1
|
Zeder K, Siew ED, Kovacs G, Brittain EL, Maron BA. Pulmonary hypertension and chronic kidney disease: prevalence, pathophysiology and outcomes. Nat Rev Nephrol 2024; 20:742-754. [PMID: 38890546 DOI: 10.1038/s41581-024-00857-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2024] [Indexed: 06/20/2024]
Abstract
Pulmonary hypertension (PH) is common in patients with chronic kidney disease (CKD) or kidney failure, with an estimated prevalence of up to 78% in those referred for right-heart catheterization. PH is independently associated with adverse outcomes in CKD, raising the possibility that early detection and appropriate management of PH might improve outcomes in at-risk patients. Among patients with PH, the prevalence of CKD stages 3 and 4 is estimated to be as high as 36%, and CKD is also independently associated with adverse outcomes. However, the complex, heterogenous pathophysiology and clinical profile of CKD-PH requires further characterization. CKD is often associated with elevated left ventricular filling pressure and volume overload, which presumably leads to pulmonary vascular stiffening and post-capillary PH. By contrast, a distinct subgroup of patients at high risk is characterized by elevated pulmonary vascular resistance and right ventricular dysfunction in the absence of pulmonary venous hypertension, which may represent a right-sided cardiorenal syndrome defined in principle by hypervolaemia, salt avidity, low cardiac output and normal left ventricular function. Current understanding of CKD-PH is limited, despite its potentially important ramifications for clinical decision making. In particular, whether PH should be considered when determining the suitability and timing of kidney replacement therapy or kidney transplantation is unclear. More research is urgently needed to address these knowledge gaps and improve the outcomes of patients with or at risk of CKD-PH.
Collapse
Affiliation(s)
- Katarina Zeder
- Division of Cardiovascular Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Division of Cardiovascular Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- The University of Maryland-Institute for Health Computing, Bethesda, MD, USA
| | - Edward D Siew
- Division of Nephrology and Hypertension, Vanderbilt Center for Kidney Disease and Integrated Program for Acute Kidney Injury, Nashville, TN, USA
| | - Gabor Kovacs
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Evan L Brittain
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bradley A Maron
- Division of Cardiovascular Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.
- The University of Maryland-Institute for Health Computing, Bethesda, MD, USA.
| |
Collapse
|
2
|
Monu SR, Potter DL, Liao TD, King KN, Ortiz PA. Role of Alström syndrome 1 in the regulation of glomerular hemodynamics. Am J Physiol Renal Physiol 2023; 325:F418-F425. [PMID: 37560774 PMCID: PMC10639022 DOI: 10.1152/ajprenal.00017.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 07/21/2023] [Accepted: 08/03/2023] [Indexed: 08/11/2023] Open
Abstract
Inactivating mutations in the ALMS1 gene in humans cause Alström syndrome, characterized by the early onset of obesity, insulin resistance, and renal dysfunction. However, the role of ALMS1 in renal function and hemodynamics is unclear. We previously found that ALMS1 is expressed in thick ascending limbs, where it binds and decreases Na+-K+-2Cl- cotransporter activity. We hypothesized that ALMS1 is expressed in macula densa cells and that its deletion enhances tubuloglomerular feedback (TGF) and reduces glomerular filtration rate (GFR) in rats. To test this, homozygous ALMS1 knockout (KO) and littermate wild-type Dahl salt-sensitive rats were studied. TGF sensitivity was higher in ALMS1 KO rats as measured by in vivo renal micropuncture. Using confocal microscopy, we confirmed immunolabeling of ALMS1 in macula densa cells (nitric oxide synthase 1 positive), supporting a role for ALMS1 in TGF regulation. Baseline glomerular capillary pressure was higher in ALMS1 KO rats, as was mean arterial pressure. Renal interstitial hydrostatic pressure was lower in ALMS1 KO rats, which is linked to increased Na+ reabsorption and hypertension. GFR was reduced in ALMS1 KO rats. Seven-week-old ALMS1 KO rats were not proteinuric, but proteinuria was present in 18- to 22-wk-old ALMS1 KO rats. The glomerulosclerosis index was higher in 18-wk-old ALMS1 KO rats. In conclusion, ALMS1 is involved in the control of glomerular hemodynamics in part by enhancing TGF sensitivity, and this may contribute to decreased GFR. Increased TGF sensitivity, enhanced glomerular capillary pressure, and hypertension may lead to glomerular damage in ALMS1 KO rats. These are the first data supporting the role of ALMS1 in TGF and glomerular hemodynamics.NEW & NOTEWORTHY ALMS1 is a novel protein involved in regulating tubuloglomerular feedback (TGF) sensitivity, glomerular capillary pressure, and blood pressure, and its dysfunction may reduce renal function and cause glomerular damage.
Collapse
Affiliation(s)
- Sumit R Monu
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan, United States
- Department of Physiology, Wayne State University, Detroit, Michigan, United States
| | - D'Anna L Potter
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan, United States
| | - Tang-Dong Liao
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan, United States
| | - Keyona Nicole King
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan, United States
| | - Pablo A Ortiz
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan, United States
- Department of Physiology, Wayne State University, Detroit, Michigan, United States
| |
Collapse
|
3
|
Koh ES, Kim GH, Chung S. Intrarenal Mechanisms of Sodium-Glucose Cotransporter-2 Inhibitors on Tubuloglomerular Feedback and Natriuresis. Endocrinol Metab (Seoul) 2023; 38:359-372. [PMID: 37482684 PMCID: PMC10475968 DOI: 10.3803/enm.2023.1764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/05/2023] [Accepted: 07/10/2023] [Indexed: 07/25/2023] Open
Abstract
When sodium-glucose cotransporter-2 (SGLT2) inhibitors were first introduced a decade ago, no one expected them to have substantial effects beyond their known glucose-lowering effects, until the emergence of evidence of their robust renal and cardiovascular benefits showing that they could attenuate progression of kidney disease, irrespective of diabetes, as well as prevent the development of acute kidney injury. Still, the precise and elaborate mechanisms underlying the major organ protection of SGLT2 inhibitors remain unclear. SGLT2 inhibitors inhibit the reabsorption of sodium and glucose in the proximal tubule of the kidney and then recovers tubuloglomerular feedback, whereby SGLT2 inhibitors reduce glomerular hyperfiltration. This simple demonstration of their beneficial effects has perplexed experts in seeking more plausible and as yet undisclosed explanations for the whole effects of SGLT2 inhibitors, including metabolism reprogramming and the modulation of hypoxia, inflammation, and oxidative stress. Given that the renal benefits of SGLT2 inhibitors in patients with kidney disease but without diabetes were comparable to those seen in patients with diabetes, it may be reasonable to keep the emphasis on their hemodynamic actions. In this context, the aim of the present review is to provide a comprehensive overview of renal hemodynamics in individuals with diabetes who are treated with SGLT2 inhibitors, with a focus on natriuresis associated with the regulation of tubuloglomerular feedback and potential aquaresis. Throughout the discussion of alterations in renal sodium and water transports, particular attention will be given to the potential enhancement of adenosine and its receptors following SGLT2 inhibition.
Collapse
Affiliation(s)
- Eun Sil Koh
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Gheun-Ho Kim
- Division of Nephrology, Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Sungjin Chung
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
4
|
Luo M, Zhang Z, Lu Y, Feng W, Wu H, Fan L, Guan B, Dai Y, Tang D, Dong X, Yun C, Hocher B, Liu H, Li Q, Yin L. Urine metabolomics reveals biomarkers and the underlying pathogenesis of diabetic kidney disease. Int Urol Nephrol 2023; 55:1001-1013. [PMID: 36255506 DOI: 10.1007/s11255-022-03326-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 07/28/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE Diabetic kidney disease (DKD) is the most common complication of type 2 diabetes mellitus (T2DM), and its pathogenesis is not yet fully understood and lacks noninvasive and effective diagnostic biomarkers. In this study, we performed urine metabolomics to identify biomarkers for DKD and to clarify the potential mechanisms associated with disease progression. METHODS We applied a liquid chromatography-mass spectrometry-based metabolomics method combined with bioinformatics analysis to investigate the urine metabolism characteristics of 79 participants, including healthy subjects (n = 20), T2DM patients (n = 20), 39 DKD patients that included 19 DKD with microalbuminuria (DKD + micro) and 20 DKD with macroalbuminuria (DKD + macro). RESULTS Seventeen metabolites were identified between T2DM and DKD that were involved in amino acid, purine, nucleotide and primarily bile acid metabolism. Ultimately, a combined model consisting of 2 metabolites (tyramine and phenylalanylproline) was established, which had optimal diagnostic performance (area under the curve (AUC) = 0.94). We also identified 19 metabolites that were co-expressed within the DKD groups and 41 metabolites specifically expressed in the DKD + macro group. Ingenuity pathway analysis revealed three interaction networks of these 60 metabolites, involving the sirtuin signaling pathway and ferroptosis signaling pathway, as well as the downregulation of organic anion transporter 1, which may be important mechanisms that mediate the progression of DKD. CONCLUSIONS This work reveals the metabolic alterations in T2DM and DKD, constructs a combined model to distinguish them and delivers a novel strategy for studying the underlying mechanism and treatment of DKD.
Collapse
Affiliation(s)
- Maolin Luo
- Department of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510632, China
- Department of Endocrinology and Metabolism, People's Hospital of Liwan District, Guangzhou, 510380, People's Republic of China
| | - Zeyu Zhang
- Department of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510632, China
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, CN, 518020, People's Republic of China
| | - Yongping Lu
- Department of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510632, China
| | - Weifeng Feng
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Hongwei Wu
- Department of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510632, China
| | - Lijing Fan
- Department of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510632, China
| | - Baozhang Guan
- Department of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510632, China
| | - Yong Dai
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, CN, 518020, People's Republic of China
| | - Donge Tang
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, CN, 518020, People's Republic of China
| | - Xiangnan Dong
- Department of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510632, China
| | - Chen Yun
- Department of Nephrology, Charité -Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
| | - Berthold Hocher
- Department of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510632, China
- Department of Nephrology, Charité -Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
- Department of Medicine Nephrology, University Medicai Centre Mannheim, Heidelberg, Germany
| | - Haiping Liu
- The Second People's Hospital of Lianping County, Guangdong, 517139, People's Republic of China.
| | - Qiang Li
- Dongguan Hospital of Guangzhou University of Traditional Chinese Medicine, Guangdong, 523000, People's Republic of China.
| | - Lianghong Yin
- Department of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
5
|
Lu YP, Zhang ZY, Wu HW, Fang LJ, Hu B, Tang C, Zhang YQ, Yin L, Tang DE, Zheng ZH, Zhu T, Dai Y. SGLT2 inhibitors improve kidney function and morphology by regulating renal metabolic reprogramming in mice with diabetic kidney disease. J Transl Med 2022; 20:420. [PMID: 36104729 PMCID: PMC9476562 DOI: 10.1186/s12967-022-03629-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease (ESRD) worldwide. SGLT2 inhibitors are clinically effective in halting DKD progression. However, the underlying mechanisms remain unclear. The serum and kidneys of mice with DKD were analyzed using liquid chromatography with tandem mass spectrometry (LC–MS/MS)-based metabolomic and proteomic analyses. Three groups were established: placebo-treated littermate db/m mice, placebo-treated db/db mice and EMPA-treated db/db mice. Empagliflozin (EMPA) and placebo (10 mg/kg/d) were administered for 12 weeks. EMPA treatment decreased Cys-C and urinary albumin excretion compared with placebo by 78.60% and 57.12%, respectively (p < 0.001 in all cases). Renal glomerular area, interstitial fibrosis and glomerulosclerosis were decreased by 16.47%, 68.50% and 62.82%, respectively (p < 0.05 in all cases). Multi-omic analysis revealed that EMPA treatment altered the protein and metabolic profiles in the db/db group, including 32 renal proteins, 51 serum proteins, 94 renal metabolites and 37 serum metabolites. Five EMPA-related metabolic pathways were identified by integrating proteomic and metabolomic analyses, which are involved in renal purine metabolism; pyrimidine metabolism; tryptophan metabolism; nicotinate and nicotinamide metabolism, and glycine, serine and threonine metabolism in serum. In conclusion, this study demonstrated metabolic reprogramming in mice with DKD. EMPA treatment improved kidney function and morphology by regulating metabolic reprogramming, including regulation of renal reductive stress, alleviation of mitochondrial dysfunction and reduction in renal oxidative stress reaction.
Collapse
|
6
|
Monaghan MLT, Bailey MA, Unwin RJ. Purinergic signalling in the kidney: In physiology and disease. Biochem Pharmacol 2020; 187:114389. [PMID: 33359067 DOI: 10.1016/j.bcp.2020.114389] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 02/06/2023]
Abstract
Historically, the control of renal vascular and tubular function has, for the most part, concentrated on neural and endocrine regulation. However, in addition to these extrinsic factors, it is now appreciated that several complex humoral control systems exist within the kidney that can act in an autocrine and/or paracrine fashion. These paracrine systems complement neuroendocrine regulation by dynamically fine-tuning renal vascular and tubular function to buffer rapid changes in nephron perfusion and flow rate of tubular fluid. One of the most pervasive is the extracellular nucleotide/P2 receptor system, which is central to many of the intrinsic regulatory feedback loops within the kidney such as renal haemodynamic autoregulation and tubuloglomerular feedback (TGF). Although physiological actions of extracellular adenine nucleotides were reported almost 100 years ago, the conceptual framework for purinergic regulation of renal function owes much to the work of Geoffrey Burnstock. In this review, we reflect on our >20-year collaboration with Professor Burnstock and highlight the research that is still unlocking the potential of the renal purinergic system to understand and treat kidney disease.
Collapse
Affiliation(s)
- Marie-Louise T Monaghan
- British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, United Kingdom
| | - Matthew A Bailey
- British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, United Kingdom
| | - Robert J Unwin
- The Department of Renal Medicine, University College London, United Kingdom.
| |
Collapse
|
7
|
Patinha D, Carvalho C, Abreu C, Cunha OM, Mota MC, Afonso J, Albino-Teixeira A, Diniz C, Morato M. Diabetes downregulates renal adenosine A2A receptors in an experimental model of hypertension. PLoS One 2019; 14:e0217552. [PMID: 31150459 PMCID: PMC6544351 DOI: 10.1371/journal.pone.0217552] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 05/14/2019] [Indexed: 12/18/2022] Open
Abstract
Studies on diabetic nephropathy rarely take into account that the co-existence of diabetes and hypertension is frequent and further aggravates the prognosis of renal dysfunction. Adenosine can activate four subtypes of adenosine receptors (A1, A2A, A2B and A3) and has been implicated in diabetic nephropathy. However, it is not known if, in hypertensive conditions, diabetes alters the presence/distribution profile of renal adenosine receptors. The aim of this work was to describe the presence/distribution profile of the four adenosine receptors in six renal structures (superficial/deep glomeruli, proximal/distal tubules, loop of Henle, collecting tubule) of the hypertensive kidney and to evaluate whether it is altered by diabetes. Immunoreactivities against the adenosine receptors were analyzed in six renal structures from spontaneously hypertensive rats (SHR, the control group) and from SHR rats with diabetes induced by streptozotocyin (SHR-STZ group). Data showed, for the first time, that all adenosine receptors were present in the kidney of SHR rats, although the distribution pattern was specific for each adenosine receptor subtype. Also, induction of diabetes in the SHR was associated with downregulation of adenosine A2A receptors, which might be relevant for the development of hypertensive diabetic nephropathy. This study highlights the adenosine A2A receptors as a potential target to explore to prevent and/or treat early diabetes-induced hyperfiltration, at least in hypertensive conditions.
Collapse
Affiliation(s)
- Daniela Patinha
- Pharmacology and Therapeutics Unit, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Carla Carvalho
- LAQV@REQUIMTE, Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Carla Abreu
- LAQV@REQUIMTE, Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Olga M. Cunha
- LAQV@REQUIMTE, Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Mariana C. Mota
- LAQV@REQUIMTE, Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Joana Afonso
- Pharmacology and Therapeutics Unit, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal
- MedInUP–Center for Drug Discovery and Innovative Medicines, University of Porto, Porto, Portugal
| | - António Albino-Teixeira
- Pharmacology and Therapeutics Unit, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal
- MedInUP–Center for Drug Discovery and Innovative Medicines, University of Porto, Porto, Portugal
| | - Carmen Diniz
- LAQV@REQUIMTE, Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- * E-mail: (CD); (MM)
| | - Manuela Morato
- LAQV@REQUIMTE, Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- * E-mail: (CD); (MM)
| |
Collapse
|
8
|
Soni H, Peixoto-Neves D, Buddington RK, Adebiyi A. Adenosine A 1 receptor-operated calcium entry in renal afferent arterioles is dependent on postnatal maturation of TRPC3 channels. Am J Physiol Renal Physiol 2017; 313:F1216-F1222. [PMID: 28855189 DOI: 10.1152/ajprenal.00335.2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/14/2017] [Accepted: 08/22/2017] [Indexed: 12/13/2022] Open
Abstract
Adenosine, a regulator of cardiovascular development and renal function, constricts renal afferent arterioles by inducing intracellular Ca2+ concentration ([Ca2+]i) elevation in smooth muscle cells (SMCs) via activation of its cognate A1 receptors (A1Rs). Mechanisms that underlie A1R-dependent [Ca2+]i elevation in renal vascular SMCs are not fully resolved. Whether A1R expression and function in preglomerular microvessels are dependent on postnatal kidney maturation is also unclear. In this study, we show that selective activation of A1Rs by 2-chloro-N6-cyclopentyladenosine (CCPA) does not stimulate store-operated Ca2+ entry in afferent arterioles isolated from neonatal pigs. However, CCPA-induced [Ca2+]i elevation is dependent on phospholipase C and transient receptor potential cation channel, subfamily C, member 3 (TRPC3). Basal [Ca2+]i was unchanged in afferent arterioles isolated from newborn (0-day-old) pigs compared with their 20-day-old counterparts. By contrast, CCPA treatment resulted in significantly larger [Ca2+]i in afferent arterioles from 20-day-old pigs. A1R protein expression levels in the kidneys and afferent arterioles were unaltered in 0- vs. 20-day-old pigs. However, the TRPC3 channel protein expression level was ~92 and 78% higher in 20-day-old pig kidneys and afferent arterioles, respectively. These data suggest that activation of A1Rs elicits receptor-operated Ca2+ entry in porcine afferent arterioles, the level of which is dependent on postnatal maturation of TRPC3 channels. We propose that TRPC3 channels may contribute to the physiology and pathophysiology of A1Rs.
Collapse
Affiliation(s)
- Hitesh Soni
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee; and
| | - Dieniffer Peixoto-Neves
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee; and
| | - Randal K Buddington
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee; and.,School of Health Studies, University of Memphis, Memphis, Tennessee
| | - Adebowale Adebiyi
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee; and
| |
Collapse
|
9
|
Silva L, Subiabre M, Araos J, Sáez T, Salsoso R, Pardo F, Leiva A, San Martín R, Toledo F, Sobrevia L. Insulin/adenosine axis linked signalling. Mol Aspects Med 2017; 55:45-61. [DOI: 10.1016/j.mam.2016.11.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 11/16/2016] [Accepted: 11/17/2016] [Indexed: 12/22/2022]
|
10
|
|
11
|
Storey P, Ji L, Li LP, Prasad PV. Sensitivity of USPIO-enhanced R2 imaging to dynamic blood volume changes in the rat kidney. J Magn Reson Imaging 2011; 33:1091-9. [PMID: 21509866 DOI: 10.1002/jmri.22526] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE To determine whether MRI in combination with an intravascular contrast agent is sensitive to pharmacologically induced vasodilation and vasoconstriction in the rat kidney. MATERIALS AND METHODS R(2) imaging was performed in 25 Sprague Dawley rats at 3 Tesla in the presence of ferumoxytol, an ultrasmall superparamagnetic iron oxide (USPIO) agent with a long plasma half-life. R(2) changes were measured following manipulation of blood volume by intravenous administration of adenosine, a short-acting vasodilator, or N(G)-nitro-L-arginine methyl ester (L-NAME), a long-acting nitric oxide synthase inhibitor with known vasoconstrictive effects. As a control, R(2) responses to adenosine and L-NAME were also examined in the absence of ferumoxytol. RESULTS In the presence of ferumoxytol, adenosine induced a significant increase in R(2), while L-NAME produced a reduction, although the latter was not statistically significant. Control experiments revealed small R(2) changes in the absence of ferumoxytol. An incidental finding was that the cross-sectional area of the kidney also varied dynamically with adenosine and L-NAME. CONCLUSION Our results suggest that ferumoxytol-enhanced R(2) imaging is sensitive to adenosine-induced vasodilation. The responses to L-NAME, however, were not statistically significant. The variations in kidney size and the R(2) changes in the absence of ferumoxytol may reflect alterations in the volume of the renal tubules.
Collapse
Affiliation(s)
- Pippa Storey
- Radiology Department, Evanston Hospital, Evanston, Illinois, USA.
| | | | | | | |
Collapse
|
12
|
Feng MG, Navar LG. Afferent arteriolar vasodilator effect of adenosine predominantly involves adenosine A2B receptor activation. Am J Physiol Renal Physiol 2010; 299:F310-5. [PMID: 20462966 DOI: 10.1152/ajprenal.00149.2010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Adenosine is an important paracrine agent regulating renal vascular tone via adenosine A(1) and A(2) receptors. While A(2B) receptor message and protein have been localized to preglomerular vessels, functional evidence on the role of A(2B) receptors in mediating the vasodilator action of adenosine on afferent arterioles is not available. The present study determined the role of A(2B) receptors in mediating the afferent arteriolar dilation and compared the effects of A(2B) and A(2A) receptor blockade on afferent arterioles. We used the rat in vitro blood-perfused juxtamedullary nephron technique combined with videomicroscopy. Single afferent arterioles of Sprague-Dawley rats were visualized and superfused with solutions containing adenosine or adenosine A(2) receptor agonist (CV-1808) along with adenosine A(2B) and A(2A) receptor blockers. Adenosine (10 micromol/l) caused modest constriction and subsequent superfusion with SCH-58261 (SCH), an A(2A) receptor blocker, at concentrations up 10 micromol/l elicited only slight additional decreases in afferent arteriolar diameter with maximum effect at a concentration of 1 micromol/l (-11.0 +/- 2.5%, n = 6, P < 0.05). However, superfusion of adenosine-treated vessels with MRS-1754 (MRS), an A(2B) receptor blocker, elicited greater decreases in afferent arteriolar diameter (-26.0 +/- 4.7%, n = 5, P < 0.01). SCH did not significantly augment the adenosine-mediated afferent constriction elicited by MRS; however, adding MRS after SCH caused further significant vasoconstriction. Superfusion with CV-1808 dilated afferent arterioles (17.2 +/- 2.4%, n = 6, P < 0.01). This effect was markedly attenuated by MRS (-22.6 +/- 2.0%, n = 5, P < 0.01) but only slightly reduced by SCH (-9.0 +/- 1.1%, n = 5, P < 0.05) and completely prevented by adding MRS after SCH (-24.7 +/- 1.8%, n = 5, P < 0.01). These results indicate that, while both A(2A) and A(2B) receptors are functionally expressed in juxtamedullary afferent arterioles, the powerful vasodilating action of adenosine predominantly involves A(2B) receptor activation, which counteracts A(1) receptor-mediated vasoconstriction.
Collapse
Affiliation(s)
- Ming-Guo Feng
- Department of Physiology, Hypertension and Renal Center of Excellence, Tulane University Medical Center, New Orleans, Louisiana, USA.
| | | |
Collapse
|