | - Dan Wang
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yu Yan
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Key Laboratory of Molecular Cardiology of Shaanxi Province, Xi'an, China
| | - Yan Li
- Department of Nephrology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hao Jia
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ze-Jiaxin Niu
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xi Zhang
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lan Wang
- Department of Cardiology, Xi'an International Medical Center Hospital, Xi'an, China
| | - Zi-Yue Man
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Key Laboratory of Molecular Cardiology of Shaanxi Province, Xi'an, China
| | - Wei-Hua Gao
- Department of Cardiology, Xi'an No.1 Hospital, Xi'an, China
| | - Chun-Hua Li
- Department of Ophthalmology, Xi'an People's Hospital, Xi'an, China
| | - Jie Zhang
- Department of Cardiology, Xi'an People's Hospital, Xi'an, China
| | - Ke Gao
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hui-Xian Li
- Department of Nephrology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - John Chang
- Department of Medicine, Yale University School of Medicine, New Haven, CT, United States
- Department of Medicine, Veterans Administration Healthcare System, West Haven, CT, United States
| | - Gary V. Desir
- Department of Medicine, Yale University School of Medicine, New Haven, CT, United States
- Department of Medicine, Veterans Administration Healthcare System, West Haven, CT, United States
| | - Wan-Hong Lu
- Department of Nephrology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- *Correspondence: Wan-Hong Lu
| | - Jian-Jun Mu
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Key Laboratory of Molecular Cardiology of Shaanxi Province, Xi'an, China
- Jian-Jun Mu
| |
Collapse
|
19
|
Buraczynska M, Gwiazda-Tyndel K, Drop B, Zaluska W. Renalase gene Glu37Asp polymorphism affects susceptibility to diabetic retinopathy in type 2 diabetes mellitus. Acta Diabetol 2021; 58:1595-1602. [PMID: 34156537 PMCID: PMC8542546 DOI: 10.1007/s00592-021-01740-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 05/07/2021] [Indexed: 01/09/2023]
Abstract
AIMS Renalase (RNLS) is an enzyme with monoamine oxidase activity that metabolizes circulating catecholamines. The RNLS gene Asp37Glu missense polymorphism (rs2296545) has been associated with hypertension, cardiac hypertrophy and dysfunction, and stroke. The purpose of our study was to investigate the potential involvement of this polymorphism in the microvascular complications of type 2 diabetes (T2DM). METHODS In this case-control study, the polymorphism was genotyped in 860 patients with T2DM and 400 healthy controls. The genotype and allele distribution was compared in subgroups of patients: with diabetic nephropathy (DN+) (n = 405) versus DN- (independently of the presence of DR) and, similarly, patients with diabetic retinopathy (DR+) (n = 328) versus DR- (independently of the presence of DN). RESULTS No significant association was detected between analyzed polymorphism and DN. In contrast, the retinopathy subgroup showed a significantly higher frequency of G allele (OR 1.4, 95% CI 1.16-1.72, p = 0.0005) and GG genotype (OR 1.86, 95% CI 1.26-2.75, p = 0.001) than DR- patients. The effect of RNLS Glu37Asp polymorphism on DR remained significant after adjustments for age, gender, BMI, and duration of T2DM (p = 0.005). CONCLUSIONS This is the first study to investigate RNLS gene polymorphism in microvascular complications of T2DM. The results suggest that RNLS rs2296545 SNP might be considered a risk factor for diabetic retinopathy in T2DM patients. This can provide new insight into the role of renalase gene in the pathophysiology of microvascular complications of diabetes.
Collapse
Affiliation(s)
- Monika Buraczynska
- Department of Nephrology, Medical University of Lublin, Jaczewskiego 8, 20-950, Lublin, Poland.
| | - Karolina Gwiazda-Tyndel
- Department of Nephrology, Medical University of Lublin, Jaczewskiego 8, 20-950, Lublin, Poland
| | - Bartłomiej Drop
- Department of Medical Informatics and Statistics, Medical University of Lublin, Lublin, Poland
| | - Wojciech Zaluska
- Department of Nephrology, Medical University of Lublin, Jaczewskiego 8, 20-950, Lublin, Poland
| |
Collapse
|
20
|
The Effect of Renalase rs2576178 and rs10887800 Polymorphisms on Ischemic Stroke Susceptibility in Young Patients (<50 Years): A Case-Control Study and In Silico Analysis. DISEASE MARKERS 2021; 2021:5542292. [PMID: 34603559 PMCID: PMC8483926 DOI: 10.1155/2021/5542292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 08/20/2021] [Accepted: 08/25/2021] [Indexed: 12/03/2022]
Abstract
Background Ischemic stroke (IS) is the most common form of cerebrovascular accident which its precise etiology remains mysterious. Renalase is a catecholamine-degrading enzyme playing a major role in blood pressure control. Recent studies show the effect of renalase activity on various diseases like IS. In the current study, we examined the possible effects of renalase gene (RNLS) rs2576178 and rs10887800 variants at the 5′-flanking and intron 6 regions on IS, respectively. Methods One hundred and fifty-four IS patients younger than 50 years and 165 age- and sex-matched controls were recruited in the study. For genotyping of rs2576178 and rs10887800 variants, the PCR-RFLP method was used. Results The RNLS rs10887800 AG genotype was more repeated in IS patients, but the difference was marginally nonsignificant (P = 0.054). This variant was associated with IS in the overdominant model, and the AG genotype is associated with a1.6-fold increased risk of IS compared to AA+ GG genotypes (OR = 1.6, 95% CI: 1-2.5, P = 0.033). No relationship was observed between RNLS rs2576178 polymorphism and IS in all genetic models. The findings of the haplotype and combination effects of rs10887800 and rs2576178 variants on IS showed no significant association. The in silico analysis showed no effect of rs2576178 and rs10887800 polymorphisms in the RNA structure, but the alteration of RNA sequence in rs2576178 results in the lack of a MBNL1 protein binding site. Conclusions RNLS rs10887800 but not rs2576178 polymorphism was associated with IS susceptibility in the overdominant model (AG vs AA+ GG genotypes).
Collapse
|
21
|
Czerwińska K, Poręba R, Gać P. Renalase-A new understanding of its enzymatic and non-enzymatic activity and its implications for future research. Clin Exp Pharmacol Physiol 2021; 49:3-9. [PMID: 34545616 DOI: 10.1111/1440-1681.13594] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/16/2021] [Accepted: 09/19/2021] [Indexed: 01/09/2023]
Abstract
Renalase was first described in 2005 and since then it became an object of scientific interest because of its proposed ability to catalyse circulating neurotransmitters and its promising antihypertensive effects. However, further research on the enzymatic activity of renalase did not confirm these initial findings and yielded that renalase serves to oxidize isomeric forms of β-NAD(P)H and recycle them by forming β-NAD(P)+. Moreover, in contrast to initial assumptions, it is indicated that renalase's enzymatic activity is confined to the cell and that extracellular renalase loses its enzymatic properties. These new reports led scientists to question as to whether renalase, as an enzyme, still has the potential to influence various systemic physiological responses (e.g. blood pressure). It was also put into question whether many physiological discoveries published based on the notion that renalase is secreted into the blood and acts by oxidation of catecholamines can still be considered valid. In this article, we attempt to review the literature to confront these doubts and find further possible directions of research on the importance of renalase. Our aim was to evaluate recent reports of non-enzymatic activity for renalase.
Collapse
Affiliation(s)
| | - Rafał Poręba
- Department of Internal and Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, Wroclaw, Poland
| | - Paweł Gać
- Department of Hygiene, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
22
|
Pointer TC, Gorelick FS, Desir GV. Renalase: A Multi-Functional Signaling Molecule with Roles in Gastrointestinal Disease. Cells 2021; 10:2006. [PMID: 34440775 PMCID: PMC8391834 DOI: 10.3390/cells10082006] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/21/2021] [Accepted: 07/28/2021] [Indexed: 01/11/2023] Open
Abstract
The survival factor renalase (RNLS) is a recently discovered secretory protein with potent prosurvival and anti-inflammatory effects. Several evolutionarily conserved RNLS domains are critical to its function. These include a 20 aa site that encodes for its prosurvival effects. Its prosurvival effects are shown in GI disease models including acute cerulein pancreatitis. In rodent models of pancreatic cancer and human cancer tissues, increased RNLS expression promotes cancer cell survival but shortens life expectancy. This 37 kD protein can regulate cell signaling as an extracellular molecule and probably also at intracellular sites. Extracellular RNLS signals through a specific plasma membrane calcium export transporter; this interaction appears most relevant to acute injury and cancer. Preliminary studies using RNLS agonists and antagonists, as well as various preclinical disease models, suggest that the immunologic and prosurvival effects of RNLS will be relevant to diverse pathologies that include acute organ injuries and select cancers. Future studies should define the roles of RNLS in intestinal diseases, characterizing the RNLS-activated pathways linked to cell survival and developing therapeutic agents that can increase or decrease RNLS in relevant clinical settings.
Collapse
Affiliation(s)
- Thomas C. Pointer
- Department of Medicine, Yale School of Medicine, 333 Cedar St., New Haven, CT 06510, USA; (T.C.P.); (F.S.G.)
| | - Fred S. Gorelick
- Department of Medicine, Yale School of Medicine, 333 Cedar St., New Haven, CT 06510, USA; (T.C.P.); (F.S.G.)
- VA Connecticut Health Care System, 950 Campbell Avenue, West Haven, CT 06516, USA
| | - Gary V. Desir
- Department of Medicine, Yale School of Medicine, 333 Cedar St., New Haven, CT 06510, USA; (T.C.P.); (F.S.G.)
- VA Connecticut Health Care System, 950 Campbell Avenue, West Haven, CT 06516, USA
| |
Collapse
|
23
|
Renalase improves pressure overload-induced heart failure in rats by regulating extracellular signal-regulated protein kinase 1/2 signaling. Hypertens Res 2021; 44:481-488. [PMID: 33420473 DOI: 10.1038/s41440-020-00599-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 10/13/2020] [Accepted: 11/10/2020] [Indexed: 01/11/2023]
Abstract
Renalase, a novel flavoprotein that is mainly expressed in the kidney and heart, plays a crucial role in hypertension. Recent studies have shown that renalase is expressed at low levels in the serum of patients with heart failure, while the role of renalase and its mechanism in cardiac failure is unclear. Adult Sprague-Dawley (SD) rats were used to investigate the role and function of renalase in the pathological process of transverse aortic constriction (TAC)-induced heart failure. Renalase-human protein chip analysis showed that renalase was directly associated with P38 and extracellular signal-regulated protein kinase 1/2 (ERK1/2) signaling. We further used lentivirus-mediated RNA interference to study the role of renalase in the progression of pathological ventricular hypertrophy and found that renalase inhibition attenuated the noradrenaline-induced hypertrophic response in vitro or the pressure overload-induced hypertrophic response in vivo. Recombinant renalase protein significantly alleviated pressure overload-induced cardiac failure and was associated with P38 and ERK1/2 signaling. These findings demonstrate that renalase is a potential biomarker of hypertrophy and that exogenous recombinant renalase is a potential and novel drug for heart failure.
Collapse
|
24
|
High Salt Diet Impacts the Risk of Sarcopenia Associated with Reduction of Skeletal Muscle Performance in the Japanese Population. Nutrients 2020; 12:nu12113474. [PMID: 33198295 PMCID: PMC7696631 DOI: 10.3390/nu12113474] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/02/2020] [Accepted: 11/05/2020] [Indexed: 12/12/2022] Open
Abstract
The World Health Organization has recommended 5 g/day as dietary reference intakes for salt. In Japan, the averages for men and women were 11.0 g/day and 9.3 g/day, respectively. Recently, it was reported that amounts of sodium accumulation in skeletal muscles of older people were significantly higher than those in younger people. The purpose of this study was to investigate whether the risk of sarcopenia with decreased muscle mass and strength was related to the amount of salt intake. In addition, we investigated its involvement with renalase. Four groups based on age and salt intake ("younger low-salt," "younger high-salt," "older low-salt," and "older high-salt") were compared. Stratifying by age category, body fat percentage significantly increased in high-salt groups in both younger and older people. Handgrip strength/body weight and chair rise tests of the older high-salt group showed significant reduction compared to the older low-salt group. However, there was no significant difference in renalase concentrations in plasma. The results suggest that high-salt intake may lead to fat accumulation and muscle weakness associated with sarcopenia. Therefore, efforts to reduce salt intake may prevent sarcopenia.
Collapse
|
25
|
Zhang F, Liu W, Wu Y, Li X, Zhang S, Feng Y, Lu R, Sun L. Association of renalase gene polymorphisms with the risk of hypertensive disorders of pregnancy in northeastern Han Chinese population. Gynecol Endocrinol 2020; 36:986-990. [PMID: 32338092 DOI: 10.1080/09513590.2020.1750000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Renalase is a novel enzyme that can regulate blood pressure by degrading circulating catecholamines. We aimed to evaluate the possible effect of rs2296545, rs2576178 and rs10887800 polymorphisms of the renalase gene (RNLS) on the development of hypertensive disorders of pregnancy (HDP). This case-control study consisted of 185 patients with HDP and 380 normotensive pregnant women from the northeastern Chinese Han population. Association analyses were performed using PLINK, to compare allele and genotype frequencies in cases and controls. Adjustment for logistic regression analysis was performed by permutation testing. In the HDP patients compared with controls, we found that there was statistically significant difference in genotype distribution of rs2296545 (p = .037). Rs2296545 and rs2576178 polymorphisms have 1.91-fold (p = .004) and 1.73-fold (p = .015) increased risk of HDP in the dominant model, respectively. When compared preeclampsia (PE) to control, the RNLS rs2296545 polymorphism was significantly associated with PE risk in the dominant model (p = .021). We next analyzed the haplotypes of these SNPs and there was no difference between controls and HDP or PE. These findings suggest that rs2296545 was significantly associated with HDP and PE risk and the rs2576178 polymorphism may increase the susceptibility to HDP.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Ultrasound, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Wei Liu
- Department of Ultrasound, Mudanjiang Maternal and Child Health Hospital, Mudanjiang, China
| | - Yingnan Wu
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaoying Li
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shuang Zhang
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yanan Feng
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Rui Lu
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Litao Sun
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
26
|
Li Y, Wu W, Liu W, Zhou M. Roles and mechanisms of renalase in cardiovascular disease: A promising therapeutic target. Biomed Pharmacother 2020; 131:110712. [PMID: 32916539 DOI: 10.1016/j.biopha.2020.110712] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/28/2020] [Accepted: 08/30/2020] [Indexed: 12/16/2022] Open
Abstract
Cardiovascular disease (CVD) is prevalent worldwide and remains a leading cause of death. Although substantial progress has been made in the diagnosis and treatment of CVD, the prognosis remains unsatisfactory. Renalase is a newly discovered cytokine that is synthesized by the kidney and then secreted into blood. Numerous studies have suggested the efficacy of renalase in treating CVD by metabolizing catecholamines in the circulatory system. As a new biomarker of heart disease, renalase is normally recognized as a signalling molecule that activates cytoprotective intracellular signals to lower blood pressure, protect ischaemic heart muscle and promote atherosclerotic plaque stability in CVD, which subsequently improves cardiac function. Due to its important regulatory role in the circulatory system, renalase has gradually become a potential target in the treatment of CVD. This review summarizes the structure, mechanism and function of renalase in CVD, thereby providing preclinical evidence for alternative approaches and new prospects in the development of renalase-related drugs against CVD.
Collapse
Affiliation(s)
- Yue Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing, 100010, China
| | - Weidong Wu
- London Metropolitan University, London, N7 8DB, United Kingdom
| | - Weihong Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing, 100010, China
| | - Mingxue Zhou
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing, 100010, China.
| |
Collapse
|
27
|
Martynowicz H, Czerwińska K, Wojakowska A, Januszewska L, Markiewicz-Górka I, Więckiewicz M, Mazur G, Pawlas K, Poręba R, Gać P. Renalase and hypertension-demographic and clinical correlates in obstructive sleep apnea. Sleep Breath 2020; 25:669-675. [PMID: 32761534 PMCID: PMC8195972 DOI: 10.1007/s11325-020-02157-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/18/2020] [Accepted: 07/28/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND Renalase plays an important role in blood pressure regulation. Obstructive sleep apnea (OSA) is a common respiratory disorder associated with hypertension and cardiovascular complications. The aim of the study was to assess the relationship between sleep apnea and renalase concentration. MATERIAL AND METHODS Adult patients (n = 113) were evaluated for OSA in a sleep laboratory using polysomnography. The respiratory events were scored according to the standards developed by the American Academy of Sleep Medicine. The blood renalase concentration was determined by the ELISA (enzyme-linked immunosorbent assay) test. RESULTS OSA (AHI ≥ 5) was diagnosed in 71% (n = 80) of the studied population. Renalase concentration was statistically significantly lower in the group with moderate-to-severe OSA (AHI ≥ 15) compared with the group without OSA (AHI < 5) (139.56 ± 175.72 ng/ml vs. 230.97 ± 240.50 ng/ml, p = 0.042). We have found statistically significant negative correlation between renalase and AHI in hypertensives, but not in normotensives. The statistically significant negative correlation was observed between AHI and renalase in the whole studied group, in males, and in the group of age < 60 years old. There was not such a correlation in females and in the group > 60 years old. Based on the regression model, it was shown that lower renalase concentration, hypertension, higher BMI, and male gender are independently associated with higher AHI. CONCLUSIONS There is a relationship between the blood renalase concentration and the severity of OSA, which may influence hypertension development in OSA.
Collapse
Affiliation(s)
- Helena Martynowicz
- Department of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, 213 Borowska St., 50-556, Wroclaw, Poland
| | - Karolina Czerwińska
- Department of Hygiene, Wroclaw Medical University, 7 Mikulicza-Radeckiego St., 50-345, Wroclaw, Poland
| | - Anna Wojakowska
- Department of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, 213 Borowska St., 50-556, Wroclaw, Poland
| | - Lidia Januszewska
- Department of Hygiene, Wroclaw Medical University, 7 Mikulicza-Radeckiego St., 50-345, Wroclaw, Poland
| | - Iwona Markiewicz-Górka
- Department of Hygiene, Wroclaw Medical University, 7 Mikulicza-Radeckiego St., 50-345, Wroclaw, Poland
| | - Mieszko Więckiewicz
- Department of Experimental Dentistry, Wroclaw Medical University, 26 Krakowska St., 50-425, Wroclaw, Poland
| | - Grzegorz Mazur
- Department of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, 213 Borowska St., 50-556, Wroclaw, Poland
| | - Krystyna Pawlas
- Department of Hygiene, Wroclaw Medical University, 7 Mikulicza-Radeckiego St., 50-345, Wroclaw, Poland
| | - Rafał Poręba
- Department of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, 213 Borowska St., 50-556, Wroclaw, Poland
| | - Paweł Gać
- Department of Hygiene, Wroclaw Medical University, 7 Mikulicza-Radeckiego St., 50-345, Wroclaw, Poland.
| |
Collapse
|
28
|
El Niadany SS, El Gayed AMA, El Gayed EMA. Renalase rs10887800 gene polymorphism and its serum level in preeclampsia. Meta Gene 2020. [DOI: 10.1016/j.mgene.2020.100649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
29
|
Abdullah Bawazir LA, Sianipar W, Buntaran S, Kekalih A. The relationship between body mass index and blood pressure in patients undergoing chronic hemodialysis: A reverse epidemiology in Jakarta, Indonesia. SAUDI JOURNAL OF KIDNEY DISEASES AND TRANSPLANTATION 2020; 31:62-69. [PMID: 32129198 DOI: 10.4103/1319-2442.279962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
In the general population, obesity is positively correlated with hypertension. On the other hand, there was hypothesis of "reverse epidemiology" in the relationship between body mass index (BMI) and blood pressure (BP) of hemodialysis (HD) patients. This study aimed to investigate the "reverse epidemiology" of the relationship between the two variables in Jakarta, Indonesia. Cross-sectional study was conducted at Cipto Mangunkusumo Hospital, Koja District Hospital, and Cengkareng District Hospital in July 2018. Total sampling was performed with a total of 525 HD patients aged >18 years. All data were analyzed from the medical records. Of 525 patients, 27.4% were obese. The post hoc analyses showed that obese patients had significantly lower post-HD systolic BP (P = 0.006) and diastolic BP (P = 0.004) than the normal-weight patients. The Chi-square analyses showed that the overweight group [odds ratio (OR) = 0.53; 95% confidence interval (CI) 0.31-0.87; P = 0.011] and the obese group (OR = 0. 63; 95% CI 0.400.97; P= 0.038) had significant protective effect (OR <1) on the post-HD hypertension. Being obese was a strong predictor for reduced BP (coefficient β = -0.02; P = 0.031). BMI is inversely associated with BP in patients undergoing chronic HD.
Collapse
Affiliation(s)
- Lucky Aziza Abdullah Bawazir
- Division of Nephrology and Hypertension, Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia - Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | | | | | - Aria Kekalih
- Department of Community Occupational and Family Medicine, Faculty of Medicine, Universitas Indonesia - Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| |
Collapse
|
30
|
You NN, Jiang WH, Lin MY, Li XG, Wu YY, Li JY, Zhou XY, Ding ZW, Wang JW, Zhao XX, Chen HL, Tang HT. The role of urinary renalase on early-stage renal damage in Chinese adults with primary hypertension. Exp Biol Med (Maywood) 2020; 245:576-582. [PMID: 32102561 PMCID: PMC7158598 DOI: 10.1177/1535370220909311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/06/2020] [Indexed: 01/11/2023] Open
Abstract
It would be of great clinical value to find an indicator that can accurately evaluate the early-stage renal injury in primary hypertension. Previous findings have shown renalase not only plays an important role in hypertension but also closely correlates with kidney function. The purpose of this study is to investigate whether urinary renalase could be used as a predictive index of early-stage renal damage in patients with primary hypertension. Urinary albumin to creatinine ratio (UACR) was used to divide subjects with primary hypertension into two groups: a no renal damage (NRD) group (UACR <30 mg/g) and an early-stage renal damage (RD) group (UACR >30 mg/g). Subjects with normal examination results were randomly included in a healthy control (HC) group. Urinary renalase was determined through an enzyme-linked immunosorbent assay (ELISA). Urinary renalase continued to reduce among the HC (n = 81), NRD (n = 84) and RD group (n = 80), while systolic blood pressure (SBP) increased. Urinary renalase was negatively correlated with SBP in all the groups. Among the subjects with stage 1 primary hypertension, urinary renalase in the RD group was lower than the NRD group, while the UACR was higher, and urinary renalase was negatively correlated with the UACR. A multiple linear stepwise regression analysis showed that there was a linear regression relationship between the increase of the UACR and urinary renalase, heart rate (HR), SBP and serum creatinine. In addition, the standardized partial regression coefficient of urinary renalase was the highest. The performance of urinary renalase as a marker for the diagnosis of early-stage renal damage in patients with primary hypertension was 0.968 with a cut off value of 2.01 µg/ml. Taken together, urinary renalase was further decreased in patients with early-stage renal damage and primary hypertension, and consequently, it could be used as a predictive index.
Collapse
Affiliation(s)
- Na-Na You
- Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Wei-Hong Jiang
- Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Ming-Yuan Lin
- Department of Cardiology, Zhongshan Hospital of Xiamen University, Xiamen 361004, China
| | - Xiao-Gang Li
- Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Yu-Yan Wu
- Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Jia-Ying Li
- Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Xiao-Yu Zhou
- Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Ze-Wen Ding
- Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Jun-Wen Wang
- Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Xie-Xiong Zhao
- Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Hui-Ling Chen
- Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Hui-Ting Tang
- Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| |
Collapse
|
31
|
Loutradis C, Sarafidis P. Pharmacotherapy of hypertension in patients with pre-dialysis chronic kidney disease. Expert Opin Pharmacother 2020; 21:1201-1217. [PMID: 32073319 DOI: 10.1080/14656566.2020.1726318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Hypertension is the most common co-morbidity in patients with chronic kidney disease (CKD), with prevalence gradually increasing across CKD Stages to the extent that about 90% of end-stage renal disease (ESRD) patients are hypertensives. Several factors contribute to blood pressure (BP) elevation and guide the therapeutic interventions that should be employed in these patients. AREAS COVERED This review summarizes the existing data for the management of hypertension, regarding optimal BP targets and the use of major antihypertensive classes in patients with CKD. EXPERT OPINION Management of hypertension in CKD requires both lowering BP levels and reducing proteinuria to minimize the risk of both CKD progression and cardiovascular disease. In this respect, aggressive control of office BP to levels <130/80 mmHg has long been proposed for patients with proteinuric nephropathies. Following evidence from recent studies that confirmed significant reductions in renal and cardiovascular outcomes with strict BP control, most, but not all, of international guidelines, suggest such BP goals for all hypertensive patients, including those with CKD. Use of renin-angiotensin system (RAS) blockers is the treatment of choice for patients with proteinuric nephropathies, while, in most patients with CKD, combination treatment with two, three, or more antihypertensive agents is often required to control BP.
Collapse
Affiliation(s)
- Charalampos Loutradis
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki , Thessaloniki, Greece
| | - Pantelis Sarafidis
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki , Thessaloniki, Greece
| |
Collapse
|
32
|
Izadpanah P, Asadian F, Jangjou A. Association of Serum Renalase Levels and Renalase rs10887800 Polymorphism with Unstable Angina Pectoris Patients Having Metabolic Syndrome. Diabetes Metab Syndr Obes 2020; 13:3249-3259. [PMID: 32982355 PMCID: PMC7501982 DOI: 10.2147/dmso.s265773] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/19/2020] [Indexed: 12/22/2022] Open
Abstract
PURPOSE An increased risk of cardiovascular mortality and morbidity has been linked with metabolic syndrome (MetS), described as the secondary risk reduction target. These patients are predisposed to high complication levels such as unstable angina-pectoris (USAP) by MetS. As with the role of renalase in the regulation of blood pressure (BP), the study was carried out to determine the levels of renalase circulation in patients with USAP and MetS (USAP+MetS), as well as the association of renalase gene (RNLS) rs10887800 polymorphism and USAP and MetS susceptibility. PATIENTS AND METHODS A total of 134 patients with USAP+MetS and 134 control subjects were recruited in this case-control study. RESULTS Renalase was found to have a significantly higher level in USAP+MetS patients (23.28 ± 4.09 µg/dL) than in healthy ones (20.81 ± 2.73 µg/dL) (P < 0.001). Also, it was shown that renalase sensitivity and specificity values for the early diagnosis of USAP and MetS seemed to be 53.7% and 76.9, respectively. Moreover, the value for renalase area under curve (AUC) was 0.654 (95% CI: 0.58-0.72). The frequency of rs10887800 AG and GG genotypes of RNLS gene was significantly higher in USAP+MetS patients than in control subjects, suggesting that this genotype might be a risk factor against USAP+MetS (OR = 2.114 [95% CI 1.113-4.016]; P = 0.022) and (OR = 2.057 [95% CI 1.011-4.186]; P = 0.047), respectively. CONCLUSION The present results showed that renalase serum levels increased in USAP and MetS patients. Moreover, the RNLS rs10887800 was reported to be associated with a higher risk of USAP+MetS.
Collapse
Affiliation(s)
- Peyman Izadpanah
- Cardiology Department, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Asadian
- Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Jangjou
- Emergency Medicine Department, Shiraz University of Medical Sciences, Shiraz, Iran
- Correspondence: Ali Jangjou Emergency Medicine Department, Shiraz University of Medical Sciences, Shiraz, IranTel +98-9173157555 Email
| |
Collapse
|
33
|
Association of Plasma Renalase and Left Ventricle Mass Index in Heart Failure Patients Stratified to the Category of the Ejection Fraction: A Pilot Study. DISEASE MARKERS 2019; 2019:7265160. [PMID: 31737132 PMCID: PMC6815612 DOI: 10.1155/2019/7265160] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 08/28/2019] [Indexed: 12/28/2022]
Abstract
Heart failure represents a growing health problem, with increasing morbidity and mortality globally. According to the mechanisms involved in the pathogenesis of heart failure, many biomarkers have been proposed for the timely diagnosis and prognostication of patients with heart failure, but other than natriuretic peptides, none of them has gained enough clinical significance. Renalase, a new protein derived from kidneys was demonstrated to metabolize catecholamines and to have a cardioprotective role. The aim of the study was to determine whether renalase and brain natriuretic peptide (BNP) concentration could be used to differentiate heart failure patients stratified to the category of the ejection fraction and whether plasma renalase could be used as a biomarker for left ventricle hypertrophy in all subgroups of heart failure patients. We included patients diagnosed with heart failure and stratified them to the three subgroups according to the ejection fraction. Regarding echocardiographic parameters, HFmrEF had an intermediate profile in between HFrEF and HFpEF, with statistical significance in most evaluated parameters. BNP concentration was significantly different in all three subgroups (p < 0.001), and renalase was statistically higher in HFrEF (p = 0.007) compared to the HFmrEF and HFpEF, where its results were similar, without statistical significance. Renalase plasma concentration was demonstrated to be highly and positively associated with left ventricle mass index in HFrEF (p = 0.029), as well as increased plasma concentration of BNP (p = 0.006). In the HFmrEF group of patients, body mass index was positively associated with LVMI (p = 0.05), while in the patients with HFpEF, diabetes mellitus was demonstrated to have a positive association with LVMI (p = 0.043). These findings suggest that renalase concentration may be measured in order to differentiate patients with reduced ejection fraction. Plasma renalase concentrations positively correlated with left ventricle hypertrophy in patients with reduced ejection fraction, being strongly associated with increased left ventricular mass index.
Collapse
|
34
|
Jamil Z, Shahid S, Baig E, Ahmad R, Subhani F, Fatima SS. Serum anti mullerian hormone and renalase levels in predicting the risk of preeclampsia. Taiwan J Obstet Gynecol 2019; 58:188-191. [PMID: 30910136 DOI: 10.1016/j.tjog.2019.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2018] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE The aim of the study was to explore the association of serum AMH and Renalase with the risk of preeclampsia thereby assessing them as screening tools, reducing the risk of gravid consequences of preeclampsia. MATERIALS AND METHODS This cross-sectional study recruited n = 95 pregnant women between 14 and 32 gestational weeks. They were categorized as a) women with gestational hypertension (n = 45); b) women with pre-eclampsia (n = 20) and c) normotensive pregnant women (n = 30) according to the ACOG criteria. Anthropometrics data and blood and urine samples were collected. AMH and Renalase levels were measured by ELISA assay. RESULTS The mean age of study cohort was 27.3 ± 6.2 year and weight was 65.1 ± 14.1 kg. Blood pressures were significantly higher in pre-eclamptic patients versus both the gestational hypertensive females and controls (p < 0.05). AMH was found to be significantly higher in controls but no difference was observed between gestational hypertensive and pre-eclamptic patients. No difference was seen for serum Renalase among the three groups (p > 0.05). AMH showed a negative weak correlation with diastolic blood pressure (r = -0.272; p = 0.008) that remained significant even after adjustment (r = -0.236; p = 0.023) whereas Renalase did not show any difference (r = -0.051; p > 0.05). Females with low levels of AMH were 1.07 times at risk of developing hypertension even after adjustment for age and BMI (p < 0.05). CONCLUSION Low AMH levels may lead to hypertension in pregnancy suggesting a role in detecting vascular diseases as well as its effect on ovarian aging. However, further research is required to establish a causal relationship.
Collapse
Affiliation(s)
- Zehra Jamil
- Department of Biological & Biomedical Sciences, Aga Khan University, Pakistan
| | - Sana Shahid
- Department of Physiology, Sir Syed College of Medical Sciences for Girls, Pakistan
| | - Erum Baig
- Medical Students, Aga Khan University, Pakistan
| | - Rida Ahmad
- Medical Students, Aga Khan University, Pakistan
| | | | - Syeda Sadia Fatima
- Department of Biological & Biomedical Sciences, Aga Khan University, Pakistan.
| |
Collapse
|
35
|
Schmitz B, Kleber ME, Lenders M, Delgado GE, Engelbertz C, Huang J, Pavenstädt H, Breithardt G, Brand SM, März W, Brand E. Genome-wide association study suggests impact of chromosome 10 rs139401390 on kidney function in patients with coronary artery disease. Sci Rep 2019; 9:2750. [PMID: 30809046 PMCID: PMC6391429 DOI: 10.1038/s41598-019-39055-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 01/15/2019] [Indexed: 12/14/2022] Open
Abstract
Chronic kidney disease (CKD) is an independent risk factor for onset and progression of coronary artery disease (CAD). Discovery of predisposing loci for kidney function in CAD patients was performed using a genome-wide association approach. Inclusion criteria were CAD with ≥50% stenosis (≥1 coronary artery) and a creatinine-based estimated glomerular filtration rate (eGFR) of 30–75 ml/min/1.73 m2. An association of rs139401390 located to a region 58.8 kb upstream of renalase (RNLS) with eGFR was detected in the Ludwigshafen Risk and Cardiovascular Health (LURIC) study (n = 499, p = 7.88 × 10−9, mean eGFR 60.7 ml/min/1.73 m2). Direct genotyping of rs139401390A > G suggested increased eGFR by 12.0 ml/min/1.73 m2 per A allele (p = 0.000004). Genome-wide replication of rs139401390A > G in the Coronary Artery Disease and Renal Failure (CAD-REF) registry with a mean eGFR of 47.8 ml/min/1.73 m2 (n = 574, p = 0.033) was only nominally significant. Comparison of rs139401390 genotypes for risk of reduced kidney function in the overall LURIC study revealed higher adjusted odds ratios (OR) for eGFR <60 ml/min/1.73 m2 for CAD patients (n = 1992, OR = 2.36, p = 0.008, G/A + G/G vs A/A) compared to patients with/without CAD (n = 2908, OR = 1.97, p = 0.014, G/A + G/G vs A/A). No significant risk elevation was detected in patients without CAD (n = 948, p = 0.571). rs139401390 may affect kidney function in CAD patients with mild reduction in eGFR.
Collapse
Affiliation(s)
- Boris Schmitz
- Institute of Sports Medicine, Molecular Genetics of Cardiovascular Disease, University Hospital Muenster, Muenster, Germany
| | - Marcus E Kleber
- Medical Clinic V, Mannheim Medical Faculty, University of Heidelberg, Mannheim, Germany.,Institute of Nutrition, Friedrich Schiller University Jena, Jena, Germany
| | - Malte Lenders
- Internal Medicine D, Department of Nephrology, Hypertension and Rheumatology, University Hospital Muenster, Muenster, Germany
| | - Graciela E Delgado
- Medical Clinic V, Mannheim Medical Faculty, University of Heidelberg, Mannheim, Germany
| | - Christiane Engelbertz
- Internal Medicine D, Department of Nephrology, Hypertension and Rheumatology, University Hospital Muenster, Muenster, Germany.,Division of Vascular Medicine, Department of Cardiovascular Medicine, University Hospital Muenster, Muenster, Germany
| | - Jie Huang
- Department of Human Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Hermann Pavenstädt
- Internal Medicine D, Department of Nephrology, Hypertension and Rheumatology, University Hospital Muenster, Muenster, Germany
| | - Günter Breithardt
- Division of Vascular Medicine, Department of Cardiovascular Medicine, University Hospital Muenster, Muenster, Germany
| | - Stefan-Martin Brand
- Institute of Sports Medicine, Molecular Genetics of Cardiovascular Disease, University Hospital Muenster, Muenster, Germany
| | - Winfried März
- Medical Clinic V, Mannheim Medical Faculty, University of Heidelberg, Mannheim, Germany.,Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria.,Synlab Academy, Synlab Holding Deutschland GmbH, Mannheim, Germany
| | - Eva Brand
- Internal Medicine D, Department of Nephrology, Hypertension and Rheumatology, University Hospital Muenster, Muenster, Germany.
| |
Collapse
|
36
|
Lin TY, Peng CH, Hung SC, Tarng DC. Body composition is associated with clinical outcomes in patients with non-dialysis-dependent chronic kidney disease. Kidney Int 2018; 93:733-740. [PMID: 29102374 DOI: 10.1016/j.kint.2017.08.025] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 08/20/2017] [Accepted: 08/24/2017] [Indexed: 10/18/2022]
Abstract
An inverse relationship between body mass index (BMI) and mortality (the obesity paradox) has been found in patients with non-dialysis-dependent chronic kidney disease (CKD). However, it is unclear whether increased muscle mass or body fat confers the survival advantage. To resolve this we investigated the impact of body makeup on a composite outcome of death or cardiovascular events in a prospective cohort of 326 patients with stage 3-5 CKD not yet on dialysis. Lean mass and body fat were determined using the Body Composition Monitor, a multifrequency bioimpedance spectroscopy device, and were expressed as the lean tissue or fat tissue index, respectively. Patients were stratified as High (above median) or Low (below median) BMI, High or Low lean tissue index, or as High or Low fat tissue index. During a median follow-up of 4.6 years, there were 40 deaths and 68 cardiovascular events. In Cox proportional hazards models, a High lean tissue index, but not High BMI or High fat tissue index, predicted a lower risk of both the composite or its component outcomes (reference: below median). When patients were further stratified into four distinct body composition groups based on both the lean and fat tissue index, only the High lean/fat tissue index group had a significantly lower risk of the composite outcome (hazard ratio 0.36, 95% confidence interval 0.14-0.87; reference: Low lean/fat tissue index group). Thus, the lean tissue index can provide better risk prediction than the BMI alone in non-dialysis-dependent patients with CKD. The High lean/fat tissue index appears to be associated with best outcomes. An optimal body composition for improving the prognosis of CKD needs to be determined.
Collapse
Affiliation(s)
- Ting-Yun Lin
- Division of Nephrology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, and School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Ching-Hsiu Peng
- Division of Nephrology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, and School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Szu-Chun Hung
- Division of Nephrology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, and School of Medicine, Tzu Chi University, Hualien, Taiwan.
| | - Der-Cherng Tarng
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Institutes of Physiology and Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
37
|
Hoye NA, Wilson LC, Jardine DL, Walker RJ. Sympathetic overactivity in dialysis patients-Underappreciated and clinically consequential. Semin Dial 2018; 32:255-265. [PMID: 30461070 DOI: 10.1111/sdi.12756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cardiovascular morbidity and mortality remain frustratingly common in dialysis patients. A dearth of established evidence-based treatment calls for alternative therapeutic avenues to be embraced. Sympathetic hyperactivity, predominantly due to afferent nerve signaling from the diseased native kidneys, has been established to be prognostic in the dialysis population for over 15 years. Despite this, tangible therapeutic interventions have, to date, been unsuccessful and the outlook for patients remains poor. This narrative review summarizes established experimental and clinical data, highlighting recent developments, and proposes why interventions to ameliorate sympathetic hyperactivity may well be beneficial for this high-risk population.
Collapse
Affiliation(s)
- Neil A Hoye
- Department of Renal Medicine, South Tees Hospitals NHS Foundation Trust, Middlesbrough, UK
| | - Luke C Wilson
- Department of Medicine, Dunedin School of Medicine, University of Otago, Dunedin, Otago, New Zealand
| | - David L Jardine
- Department of Medicine, University of Otago, Christchurch, Otago, New Zealand
| | - Robert J Walker
- Department of Medicine, Dunedin School of Medicine, University of Otago, Dunedin, Otago, New Zealand
| |
Collapse
|
38
|
Bucharles SGE, Wallbach KKS, Moraes TPD, Pecoits-Filho R. Hypertension in patients on dialysis: diagnosis, mechanisms, and management. ACTA ACUST UNITED AC 2018; 41:400-411. [PMID: 30421784 PMCID: PMC6788847 DOI: 10.1590/2175-8239-jbn-2018-0155] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 09/05/2018] [Indexed: 12/19/2022]
Abstract
Hypertension (blood pressure > 140/90 mm Hg) is very common in patients undergoing regular dialysis, with a prevalence of 70-80%, and only the minority has adequate blood pressure (BP) control. In contrast to the unclear association of predialytic BP recordings with cardiovascular mortality, prospective studies showed that interdialytic BP, recorded as home BP or by ambulatory blood pressure monitoring in hemodialysis patients, associates more closely with mortality and cardiovascular events. Although BP is measured frequently in the dialysis treatment environment, aspects related to the measurement technique traditionally employed may be unsatisfactory. Several other tools are now available and being used in clinical trials and in clinical practice to evaluate and treat elevated BP in chronic kidney disease (CKD) patients. While we wait for the ongoing review of the CKD Blood Pressure KIDGO guidelines, there is no guideline for the dialysis population addressing this important issue. Thus, the objective of this review is to provide a critical analysis of the information available on the epidemiology, pathogenic mechanisms, and the main pillars involved in the management of blood pressure in stage 5-D CKD, based on current knowledge.
Collapse
Affiliation(s)
| | | | | | - Roberto Pecoits-Filho
- Pontifícia Universidade Católica do Paraná, Faculdade de Medicina, Curitiba, PR, Brasil
| |
Collapse
|
39
|
Teimoori B, Moradi‐Shahrebabak M, Rezaei M, Mohammadpour‐Gharehbagh A, Salimi S. Renalase rs10887800 polymorphism is associated with severe pre‐eclampsia in southeast Iranian women. J Cell Biochem 2018; 120:3277-3285. [DOI: 10.1002/jcb.27595] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 08/08/2018] [Indexed: 01/09/2023]
Affiliation(s)
- Batool Teimoori
- Department of Obstetrics and Gynecology School of Medicine Zahedan University of Medical Sciences Zahedan Iran
| | - Maryam Moradi‐Shahrebabak
- Department of Obstetrics and Gynecology School of Medicine Zahedan University of Medical Sciences Zahedan Iran
| | - Mahnaz Rezaei
- Department of Clinical Biochemistry School of Medicine Zahedan University of Medical Sciences Zahedan Iran
- Cellular and Molecular Research Center Zahedan University of Medical Sciences Zahedan Iran
| | - Abbas Mohammadpour‐Gharehbagh
- Department of Clinical Biochemistry School of Medicine Zahedan University of Medical Sciences Zahedan Iran
- Cellular and Molecular Research Center Zahedan University of Medical Sciences Zahedan Iran
| | - Saeedeh Salimi
- Department of Clinical Biochemistry School of Medicine Zahedan University of Medical Sciences Zahedan Iran
- Cellular and Molecular Research Center Zahedan University of Medical Sciences Zahedan Iran
| |
Collapse
|
40
|
Kandil NS, Sharkawy RME, Desouky LMI, Kandil LS, Masoud I, Amin NG. Renalase gene polymorphisms (rs2576178 and rs10887800) in Egyptian hypertensive end stage renal disease patients. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2018. [DOI: 10.1016/j.ejmhg.2018.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
41
|
Wybraniec MT, Bożentowicz-Wikarek M, Chudek J, Mizia-Stec K. Urinary renalase concentration in patients with preserved kidney function undergoing coronary angiography. Nephrology (Carlton) 2018; 23:133-138. [PMID: 27778420 DOI: 10.1111/nep.12954] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/02/2016] [Accepted: 10/20/2016] [Indexed: 11/29/2022]
Abstract
AIM The purpose of the study was to evaluate urinary renalase concentration before and after coronary angiography/percutaneous coronary interventions (CA/PCI) in patients with coronary artery disease (CAD) and preserved kidney function and verify its potential application as contrast-induced acute kidney injury (CI-AKI) diagnostic marker. METHODS This prospective study comprised 95 consecutive patients (69.5% men; median age 65 years) with CAD submitted to elective or urgent CA/PCI. Data regarding 128 clinical variables were obtained. Urine samples were collected on admission and 6 h after CA/PCI and tested for urinary renalase using ELISA method, which was expressed as renalase-to-creatinine ratio. The CI-AKI diagnosis was based on ≥50% relative or ≥0.3 mg/dl absolute increase of serum creatinine concentration 48 h following the procedure. RESULTS Nine patients developed CI-AKI (9.5%). In comparison to baseline values, urinary renalase-to-creatinine ratio significantly decreased 6 h following CA/PCI, (2843.6 vs.1540.7 ng/mg, P < 0.0001). Nine patients developed CI-AKI (9.5%).The reduction of renalase level was profound both in CI-AKI (2709.7 vs. 1585.7 ng/mg, P = 0.007) and non-CI-AKI group (2814.9 vs.1561.8 ng/mg, P < 0.0001). There was a trend towards a greater relative decrease of urinary renalase in CI-AKI group (-57.3 vs.-41.8%, P = 0.10). Univariate analysis revealed that both pre- and post-procedural urinary renalase did not predict CI-AKI onset; however, absolute decrease of renalase below 25 percentile was a predictor of CI-AKI (OR = 5.4, 95% CI:1.3-21.9, P = 0.027). CONCLUSION Urinary renalase concentration is reduced in the aftermath of CA/PCI, which may be related to CI-AKI development. Further studies are warranted to elucidate the role of urinary renalase as a CI-AKI diagnostic marker.
Collapse
Affiliation(s)
- Maciej T Wybraniec
- First Department of Cardiology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | | | - Jerzy Chudek
- Department of Pathophysiology, Medical University of Silesia, Katowice, Poland
| | - Katarzyna Mizia-Stec
- First Department of Cardiology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
42
|
Agarwal R. Albuminuria and masked uncontrolled hypertension in chronic kidney disease. Nephrol Dial Transplant 2018; 32:2058-2065. [PMID: 27651468 DOI: 10.1093/ndt/gfw325] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 08/02/2016] [Indexed: 11/14/2022] Open
Abstract
Background Masked uncontrolled hypertension (MUCH) is associated with greater target organ damage such as left ventricular hypertrophy, increased arterial stiffness and albuminuria. Whether MUCH independently associates with greater cardiovascular end-organ damage or kidney damage is unclear. The objective of this study was to assess the strength of the relationship of MUCH (awake ambulatory blood pressure ≥135/85 mmHg and clinic blood pressure <140/90 mmHg) with target organ damage. Methods In a cross-sectional study at a veterans' administration medical center, clinically normotensive veterans without chronic kidney disease (CKD) (n = 29) and 287 patients with CKD and controlled hypertension (CH, n = 193), MUCH (n = 67) and uncontrolled hypertension (UCH, n = 27) had evaluation of target organ damage. Target organ damage was measured by echocardiography [left ventricular mass index (LVMI)], arterial ultrasonography [aortic pulse wave velocity (PWV)] and 24-h urine collection [albuminuria (urine albumin to creatinine ratio)] in all participants. Results Compared to that of controls, LVMI was higher by 21.8 g/m2 (CI, 4.0-39.7 g/m2) in CH, 27.9 (CI, 8-47.8) in MUCH and 39.5 (CI, 15.7-63.2) in UCH (P < 0.01 for group differences, P < 0.01 for linear trend). Although differences persisted after adjustment for age, sex and race, they lost significance after adjustments for cardiovascular risk factors and their treatment. Compared to that of controls, PWV was different among CH, MUCH and UCH (P = 0.04 for group differences, P = 0.02 for linear trend). However, differences lost significance after adjustments for age, sex and race. Compared to that of controls, log2 UACR was higher by 2.40 mg/mg (CI, 1.28-3.52) in CH, 4.94 (CI, 3.70-6.18) in MUCH and 6.01 (CI, 4.49-7.53) in UCH (P < 0.0001 for group difference, P < 0.0001 for linear trend). Differences persisted after adjustment for age, sex and race, cardiovascular risk factors and their treatment and cardiovascular disease (P < 0.0001 for group difference, P < 0.0001 for linear trend). Conclusions MUCH is more strongly related to albuminuria compared with cardiovascular damage as assessed by left ventricular mass and PWV. A graded and an independent relationship of blood pressure classification status with albuminuria is consistent with the hypothesis that renal mechanisms may be more important than cardiovascular disease in mediating the pathogenesis of MUCH.
Collapse
Affiliation(s)
- Rajiv Agarwal
- Department ofMedicine, Indiana University School of Medicine and Richard L. Roudebush Veterans Affairs AdministrationMedical Center, 1481 West 10th Street, Indianapolis, IN, USA
| |
Collapse
|
43
|
Langefeld CD, Comeau ME, Ng MCY, Guan M, Dimitrov L, Mudgal P, Spainhour MH, Julian BA, Edberg JC, Croker JA, Divers J, Hicks PJ, Bowden DW, Chan GC, Ma L, Palmer ND, Kimberly RP, Freedman BI. Genome-wide association studies suggest that APOL1-environment interactions more likely trigger kidney disease in African Americans with nondiabetic nephropathy than strong APOL1-second gene interactions. Kidney Int 2018; 94:599-607. [PMID: 29885931 DOI: 10.1016/j.kint.2018.03.017] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 03/01/2018] [Accepted: 03/22/2018] [Indexed: 12/25/2022]
Abstract
African Americans carrying two apolipoprotein L1 gene (APOL1) renal risk variants have a high risk for nephropathy. However, only a minority develops end-stage renal disease (ESRD). Hence, modifying factors likely contribute to initiation of kidney disease such as endogenous (HIV infection) or exogenous (interferon treatment) environmental modifiers. In this report, genome-wide association studies and a meta-analysis were performed to identify novel loci for nondiabetic ESRD in African Americans and to detect genetic modifiers in APOL1-associated nephropathy. Two African American cohorts were analyzed, 1749 nondiabetic ESRD cases and 1136 controls from Wake Forest and 901 lupus nephritis (LN)-ESRD cases and 520 controls with systemic lupus erythematosus but lacking nephropathy from the LN-ESRD Consortium. Association analyses adjusting for APOL1 G1/G2 renal-risk variants were completed and stratified by APOL1 risk genotype status. Individual genome-wide association studies and meta-analysis results of all 2650 ESRD cases and 1656 controls did not detect significant genome-wide associations with ESRD beyond APOL1. Similarly, no single nucleotide polymorphism showed significant genome-wide evidence of an interaction with APOL1 risk variants. Thus, although variants with small individual effects cannot be ruled out and are likely to exist, our results suggest that APOL1-environment interactions may be of greater clinical importance in triggering nephropathy in African Americans than APOL1 interactions with other single nucleotide polymorphisms.
Collapse
Affiliation(s)
- Carl D Langefeld
- Division of Public Health Sciences, Department of Biostatistical Sciences; Wake Forest School of Medicine, Winston-Salem, North Carolina, USA; Center for Public Health Genomics; Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Mary E Comeau
- Division of Public Health Sciences, Department of Biostatistical Sciences; Wake Forest School of Medicine, Winston-Salem, North Carolina, USA; Center for Public Health Genomics; Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Maggie C Y Ng
- Department of Biochemistry; Wake Forest School of Medicine, Winston-Salem, North Carolina, USA; Center for Diabetes Research; Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Meijian Guan
- Center for Diabetes Research; Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Latchezar Dimitrov
- Center for Diabetes Research; Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Poorva Mudgal
- Center for Diabetes Research; Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Mitzie H Spainhour
- Department of Internal Medicine, Section on Nephrology; Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Bruce A Julian
- Department of Medicine, Division of Nephrology; University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, USA
| | - Jeffrey C Edberg
- Department of Medicine, Division of Clinical Immunology and Rheumatology; University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, USA
| | - Jennifer A Croker
- Department of Medicine, Division of Clinical Immunology and Rheumatology; University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, USA
| | - Jasmin Divers
- Division of Public Health Sciences, Department of Biostatistical Sciences; Wake Forest School of Medicine, Winston-Salem, North Carolina, USA; Center for Public Health Genomics; Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Pamela J Hicks
- Department of Biochemistry; Wake Forest School of Medicine, Winston-Salem, North Carolina, USA; Center for Diabetes Research; Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Donald W Bowden
- Department of Biochemistry; Wake Forest School of Medicine, Winston-Salem, North Carolina, USA; Center for Diabetes Research; Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Gary C Chan
- Department of Internal Medicine, Section on Nephrology; Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Lijun Ma
- Department of Internal Medicine, Section on Nephrology; Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Nicholette D Palmer
- Department of Biochemistry; Wake Forest School of Medicine, Winston-Salem, North Carolina, USA; Center for Diabetes Research; Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Robert P Kimberly
- Department of Medicine, Division of Clinical Immunology and Rheumatology; University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, USA
| | - Barry I Freedman
- Center for Public Health Genomics; Wake Forest School of Medicine, Winston-Salem, North Carolina, USA; Center for Diabetes Research; Wake Forest School of Medicine, Winston-Salem, North Carolina, USA; Department of Internal Medicine, Section on Nephrology; Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.
| |
Collapse
|
44
|
Huang YS, Lai JB, Li SF, Wang T, Liu YN, Zhang QX, Zhang SY, Sun CH, Hu N, Zhang XZ. Relationship between Renalase Expression and Kidney Disease: an Observational Study in 72 Patients Undergoing Renal Biopsy. Curr Med Sci 2018; 38:268-276. [PMID: 30074185 DOI: 10.1007/s11596-018-1875-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 01/14/2018] [Indexed: 01/11/2023]
Abstract
The relationship between the levels of renalase and changes in proteinuria, hypertension, renal function, renal tubular epithelial cell apoptosis and B-cell lymphoma-2 (Bcl-2) expression was investigated in patients (chronic nephritis, primary nephrotic syndrome or other kidney disease) that underwent renal biopsy. The study group comprised 72 patients undergoing renal biopsy. Patient profiles and renal function were collected. Concentrations of renalase and Bcl-2 were measured by immunohistochemistry. Tubular injury was detected by periodic acid Schiff staining (PAS) and renal tubular epithelial cell apoptosis was assessed by TUNEL assay. The expression of renalase was significantly lower in renal biopsy specimens than in normal kidney tissues. There was a positive linear relationship between renalase and some serum and cardiac indices; a negative correlation was found between age, eGFR, Ccr and 24-h urinary protein. Renal tubule injury index and tubular epithelial cell apoptosis index showed a negative linear correlation with renalase. The results showed that renalase probably increased the expression of Bcl-2. By two independent samples t-test, renalase levels were significantly increased in the non-hypertension group than in the hypertension group. One-way ANOVA showed that renalase expression was higher in samples with Lee's grade III than in those with Lee's grade V. The expression of renalase was significantly decreased in patients who underwent renal biopsy, and was also associated with blood and renal function. The research proved that renalase may reduce renal tubular injury and apoptosis of renal tubular epithelial cells through the mitochondrial apoptosis pathway, finally achieving the purpose of delaying the progress of renal failure.
Collapse
Affiliation(s)
- Yi-Sha Huang
- Department of Nephrology, Second Clinical Medical College of Jinan University, Shenzhen, 518000, China
- Key Renal Laboratory of Shenzhen, Shenzhen, 518108, China
| | - Jian-Bo Lai
- Department of Gastrointestinal, Second Clinical Medical College of Jinan University, Shenzhen, 518000, China
| | - Sheng-Fa Li
- Department of Orthopedics, Huizhou First Hospital, Affiliated Hospital of Guangdong Medical University, Huizhou, 516000, China
| | - Ting Wang
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, China
| | - Ying-Nan Liu
- Department of Hand Microsurgry, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, Shenzhen, 518000, China
| | - Qing-Xia Zhang
- Department of Nephrology, Second Clinical Medical College of Jinan University, Shenzhen, 518000, China
- Key Renal Laboratory of Shenzhen, Shenzhen, 518108, China
| | - Shu-Yuan Zhang
- Department of Nephrology, Second Clinical Medical College of Jinan University, Shenzhen, 518000, China
- Key Renal Laboratory of Shenzhen, Shenzhen, 518108, China
| | - Chun-Han Sun
- Department of Orthopedics, Huizhou First Hospital, Affiliated Hospital of Guangdong Medical University, Huizhou, 516000, China
| | - Nan Hu
- Department of Nephrology, Second Clinical Medical College of Jinan University, Shenzhen, 518000, China.
- Key Renal Laboratory of Shenzhen, Shenzhen, 518108, China.
| | - Xin-Zhou Zhang
- Department of Nephrology, Second Clinical Medical College of Jinan University, Shenzhen, 518000, China.
- Key Renal Laboratory of Shenzhen, Shenzhen, 518108, China.
| |
Collapse
|
45
|
Hypertension in dialysis patients: a consensus document by the European Renal and Cardiovascular Medicine (EURECA-m) working group of the European Renal Association - European Dialysis and Transplant Association (ERA-EDTA) and the Hypertension and the Kidney working group of the European Society of Hypertension (ESH). J Hypertens 2017; 35:657-676. [PMID: 28157814 DOI: 10.1097/hjh.0000000000001283] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In patients with end-stage renal disease treated with hemodialysis or peritoneal dialysis, hypertension is very common and often poorly controlled. Blood pressure (BP) recordings obtained before or after hemodialysis display a J-shaped or U-shaped association with cardiovascular events and survival, but this most likely reflects the low accuracy of these measurements and the peculiar hemodynamic setting related with dialysis treatment. Elevated BP by home or ambulatory BP monitoring is clearly associated with shorter survival. Sodium and volume excess is the prominent mechanism of hypertension in dialysis patients, but other pathways, such as arterial stiffness, activation of the renin-angiotensin-aldosterone and sympathetic nervous systems, endothelial dysfunction, sleep apnea and the use of erythropoietin-stimulating agents may also be involved. Nonpharmacologic interventions targeting sodium and volume excess are fundamental for hypertension control in this population. If BP remains elevated after appropriate treatment of sodium-volume excess, the use of antihypertensive agents is necessary. Drug treatment in the dialysis population should take into consideration the patient's comorbidities and specific characteristics of each agent, such as dialysability. This document is an overview of the diagnosis, epidemiology, pathogenesis and treatment of hypertension in patients on dialysis, aiming to offer the renal physician practical recommendations based on current knowledge and expert opinion and to highlight areas for future research.
Collapse
|
46
|
Sarafidis PA, Persu A, Agarwal R, Burnier M, de Leeuw P, Ferro CJ, Halimi JM, Heine GH, Jadoul M, Jarraya F, Kanbay M, Mallamaci F, Mark PB, Ortiz A, Parati G, Pontremoli R, Rossignol P, Ruilope L, Van der Niepen P, Vanholder R, Verhaar MC, Wiecek A, Wuerzner G, London GM, Zoccali C. Hypertension in dialysis patients: a consensus document by the European Renal and Cardiovascular Medicine (EURECA-m) working group of the European Renal Association-European Dialysis and Transplant Association (ERA-EDTA) and the Hypertension and the Kidney working group of the European Society of Hypertension (ESH). Nephrol Dial Transplant 2017; 32:620-640. [PMID: 28340239 DOI: 10.1093/ndt/gfw433] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 11/14/2016] [Indexed: 01/07/2023] Open
Abstract
In patients with end-stage renal disease (ESRD) treated with haemodialysis or peritoneal dialysis, hypertension is common and often poorly controlled. Blood pressure (BP) recordings obtained before or after haemodialysis display a J- or U-shaped association with cardiovascular events and survival, but this most likely reflects the low accuracy of these measurements and the peculiar haemodynamic setting related to dialysis treatment. Elevated BP detected by home or ambulatory BP monitoring is clearly associated with shorter survival. Sodium and volume excess is the prominent mechanism of hypertension in dialysis patients, but other pathways, such as arterial stiffness, activation of the renin-angiotensin-aldosterone and sympathetic nervous systems, endothelial dysfunction, sleep apnoea and the use of erythropoietin-stimulating agents may also be involved. Non-pharmacologic interventions targeting sodium and volume excess are fundamental for hypertension control in this population. If BP remains elevated after appropriate treatment of sodium and volume excess, the use of antihypertensive agents is necessary. Drug treatment in the dialysis population should take into consideration the patient's comorbidities and specific characteristics of each agent, such as dialysability. This document is an overview of the diagnosis, epidemiology, pathogenesis and treatment of hypertension in patients on dialysis, aiming to offer the renal physician practical recommendations based on current knowledge and expert opinion and to highlight areas for future research.
Collapse
Affiliation(s)
- Pantelis A Sarafidis
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Alexandre Persu
- Pole of Cardiovascular Research, Institut de Recherche Expérimentale et Clinique, and Division of Cardiology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Rajiv Agarwal
- Department of Medicine, Indiana University School of Medicine and Richard L. Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA
| | - Michel Burnier
- Service of Nephrology and Hypertension, Lausanne University Hospital, Lausanne, Switzerland
| | - Peter de Leeuw
- Department of Medicine, Maastricht University Medical Center, Maastricht and Zuyderland Medical Center, Geleen/Heerlen, The Netherlands
| | - Charles J Ferro
- Department of Renal Medicine, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Jean-Michel Halimi
- Service de Néphrologie-Immunologie Clinique, Hôpital Bretonneau, François-Rabelais University, Tours, France
| | - Gunnar H Heine
- Saarland University Medical Center, Internal Medicine IV-Nephrology and Hypertension, Homburg, Germany
| | - Michel Jadoul
- Division of Nephrology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Faical Jarraya
- Department of Nephrology, Sfax University Hospital and Research Unit, Faculty of Medicine, Sfax University, Sfax, Tunisia
| | - Mehmet Kanbay
- Department of Medicine, Division of Nephrology, Koc University School of Medicine, Istanbul, Turkey
| | - Francesca Mallamaci
- CNR-IFC, Clinical Epidemiology and Pathophysiology of Hypertension and Renal Diseases Unit, Ospedali Riuniti, Reggio Calabria, Italy
| | - Patrick B Mark
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Alberto Ortiz
- IIS-Fundacion Jimenez Diaz, School of Medicine, University Autonoma of Madrid, FRIAT and REDINREN, Madrid, Spain
| | - Gianfranco Parati
- Department of Cardiovascular, Neural, and Metabolic Sciences, San Luca Hospital, Istituto Auxologico Italiano and Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Roberto Pontremoli
- Università degli Studi and IRCCS Azienda Ospedaliera Universitaria San Martino-IST, Genova, Italy
| | - Patrick Rossignol
- INSERM, Centre d'Investigations Cliniques Plurithématique 1433, UMR 1116, Université de Lorraine, CHRU de Nancy, F-CRIN INI-CRCT Cardiovascular and Renal Clinical Trialists, and Association Lorraine de Traitement de l'Insuffisance Rénale, Nancy, France
| | - Luis Ruilope
- Hypertension Unit & Institute of Research i?+?12, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Patricia Van der Niepen
- Department of Nephrology and Hypertension, Universitair Ziekenhuis Brussel - VUB, Brussels, Belgium
| | - Raymond Vanholder
- Nephrology Section, Department of Internal Medicine, Ghent University Hospital, Gent, Belgium
| | - Marianne C Verhaar
- Department of Nephrology and Hypertension, University Medical Center Utrecht, The Netherlands
| | - Andrzej Wiecek
- Department of Nephrology, Transplantation and Internal Medicine, Medical University of Silesia in Katowice, Katowice, Poland
| | - Gregoire Wuerzner
- Service of Nephrology and Hypertension, Lausanne University Hospital, Lausanne, Switzerland
| | | | - Carmine Zoccali
- CNR-IFC, Clinical Epidemiology and Pathophysiology of Hypertension and Renal Diseases Unit, Ospedali Riuniti, Reggio Calabria, Italy
| |
Collapse
|
47
|
Moran GR, Hoag MR. The enzyme: Renalase. Arch Biochem Biophys 2017; 632:66-76. [PMID: 28558965 DOI: 10.1016/j.abb.2017.05.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 05/22/2017] [Accepted: 05/25/2017] [Indexed: 02/06/2023]
Abstract
Within the last two years catalytic substrates for renalase have been identified, some 10 years after its initial discovery. 2- and 6-dihydronicotinamide (2- and 6-DHNAD) isomers of β-NAD(P)H (4-dihydroNAD(P)) are rapidly oxidized by renalase to form β-NAD(P)+. The two electrons liberated are then passed to molecular oxygen by the renalase FAD cofactor forming hydrogen peroxide. This activity would appear to serve an intracellular detoxification/metabolite repair function that alleviates inhibition of primary metabolism dehydrogenases by 2- and 6-DHNAD molecules. This activity is supported by the complete structural assignment of the substrates, comprehensive kinetic analyses, defined species specific substrate specificity profiles and X-ray crystal structures that reveal ligand complexation consistent with this activity. This apparently intracellular function for the renalase enzyme is not allied with the majority of the renalase research that holds renalase to be a secreted mammalian protein that functions in blood to elicit a broad array of profound physiological changes. In this review a description of renalase as an enzyme is presented and an argument is offered that its enzymatic function can now reasonably be assumed to be uncoupled from whole organism physiological influences.
Collapse
Affiliation(s)
- Graham R Moran
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, 3210 N. Cramer St, Milwaukee, WI 53211-3209, United States.
| | - Matthew R Hoag
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, 3210 N. Cramer St, Milwaukee, WI 53211-3209, United States
| |
Collapse
|
48
|
Skrzypczyk P, Przychodzień J, Mizerska-Wasiak M, Kuźma-Mroczkowska E, Okarska-Napierała M, Górska E, Stelmaszczyk-Emmel A, Demkow U, Pańczyk-Tomaszewska M. Renalase in Children with Glomerular Kidney Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1021:81-92. [PMID: 28405891 DOI: 10.1007/5584_2017_22] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Studies suggest that renalase, a renal catecholamine-inactivating enzyme, plays a major role in the pathogenesis of kidney and cardiovascular diseases in adults. This study seeks to determine the role of renalase in children with glomerular kidney diseases. We evaluated the serum renalase, arterial stiffness, intima-media thickness, blood pressure, and clinical and biochemical parameters in 78 children (11.9 ± 4.6 years of age) with glomerulopathies such as idiopathic nephrotic syndrome (40 cases), IgA nephropathy (12 cases), Henoch-Schönlein nephropathy (12 cases), and other glomerulopathies (14 cases). The control group consisted of 38 healthy children aged 11.8 ± 3.3 years. The mean renalase was 25.74 ± 8.94 μg/mL in the glomerulopathy group, which was not significantly different from the 27.22 ± 5.15 in the control group. The renalase level did not differ among various glomerulopathies either. However, proteinuric patients had a higher renalase level than those without proteinuria (28.43 ± 11.71 vs. 24.05 ± 6.23, respectively; p = 0.03). In proteinuric patients, renalase correlated with daily proteinuria. In the entire glomerulopathy group, renalase correlated with age, systolic central blood pressure (BP), diastolic peripheral and central BP, mean peripheral and central BP; peripheral diastolic BP Z-score, glomerular filtration rate, cholesterol, triglycerides, and pulse wave velocity. We conclude that in children with glomerulopathies renalase, although basically not enhanced, may underlie blood pressure elevation and arterial damage.
Collapse
Affiliation(s)
- Piotr Skrzypczyk
- Department of Pediatrics and Nephrology, Medical University of Warsaw, 63A Zwirki i Wigury Street, 02-091, Warsaw, Poland.
| | - Joanna Przychodzień
- Department of Pediatrics and Nephrology, Medical University of Warsaw, 63A Zwirki i Wigury Street, 02-091, Warsaw, Poland
| | - Małgorzata Mizerska-Wasiak
- Department of Pediatrics and Nephrology, Medical University of Warsaw, 63A Zwirki i Wigury Street, 02-091, Warsaw, Poland
| | - Elżbieta Kuźma-Mroczkowska
- Department of Pediatrics and Nephrology, Medical University of Warsaw, 63A Zwirki i Wigury Street, 02-091, Warsaw, Poland
| | | | - Elżbieta Górska
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Warsaw, Poland
| | - Anna Stelmaszczyk-Emmel
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Warsaw, Poland
| | - Urszula Demkow
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Warsaw, Poland
| | - Małgorzata Pańczyk-Tomaszewska
- Department of Pediatrics and Nephrology, Medical University of Warsaw, 63A Zwirki i Wigury Street, 02-091, Warsaw, Poland
| |
Collapse
|
49
|
Fatima SS, Jamil Z, Alam F, Malik HZ, Madhani SI, Ahmad MS, Shabbir T, Rehmani MN, Rabbani A. Polymorphism of the renalase gene in gestational diabetes mellitus. Endocrine 2017; 55:124-129. [PMID: 27507673 DOI: 10.1007/s12020-016-1058-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 07/11/2016] [Indexed: 01/09/2023]
Abstract
Renalase is considered as a novel candidate gene for type 2 diabetes. In this study, we aimed to investigate the relationship of serum renalase and two single nucleotide polymorphisms with gestational diabetes mellitus. One hundred and ninety-eight normotensive pregnant females (n = 99 gestational diabetes mellitus; n = 99 euglycemic pregnant controls) were classified according to the International Association of the Diabetes and Pregnancy Study criteria. Fasting and 2-h post glucose load blood levels and anthropometric assessment was performed. Serum renalase was measured using enzyme-linked immunosorbent assay, whereas DNA samples were genotyped for renalase single nucleotide polymorphisms rs2576178 and rs10887800 using Polymerase chain reaction-Restriction fragment length polymorphism method. In an age-matched case control study, no difference was observed in the serum levels of renalase (p > 0.05). The variant rs10887800 showed an association with gestational diabetes mellitus and remained significant after multiple adjustments (p < 0.05), whereas rs2576178 showed weak association (p = 0.030) that was lost after multiple adjustments (p = 0.09). We inferred a modest association of the rs10887800 polymorphism with gestational diabetes. Although gestational diabetes mellitus is self-reversible, yet presence of this minor G allele might predispose to metabolic syndrome phenotypes in near the future.
Collapse
Affiliation(s)
- Syeda Sadia Fatima
- Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan.
| | - Zehra Jamil
- Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | - Faiza Alam
- Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | | | | | | | | | | | - Amna Rabbani
- Medical College, Aga Khan University, Karachi, Pakistan
| |
Collapse
|
50
|
Wasilewski G, Przybylowski P, Wilusz M, Sztefko K, Janik Ł, Koc-Żórawska E, Malyszko J. High-performance Liquid Chromatography Measured Metabolites of Endogenous Catecholamines and Their Relations to Chronic Kidney Disease and High Blood Pressure in Heart Transplant Recipients. Transplant Proc 2016; 48:1751-5. [PMID: 27496485 DOI: 10.1016/j.transproceed.2016.02.059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 02/13/2016] [Accepted: 02/24/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND Patients after solid organ transplantation, especially heart and kidneys, are prone to be hypertensive. Recently chronic kidney disease and renalase metabolism of endogenous catecholamines are thought to make major contribution to the pathogenesis of hypertension. MATERIALS AND METHODS We analyzed 75 heart recipients (80% male, 20% female), medium age 54.9 years (range, 25-75) at 0.5 to 22 years after heart transplantation (median, 10.74). Diagnosis of hypertension was made on the basis of ambulatory blood pressure monitoring. Complete blood count, urea, creatinine, estimated glomerular filtration rate (eGFR), renalase in serum, and levels of metanefrine, normetanefrine, and 3-metoxytyramine in 24-hour urine collection calculated with a high-performance liquid chromatography were recorded. RESULTS Urine endogenous catecholamine metabolites were estimated according to creatinine clearance. Normetanefrine was correlated with age (r = 0.27; P < .05), urea (r = 0.64; P < .01), creatinine (r = 0.6; P < .01), eGFR (r = -0.51; P < .01), renalase (r = 0.5; P < .01), and diastolic blood pressure (r = 0.26; P < .05). Metanefrine was correlated with urea (r = 0.43; P < .01), creatinine (0.32; P < .01), eGFR (r = -0.4; P < .01), renalase (r = 0.34; P < .05), height (r = -0.26; P < .05), weight (r = -0.23; P < .05), and time after heart transplantation (r = 0.27; P < .05). 3-Metoxytyramine was correlated with urea (r = 0.43; P < .01), creatinine (r = 0.32; P < .01), and the eGFR (r = -0.24; P < .05). Creatinine was correlated with age (r = 0.36; P < .01), diastolic blood pressure (r = 0.26; P < .05), time after heart transplantation (r = 0.24; P < .05), and renalase (r = 0.69; P < .01). Systolic blood pressure was correlated with proteinuria (r = 0.26; P < .05). CONCLUSIONS Chronic kidney disease and concomitant hypertension are the most prevalent comorbidities in the population of heart transplant recipients. Urine catecholamine metabolites were related to kidney function but not to blood pressure level in the studied population.
Collapse
Affiliation(s)
- G Wasilewski
- Department of Cardiovascular Surgery and Transplantology, Jagiellonian University, Medical College, John Paul II Hospital, Cracow, Poland.
| | - P Przybylowski
- First Chair of General Surgery, Jagiellonian University, Medical College, Krakow, Poland. Silesian Center for Heart Diseases, Zabrze, Poland
| | - M Wilusz
- Department of Clinical Biochemistry, Medical College, University Children's Hospital of Cracow, Jagiellonian University, Cracow, Poland
| | - K Sztefko
- Department of Clinical Biochemistry, Medical College, University Children's Hospital of Cracow, Jagiellonian University, Cracow, Poland
| | - Ł Janik
- Department of Cardiovascular Surgery and Transplantology, Jagiellonian University, Medical College, John Paul II Hospital, Cracow, Poland
| | - E Koc-Żórawska
- Second Department of Nephrology, Medical University of Bialystok, Poland
| | - J Malyszko
- Second Department of Nephrology, Medical University of Bialystok, Poland
| |
Collapse
|