1
|
Salvadori M, Rosso G. What is new in the pathogenesis and treatment of IgA glomerulonephritis. World J Nephrol 2024; 13:98709. [DOI: 10.5527/wjn.v13.i4.98709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/29/2024] [Accepted: 10/08/2024] [Indexed: 11/07/2024] Open
Abstract
Recently, new findings have been clarified concerning both pathogenesis and treatment of IgA nephritis. The four hits theory has been confirmed but several genetic wide association studies have allowed finding several genes connected with the pathogenesis of the disease. All these new genes apply to each of the four hits. Additionally, new discoveries concerning the microbiota and its connection with immune system and IgA generation have allowed finding out the role of the mucosa in IgA nephropathy pathogenesis. The IgA treatment is also changed included the future possibilities. The treatment of the chronic kidney disease, associated with the nephropathy, is mandatory, since the beginning of the disease. The classical immunosuppressive agents have poor effect. The corticosteroids remain an important cornerstone in any phase of the disease. More effect is related to the treatment of B cells and plasma cells. In particular, in very recent studies have been documented the efficacy of anti B cell-activating factor and anti A proliferation-inducing ligand agents. Most of these studies are to date in phase II/III. Finally, new agents targeting complement are arising. These agents also are still in randomized trials and act principally in hit 4 where the immunocomplexes in the mesangium activate the different pathways of the complement cascade.
Collapse
Affiliation(s)
- Maurizio Salvadori
- Department of Renal Transplantation, Careggi University Hospital, Florence 50139, Tuscany, Italy
| | - Giuseppina Rosso
- Division of Nephrology, San Giovanni di Dio Hospital, Florence 50143, Toscana, Italy
| |
Collapse
|
2
|
Shukla M, Malhotra KP, Chandra A, Rao NS, Ahmad MK. Correlation of Serum Galactose-Deficient IgA1 and Oxford Class in Cases of IgA Nephropathy. Arch Pathol Lab Med 2024; 148:1244-1250. [PMID: 38289288 DOI: 10.5858/arpa.2023-0190-oa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2023] [Indexed: 10/29/2024]
Abstract
CONTEXT.— Galactose-deficient immunoglobulin A1 (Gd-IgA1) deposition in the renal mesangium plays a role in the pathogenesis of IgA nephropathy. OBJECTIVE.— To assess the serum Gd-IgA1 level in biopsy-proven IgA nephropathy cases at diagnosis and 3 months post treatment and its relation with histologic Oxford classification. DESIGN.— In this hospital-based prospective cohort study, 40 cases and 20 controls were enrolled. Serum samples of biopsy-proven IgA nephropathy cases collected on the day of biopsy and 3 months post treatment were evaluated. Solid-phase ELISA (enzyme-linked immunosorbent assay) was performed for assessment of Gd-IgA1 level. All renal biopsies were scored by using the Oxford classification (C-MEST score). The association of serum Gd-IgA1 levels with other established prognostic parameters was assessed. To estimate the prognostic value of markers, logistic regression analysis and Kruskal-Wallis ANOVA (analysis of variance) were used. RESULTS.— A significant difference was observed in the serum Gd-IgA1 level values in the IgA nephropathy cases and healthy controls (P = .001) at baseline. However, no significant correlation between serum Gd-IgA1 levels at baseline and 3 months of follow-up (P = .31) or between baseline levels and age, proteinuria, hematuria, or estimated glomerular filtration rate was noted. There was no significant correlation between C-MEST score and serum Gd-IgA1 levels at baseline (P > .05); however, the distribution of Gd-IgA1 at 3 months was found to differ significantly between different grades of S score (P = .008). CONCLUSIONS.— Serum Gd-IgA1 levels may be of utility in predicting disease progression in IgA nephropathy cases. Measurement of serum Gd-IgA1 levels for the diagnosis and prognosis of IgA nephropathy may preclude the need for invasive renal biopsies.
Collapse
Affiliation(s)
- Monika Shukla
- From the Departments of Pathology (Shukla, Malhotra) and Nephrology (Chandra, Rao), Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, India
| | - Kiran Preet Malhotra
- From the Departments of Pathology (Shukla, Malhotra) and Nephrology (Chandra, Rao), Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, India
| | - Abhilash Chandra
- From the Departments of Pathology (Shukla, Malhotra) and Nephrology (Chandra, Rao), Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, India
| | - Namrata Sarvepalli Rao
- From the Departments of Pathology (Shukla, Malhotra) and Nephrology (Chandra, Rao), Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, India
| | - Mohammad Kaleem Ahmad
- the Department of Biochemistry, King George's Medical University, Lucknow, India (Ahmad)
| |
Collapse
|
3
|
Wang M, Ma J, Yao L, Fan Y. Efficacy and safety of telitacicept, a BLyS/APRIL dual inhibitor, in the treatment of IgA nephropathy: a retrospective case-control study. Clin Kidney J 2024; 17:sfae285. [PMID: 39391591 PMCID: PMC11464987 DOI: 10.1093/ckj/sfae285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Indexed: 10/12/2024] Open
Abstract
Background Telitacicept, a B lymphocyte stimulator/A proliferation-inducing ligand dual-target fusion protein, has recently been used in autoimmune diseases. We assessed the efficacy and safety of telitacicept in immunoglobulin A nephropathy (IgAN) patients. Methods This study included 42 IgAN patients who received telitacicept treatment, forming the 'whole telitacicept group'. Among them, 20 patients who had not previously received corticosteroid (CS) therapy or immunosuppressive (IS) agents were categorized as the 'newly treated telitacicept subgroup'. Additionally, 28 patients who were selected to match historical controls received conventional IS therapy (CS therapy with/without IS agents) and were classified as the 'conventional IS group'. Telitacicept was partially used in combination with conventional IS therapy, including initial CS in different doses. Various indicators were compared at 4-week intervals up to 24 weeks among the three groups. Results After 24 weeks of treatment, the 24-hour proteinuria decreased from 1.70 g [interquartile range (IQR) 1.05-2.58] to 0.21 g (IQR 0.39-0.13) (P = .043) in the newly treated telitacicept subgroup, from 1.78 g (IQR 0.97-2.82) to 0.44 g (IQR 1.48-0.16) (P = .001) in the conventional IS group and from 1.07 g (IQR 0.66-1.99) to 0.26 g (IQR 0.59-0.17) (P = .028) in the whole telitacicept group. The estimated glomerular filtration rate (eGFR) increased from 76.58 ± 30.26 ml/min/1.73 m2 to 80.30 ± 26.76 ml/min/1.73 m2 (P = .016) in the newly treated telitacicept subgroup, from 72.73 ± 33.41 ml/min/1.73 m2 to 84.08 ± 26.81 ml/min/1.73 m2 (P = .011) in the conventional IS group and from 70.10 ± 32.88 ml/min/1.73 m2 to 71.21 ± 31.49 ml/min/1.73 m2 (P = .065) in the whole telitacicept group. During follow-up periods, the efficacy rates of the three groups did not show statistically significant differences and no serious adverse events were observed. Conclusions Telitacicept may be a safe and effective treatment for IgAN, offering reductions in proteinuria and increases in eGFR similar to conventional IS therapy. After a 24-week follow-up, the incidence of adverse events was lower for telitacicept than for conventional IS therapy.
Collapse
Affiliation(s)
- Meng Wang
- Department of Nephrology, First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Jianfei Ma
- Department of Nephrology, First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Li Yao
- Department of Nephrology, First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yi Fan
- Department of Nephrology, First Hospital of China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
4
|
Beyze A, Larroque C, Le Quintrec M. The role of antibody glycosylation in autoimmune and alloimmune kidney diseases. Nat Rev Nephrol 2024; 20:672-689. [PMID: 38961307 DOI: 10.1038/s41581-024-00850-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2024] [Indexed: 07/05/2024]
Abstract
Immunoglobulin glycosylation is a pivotal mechanism that drives the diversification of antibody functions. The composition of the IgG glycome is influenced by environmental factors, genetic traits and inflammatory contexts. Differential IgG glycosylation has been shown to intricately modulate IgG effector functions and has a role in the initiation and progression of various diseases. Analysis of IgG glycosylation is therefore a promising tool for predicting disease severity. Several autoimmune and alloimmune disorders, including critical and potentially life-threatening conditions such as systemic lupus erythematosus, anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis and antibody-mediated kidney graft rejection, are driven by immunoglobulin. In certain IgG-driven kidney diseases, including primary membranous nephropathy, IgA nephropathy and lupus nephritis, particular glycome characteristics can enhance in situ complement activation and the recruitment of innate immune cells, resulting in more severe kidney damage. Hypofucosylation, hypogalactosylation and hyposialylation are the most common IgG glycosylation traits identified in these diseases. Modulating IgG glycosylation could therefore be a promising therapeutic strategy for regulating the immune mechanisms that underlie IgG-driven kidney diseases and potentially reduce the burden of immunosuppressive drugs in affected patients.
Collapse
Affiliation(s)
- Anaïs Beyze
- Institute of Regenerative Medicine and Biotherapy, IRMB U1183, Montpellier, France.
- Department of Nephrology, Dialysis and Transplantation, Montpellier University Hospital, Montpellier, France.
- University of Montpellier, Montpellier, France.
| | - Christian Larroque
- Institute of Regenerative Medicine and Biotherapy, IRMB U1183, Montpellier, France
- Department of Nephrology, Dialysis and Transplantation, Montpellier University Hospital, Montpellier, France
- University of Montpellier, Montpellier, France
| | - Moglie Le Quintrec
- Institute of Regenerative Medicine and Biotherapy, IRMB U1183, Montpellier, France.
- Department of Nephrology, Dialysis and Transplantation, Montpellier University Hospital, Montpellier, France.
- University of Montpellier, Montpellier, France.
| |
Collapse
|
5
|
Novak J, King RG, Yother J, Renfrow MB, Green TJ. O-glycosylation of IgA1 and the pathogenesis of an autoimmune disease IgA nephropathy. Glycobiology 2024; 34:cwae060. [PMID: 39095059 PMCID: PMC11442006 DOI: 10.1093/glycob/cwae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/21/2024] [Accepted: 08/01/2024] [Indexed: 08/04/2024] Open
Abstract
IgA nephropathy is a kidney disease characterized by deposition of immune complexes containing abnormally O-glycosylated IgA1 in the glomeruli. Specifically, some O-glycans are missing galactose that is normally β1,3-linked to N-acetylgalactosamine of the core 1 glycans. These galactose-deficient IgA1 glycoforms are produced by IgA1-secreting cells due to a dysregulated expression and activity of several glycosyltransferases. Galactose-deficient IgA1 in the circulation of patients with IgA nephropathy is bound by IgG autoantibodies and the resultant immune complexes can contain additional proteins, such as complement C3. These complexes, if not removed from the circulation, can enter the glomerular mesangium, activate the resident mesangial cells, and induce glomerular injury. In this review, we briefly summarize clinical and pathological features of IgA nephropathy, review normal and aberrant IgA1 O-glycosylation pathways, and discuss the origins and potential significance of natural anti-glycan antibodies, namely those recognizing N-acetylgalactosamine. We also discuss the features of autoantibodies specific for galactose-deficient IgA1 and the characteristics of pathogenic immune complexes containing IgA1 and IgG. In IgA nephropathy, kidneys are injured by IgA1-containing immune complexes as innocent bystanders. Most patients with IgA nephropathy progress to kidney failure and require dialysis or transplantation. Moreover, most patients after transplantation experience a recurrent disease. Thus, a better understanding of the pathogenetic mechanisms is needed to develop new disease-specific treatments.
Collapse
Affiliation(s)
- Jan Novak
- Department of Microbiology, University of Alabama at Birmingham, 845 19th Street South, Birmingham, AL 35294, United States
| | - R Glenn King
- Department of Microbiology, University of Alabama at Birmingham, 845 19th Street South, Birmingham, AL 35294, United States
| | - Janet Yother
- Department of Microbiology, University of Alabama at Birmingham, 845 19th Street South, Birmingham, AL 35294, United States
| | - Matthew B Renfrow
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 720 20th Street South, Birmingham, AL 35294, United States
| | - Todd J Green
- Department of Microbiology, University of Alabama at Birmingham, 845 19th Street South, Birmingham, AL 35294, United States
| |
Collapse
|
6
|
Zhu Y, He H, Sun W, Wu J, Xiao Y, Peng Y, Hu P, Jin M, Liu P, Zhang D, Xie T, Huang L, He W, Wei M, Wang L, Xu X, Tang Y. IgA nephropathy: gut microbiome regulates the production of hypoglycosilated IgA1 via the TLR4 signaling pathway. Nephrol Dial Transplant 2024; 39:1624-1641. [PMID: 38402460 PMCID: PMC11427068 DOI: 10.1093/ndt/gfae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Indexed: 02/26/2024] Open
Abstract
BACKGROUND Immunoglobulin A nephropathy (IgAN) is a major cause of primary glomerulonephritis characterized by mesangial deposits of galactose-deficient IgA1 (Gd-IgA1). Toll-like receptors (TLRs), particularly TLR4, are involved in the pathogenesis of IgAN. The role of gut microbiota on IgAN patients was recently investigated. However, whether gut microbial modifications of Gd-IgA1 through TLR4 play a role in IgAN remains unclear. METHODS We recruited subjects into four groups, including 48 patients with untreated IgAN, 22 treated IgAN patients (IgANIT), 22 primary membranous nephropathy and 31 healthy controls (HCs). Fecal samples were collected to analyze changes in gut microbiome. Gd-IgA1 levels, expression of TLR4, B-cell stimulators and intestinal barrier function were evaluated in all subjects. C57BL/6 mice were treated with a broad-spectrum antibiotic cocktail to deplete the gut microbiota and then gavaged with fecal microbiota transplanted from clinical subjects of every group. Gd-IgA1 and TLR4 pathway were detected in peripheral blood mononuclear cells (PBMCs) from IgAN and HCs co-incubated with lipopolysaccharide (LPS) and TLR4 inhibitor. RESULTS Compared with the other three groups, different compositions and decreased diversity demonstrated gut dysbiosis in the untreated IgAN group, especially the enrichment of Escherichia-Shigella. Elevated Gd-IgA1 levels were found in untreated IgAN patients and correlated with gut dysbiosis, TLR4, B-cell stimulators, indexes of intestinal barrier damage and proinflammatory cytokines. In vivo, mice colonized with gut microbiota from IgAN and IgANIT patients mimicked the IgAN phenotype with the activation of TLR4/MyD88/nuclear factor-κB pathway and B-cell stimulators in the intestine, and had with enhanced proinflammatory cytokines. In vitro, LPS activated TLR4/MyD88/NF-κB pathway, B-cell stimulators and proinflammatory cytokines in PBMCs of IgAN patients. This process may induce the overproduction of Gd-IgA1, which was inhibited by TLR4 inhibitors. CONCLUSIONS Our results illustrated that the gut-kidney axis is involved in the pathogenesis of IgAN. Gut dysbiosis could stimulate the overproduction of Gd-IgA1 via TLR4 signaling pathway production and B-cell stimulators.
Collapse
Affiliation(s)
- Yifan Zhu
- Department of Nephrology, Minhang Hospital, Fudan University, Shanghai, P.R. China
| | - Haidong He
- Department of Nephrology, Minhang Hospital, Fudan University, Shanghai, P.R. China
| | - Weiqian Sun
- Department of Nephrology, Minhang Hospital, Fudan University, Shanghai, P.R. China
| | - Jiajun Wu
- Department of Nephrology, Minhang Hospital, Fudan University, Shanghai, P.R. China
| | - Yong Xiao
- Department of Emergency, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China
| | - Yinshun Peng
- School of Public Health, Fudan University, Shanghai, China
| | - Ping Hu
- Department of Nephrology, Minhang Hospital, Fudan University, Shanghai, P.R. China
| | - Meiping Jin
- Department of Nephrology, Minhang Hospital, Fudan University, Shanghai, P.R. China
| | - Ping Liu
- Department of Nephrology, Minhang Hospital, Fudan University, Shanghai, P.R. China
| | - DongLiang Zhang
- Department of Nephrology, Minhang Hospital, Fudan University, Shanghai, P.R. China
| | - Ting Xie
- Department of Nephrology, Minhang Hospital, Fudan University, Shanghai, P.R. China
| | - Lusheng Huang
- Department of Nephrology, Minhang Hospital, Fudan University, Shanghai, P.R. China
| | - Weiming He
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Suzhou, P.R. China
| | - Minggang Wei
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Soochow University, Jiangsu Suzhou, P.R. China
| | - Lishun Wang
- Center for Traditional Chinese Medicine and Gut Microbiota, Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| | - Xudong Xu
- Department of Nephrology, Minhang Hospital, Fudan University, Shanghai, P.R. China
| | - Yuyan Tang
- Department of Nephrology, Minhang Hospital, Fudan University, Shanghai, P.R. China
| |
Collapse
|
7
|
Liu L, Liu Y, Li J, Tang C, Wang H, Chen C, Long H, Chen X, Xing G, Cheng J, Liang J, Peng X, Wang L, Shao S, Lin Y, Chen T, Tang Y, Shen S, Sun L, Wu H, Yu Y, Du X, Liu H, He L, Liu H, Ye M, Chen W, Wen Q, Zhang H, Cao H, Yuan J, Chen H, Wang M, Lv J, Zhang H. Efficacy and Safety of Telitacicept in IgA Nephropathy: A Retrospective, Multicenter Study. Nephron Clin Pract 2024:1-10. [PMID: 39250892 DOI: 10.1159/000540326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/10/2024] [Indexed: 09/11/2024] Open
Abstract
INTRODUCTION The efficacy of telitacicept treatment in reducing proteinuria in patients with IgA nephropathy (IgAN) was indicated in a phase II clinical trial with small sample size. In this study, we conducted a large multicenter retrospective study to explore the efficacy and safety of telitacicept in patients with IgAN. METHODS This study recruited patients with IgAN from 19 sites from China who were treated with telitacicept and had been followed up at least once or with side effect reported, since April 1, 2021, to April 1, 2023. The primary outcomes of the study were the changing in proteinuria and eGFR over time. RESULTS A cohort of 97 patients with IgAN who were treated with telitacicept were recruited, with a median follow-up duration of 3 months. The median baseline proteinuria was 2.3 [1.3, 3.9] g/day and eGFR was 45.0 [26.8, 73.7] mL/min/1.73 m2. There was a significant reduction of proteinuria at 2, 4, 6 months when compared with baseline (2.3 [1.5, 4.1] vs. 1.5 [0.8, 2.3] g/day; 2.3 [1.1, 3.7] vs. 1.1 [0.6, 1.9] g/day; 2.1 [1.0, 2.7] vs. 0.9 [0.5, 1.7] g/day, all p values <0.01). The level of eGFR were comparable between at the baseline and 2, 4, 6 months of follow-up time (41.5 [29.7, 72.0] vs. 42.5 [28.8, 73.3] mL/min/1.73 m2; 41.0 [26.8, 67.7] vs. 44.7 [31.0, 67.8] mL/min/1.73 m2; 33.7 [24.0, 58.5] vs. 32.6 [27.8, 57.5] mL/min/1.73 m2, all p values >0.26). Telitacicept was well tolerated in the patients. CONCLUSIONS This study indicates that telitacicept alone or on top of steroids therapy can significantly and safely reduce proteinuria in patients with IgAN. The long-term kidney protection still needs to be confirmed in large phase III trial.
Collapse
Affiliation(s)
- Lijun Liu
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Yimeng Liu
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China,
- Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China,
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China,
| | - Juan Li
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
- Changzhi People's Hospital, Changzhi, China
| | - Chen Tang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Huiming Wang
- Renmin Hospital of Wuhan University, Wuhan, China
| | - Cheng Chen
- Renmin Hospital of Wuhan University, Wuhan, China
| | - Haibo Long
- Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Xiaowen Chen
- Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Guolan Xing
- The First Affiliated Hospital of ZhengZhou University, Zhengzhou, China
| | - Jingru Cheng
- The First Affiliated Hospital of ZhengZhou University, Zhengzhou, China
| | - Jianbo Liang
- The Second Affiliated Hospital of GuangZhou Medical University, Guangzhou, China
| | - Xuan Peng
- The Second Affiliated Hospital of GuangZhou Medical University, Guangzhou, China
| | | | | | - Yongqiang Lin
- Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, China
| | - Tianmu Chen
- Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, China
| | - Ying Tang
- The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | | | | | - Henglan Wu
- The First Hospital of JiaXing, Jiaxing, China
| | - Yuan Yu
- The Second Affiliated Hospital of ChongQing Medical University, Chongqing, China
| | - Xuanyi Du
- The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hong Liu
- The Second XiangYa Hospital of Central South University, Changsha, China
| | - Liyu He
- The Second XiangYa Hospital of Central South University, Changsha, China
| | - Hong Liu
- Foshan Hospital of TCM, Foshan, China
| | | | - Wei Chen
- The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Qiong Wen
- The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hong Zhang
- Foresea Life Insurance Guangzhou General Hospital, Guangzhou, China
| | - Hongmin Cao
- Foresea Life Insurance Guangzhou General Hospital, Guangzhou, China
| | - Jing Yuan
- Guizhou Provincial People's Hospital, Guiyang, China
| | - Hong Chen
- The Affiliated Hospital (Group) of PuTian University, Putian, China
| | - Ming Wang
- Hangzhou First People's Hospital, Hangzhou, China
| | - Jicheng Lv
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Hong Zhang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
8
|
Makita Y, Reich HN. Pathogenic Immunoglobulin A-Producing Cells in Immunoglobulin A Nephropathy. J Clin Med 2024; 13:5255. [PMID: 39274468 PMCID: PMC11396043 DOI: 10.3390/jcm13175255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/29/2024] [Accepted: 08/31/2024] [Indexed: 09/16/2024] Open
Abstract
Immunoglobulin A nephropathy (IgAN) is the most prevalent primary glomerular disease worldwide and it remains a leading cause of kidney failure. Clinical manifestations of IgA are exacerbated by infections, and emerging data suggest that aberrant mucosal immune responses are important contributors to the immunopathogenesis of this disease. However, the exact stimuli, location and mechanism of nephritis-inducing IgA production remains unclear. In this focused review we explore recent developments in our understanding of the contribution of the mucosal immune system and mucosal-derived IgA-producing cells to the development of IgAN.
Collapse
Affiliation(s)
- Yuko Makita
- Division of Nephrology, University Health Network, Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo 113-8421, Japan
- Toronto General Hospital Research Institute, Toronto, ON M5G 2C4, Canada
| | - Heather N Reich
- Division of Nephrology, University Health Network, Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
- Toronto General Hospital Research Institute, Toronto, ON M5G 2C4, Canada
| |
Collapse
|
9
|
Cheung CK, Alexander S, Reich HN, Selvaskandan H, Zhang H, Barratt J. The pathogenesis of IgA nephropathy and implications for treatment. Nat Rev Nephrol 2024:10.1038/s41581-024-00885-3. [PMID: 39232245 PMCID: PMC7616674 DOI: 10.1038/s41581-024-00885-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2024] [Indexed: 09/06/2024]
Abstract
IgA nephropathy (IgAN) is a common form of primary glomerulonephritis and represents an important cause of chronic kidney disease globally, with observational studies indicating that most patients are at risk of developing kidney failure within their lifetime. Several research advances have provided insights into the underlying disease pathogenesis, framed by a multi-hit model whereby an increase in circulating IgA1 that lacks galactose from its hinge region - probably derived from the mucosal immune system - is followed by binding of specific IgG and IgA antibodies, generating immune complexes that deposit within the glomeruli, which triggers inflammation, complement activation and kidney damage. Although treatment options are currently limited, new therapies are rapidly emerging that target different pathways, cells and mediators involved in the disease pathogenesis, including B cell priming in the gut mucosa, the cytokines APRIL and BAFF, plasma cells, complement activation and endothelin pathway activation. As more treatments become available, there is a realistic possibility of transforming the long-term outlook for many individuals with IgAN.
Collapse
Affiliation(s)
- Chee Kay Cheung
- Mayer IgA Nephropathy Laboratories, Department of Cardiovascular Sciences, University of Leicester, Leicester, UK.
- John Walls Renal Unit, University Hospitals of Leicester NHS Trust, Leicester, UK.
| | | | - Heather N Reich
- Department of Medicine, Division of Nephrology, University of Toronto, University Health Network, Toronto, ON, Canada
| | - Haresh Selvaskandan
- Mayer IgA Nephropathy Laboratories, Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- John Walls Renal Unit, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Hong Zhang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, P. R. China
| | - Jonathan Barratt
- Mayer IgA Nephropathy Laboratories, Department of Cardiovascular Sciences, University of Leicester, Leicester, UK.
- John Walls Renal Unit, University Hospitals of Leicester NHS Trust, Leicester, UK.
| |
Collapse
|
10
|
Julian BA. My lifetime in IgA nephropathy: An unexpected journey. Nephrology (Carlton) 2024; 29 Suppl 2:55-59. [PMID: 39327736 PMCID: PMC11441621 DOI: 10.1111/nep.14341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/22/2024] [Accepted: 06/25/2024] [Indexed: 09/28/2024]
Affiliation(s)
- Bruce A Julian
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, USA
| |
Collapse
|
11
|
Aoki R, Nihei Y, Matsuzaki K, Suzuki H, Kihara M, Ogawa A, Nishino T, Sanada S, Yokote S, Okabe M, Shirai S, Fukuda A, Hoshino J, Kondo D, Yokoo T, Kashihara N, Narita I, Suzuki Y. Gross Hematuria after the COVID-19 mRNA Vaccination: Nationwide Multicenter Prospective Cohort Study in Japan. KIDNEY360 2024; 5:1322-1332. [PMID: 38976886 PMCID: PMC11441798 DOI: 10.34067/kid.0000000000000498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024]
Abstract
Key Points Little is known about the clinicopathological characteristics and renal outcomes in the patients with gross hematuria (GH) after the vaccination. To fill a clinicopathological knowledge gap regarding vaccination and GH, we conducted a nationwide multicenter prospective cohort study. GH is more likely to occur in patients with IgA nephropathy, with a female bias, but without progressive exacerbation of renal function. Background In the past 3 years, cases of gross hematuria (GH) after the vaccination for coronavirus disease 2019 in patients with IgA nephropathy (IgAN) have been frequently reported worldwide. However, the postevent renal prognosis of these patients, their clinical backgrounds, and underlying mechanisms remain unknown. Therefore, we conducted a nationwide multicenter prospective cohort study in Japan. Methods We analyzed laboratory findings at the time of the first presentation to the hospital and 3 and 6 months after in patients with GH after the vaccination and histopathological findings in their kidney biopsy specimens. Moreover, changes in pathological biomarkers of IgAN such as galactose-deficient IgA1 (Gd-IgA1) and its immune complexes were also evaluated. Results During the study period, 127 newly presenting patients with GH after the vaccination were enrolled, with a clear female bias (73.2%). GH was observed after the second or subsequent vaccinations in most patients (92.9%). Of the 37 patients undergoing kidney biopsy before the vaccination, 36 patients had been diagnosed with IgAN/IgA vasculitis (IgAV). In the remaining 90 patients, 69 of the 70 who newly underwent kidney biopsy were diagnosed with IgAN (n =67)/IgAV (n =2). Their histopathology did not show a high incidence of acute lesions such as endocapillary hypercellularity and crescentic lesions. Most cases showed a temporary increase in proteinuria, but no sustained worsening in renal function. Among the biomarkers measured, serum Gd-IgA1 and immune complexes were comparable throughout the observation period; however, only urinary Gd-IgA1 was increased at the time of GH. Conclusions We found that GH after the vaccination is more likely to occur in patients with IgAN/IgAV, with a female bias, but without progressive exacerbation of renal function. Although further investigation is needed regarding causal relationship between vaccination and GH, this study provides many insights into the molecular mechanisms of GH.
Collapse
Affiliation(s)
- Ryousuke Aoki
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
- Joint Research Team from the Japanese Society of Nephrology and the Progressive Renal Diseases Research, Research on Intractable Disease, from the Ministry of Health, Labour and Welfare of Japan, Special Study Group for IgA Nephropathy, Tokyo, Japan
| | - Yoshihito Nihei
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
- Joint Research Team from the Japanese Society of Nephrology and the Progressive Renal Diseases Research, Research on Intractable Disease, from the Ministry of Health, Labour and Welfare of Japan, Special Study Group for IgA Nephropathy, Tokyo, Japan
| | - Keiichi Matsuzaki
- Joint Research Team from the Japanese Society of Nephrology and the Progressive Renal Diseases Research, Research on Intractable Disease, from the Ministry of Health, Labour and Welfare of Japan, Special Study Group for IgA Nephropathy, Tokyo, Japan
- Department of Public Health, Kitasato University School of Medicine, Kanagawa, Japan
| | - Hitoshi Suzuki
- Joint Research Team from the Japanese Society of Nephrology and the Progressive Renal Diseases Research, Research on Intractable Disease, from the Ministry of Health, Labour and Welfare of Japan, Special Study Group for IgA Nephropathy, Tokyo, Japan
- Department of Nephrology, Juntendo University Urayasu Hospital, Chiba, Japan
| | - Masao Kihara
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
- Joint Research Team from the Japanese Society of Nephrology and the Progressive Renal Diseases Research, Research on Intractable Disease, from the Ministry of Health, Labour and Welfare of Japan, Special Study Group for IgA Nephropathy, Tokyo, Japan
| | - Asa Ogawa
- Division of Nephrology, Niigata Prefectural Shibata Hospital, Niigata, Japan
| | - Tomoya Nishino
- Joint Research Team from the Japanese Society of Nephrology and the Progressive Renal Diseases Research, Research on Intractable Disease, from the Ministry of Health, Labour and Welfare of Japan, Special Study Group for IgA Nephropathy, Tokyo, Japan
- Department of Nephrology, Nagasaki University Hospital, Nagasaki, Japan
| | - Satoru Sanada
- Department of Nephrology, Japan Community Healthcare Organization Sendai Hospital, Sendai, Japan
| | - Shinya Yokote
- Division of Nephrology and Hypertension, Department of Internal Medicine, Jikei University Katsushika Medical Center, Tokyo, Japan
| | - Masahiro Okabe
- Division of Nephrology and Hypertension, Department of Internal Medicine, Jikei University Daisan Hospital, Tokyo, Japan
| | - Sayuri Shirai
- Joint Research Team from the Japanese Society of Nephrology and the Progressive Renal Diseases Research, Research on Intractable Disease, from the Ministry of Health, Labour and Welfare of Japan, Special Study Group for IgA Nephropathy, Tokyo, Japan
- Division of Nephrology and Hypertension, Department of Internal Medicine, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Akihiro Fukuda
- Joint Research Team from the Japanese Society of Nephrology and the Progressive Renal Diseases Research, Research on Intractable Disease, from the Ministry of Health, Labour and Welfare of Japan, Special Study Group for IgA Nephropathy, Tokyo, Japan
- Department of Endocrinology, Metabolism, Rheumatology and Nephrology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Junichi Hoshino
- Department of Nephrology, Tokyo Women's Medical University, Tokyo, Japan
| | - Daisuke Kondo
- Department of Nephrology, Niigata City General Hospital, Niigata, Japan
| | - Takashi Yokoo
- Joint Research Team from the Japanese Society of Nephrology and the Progressive Renal Diseases Research, Research on Intractable Disease, from the Ministry of Health, Labour and Welfare of Japan, Special Study Group for IgA Nephropathy, Tokyo, Japan
- Division of Kidney and Hypertension, Department of Internal Medicine, Jikei University School of Medicine, Tokyo, Japan
| | - Naoki Kashihara
- Joint Research Team from the Japanese Society of Nephrology and the Progressive Renal Diseases Research, Research on Intractable Disease, from the Ministry of Health, Labour and Welfare of Japan, Special Study Group for IgA Nephropathy, Tokyo, Japan
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Japan
| | - Ichiei Narita
- Joint Research Team from the Japanese Society of Nephrology and the Progressive Renal Diseases Research, Research on Intractable Disease, from the Ministry of Health, Labour and Welfare of Japan, Special Study Group for IgA Nephropathy, Tokyo, Japan
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yusuke Suzuki
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
- Joint Research Team from the Japanese Society of Nephrology and the Progressive Renal Diseases Research, Research on Intractable Disease, from the Ministry of Health, Labour and Welfare of Japan, Special Study Group for IgA Nephropathy, Tokyo, Japan
| |
Collapse
|
12
|
Suzuki H. Biomarkers for risk stratification of IgA nephropathy. Nephrology (Carlton) 2024; 29 Suppl 2:23-24. [PMID: 39327743 DOI: 10.1111/nep.14294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 09/28/2024]
Affiliation(s)
- Hitoshi Suzuki
- Department of Nephrology, Juntendo University Urayasu Hospital, Chiba, Japan
| |
Collapse
|
13
|
Novak J. Pathogenesis of IgA nephropathy: Omics data inform glycomedicine. Nephrology (Carlton) 2024; 29 Suppl 2:18-22. [PMID: 39327757 PMCID: PMC11441619 DOI: 10.1111/nep.14350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/11/2024] [Accepted: 06/25/2024] [Indexed: 09/28/2024]
Affiliation(s)
- Jan Novak
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
14
|
Suzuki H, Novak J. IgA Nephropathy: Significance of IgA1-Containing Immune Complexes in Clinical Settings. J Clin Med 2024; 13:4495. [PMID: 39124764 PMCID: PMC11313413 DOI: 10.3390/jcm13154495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 08/12/2024] Open
Abstract
IgA nephropathy (IgAN) is considered to be an autoimmune disease characterized by the formation of IgA1-containing immune complexes in the circulation and glomerular immunodeposits. Extensive research has identified multiple genetic, immunological, and environmental factors contributing to disease development and progression. The pathogenesis of IgAN is considered a multifactorial process involving the formation of immune complexes wherein aberrantly O-glycosylated IgA1 is recognized as an autoantigen. Consequently, the clinical presentation of IgAN is highly variable, with a wide spectrum of manifestations ranging from isolated microscopic hematuria or episodic macroscopic hematuria to nephrotic-range proteinuria. Whereas some patients may exhibit a slowly progressive form of IgAN, others may present with a rapidly progressive glomerulonephritis leading to kidney failure. Development of the treatment for IgAN requires an understanding of the characteristics of the pathogenic IgA1-containing immune complexes that enter the glomerular mesangium and induce kidney injury. However, not all details of the mechanisms involved in the production of galactose-deficient IgA1 and immune-complex formation are fully understood. Here, we review what we have learned about the characteristics of nephritogenic IgA1 in the half-century since the first description of IgAN in 1968.
Collapse
Affiliation(s)
- Hitoshi Suzuki
- Department of Nephrology, Juntendo University Urayasu Hospital, 2-1-1 Tomioka, Urayasu 279-0021, Chiba, Japan
| | - Jan Novak
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
15
|
Duan ZY, Zhang C, Chen XM, Cai GY. Blood and urine biomarkers of disease progression in IgA nephropathy. Biomark Res 2024; 12:72. [PMID: 39075557 PMCID: PMC11287988 DOI: 10.1186/s40364-024-00619-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/12/2024] [Indexed: 07/31/2024] Open
Abstract
The prognosis of patients with IgA nephropathy (IgAN) is variable but overall not good. Almost all patients with IgAN are at risk of developing end-stage renal disease within their expected lifetime. The models presently available for prediction of the risk of progression of IgAN, including the International IgA Nephropathy Prediction Tool, consist of traditional clinical, pathological, and therapeutic indicators. Finding biomarkers to improve the existing risk prediction models or replace pathological indicators is important for clinical practice. Many studies have attempted to identify biomarkers for prediction of progression of IgAN, such as galactose-deficient IgA1, complement, a spectrum of protein biomarkers, non-coding RNA, and shedding cells. This article reviews the biomarkers of progression of IgAN identified in recent years, with a focus on those with clinical value, in particular the combination of multiple biomarkers into a biomarker spectrum. Future research should focus on establishing a model based primarily on biomarkers that can predict progression of IgAN and testing it in various patient cohorts.
Collapse
Affiliation(s)
- Zhi-Yu Duan
- Department of Nephrology, State Key Laboratory of Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, First Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Kidney Diseases, Beijing, 100853, China
| | - Chun Zhang
- Department of Nephrology, State Key Laboratory of Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, First Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Kidney Diseases, Beijing, 100853, China
| | - Xiang-Mei Chen
- Department of Nephrology, State Key Laboratory of Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, First Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Kidney Diseases, Beijing, 100853, China
| | - Guang-Yan Cai
- Department of Nephrology, State Key Laboratory of Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, First Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Kidney Diseases, Beijing, 100853, China.
| |
Collapse
|
16
|
Gao L, Li H, Liu X, Li H, Li P, Lu W, Xie X, Lv J, Jin J. Humoral immune responses primed by the alteration of gut microbiota were associated with galactose-deficient IgA1 production in IgA nephropathy. Front Immunol 2024; 15:1415026. [PMID: 39104521 PMCID: PMC11298704 DOI: 10.3389/fimmu.2024.1415026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/26/2024] [Indexed: 08/07/2024] Open
Abstract
Introduction Galactose-deficient IgA1 (GdIgA1) is critical in the formation of immunodeposits in IgA nephropathy (IgAN), whereas the origin of GdIgA1 is unknown. We focused on the immune response to fecal microbiota in patients with IgAN. Methods By running 16S ribosomal RNA gene sequencing, we compared IgAN samples to the control samples from household-matched or non-related individuals. Levels of plasma GdIgA1 and poly-IgA complexes were measured, and candidate microbes that can either incite IgA-directed antibody response or degrade IgA through specific IgA protease activities were identified. Results The IgAN group showed a distinct composition of fecal microbiota as compared to healthy controls. Particularly, high abundance of Escherichia-Shigella was associated with the disease group based on analyses using receiver operating characteristic (area under curve, 0.837; 95% CI, 0.738-0.914), principle coordinates, and the linear discriminant analysis effect size algorithm (linear discriminant analysis score, 4.56; p < 0.001). Accordingly, the bacterial levels directly correlated with high titers of plasma GdIgA1(r = 0.36, p < 0.001), and patients had higher IgA1 against stx2(2.88 ± 0.46 IU/mL vs. 1.34 ± 0.35 IU/mL, p = 0.03), the main antigen of Escherichia-Shigella. Conversely, the healthy controls showed relatively higher abundance of the commensal bacteria that produce IgA-degrading proteases. Particularly, the abundance of some intestinal bacteria expressing IgA proteases showed an inverse correlation with the levels of plasma GdIgA1 in IgAN. Conclusion Our data suggest that mucosal IgA production, including those of GdIgA1, is potentially linked to the humoral response to gut Escherichia-Shigella as one of the sources of plasma GdIgA1. Conversely, the IgA protease-producing microbiota in the gut are suppressed in patients with IgAN.
Collapse
Affiliation(s)
- Li Gao
- Department of Nephrology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Cardiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Huixian Li
- Department of Nephrology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xiaoling Liu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| | - Haiyun Li
- MOE Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, China
| | - Peiqi Li
- Department of Cardiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Wanhong Lu
- Department of Nephrology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xinfang Xie
- Department of Nephrology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jicheng Lv
- Renal Division, Peking University First Hospital; Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Jing Jin
- Department of Medicine-Nephrology and Hypertension, Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
17
|
Ma J, Xing J, Zhang Y, Liu G. Efficacy and safety of biologic agents for IgA nephropathy: A protocol for systematic review and meta-analysis. PLoS One 2024; 19:e0298732. [PMID: 38547115 PMCID: PMC10977724 DOI: 10.1371/journal.pone.0298732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 01/29/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND IgA nephropathy (IgAN) is the most prevalent primary glomerulonephritis worldwide and a leading cause of chronic kidney failure. There are currently no definitive therapeutic regimens to treat or prevent the progression of IgAN. However, biologic agents offer novel therapeutic approaches that target immunological mechanisms to slow or halt disease progression. The objective of this study is to evaluate the efficacy and safety of biologic agents in patients with IgA nephropathy. METHODS We will systematically search PubMed, EMbase, Web of Science, Cochrane Library, and www.clinicaltrials.gov for randomized controlled trials of biologic agents for the treatment of IgA nephropathy. The search period will span from the establishment of each database until October 2023. The quality assessment of included studies will be performed individually using the revised Cochrane risk-of-bias tool for randomized trials (RoB 2), and meta-analysis will be conducted using Revman 5.4.1 software. CONCLUSIONS The results of this study will provide evidence-based medical evidence for the clinical application of biologic agents in patients with IgA nephropathy. PROSPERO REGISTRATION NUMBER CRD42023400450.
Collapse
Affiliation(s)
- Jia Ma
- Shanxi Traditional Chinese Medical Hospital, Taiyuan, China
- Shanxi University of Chinese Medicine, Taiyuan, China
| | - Jianyue Xing
- Shanxi Traditional Chinese Medical Hospital, Taiyuan, China
| | - Yupeng Zhang
- Shanxi Traditional Chinese Medical Hospital, Taiyuan, China
| | - Guangzhen Liu
- Shanxi Traditional Chinese Medical Hospital, Taiyuan, China
| |
Collapse
|
18
|
Vaz de Castro PAS, Amaral AA, Almeida MG, Selvaskandan H, Barratt J, Simões E Silva AC. Examining the association between serum galactose-deficient IgA1 and primary IgA nephropathy: a systematic review and meta-analysis. J Nephrol 2024:10.1007/s40620-023-01874-8. [PMID: 38427309 DOI: 10.1007/s40620-023-01874-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/26/2023] [Indexed: 03/02/2024]
Abstract
BACKGROUND IgA nephropathy (IgAN) is a common primary glomerular disease. The O-glycosylation status of IgA1 plays a crucial role in disease pathophysiology. The level of poorly-O-galactosylated IgA1, or galactose-deficient IgA1 (Gd-IgA1), has also been identified as a potential biomarker in IgAN. We sought to examine the value of serum Gd-IgA1 as a biomarker in IgAN, by investigating its association with clinical, laboratory, and histopathological features of IgAN. METHODS The review followed Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) recommendations and was registered in PROSPERO (CRD42021287423). The literature search was conducted in PubMed, Web of Science, Cochrane, and Scopus, and the selected articles were evaluated for eligibility based on predefined criteria. The methodological quality of the studies was assessed using the Newcastle-Ottawa Scale. Statistical analysis was performed to calculate effect sizes and assess heterogeneity among the studies. RESULTS This review analyzed 29 out of 1,986 studies, conducted between 2005 and 2022, with participants from multiple countries. Gd-IgA1 levels were not associated with age and gender, while associations with hypertension, hematuria, and proteinuria were inconsistent. In the meta-analyses, a correlation between serum Gd-IgA1 and estimated glomerular filtration rate was identified, however, the relationships between Gd-IgA1 levels and chronic kidney disease (CKD) stage and progression to kidney failure were inconsistent. CONCLUSIONS Serum Gd-IgA1 levels were not associated with validated prognostic risk factors, but were negatively correlated with kidney function. Further research in larger studies using standardized assays are needed to establish the value of Gd-IgA1 as a prognostic risk factor in IgAN.
Collapse
Affiliation(s)
- Pedro Alves Soares Vaz de Castro
- Interdisciplinary Laboratory of Medical Investigation, Unit of Pediatric Nephrology, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Arthur Aguiar Amaral
- Interdisciplinary Laboratory of Medical Investigation, Unit of Pediatric Nephrology, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Mariana Godinho Almeida
- Interdisciplinary Laboratory of Medical Investigation, Unit of Pediatric Nephrology, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Haresh Selvaskandan
- The Mayer IgA Nephropathy Laboratories, University of Leicester, Leicester, UK
| | - Jonathan Barratt
- The Mayer IgA Nephropathy Laboratories, University of Leicester, Leicester, UK.
- Department of Cardiovascular Sciences, University of Leicester, University Road, Leicester, LE1 7RH, UK.
| | - Ana Cristina Simões E Silva
- Interdisciplinary Laboratory of Medical Investigation, Unit of Pediatric Nephrology, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| |
Collapse
|
19
|
Zhuang Y, Lu H, Li J. Advances in the treatment of IgA nephropathy with biological agents. Chronic Dis Transl Med 2024; 10:1-11. [PMID: 38450299 PMCID: PMC10914012 DOI: 10.1002/cdt3.104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/24/2023] [Accepted: 11/09/2023] [Indexed: 03/08/2024] Open
Abstract
Immunoglobulin A nephropathy (IgAN) is the most common primary glomerular disease, and the "four-hit" theory represents its currently accepted pathogenic mechanism. Mucosal immunity triggered by infections in the respiratory tract, intestines, or other areas leads to antigen presentation, T cell stimulation, B cell maturation, and the production of IgA-producing plasma cells. The proteins B-lymphocyte stimulator (BLyS) and a proliferation-inducing ligand (APRIL) are involved in this process, and alternative complement and lectin pathway activation are also part of the pathogenic mechanism. Kidney Disease Improving Global Outcomes guidelines indicate that a specific effective treatment for IgAN is lacking, with renin-angiotensin-aldosterone system inhibitors being the primary therapy. Recent research shows that biological agents can significantly reduce proteinuria, stabilize the estimated glomerular filtration rate, and reverse some pathological changes, such as endocapillary proliferation and crescent formation. There are four main categories of biological agents used to treat IgA nephropathy, specifically anti-CD20 monoclonal antibodies, anti-BLyS or APRIL monoclonal antibodies, monoclonal antibodies targeting both BLyS and APRIL (telitacicept and atacicept), and monoclonal antibodies inhibiting complement system activation (narsoplimab and eculizumab). However, further research on the dosages, treatment duration, long-term efficacy, and safety of these biological agents is required.
Collapse
Affiliation(s)
- Yongze Zhuang
- Department of Nephrology, 900 Hospital of the Joint Logistics Team, PLA, Fuzhou General Clinical Medical CollegeFujian Medical UniversityFuzhouFujianChina
| | - Hailing Lu
- Department of Nephrology, 900 Hospital of the Joint Logistics Team, PLA, Fuzhou General Clinical Medical CollegeFujian Medical UniversityFuzhouFujianChina
| | - Junxia Li
- Department of Nephrology, 900 Hospital of the Joint Logistics Team, PLA, Fuzhou General Clinical Medical CollegeFujian Medical UniversityFuzhouFujianChina
| |
Collapse
|
20
|
Jiang Y, Chen P, Zhao W, Liu L, Shi S, Lv J, Zhang H. Distinct characteristics and prognosis of IgA nephropathy patients with nephrotic syndrome: a propensity score-matched cohort study. Front Med (Lausanne) 2024; 11:1344219. [PMID: 38439903 PMCID: PMC10910015 DOI: 10.3389/fmed.2024.1344219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 02/07/2024] [Indexed: 03/06/2024] Open
Abstract
Introduction IgA nephropathy (IgAN) is the most prevalent primary glomerulonephritis globally. While nephrotic syndrome (NS) is uncommon in IgAN, its significance remains unclear. Methods We conducted a retrospective analysis of 170 IgAN patients, classifying them into NS (n = 85) and non-NS (n = 5) groups. Our study aims to compare their clinical characteristics, treatment responses, and prognoses. Patients were selected based on renal biopsy from 2003 to 2020. Propensity score matching ensured comparability. Clinical, pathological, and immunological data were analyzed. Composite endpoints were defined as end-stage kidney disease (ESKD) or a 30% decline in estimated glomerular filtration rate (eGFR). Results NS patients showed higher eGFR (74.3 ± 36.8 vs. 61.5 ± 33.6 mL/min.1.73 m2, p = 0.02), severe hematuria (35.0 (4.7,147.5) vs. 4.0 (1.8,45,0) cells/μl, p < 0.001), severe foot process effacement (p = 0.01), and lower C3 levels (1.0 ± 0.3 vs. 1.1 ± 0.2 g/L, p = 0.03). In contrast, the non-NS group had higher BMI (24.3 ± 4.0 vs. 26.8 ± 3.7 kg/m2, p < 0.001) and elevated serum uric acid levels (376 (316,417) vs. 400 (362, 501) mmol/L, p = 0.001), suggesting metabolic factors might contribute to their condition. Both groups exhibited similar MESTC scores. NS patients had higher complete remission rates (26.2% vs. 14.1%, p = 0.04). Cox regression revealed NS independently associated with a higher risk of composite endpoints (HR = 1.97, 95% CI 1.05-3.72, p = 0.04). Linear mixed models did not show significant eGFR trajectory differences. Discussion This study has established that IgAN patients with NS exhibit distinct characteristics, including active disease and increased complement activation. NS is independently associated with a poorer prognosis, emphasizing the need for targeted interventions in this subgroup.
Collapse
Affiliation(s)
- Yuanyuan Jiang
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Department of Nephrology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Pei Chen
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
| | - Wenjing Zhao
- Department of Nephrology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Lijun Liu
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
| | - Sufang Shi
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
| | - Jicheng Lv
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
| | - Hong Zhang
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
| |
Collapse
|
21
|
Lim RS, Yeo SC, Barratt J, Rizk DV. An Update on Current Therapeutic Options in IgA Nephropathy. J Clin Med 2024; 13:947. [PMID: 38398259 PMCID: PMC10889409 DOI: 10.3390/jcm13040947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/30/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
Immunoglobulin A nephropathy (IgAN) remains the leading cause of primary glomerular disease worldwide. Outcomes are poor with high rates of progressive chronic kidney disease and kidney failure, which contributes to global healthcare costs. Although this disease entity has been described, there were no disease-specific treatments until recently, with the current standard of care focusing on optimal supportive measures including lifestyle modifications and optimization of the renin-angiotensin-aldosterone blockade. However, with significant advances in the understanding of the pathogenesis of IgAN in the past decade, and the acceptance of surrogate outcomes for accelerated drug approval, there have been many new investigational agents tested to target this disease. As these agents become available, we envision a multi-pronged treatment strategy that simultaneously targets the consequences of ongoing nephron loss, stopping any glomerular inflammation, inhibiting pro-fibrotic signals in the glomerulus and tubulo-interstitium, and inhibiting the production of pathogenic IgA molecules. This review is an update on a previous review published in 2021, and we aim to summarize the developments and updates in therapeutic strategies in IgAN and highlight the promising discoveries that are likely to add to our armamentarium.
Collapse
Affiliation(s)
- Regina Shaoying Lim
- Department of Renal Medicine, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore; (R.S.L.); (S.C.Y.)
| | - See Cheng Yeo
- Department of Renal Medicine, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore; (R.S.L.); (S.C.Y.)
| | - Jonathan Barratt
- Department of Cardiovascular Sciences, University of Leicester, Leicester LE1 7RH, UK;
- John Walls Renal Unit, University Hospitals of Leicester NHS Trust, Leicester LE5 4PW, UK
| | - Dana V. Rizk
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, ZRB 614, 1720 2nd Avenue South, Birmingham, AL 35294, USA
| |
Collapse
|
22
|
Cheung CK, Barratt J, Liew A, Zhang H, Tesar V, Lafayette R. The role of BAFF and APRIL in IgA nephropathy: pathogenic mechanisms and targeted therapies. FRONTIERS IN NEPHROLOGY 2024; 3:1346769. [PMID: 38362118 PMCID: PMC10867227 DOI: 10.3389/fneph.2023.1346769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 12/31/2023] [Indexed: 02/17/2024]
Abstract
Immunoglobulin A nephropathy (IgAN), characterized by mesangial deposition of galactose-deficient-IgA1 (Gd-IgA1), is the most common biopsy-proven primary glomerulonephritis worldwide. Recently, an improved understanding of its underlying pathogenesis and the substantial risk of progression to kidney failure has emerged. The "four-hit hypothesis" of IgAN pathogenesis outlines a process that begins with elevated circulating levels of Gd-IgA1 that trigger autoantibody production. This results in the formation and deposition of immune complexes in the mesangium, leading to inflammation and kidney injury. Key mediators of the production of Gd-IgA1 and its corresponding autoantibodies are B-cell activating factor (BAFF), and A proliferation-inducing ligand (APRIL), each playing essential roles in the survival and maintenance of B cells and humoral immunity. Elevated serum levels of both BAFF and APRIL are observed in patients with IgAN and correlate with disease severity. This review explores the complex pathogenesis of IgAN, highlighting the pivotal roles of BAFF and APRIL in the interplay between mucosal hyper-responsiveness, B-cell activation, and the consequent overproduction of Gd-IgA1 and its autoantibodies that are key features in this disease. Finally, the potential therapeutic benefits of inhibiting BAFF and APRIL in IgAN, and a summary of recent clinical trial data, will be discussed.
Collapse
Affiliation(s)
- Chee Kay Cheung
- Division of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- John Walls Renal Unit, University Hospitals of Leicester National Health Service (NHS) Trust, Leicester, United Kingdom
| | - Jonathan Barratt
- Division of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- John Walls Renal Unit, University Hospitals of Leicester National Health Service (NHS) Trust, Leicester, United Kingdom
| | - Adrian Liew
- The Kidney & Transplant Practice, Mount Elizabeth Novena Hospital, Singapore
| | - Hong Zhang
- Renal Division in the Department of Medicine, Peking University First Hospital, Beijing, China
| | - Vladimir Tesar
- Department of Nephrology, First School of Medicine and General University Hospital, Charles University, Prague, Czechia
| | - Richard Lafayette
- Department of Medicine, Stanford University, Stanford, CA, United States
| |
Collapse
|
23
|
Yamada K, Huang ZQ, Reily C, Green TJ, Suzuki H, Novak J, Suzuki Y. LIF/JAK2/STAT1 Signaling Enhances Production of Galactose-Deficient IgA1 by IgA1-Producing Cell Lines Derived From Tonsils of Patients With IgA Nephropathy. Kidney Int Rep 2024; 9:423-435. [PMID: 38344714 PMCID: PMC10851019 DOI: 10.1016/j.ekir.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/13/2023] [Accepted: 11/06/2023] [Indexed: 02/28/2024] Open
Abstract
Introduction Galactose-deficient IgA1 (Gd-IgA1) plays a key role in the pathogenesis of IgA nephropathy (IgAN). Tonsillectomy has been beneficial to some patients with IgAN, possibly due to the removal of tonsillar cytokine-activated cells producing Gd-IgA1. To test this hypothesis, we used immortalized IgA1-producing cell lines derived from tonsils of patients with IgAN or obstructive sleep apnea (OSA) and assessed the effect of leukemia inhibitory factor (LIF) or oncostatin M (OSM) on Gd-IgA1 production. Methods Gd-IgA1 production was measured by lectin enzyme-linked immunosorbent assay; JAK-STAT signaling in cultured cells was assessed by immunoblotting of cell lysates; and validated by using small interfering RNA (siRNA) knock-down and small-molecule inhibitors. Results IgAN-derived cells produced more Gd-IgA1 than the cells from patients with OSA, and exhibited elevated Gd-IgA1 production in response to LIF, but not OSM. This effect was associated with dysregulated STAT1 phosphorylation, as confirmed by STAT1 siRNA knock-down. JAK2 inhibitor, AZD1480 exhibited a dose-dependent inhibition of the LIF-induced Gd-IgA1 overproduction. Unexpectedly, high concentrations of AZD1480, but only in the presence of LIF, reduced Gd-IgA1 production in the cells derived from patients with IgAN to that of the control cells from patients with OSA. Based on modeling LIF-LIFR-gp130-JAK2 receptor complex, we postulate that LIF binding to LIFR may sequester gp130 and/or JAK2 from other pathways; and when combined with JAK2 inhibition, enables full blockade of the aberrant O-glycosylation pathways in IgAN. Conclusion In summary, IgAN cells exhibit LIF-mediated overproduction of Gd-IgA1 due to abnormal signaling. JAK2 inhibitors can counter these LIF-induced effects and block Gd-IgA1 synthesis in IgAN.
Collapse
Affiliation(s)
- Koshi Yamada
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Zhi-Qiang Huang
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Colin Reily
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Todd J. Green
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Hitoshi Suzuki
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Jan Novak
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Yusuke Suzuki
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
| |
Collapse
|
24
|
Yamada K, Novak J, Suzuki Y. GWAS-follow-up Studies Identified a Connection between Abnormal LIF/JAK2/STAT1 Signaling and Overproduction of Galactose-Deficient IgA1 in the Tonsillar IgA1-Secreting Cells from Patients with IgA Nephropathy. JOURNAL OF CLINICAL RESEARCH & BIOETHICS 2024; 15:478. [PMID: 38440092 PMCID: PMC10911063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Affiliation(s)
- Koshi Yamada
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Jan Novak
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Yusuke Suzuki
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
| |
Collapse
|
25
|
Dybiec J, Frąk W, Kućmierz J, Tokarek J, Wojtasińska A, Młynarska E, Rysz J, Franczyk B. Liquid Biopsy: A New Avenue for the Diagnosis of Kidney Disease: Diabetic Kidney Disease, Renal Cancer, and IgA Nephropathy. Genes (Basel) 2024; 15:78. [PMID: 38254967 PMCID: PMC10815875 DOI: 10.3390/genes15010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Kidney diseases are some of the most common healthcare problems. As the population of elderly individuals with concurrent health conditions continues to rise, there will be a heightened occurrence of these diseases. Due to the renal condition being one of the longevity predictors, early diagnosis of kidney dysfunction plays a crucial role. Currently, prevalent diagnostic tools include laboratory tests and kidney tissue biopsies. New technologies, particularly liquid biopsy and new detection biomarkers, hold promise for diagnosing kidney disorders. The aim of this review is to present modern diagnostic methods for kidney diseases. The paper focuses on the advances in diagnosing three common renal disorders: diabetic kidney disease, renal cancer, and immunoglobulin A nephropathy. We highlight the significance of liquid biopsy and epigenetic changes, such as DNA methylation, microRNA, piRNAs, and lncRNAs expression, or single-cell transcriptome sequencing in the assessment of kidney diseases. This review underscores the importance of early diagnosis for the effective management of kidney diseases and investigates liquid biopsy as a promising approach.
Collapse
Affiliation(s)
- Jill Dybiec
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Weronika Frąk
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Joanna Kućmierz
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Julita Tokarek
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Armanda Wojtasińska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Ewelina Młynarska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Beata Franczyk
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| |
Collapse
|
26
|
Deng Z, Wang Y, Qin C, Sheng Z, Xu T, Qiu X. Expression and Clinical Significance of Non B Cell-Derived Immunoglobulins in the Urinary System and Male Reproductive System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1445:101-117. [PMID: 38967753 DOI: 10.1007/978-981-97-0511-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
The urinary system comprises kidneys, ureters, bladder, and urethra with its primary function being excretion, referring to the physiological process of transporting substances that are harmful or surplus out of the body. The male reproductive system consists of gonads (testis), vas deferens, and accessory glands such as the prostate. According to classical immunology theory, the tissues and organs mentioned above are not thought to produce immunoglobulins (Igs), and any Ig present in the relevant tissues under physiological and pathological conditions is believed to be derived from B cells. For instance, most renal diseases are associated with uncontrolled inflammation caused by pathogenic Ig deposited in the kidney. Generally, these pathological Igs are presumed to be produced by B cells. Recent studies have demonstrated that renal parenchymal cells can produce and secrete Igs, including IgA and IgG. Glomerular mesangial cells can express and secrete IgA, which is associated with cell survival and adhesion. Likewise, human podocytes demonstrate the ability to produce and secrete IgG, which is related to cell survival and adhesion. Furthermore, renal tubular epithelial cells also express IgG, potentially involved in the epithelial-mesenchymal transition (EMT). More significantly, renal cell carcinoma, bladder cancer, and prostate cancer have been revealed to express high levels of IgG, which promotes tumour progression. Given the widespread Ig expression in the urinary and male reproductive systems, continued efforts to elucidate the roles of Igs in renal physiological and pathological processes are necessary.
Collapse
Affiliation(s)
- Zhenling Deng
- Department of Nephrology, Peking University Third Hospital, Beijing, China
| | - Yue Wang
- Peking University Third Hospital, Beijing, China
| | - Caipeng Qin
- Department of Urology, Peking University People's Hospital, Beijing, China
| | - Zhengzuo Sheng
- Department of Thoracic Surgery, Fu Xing Hospital, Capital Medical University, Beijing, China
| | - Tao Xu
- Department of Urology, Peking University People's Hospital, Beijing, China
| | - Xiaoyan Qiu
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China
| |
Collapse
|
27
|
Zhang X, Wang Y, Yarbrough J, Mathur M, Andrews L, Pereira B, Sloan SE, Schachter AD. Safety, Pharmacokinetics, and Pharmacodynamics of Subcutaneous Sibeprenlimab in Healthy Participants. Clin Pharmacol Drug Dev 2023; 12:1211-1220. [PMID: 37565623 DOI: 10.1002/cpdd.1316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/17/2023] [Indexed: 08/12/2023]
Abstract
Sibeprenlimab blocks the cytokine "A Proliferation-Inducing Ligand" (APRIL), which may play a key role in immunoglobulin A nephropathy pathogenesis. A phase 1 study of subcutaneous (SC) sibeprenlimab evaluated preliminary safety, tolerability, pharmacokinetics, and pharmacodynamics in healthy participants. This was an open-label, single-ascending-dose study. Twelve participants in each of 4 sequential dosing cohorts received 1 SC dose of sibeprenlimab (200 mg [1×1 mL injection], 400 mg [2×1 mL injections], 400 mg [1×2 mL injection], or 600 mg [1 mL+2 mL injections]) and underwent 16-week follow-up for adverse events, pharmacokinetics, and pharmacodynamics (serum APRIL, immunoglobulin [Ig] levels). Sibeprenlimab in single SC doses of 200-600 mg was slowly absorbed into the systemic circulation, with a median time to maximum serum concentration of approximately 6-10.5 days, and a mean elimination half-life of approximately 8-10 days. Serum APRIL, IgA, IgM, and, to a lesser extent, IgG decreased in a dose-dependent and reversible manner. Maximal reduction in serum IgA was approximately 60% at the 400- and 600-mg doses and 40% at 200 mg. Serum APRIL rapidly decreased to near the lower limit of quantification, and duration of suppression was dose-dependent, with near complete suppression until weeks 4-6 at the 400-mg dose and week 8 at the 600-mg dose. Adverse events occurred in 30/48 (62.5%) participants; none were serious or led to study discontinuation. Sibeprenlimab rapidly and sustainably reduced target APRIL and Ig biomarkers in a dose-dependent and reversible manner, with acceptable preliminary safety and pharmacokinetics.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- Otsuka Pharmaceutical Development & Commercialization, Inc., Princeton, NJ, USA
| | - Yanlin Wang
- Otsuka Pharmaceutical Development & Commercialization, Inc., Princeton, NJ, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Cattran DC, Floege J, Coppo R. Evaluating Progression Risk in Patients With Immunoglobulin A Nephropathy. Kidney Int Rep 2023; 8:2515-2528. [PMID: 38106572 PMCID: PMC10719597 DOI: 10.1016/j.ekir.2023.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 12/19/2023] Open
Abstract
The highly variable rate of decline in kidney function in patients with immunoglobulin A nephropathy (IgAN) provides a major clinical challenge. Predicting which patients will progress to kidney failure, and how quickly, is difficult. Multiple novel therapies are likely to be approved in the short-term, but clinicians lack the tools to identify patients most likely to benefit from specific treatments at the right time. Noninvasive and validated markers for selecting at-risk patients and longitudinal monitoring are urgently needed. This review summarizes what is known about demographic, clinical, and histopathologic prognostic markers in the clinician's toolkit, including the International IgAN Prediction Tool. We also briefly review what is known on these topics in children and adolescents with IgAN. Although helpful, currently used markers leave clinicians heavily reliant on histologic features from the diagnostic kidney biopsy and standard clinical data to guide treatment choice, and very few noninvasive markers reflect treatment efficacy over time. Novel prognostic and predictive markers are under clinical investigation, with considerable progress being made in markers of complement activation. Other areas of research are the interplay between gut microbiota and galactose-deficient IgA1 expression; microRNAs; imaging; artificial intelligence; and markers of fibrosis. Given the rate of therapeutic advancement, the remaining gaps in biomarker research need to be addressed. We finish by describing our route to clinical utility of predictive and prognostic markers in IgAN. This route will provide us with the chance to improve IgAN prognosis by using robust, clinically practical markers to inform patient care.
Collapse
Affiliation(s)
| | - Jürgen Floege
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany
| | - Rosanna Coppo
- Fondazione Ricerca Molinette, Regina Margherita Hospital, Turin, Italy
| |
Collapse
|
29
|
Obrișcă B, Vornicu A, Mocanu V, Dimofte G, Andronesi A, Bobeică R, Jurubiță R, Sorohan B, Caceaune N, Ismail G. An open-label study evaluating the safety and efficacy of budesonide in patients with IgA nephropathy at high risk of progression. Sci Rep 2023; 13:20119. [PMID: 37978255 PMCID: PMC10656480 DOI: 10.1038/s41598-023-47393-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023] Open
Abstract
We sought to evaluate the efficacy and safety of budesonide (Budenofalk) in the treatment of patients with IgA Nephropathy. We conducted a prospective, interventional, open-label, single-arm, non-randomized study that enrolled 32 patients with IgAN at high risk of progression (BUDIGAN study, ISRCTN47722295, date of registration 14/02/2020). Patients were treated with Budesonide at a dose of 9 mg/day for 12 months, subsequently tapered to 3 mg/day for another 12 months. The primary endpoints were change of eGFR and proteinuria at 12, 24 and 36 months. The study cohort had a mean eGFR and 24-h proteinuria of 59 ± 24 ml/min/1.73m2 and 1.89 ± 1.5 g/day, respectively. Treatment with budesonide determined a reduction in proteinuria at 12-, 24- and 36-months by -32.9% (95% CI - 53.6 to - 12.2), - 49.7% (95% CI - 70.1 to - 29.4) and - 68.1% (95% CI - 80.6 to - 55.7). Budesonide determined an eGFR preservation corresponding to a 12-, 24- and 36-months change of + 7.68% (95% CI - 4.7 to 20.1), + 7.42% (95% CI - 7.23 to 22.1) and + 4.74% (95%CI - 13.5 to 23), respectively. The overall eGFR change/year was + 0.83 ml/min/y (95% CI - 0.54 to 4.46). Budesonide was well-tolerated, and treatment emergent adverse events were mostly mild in severity and reversible. Budesonide was effective in the treatment of patients with IgAN at high-risk of progression in terms of reducing proteinuria and preserving renal function over 36 months of therapy.
Collapse
Affiliation(s)
- Bogdan Obrișcă
- Department of Nephrology, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania.
- Department of Nephrology, Fundeni Clinical Institute, Bucharest, Romania.
| | - Alexandra Vornicu
- Department of Nephrology, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
- Department of Nephrology, Fundeni Clinical Institute, Bucharest, Romania
| | - Valentin Mocanu
- Department of Nephrology, Fundeni Clinical Institute, Bucharest, Romania
| | - George Dimofte
- Department of Nephrology, Fundeni Clinical Institute, Bucharest, Romania
| | - Andreea Andronesi
- Department of Nephrology, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
- Department of Nephrology, Fundeni Clinical Institute, Bucharest, Romania
| | - Raluca Bobeică
- Department of Nephrology, Fundeni Clinical Institute, Bucharest, Romania
| | - Roxana Jurubiță
- Department of Nephrology, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
- Department of Nephrology, Fundeni Clinical Institute, Bucharest, Romania
| | - Bogdan Sorohan
- Department of Nephrology, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
- Department of Nephrology, Fundeni Clinical Institute, Bucharest, Romania
| | - Nicu Caceaune
- Department of Internal Medicine, Fundeni Clinical Institute, Bucharest, Romania
| | - Gener Ismail
- Department of Nephrology, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
- Department of Nephrology, Fundeni Clinical Institute, Bucharest, Romania
| |
Collapse
|
30
|
Mathur M, Chan TM, Oh KH, Kooienga L, Zhuo M, Pinto CS, Chacko B. A PRoliferation-Inducing Ligand (APRIL) in the Pathogenesis of Immunoglobulin A Nephropathy: A Review of the Evidence. J Clin Med 2023; 12:6927. [PMID: 37959392 PMCID: PMC10650434 DOI: 10.3390/jcm12216927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
A PRoliferation-Inducing Ligand (APRIL), the thirteenth member of the tumor necrosis factor superfamily, plays a key role in the regulation of activated B cells, the survival of long-lived plasma cells, and immunoglobulin (Ig) isotype class switching. Several lines of evidence have implicated APRIL in the pathogenesis of IgA nephropathy (IgAN). Globally, IgAN is the most common primary glomerulonephritis, and it can progress to end-stage kidney disease; yet, disease-modifying treatments for this condition have historically been lacking. The preliminary data in ongoing clinical trials indicate that APRIL inhibition can reduce proteinuria and slow the rate of kidney disease progression by acting at an upstream level in IgAN pathogenesis. In this review, we examine what is known about the physiologic roles of APRIL and evaluate the experimental and epidemiological evidence describing how these normal biologic processes are thought to be subverted in IgAN. The weight of the preclinical, clinical, and genetic data supporting a key role for APRIL in IgAN has galvanized pharmacologic research, and several anti-APRIL drug candidates have now entered clinical development for IgAN. Herein, we present an overview of the clinical results to date. Finally, we explore where more research and evidence are needed to transform potential therapies into clinical benefits for patients with IgAN.
Collapse
Affiliation(s)
| | - Tak Mao Chan
- Department of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China;
| | - Kook-Hwan Oh
- Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea;
| | - Laura Kooienga
- Colorado Kidney and Vascular Care, Denver, CO 80012, USA;
| | - Min Zhuo
- Visterra, Inc., Waltham, MA 02451, USA;
- Division of Renal Medicine, Department of Medicine Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Cibele S. Pinto
- Otsuka Pharmaceutical Development & Commercialization, Princeton, NJ 08540, USA;
| | - Bobby Chacko
- Nephrology and Transplantation Unit, John Hunter Hospital, Newcastle, NSW 2305, Australia;
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
31
|
Rajasekaran A, Green TJ, Renfrow MB, Julian BA, Novak J, Rizk DV. Current Understanding of Complement Proteins as Therapeutic Targets for the Treatment of Immunoglobulin A Nephropathy. Drugs 2023; 83:1475-1499. [PMID: 37747686 PMCID: PMC10807511 DOI: 10.1007/s40265-023-01940-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2023] [Indexed: 09/26/2023]
Abstract
Immunoglobulin A nephropathy (IgAN) is the most common primary glomerulonephritis worldwide and a frequent cause of kidney failure. Currently, the diagnosis necessitates a kidney biopsy, with routine immunofluorescence microscopy revealing IgA as the dominant or co-dominant immunoglobulin in the glomerular immuno-deposits, often with IgG and sometimes IgM or both. Complement protein C3 is observed in most cases. IgAN leads to kidney failure in 20-40% of patients within 20 years of diagnosis and reduces average life expectancy by about 10 years. There is increasing clinical, biochemical, and genetic evidence that the complement system plays a paramount role in the pathogenesis of IgAN. The presence of C3 in the kidney immuno-deposits differentiates the diagnosis of IgAN from subclinical glomerular mesangial IgA deposition. Markers of complement activation via the lectin and alternative pathways in kidney-biopsy specimens are associated with disease activity and are predictive of poor outcome. Levels of select complement proteins in the circulation have also been assessed in patients with IgAN and found to be of prognostic value. Ongoing genetic studies have identified at least 30 loci associated with IgAN. Genes within some of these loci encode complement-system regulating proteins that can interact with immune complexes. The growing appreciation for the central role of complement components in IgAN pathogenesis highlighted these pathways as potential treatment targets and sparked great interest in pharmacological agents targeting the complement cascade for the treatment of IgAN, as evidenced by the plethora of ongoing clinical trials.
Collapse
Affiliation(s)
- Arun Rajasekaran
- Division of Nephrology, Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Todd J Green
- Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Matthew B Renfrow
- Department of Biochemistry and Molecular Genetics, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Bruce A Julian
- Division of Nephrology, Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jan Novak
- Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Dana V Rizk
- Division of Nephrology, Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
32
|
Keskinyan VS, Lattanza B, Reid-Adam J. Glomerulonephritis. Pediatr Rev 2023; 44:498-512. [PMID: 37653138 DOI: 10.1542/pir.2021-005259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Glomerulonephritis (GN) encompasses several disorders that cause glomerular inflammation and injury through an interplay of immune-mediated mechanisms, host characteristics, and environmental triggers, such as infections. GN can manifest solely in the kidney or in the setting of a systemic illness, and presentation can range from chronic and relatively asymptomatic hematuria to fulminant renal failure. Classic acute GN is characterized by hematuria, edema, and hypertension, the latter 2 of which are the consequence of sodium and water retention in the setting of renal impairment. Although presenting signs and symptoms and a compatible clinical history can suggest GN, serologic and urinary testing can further refine the differential diagnosis, and renal biopsy can be used for definitive diagnosis. Treatment of GN can include supportive care, renin-angiotensin-aldosterone system blockade, immunomodulatory therapy, and renal transplant. Prognosis is largely dependent on the underlying cause of GN and can vary from a self-limited course to chronic kidney disease. This review focuses on lupus nephritis, IgA nephropathy, IgA vasculitis, and postinfectious GN.
Collapse
|
33
|
Wang YN, Gan T, Qu S, Xu LL, Hu Y, Liu LJ, Shi SF, Lv JC, Tsoi LC, Patrick MT, He K, Berthier CC, Xu HJ, Zhou XJ, Zhang H. MTMR3 risk alleles enhance Toll Like Receptor 9-induced IgA immunity in IgA nephropathy. Kidney Int 2023; 104:562-576. [PMID: 37414396 DOI: 10.1016/j.kint.2023.06.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 05/29/2023] [Accepted: 06/15/2023] [Indexed: 07/08/2023]
Abstract
Multiple genome-wide association studies (GWASs) have reproducibly identified the MTMR3/HORMAD2/LIF/OSM locus to be associated with IgA nephropathy (IgAN). However, the causal variant(s), implicated gene(s), and altered mechanisms remain poorly understood. Here, we performed fine-mapping analyses based on GWAS datasets encompassing 2762 IgAN cases and 5803 control individuals, and identified rs4823074 as the candidate causal variant that intersects the MTMR3 promoter in B-lymphoblastoid cells. Mendelian randomization studies suggested the risk allele may modulate disease susceptibility by affecting serum IgA levels through increased MTMR3 expression. Consistently, elevated MTMR3 expression in peripheral blood mononuclear cells was observed in patients with IgAN. Further mechanistic studies in vitro demonstrated that MTMR3 increased IgA production dependent upon its phosphatidylinositol 3-phosphate binding domain. Moreover, our study provided the in vivo functional evidence that Mtmr3-/- mice exhibited defective Toll Like Receptor 9-induced IgA production, glomerular IgA deposition, as well as mesangial cell proliferation. RNA-seq and pathway analyses showed that MTMR3 deficiency resulted in an impaired intestinal immune network for IgA production. Thus, our results support the role of MTMR3 in IgAN pathogenesis by enhancing Toll Like Receptor 9-induced IgA immunity.
Collapse
Affiliation(s)
- Yan-Na Wang
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, People's Republic of China; Peking University Institute of Nephrology, Peking University, Beijing, People's Republic of China; Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, People's Republic of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, People's Republic of China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, People's Republic of China
| | - Ting Gan
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, People's Republic of China; Peking University Institute of Nephrology, Peking University, Beijing, People's Republic of China; Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, People's Republic of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, People's Republic of China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, People's Republic of China
| | - Shu Qu
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, People's Republic of China; Peking University Institute of Nephrology, Peking University, Beijing, People's Republic of China; Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, People's Republic of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, People's Republic of China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, People's Republic of China
| | - Lin-Lin Xu
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, People's Republic of China; Peking University Institute of Nephrology, Peking University, Beijing, People's Republic of China; Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, People's Republic of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, People's Republic of China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, People's Republic of China
| | - Yong Hu
- Beijing Institute of Biotechnology, Beijing, People's Republic of China
| | - Li-Jun Liu
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, People's Republic of China; Peking University Institute of Nephrology, Peking University, Beijing, People's Republic of China; Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, People's Republic of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, People's Republic of China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, People's Republic of China
| | - Su-Fang Shi
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, People's Republic of China; Peking University Institute of Nephrology, Peking University, Beijing, People's Republic of China; Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, People's Republic of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, People's Republic of China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, People's Republic of China
| | - Ji-Cheng Lv
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, People's Republic of China; Peking University Institute of Nephrology, Peking University, Beijing, People's Republic of China; Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, People's Republic of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, People's Republic of China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, People's Republic of China
| | - Lam C Tsoi
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, USA; Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Matthew T Patrick
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, USA; Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Kevin He
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA; Kidney Epidemiology and Cost Center, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Celine C Berthier
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Hu-Ji Xu
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, The Second Military Medical University, Shanghai, People's Republic of China
| | - Xu-Jie Zhou
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, People's Republic of China; Peking University Institute of Nephrology, Peking University, Beijing, People's Republic of China; Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, People's Republic of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, People's Republic of China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, People's Republic of China.
| | - Hong Zhang
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, People's Republic of China; Peking University Institute of Nephrology, Peking University, Beijing, People's Republic of China; Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, People's Republic of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, People's Republic of China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, People's Republic of China.
| |
Collapse
|
34
|
Zanoni F, Abinti M, Belingheri M, Castellano G. Present and Future of IgA Nephropathy and Membranous Nephropathy Immune Monitoring: Insights from Molecular Studies. Int J Mol Sci 2023; 24:13134. [PMID: 37685941 PMCID: PMC10487514 DOI: 10.3390/ijms241713134] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
IgA Nephropathy (IgAN) and Membranous Nephropathy (MN) are primary immune-mediated glomerular diseases with highly variable prognosis. Current guidelines recommend that greater immunologic activity and worse prognosis should guide towards the best treatment in an individualized approach. Nevertheless, proteinuria and glomerular filtration rate, the current gold standards for prognosis assessment and treatment guidance in primary glomerular diseases, may be altered with chronic damage and nephron scarring, conditions that are not related to immune activity. In recent years, thanks to the development of new molecular technologies, among them genome-wide genotyping, RNA sequencing techniques, and mass spectrometry, we have witnessed an outstanding improvement in understanding the pathogenesis of IgAN and MN. In addition, recent genome-wide association studies have suggested potential targets for immunomodulating agents, stressing the need for the identification of specific biomarkers of immune activity. In this work, we aim to review current evidence and recent progress, including the more recent use of omics techniques, in the identification of potential biomarkers for immune monitoring in IgAN and MN.
Collapse
Affiliation(s)
- Francesca Zanoni
- Division of Nephrology, Dialysis and Kidney Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.A.); (M.B.); (G.C.)
| | - Matteo Abinti
- Division of Nephrology, Dialysis and Kidney Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.A.); (M.B.); (G.C.)
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy
| | - Mirco Belingheri
- Division of Nephrology, Dialysis and Kidney Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.A.); (M.B.); (G.C.)
| | - Giuseppe Castellano
- Division of Nephrology, Dialysis and Kidney Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.A.); (M.B.); (G.C.)
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy
| |
Collapse
|
35
|
Gong Z, Tang J, Hu W, Song X, Liu X, Mu J, Su Y. Serum galactose-deficient immunoglobulin A1 in recurrent immunoglobulin a nephropathy after kidney transplantation: A meta-analysis. Transpl Immunol 2023; 79:101850. [PMID: 37182720 DOI: 10.1016/j.trim.2023.101850] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/16/2023]
Abstract
BACKGROUND Immunoglobulin A nephropathy (IgAN) is a main cause of end stage renal disease (ESRD). Many IgAN patients with ESRD accept kidney allograft for renal replacement. However, disease recurrence occurs after transplantation. Galactose-deficient immunoglobulin A1(Gd-IgA1) has been proved to be a crucial biomarker in the primary IgAN population. METHODS This meta-analysis aimed to explore the association between serum Gd-IgA1 and IgAN recurrence after renal transplantation and was registered on PROSPERO: CRD42022356952; A literature search was performed and relevant studies were retrieved from the PubMed, Embase and Cochrane library databases from inception to April 27, 2023. The inclusion criteria were: 1) full-text studies; 2) patients with histological diagnosis of IgAN of their native kidneys who underwent kidney transplantation; 3) studies exploring the relationship between serum Gd-IgA1 and IgAN recurrence after kidney transplantation. The exclusion criteria were: 1) reviews, case reports, or non-clinical studies. 2) studies with insufficient original data or incomplete data. 3) studies with duplicated data. Study quality was assessed using Newcastle Ottawa Scale (NOS). Data were pooled using a random-effects model. RESULTS 8 full-text studies including 515 patients were identified. The Newcastle-Ottawa Scale (NOS) score ranged from 6 to 8. The standard mean difference (SMD) of the level of Gd-IgA1 was significantly higher in recurrence group than in non-recurrence group (SMD = 0.50,95%CI = 0.15-0.85, p = 0.005). Furthermore, Gd-IgA1 levels were higher in recurrence patients than in non-recurrence in both Europe subgroup (SMD 0.45, 95%CI: 0.08-0.82, p = 0.02) and Asia subgroup (SMD 0.90, 95%CI: 0.10-1.70, p = 0.03). However, pretransplant Gd-IgA1 levels showed no significant difference between recurrence and non-recurrence group (SMD 0.46, 95%CI: 0.06-0.99, p = 0.08) in anther subgroup analysis while posttransplant Gd-IgA1 levels were significantly higher in recurrence population than in non-recurrence (SMD 0.57, 95%CI 0.21 to 0.92, p = 0.002). CONCLUSIONS This meta-analysis showed that posttransplant serum Gd-IgA1 levels are associated with IgAN recurrence after kidney transplantation; however, pretransplant serum Gd-IgA1 levels are not.
Collapse
Affiliation(s)
- Zhiyan Gong
- Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Jianying Tang
- Department of Nephrology, University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| | - Wei Hu
- Department of Nephrology, University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| | - Xiaoyan Song
- Department of Nephrology, University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| | - Xiyan Liu
- Science and Technology Innovation Center of Jiangjin District, Chongqing 402260, China
| | - Jiao Mu
- Department of Nephrology, University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| | - Yuanyuan Su
- Department of Nephrology, University-Town Hospital of Chongqing Medical University, Chongqing 401331, China.
| |
Collapse
|
36
|
Gentile M, Sanchez-Russo L, Riella LV, Verlato A, Manrique J, Granata S, Fiaccadori E, Pesce F, Zaza G, Cravedi P. Immune abnormalities in IgA nephropathy. Clin Kidney J 2023; 16:1059-1070. [PMID: 37398689 PMCID: PMC10310525 DOI: 10.1093/ckj/sfad025] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Indexed: 09/10/2023] Open
Abstract
Immunoglobulin A (IgA) nephropathy (IgAN) is the most common primary glomerulonephritis worldwide and it is characterized by mesangial IgA deposition. Asymptomatic hematuria with various degrees of proteinuria is the most common clinical presentation and up to 20%-40% of patients develop end-stage kidney disease within 20 years after disease onset. The pathogenesis of IgAN involves four sequential processes known as the "four-hit hypothesis" which starts with the production of a galactose-deficient IgA1 (gd-IgA1), followed by the formation of anti-gd-IgA1 IgG or IgA1 autoantibodies and immune complexes that ultimately deposit in the glomerular mesangium, leading to inflammation and injury. Although several key questions about the production of gd-IgA1 and the formation of anti-gd-IgA1 antibodies remain unanswered, a growing body of evidence is shedding light on the innate and adaptive immune mechanisms involved in this complex pathogenic process. Herein, we will focus on these mechanisms that, along with genetic and environmental factors, are thought to play a key role in disease pathogenesis.
Collapse
Affiliation(s)
- Micaela Gentile
- Translational Transplant Research Center and Department of Medicine, Icahn School of Medicine at Mount Sinai, NY, USA
- UO Nefrologia, Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, Italy
| | - Luis Sanchez-Russo
- Translational Transplant Research Center and Department of Medicine, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Leonardo V Riella
- Division of Nephrology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Alberto Verlato
- Translational Transplant Research Center and Department of Medicine, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Joaquin Manrique
- Nephrology Service, Complejo Hospitalario de Navarra, Pamplona, Spain
| | - Simona Granata
- Nephrology, Dialysis and Transplantation Unit, University of Foggia, Foggia, Italy
| | - Enrico Fiaccadori
- UO Nefrologia, Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, Italy
| | - Francesco Pesce
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari “A. Moro”, Bari, Italy
| | - Gianluigi Zaza
- Nephrology, Dialysis and Transplantation Unit, University of Foggia, Foggia, Italy
| | - Paolo Cravedi
- Translational Transplant Research Center and Department of Medicine, Icahn School of Medicine at Mount Sinai, NY, USA
| |
Collapse
|
37
|
Jemelkova J, Stuchlova Horynova M, Kosztyu P, Zachova K, Zadrazil J, Galuszkova D, Takahashi K, Novak J, Raska M. GalNAc-T14 may Contribute to Production of Galactose-Deficient Immunoglobulin A1, the Main Autoantigen in IgA Nephropathy. Kidney Int Rep 2023; 8:1068-1075. [PMID: 37180502 PMCID: PMC10166743 DOI: 10.1016/j.ekir.2023.02.1072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/13/2023] [Accepted: 02/06/2023] [Indexed: 02/16/2023] Open
Abstract
Introduction Immunoglobulin A1 (IgA1) with galactose-deficient O-glycans (Gd-IgA1) play a key role in the pathogenesis of IgA nephropathy (IgAN). Mucosal-tissue infections increase IL-6 production and, in patients with IgAN, are often associated with macroscopic hematuria. IgA1-secreting cell lines derived from the circulation of patients with IgAN, compared to those of healthy controls (HCs), produce more IgA1 that has O-glycans with terminal or sialylated N-acetylgalactosamine (GalNAc). GalNAc residues are added to IgA1 hinge region by some of the 20 GalNAc transferases, the O-glycosylation-initiating enzymes. Expression of GALNT2, encoding GalNAc-T2, the main enzyme initiating IgA1 O-glycosylation, is similar in cells derived from patients with IgAN and HCs. In this report, we extend our observations of GALNT14 overexpression in IgA1-producing cell lines from patients with IgAN. Methods GALNT14 expression was analyzed in peripheral blood mononuclear cells (PBMCs) from patients with IgAN and from HCs. Moreover, the effect of GALNT14 overexpression or knock-down on Gd-IgA1 production in Dakiki cells was assessed. Results GALNT14 was overexpressed in PBMCs from patients with IgAN. IL-6 increased GALNT14 expression in PBMCs from patients with IgAN and HCs. We used IgA1-producing cell line Dakiki, a previously reported model of Gd-IgA1-producing cells, and showed that overexpression of GalNAc-T14 enhanced galactose deficiency of IgA1, whereas siRNA-mediated GalNAc-T14 knock-down reduced it. GalNAc-T14 was localized in trans-Golgi network, as expected. Conclusions Overexpression of GALNT14 due to inflammatory signals during mucosal infections may contribute to overproduction of Gd-IgA1 in patients with IgAN.
Collapse
Affiliation(s)
- Jana Jemelkova
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Milada Stuchlova Horynova
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Petr Kosztyu
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Katerina Zachova
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Josef Zadrazil
- Department of Internal Medicine III Nephrology, Rheumatology and Endocrinology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Olomouc, Czech Republic
| | - Dana Galuszkova
- Department of Transfusion Medicine, University Hospital Olomouc, Olomouc, Czech Republic
| | - Kazuo Takahashi
- Department of Biomedical Molecular Sciences, School of Medicine, Fujita Health University, Nagoya, Aichi, Japan
| | - Jan Novak
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Milan Raska
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
- Department of Immunology, University Hospital Olomouc, Olomouc, Czech Republic
| |
Collapse
|
38
|
Tanaka M, Moniwa N, Nogi C, Kano T, Matsumoto M, Sakai A, Maeda T, Takizawa H, Ogawa Y, Asanuma K, Suzuki Y, Furuhashi M. Glomerular expression and urinary excretion of fatty acid-binding protein 4 in IgA nephropathy. J Nephrol 2023; 36:385-395. [PMID: 36622635 DOI: 10.1007/s40620-022-01551-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/03/2022] [Indexed: 01/10/2023]
Abstract
BACKGROUND Fatty acid-binding protein 4 (FABP4) is secreted from adipocytes and macrophages in adipose tissue and acts as an adipokine. It has recently been reported that FABP4, but not liver-type FABP (L-FABP/FABP1), is also expressed in injured glomerular endothelial cells and infiltrating macrophages in the glomerulus and that urinary FABP4 (U-FABP4) is associated with proteinuria and kidney function impairment in nephrotic patients. However, the link between glomerular FABP4 and U-FABP4 has not been fully addressed in IgA nephropathy (IgAN). METHODS We investigated the involvement of FABP4 in human and mouse IgAN. RESULTS In patients with IgAN (n = 23), the ratio of FABP4-positive area to total area within glomeruli (G-FABP4-Area) and U-FABP4 were positively correlated with proteinuria and were negatively correlated with eGFR. In 4-28-week-old male grouped ddY mice, a spontaneous IgAN-prone mouse model, FABP4 was detected in glomerular endothelial cells and macrophages, and G-FABP4-Area was positively correlated with urinary albumin-to-creatinine ratio (r = 0.957, P < 0.001). Endoplasmic reticulum stress markers were detected in glomeruli of human and mouse IgAN. In human renal glomerular endothelial cells, FABP4 was induced by treatment with vascular endothelial growth factor and was secreted from the cells. Treatment of human renal glomerular endothelial cells or mouse podocytes with palmitate-bound recombinant FABP4 significantly increased gene expression of inflammatory cytokines and endoplasmic reticulum stress markers, and the effects of FABP4 in podocytes were attenuated in the presence of an anti-FABP4 antibody. CONCLUSION FABP4 in the glomerulus contributes to proteinuria in IgAN, and U-FABP4 level is a useful surrogate biomarker for glomerular damage in IgAN.
Collapse
Affiliation(s)
- Marenao Tanaka
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, S-1, W-16, Chuo-Ku, Sapporo, 060-8543, Japan
| | - Norihito Moniwa
- Department of Nephrology, Teine Keijinkai Hospital, Sapporo, Japan
| | - Chieko Nogi
- Division of Nephrology, Department of Internal Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Toshiki Kano
- Division of Nephrology, Department of Internal Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Megumi Matsumoto
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, S-1, W-16, Chuo-Ku, Sapporo, 060-8543, Japan
| | - Akiko Sakai
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, S-1, W-16, Chuo-Ku, Sapporo, 060-8543, Japan
| | - Takuto Maeda
- Department of Nephrology, Teine Keijinkai Hospital, Sapporo, Japan
| | - Hideki Takizawa
- Department of Nephrology, Teine Keijinkai Hospital, Sapporo, Japan
| | - Yayoi Ogawa
- Hokkaido Renal Pathology Center, Sapporo, Japan
| | | | - Yusuke Suzuki
- Division of Nephrology, Department of Internal Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Masato Furuhashi
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, S-1, W-16, Chuo-Ku, Sapporo, 060-8543, Japan.
| |
Collapse
|
39
|
Guo WY, Sun LJ, Dong HR, Wang GQ, Xu XY, Cheng WR, Zhao ZR, Ye N, Liu Y, Cheng H. Characterization of patients with IgA nephropathy with and without associated minimal change disease. FRONTIERS IN NEPHROLOGY 2023; 3:1105933. [PMID: 37675352 PMCID: PMC10479556 DOI: 10.3389/fneph.2023.1105933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/25/2023] [Indexed: 09/08/2023]
Abstract
Introduction Immunoglobulin A nephropathy (IgAN) presents various clinical manifestations and pathological phenotypes. Approximately 5% of patients with IgAN present with early onset nephrotic syndrome, mild mesangial lesions, and diffuse foot process effacement of podocytes, which resemble minimal change disease (MCD). These patients are defined as MCD-IgAN. Whether MCD-IgAN is a special type of IgAN or simply MCD accompanied by IgA deposition remains controversial. Methods A total of 51 patients diagnosed with MCD-IgAN at Beijing Anzhen Hospital from January 2010 to September 2022 were recruited. The clinical and pathological characteristics of IgA-MCD were analyzed. Patients with IgAN but without MCD (non-MCD-IgAN) and healthy participants were enrolled as controls. Galactose-deficient immunoglobulin A1 (Gd-IgA1) and complement C3 were detected both in the circulation and in renal tissues. Results We found that the levels of serum Gd-IgA1 were lower in participants with MCD-IgAN than in those with non-MCD-IgAN, but higher than in healthy participants. Gd-IgA1 was rarely deposited in the glomeruli of participants with MCD-IgAN, with a positive rate of only 13.7% (7/51); in contrast, the positive rate in participants with non-MCD-IgAN was 82.4% (42/51). Among renal Gd-IgA1-positive patients, Gd-IgA1 and immunoglobulin A (IgA) colocalized along the glomerular mesangial and capillary areas. Interestingly, we found that the circulating levels of complement C3 were significantly higher in participants with MCD-IgAN than in participants with non-MCD-IgAN. In addition, the intensity of C3c in glomeruli in participants with MCD-IgAN was significantly weaker than in participants with non-MCD-IgAN. Conclusions Our study suggests that, in MCD-IgAN, most of the IgA that is deposited on glomeruli is not the same pathogenic Gd-IgA1 as found in general IgAN. Complement activation both in the circulation and in the renal locality was much weaker in MCD-IgAN than in non-MCD-IgAN. Our study suggests that IgAN with MCD might be MCD with coincidental IgA deposition.
Collapse
Affiliation(s)
- Wei-yi Guo
- Renal Division, Department of Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Li-jun Sun
- Renal Division, Department of Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Hong-rui Dong
- Renal Division, Department of Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Guo-qin Wang
- Renal Division, Department of Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xiao-yi Xu
- Renal Division, Department of Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Wen-rong Cheng
- Renal Division, Department of Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Zhi-rui Zhao
- Renal Division, Department of Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Nan Ye
- Renal Division, Department of Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yun Liu
- Division of Nephrology, Affiliated Hospital of Chifeng University, Chifeng, Inner Mongolia, China
| | - Hong Cheng
- Renal Division, Department of Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
40
|
Du Y, Cheng T, Liu C, Zhu T, Guo C, Li S, Rao X, Li J. IgA Nephropathy: Current Understanding and Perspectives on Pathogenesis and Targeted Treatment. Diagnostics (Basel) 2023; 13:diagnostics13020303. [PMID: 36673113 PMCID: PMC9857562 DOI: 10.3390/diagnostics13020303] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/19/2023] Open
Abstract
Immunoglobulin A nephropathy (IgAN) is the most common primary glomerulonephritis worldwide, with varied clinical and histopathological features between individuals, particularly across races. As an autoimmune disease, IgAN arises from consequences of increased circulating levels of galactose-deficient IgA1 and mesangial deposition of IgA-containing immune complexes, which are recognized as key events in the widely accepted "multi-hit" pathogenesis of IgAN. The emerging evidence further provides insights into the role of genes, environment, mucosal immunity and complement system. These developments are paralleled by the increasing availability of diagnostic tools, potential biomarkers and therapeutic agents. In this review, we summarize current evidence and outline novel findings in the prognosis, clinical trials and translational research from the updated perspectives of IgAN pathogenesis.
Collapse
|
41
|
Yuan X, Su Q, Wang H, Shi S, Liu L, Lv J, Wang S, Zhu L, Zhang H. Genetic Variants of the COL4A3 , COL4A4 , and COL4A5 Genes Contribute to Thinned Glomerular Basement Membrane Lesions in Sporadic IgA Nephropathy Patients. J Am Soc Nephrol 2023; 34:132-144. [PMID: 36130833 PMCID: PMC10101589 DOI: 10.1681/asn.2021111447] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 08/22/2022] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Thinned glomerular basement membrane (tGBM) lesions are not uncommon in IgA nephropathy (IgAN). Type IV collagen-built of α 3, α 4, and α 5 chains, encoded by COL4A3 / COL4A4 / COL4A5 genes-is the major component of glomerular basement membrane (GBM). In recent years, mutations in type IV collagen-encoding genes were also reported in patients with a histologic diagnosis of FSGS. Pathogenic COL4A3 / COL4A4 / COL4A5 variants were recently identified in familial cases of IgAN, but the contribution of these variants to sporadic IgAN is still unclear. METHODS We compared 161 patients with sporadic IgAN with tGBM lesions (IgAN-tGBM) to matched patients with IgAN without tGBM lesions and matched patients with thin basement membrane nephropathy (TBMN). Variants of COL4A3 / COL4A4 / COL4A5 genes were screened and evaluated after whole-exome sequencing. GBM thickness was measured, and levels of circulating galactose-deficient IgA1 (Gd-IgA1) were assessed by ELISA. RESULTS The patients with IgAN-tGBM manifested milder disease than did patients with IgAN without tGBM but had more severe features than the patients with TBMN. Exome sequence analysis of the 122 patients with IgAN-tGBM identified 37 diagnostic variants of the COL4A3 / COL4A4 / COL4A5 genes among 38 patients (31.1%). Furthermore, patients with IgAN-tGBM who had diagnostic variants had higher proportions of GBM thickness <250 nm and milder glomerular injury, whereas patients with IgAN-tGBM who did not have diagnostic variants showed more characteristic features of IgAN, including higher intensity of glomerular IgA deposits and elevated Gd-IgA1 levels. These findings suggest different mechanisms in patients with versus without diagnostic variants of these collagen genes. CONCLUSIONS COL4A3 / COL4A4 / COL4A5 variant detection is essential in evaluating patients with sporadic IgAN with tGBM lesions.
Collapse
Affiliation(s)
- Xiaohan Yuan
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China
- Key Laboratory of Renal Disease (Peking University), National Health Commission, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education, Beijing, China
- Research Units of Diagnosis and Treatment of Immuno-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Qing Su
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China
- Key Laboratory of Renal Disease (Peking University), National Health Commission, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education, Beijing, China
- Research Units of Diagnosis and Treatment of Immuno-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Hui Wang
- Laboratory of Electron Microscopy, Ultrastructural Pathology Center, Peking University First Hospital, Beijing, China
| | - Sufang Shi
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China
- Key Laboratory of Renal Disease (Peking University), National Health Commission, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education, Beijing, China
- Research Units of Diagnosis and Treatment of Immuno-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Lijun Liu
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China
- Key Laboratory of Renal Disease (Peking University), National Health Commission, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education, Beijing, China
- Research Units of Diagnosis and Treatment of Immuno-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Jicheng Lv
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China
- Key Laboratory of Renal Disease (Peking University), National Health Commission, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education, Beijing, China
- Research Units of Diagnosis and Treatment of Immuno-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Suxia Wang
- Laboratory of Electron Microscopy, Ultrastructural Pathology Center, Peking University First Hospital, Beijing, China
| | - Li Zhu
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China
- Key Laboratory of Renal Disease (Peking University), National Health Commission, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education, Beijing, China
- Research Units of Diagnosis and Treatment of Immuno-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Hong Zhang
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China
- Key Laboratory of Renal Disease (Peking University), National Health Commission, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education, Beijing, China
- Research Units of Diagnosis and Treatment of Immuno-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
42
|
Gjerstad AC, Skrunes R, Tøndel C, Åsberg A, Leh S, Klingenberg C, Døllner H, Hammarstrøm C, Bjerre AK. Kidney biopsy diagnosis in childhood in the Norwegian Kidney Biopsy Registry and the long-term risk of kidney replacement therapy: a 25-year follow-up. Pediatr Nephrol 2023; 38:1249-1256. [PMID: 35994104 PMCID: PMC9925570 DOI: 10.1007/s00467-022-05706-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/16/2022] [Accepted: 07/27/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND There is scarce information on biopsy-verified kidney disease in childhood and its progression to chronic kidney disease stage 5 (CKD 5). This study aims to review biopsy findings in children, and to investigate risk of kidney replacement therapy (KRT). METHODS We conducted a retrospective long-term follow-up study of children included in the Norwegian Kidney Biopsy Registry (NKBR) and in the Norwegian Renal Registry (NRR) from 1988 to 2021. RESULTS In total, 575 children with a median (interquartile range, IQR) age of 10.7 (6.1 to 14.1) years were included, and median follow-up time (IQR) after kidney biopsy was 14.3 (range 8.9 to 21.6) years. The most common biopsy diagnoses were minimal change disease (MCD; n = 92), IgA vasculitis nephritis (IgAVN; n = 76), IgA nephropathy (n = 63), and focal and segmental glomerulosclerosis (FSGS; n = 47). In total, 118 (20.5%) of the biopsied children reached CKD 5, median (IQR) time to KRT 2.3 years (7 months to 8.4 years). Most frequently, nephronophthisis (NPHP; n = 16), FSGS (n = 30), IgA nephropathy (n = 9), and membranoproliferative glomerulonephritis (MPGN; n = 9) led to KRT. CONCLUSIONS The risk of KRT after a kidney biopsy diagnosis is highly dependent on the diagnosis. None of the children with MCD commenced KRT, while 63.8% with FSGS and 100% with NPHP reached KRT. Combining data from kidney biopsy registries with registries on KRT allows for detailed information concerning the risk for later CKD 5 after biopsy-verified kidney disease in childhood. A higher resolution version of the Graphical abstract is available as Supplementary information.
Collapse
Affiliation(s)
- Ann Christin Gjerstad
- Division of Pediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway.
| | - Rannveig Skrunes
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Camilla Tøndel
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Pediatrics, Haukeland University Hospital, Bergen, Norway
| | - Anders Åsberg
- The Norwegian Renal Registry, Oslo University Hospital - Rikshospitalet, Oslo, Norway
- Department of Transplantation Medicine, Oslo University Hospital - Rikshospitalet, Oslo, Norway
- Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Sabine Leh
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Claus Klingenberg
- Department of Pediatrics and Adolescence Medicine, University Hospital of North Norway, Tromsø, Norway
- Paediatric Research Group, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Henrik Døllner
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Children's Clinic, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Clara Hammarstrøm
- Department of Pathology, Oslo University Hospital - Rikshospitalet, Oslo, Norway
| | - Anna Kristina Bjerre
- Division of Pediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
43
|
Hu X, Fan R, Song W, Qing J, Yan X, Li Y, Duan Q, Li Y. Landscape of intestinal microbiota in patients with IgA nephropathy, IgA vasculitis and Kawasaki disease. Front Cell Infect Microbiol 2022; 12:1061629. [PMID: 36590596 PMCID: PMC9800820 DOI: 10.3389/fcimb.2022.1061629] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
Objective To explore the common differential flora of IgAN, Kawasaki disease and IgA vasculitis by screening and analyzing the differential intestinal flora between the three disease groups of IgAN, Kawasaki disease and IgA vasculitis and their healthy controls. Methods Papers on 16srRNA sequencing-related intestinal flora of IgAN, Kawasaki disease and IgA vasculitis were searched in databases, the literature was systematically collated and analysed, the original data was download from the relevant databases, and then the operational taxonomic unit and species classification analysis were performed. Besides, Alpha diversity analysis and Beta diversity analysis were performed to screen for IgAN, Kawasaki disease and I1gA vasculitis groups and finally compare the common intestinal differential flora among the three groups. Results Among the common differential flora screened, Lachnospiracea_incertae_sedis was lower in both the IgAN and Kawasaki disease groups than in the respective healthy controls; Coprococcus was low in the IgAN group but high in the IgA vasculitis group. Fusicatenibacter was lower in both the Kawasaki disease and IgA vasculitis groups than in their respective healthy controls, and Intestinibacter was low in the Kawasaki disease group, but its expression was high in the IgA vasculitis group. Conclusion The dysbiosis of the intestinal flora in the three groups of patients with IgAN, Kawasaki disease and IgA vasculitis, its effect on the immunity of the organism and its role in the development of each disease group remain unclear, and the presence of their common differential flora may further provide new ideas for the association of the pathogenesis of the three diseases.
Collapse
Affiliation(s)
- Xueli Hu
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ru Fan
- Department of Nephrology, Shanxi Provincial People’s Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan, China
| | - Wenzhu Song
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jianbo Qing
- Department of Nephrology, Shanxi Provincial People’s Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan, China
| | - Xiaoyan Yan
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yaheng Li
- Core Laboratory, Shanxi Provincial People’s Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan, China
| | - Qi Duan
- Core Laboratory, Shanxi Provincial People’s Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan, China
| | - Yafeng Li
- Department of Nephrology, Shanxi Provincial People’s Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan, China,Core Laboratory, Shanxi Provincial People’s Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan, China,Shanxi Provincial Key Laboratory of Kidney Disease, Taiyuan, China,Academy of Microbial Ecology, Shanxi Medical University, Taiyuan, China,*Correspondence: Yafeng Li,
| |
Collapse
|
44
|
Habas E, Ali E, Farfar K, Errayes M, Alfitori J, Habas E, Ghazouani H, Akbar R, Khan F, Al Dab A, Elzouki AN. IgA nephropathy pathogenesis and therapy: Review & updates. Medicine (Baltimore) 2022; 101:e31219. [PMID: 36482575 PMCID: PMC9726424 DOI: 10.1097/md.0000000000031219] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND IgA nephropathy (IgAN) is the most frequent type of primary glomerulonephritis since the first type was described more than four decades ago. It is the prevalent cause of primary glomerular disease that causes end-stage renal disease. In most patients with IgAN, hematuria is the most common reported symptom, particularly in those with a preceding upper respiratory tract infection. Although the pathogenesis of IgAN is usually multifactorial, autoimmune complex formation and inflammatory processes are the most widely recognized pathogenic mechanisms. Multiple approaches have been trialed as a therapy for IgAN, including tonsillectomy, steroids, other immune-suppressive therapy in different regimens, and kidney transplantation. AIM AND METHOD PubMed, Google, Google Scholar, Scopus, and EMBASE were searched by the authors using different texts, keywords, and phrases. A non-systemic clinical review is intended to review the available data and clinical updates about the possible mechanism(s) of IgAN pathogenesis and treatments. CONCLUSION IgAN has a heterogeneous pattern worldwide, making it difficult to understand its pathogenesis and treatment. Proteinuria is the best guide to follow up on the IgAN progression and treatment response. Steroids are the cornerstone of IgAN therapy; however, other immune-suppressive and immune-modulative agents are used with a variable response rate. Kidney transplantation is highly advisable for IgAN patients, although the recurrence rate is high. Finally, IgAN management requires collaborative work between patients and their treating physicians for safe long-term outcomes.
Collapse
Affiliation(s)
- Elmukhtar Habas
- Hamad General Medicine, Doha, Qatar
- *Correspondence: Elmukhtar Habas, Internal Medicine, Hamad Medical Corporation, AL-Rayyan Road, PO Box 3050, Doha, Qatar (e-mail: )
| | - Elrazi Ali
- Hamad General Hospital, Medicine Department, Doha, Qatar
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Selvaskandan H, Gonzalez-Martin G, Barratt J, Cheung CK. IgA nephropathy: an overview of drug treatments in clinical trials. Expert Opin Investig Drugs 2022; 31:1321-1338. [PMID: 36588457 DOI: 10.1080/13543784.2022.2160315] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
INTRODUCTION IgA nephropathy (IgAN) is the commonest primary glomerulonephritis worldwide and may progress to end-stage kidney disease (ESKD) within a 10-20 year period. Its slowly progressive course has made clinical trials challenging to perform, however the acceptance of proteinuria reduction as a surrogate end point has significantly improved the feasibility of conducting clinical trials in IgAN, with several novel and repurposed therapies currently undergoing assessment. Already, interim results are demonstrating value to some of these, offering great hope to those with IgAN. AREAS COVERED This review explores the rationale, candidates, clinical precedents, and trial status of therapies that are currently or have recently been evaluated for efficacy in IgAN. All IgAN trials registered with the U.S. National Library of Medicine; ClinicalTrials.gov were reviewed. EXPERT OPINION For the first time, effective treatment options beyond supportive care are becoming available for those with IgAN. This is the culmination of commendable international efforts and signifies a new era for those with IgAN. As more therapies become available, future challenges will revolve around deciding which treatments are most appropriate for individual patients, which is likely to push IgAN into the realm of precision medicine.
Collapse
Affiliation(s)
- Haresh Selvaskandan
- John Walls Renal Unit, University Hospitals Leicester NHS Trust, Leicester, UK.,Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | | | - Jonathan Barratt
- John Walls Renal Unit, University Hospitals Leicester NHS Trust, Leicester, UK.,Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Chee Kay Cheung
- John Walls Renal Unit, University Hospitals Leicester NHS Trust, Leicester, UK.,Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| |
Collapse
|
46
|
Guo WY, An XP, Sun LJ, Dong HR, Cheng WR, Ye N, Wang GQ, Xu XY, Zhao ZR, Cheng H. Overactivation of the complement system may be involved in intrarenal arteriolar lesions in IgA nephropathy. Front Med (Lausanne) 2022; 9:945913. [PMID: 35991640 PMCID: PMC9381866 DOI: 10.3389/fmed.2022.945913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction IgA nephropathy (IgAN) encompasses a wide range of clinical and histology features. Some patients present without hematuria, with or without hypertension, still rapidly progress in renal function. Renal pathology of this part of patients were predominant intrarenal arteriolar lesions, rarely presented glomerular proliferative lesions. We aim to investigate the clinical and pathological characteristics and prognosis of these IgAN patients and initially explore whether the abnormal activation of complement is involved in the intrarenal arteriolar lesions of IgAN. Methods A total of 866 patients with renal biopsy-proven IgAN diagnosed at Beijing Anzhen Hospital were recruited. IgAN patients without intrarenal arteriolar lesions and proliferative lesions were excluded (n = 115), the rest were divided into arteriolar lesions group (n = 202) and proliferative lesions group (n = 549). Among them, 255 patients were regularly followed up for at least 1 year. Renal biopsy tissues of 104 IgAN patients were stained for complement components by immunohistochemistry and immunofluorescence. Results Compared with proliferative lesions group, the arteriolar lesions group experienced high percentage of hypertension (p = 0.004), low percentage of gross hematuria (p = 0.001), microscopic hematuria (p < 0.001) and less initial proteinuria (p = 0.033). Renal survival between the two groups was not significantly different (p = 0.133). MBL, C4d, FH and FHR5, C3c, and MAC deposited on intrarenal arteriole in arteriolar lesions group. Compare with the proliferative lesion group, the arteriolar lesions group exhibited a higher intensity of C3c deposition on the intrarenal arterioles (p = 0.048). C3c and CD31 co-deposited on intrarenal arterioles area in patients with intrarenal arteriolar lesions. Conclusion Renal survival of the IgAN patients in arteriolar lesions group was not better than those in proliferative lesions group. Abnormal activation of complement may be involved in the pathogenesis of arteriolar damage through the injury of endothelial cells in this clinical phenotype of IgAN.
Collapse
|
47
|
Associations between Biomarkers of Complement Activation, Galactose-Deficient IgA1 Antibody and the Updated Oxford Pathology Classification of IgA Nephropathy. J Clin Med 2022; 11:jcm11144231. [PMID: 35887995 PMCID: PMC9323307 DOI: 10.3390/jcm11144231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 01/10/2023] Open
Abstract
Our prior study indicates a close relationship between alternative complement pathway activation, galactose-deficient IgA1 (Gd-IgA1) concentration and clinical severity of IgA nephropathy (IgAN). Nonetheless, the relationship between complement factors and the updated Oxford classification of IgAN remains unclear. This study enrolled eighty-four previously untreated, biopsy-diagnosed IgAN patients. The clinical and laboratory findings were collected at the time of biopsy. Plasma levels of complement factor C5a, factor Ba and Gd-IgA1 were measured and analyzed. It was found that the levels of proteinuria positively correlated with the updated Oxford classification of mesangial hypercellularity (M), endocapillary hypercellularity (E), tubular atrophy/interstitial fibrosis (T) and crescents (C). In addition, plasma Gd-IgA1 titer was significantly elevated in IgAN patients with tubular atrophy/interstitial fibrosis (T). In separate multivariable logistic regression models, both Gd-IgA1 and factor Ba independently predict higher T scores. The results indicate that both the levels of Gd-IgA1 antibody and biomarkers of the alternative complement pathway activation reflect the Oxford classification of IgAN. Whether these biomarkers can be used to guide therapeutic decisions requires further study.
Collapse
|
48
|
Wu M, Chen Y, Chiu I, Wu M. Genetic Insight into Primary Glomerulonephritis. Nephrology (Carlton) 2022; 27:649-657. [DOI: 10.1111/nep.14074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/18/2022] [Accepted: 06/06/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Mei‐Yi Wu
- Division of Nephrology, Department of Internal Medicine Taipei Medical University‐Shuang Ho Hospital New Taipei City Taiwan
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine Taipei Medical University Taipei Taiwan
- Institute of Epidemiology and Preventive Medicine, College of Public Health National Taiwan University Taipei Taiwan
- TMU Research Center of Urology and Kidney Taipei Medical University Taipei Taiwan
| | - Ying‐Chun Chen
- Division of Nephrology, Department of Internal Medicine Taipei Medical University‐Shuang Ho Hospital New Taipei City Taiwan
| | - I‐Jen Chiu
- Division of Nephrology, Department of Internal Medicine Taipei Medical University‐Shuang Ho Hospital New Taipei City Taiwan
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine Taipei Medical University Taipei Taiwan
- TMU Research Center of Urology and Kidney Taipei Medical University Taipei Taiwan
| | - Mai‐Szu Wu
- Division of Nephrology, Department of Internal Medicine Taipei Medical University‐Shuang Ho Hospital New Taipei City Taiwan
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine Taipei Medical University Taipei Taiwan
- TMU Research Center of Urology and Kidney Taipei Medical University Taipei Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine Taipei Medical University Taipei Taiwan
| |
Collapse
|
49
|
Fukao Y, Suzuki H, Kim JS, Jeong KH, Makita Y, Kano T, Nihei Y, Nakayama M, Lee M, Kato R, Chang JM, Lee SH, Suzuki Y. Galactose-Deficient IgA1 as a Candidate Urinary Marker of IgA Nephropathy. J Clin Med 2022; 11:jcm11113173. [PMID: 35683557 PMCID: PMC9181435 DOI: 10.3390/jcm11113173] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/28/2022] [Accepted: 05/30/2022] [Indexed: 01/28/2023] Open
Abstract
In patients with IgA nephropathy (IgAN), circulatory IgA1 and IgA1 in the mesangial deposits contain galactose-deficient IgA1 (Gd-IgA1). Some of the Gd-IgA1 from the glomerular deposits is excreted in the urine and thus urinary Gd-IgA1 may represent a disease-specific marker. We recruited 338 Japanese biopsy-proven IgAN patients and 120 patients with other renal diseases (disease controls). Urine samples collected at the time of renal biopsy were used to measure Gd-IgA1 levels using a specific monoclonal antibody (KM55 mAb). Urinary Gd-IgA1 levels were significantly higher in patients with IgAN than in disease controls. Moreover, urinary Gd-IgA1 was significantly correlated with the severity of the histopathological parameters in IgAN patients. Next, we validated the use of urinary Gd-IgA1 levels in the other Asian cohorts. In the Korean cohort, urinary Gd-IgA1 levels were also higher in patients with IgAN than in disease controls. Even in Japanese patients with IgAN and trace proteinuria (less than 0.3 g/gCr), urinary Gd-IgA1 was detected. Thus, urinary Gd-IgA1 may be an early disease-specific biomarker useful for determining the disease activity of IgAN.
Collapse
Affiliation(s)
- Yusuke Fukao
- Department of Nephrology, Faculty of Medicine, Juntendo University, Tokyo 113-8421, Japan; (Y.F.); (Y.M.); (T.K.); (Y.N.); (M.N.); (M.L.); (R.K.)
| | - Hitoshi Suzuki
- Department of Nephrology, Faculty of Medicine, Juntendo University, Tokyo 113-8421, Japan; (Y.F.); (Y.M.); (T.K.); (Y.N.); (M.N.); (M.L.); (R.K.)
- Department of Nephrology, Juntendo University Urayasu Hospital, Chiba 279-0021, Japan
- Correspondence: (H.S.); (Y.S.)
| | - Jin Sug Kim
- Division of Nephrology, Department of Internal Medicine, College of Medicine, Kyung Hee University, Seoul 130-701, Korea; (J.S.K.); (K.H.J.); (S.H.L.)
| | - Kyung Hwan Jeong
- Division of Nephrology, Department of Internal Medicine, College of Medicine, Kyung Hee University, Seoul 130-701, Korea; (J.S.K.); (K.H.J.); (S.H.L.)
| | - Yuko Makita
- Department of Nephrology, Faculty of Medicine, Juntendo University, Tokyo 113-8421, Japan; (Y.F.); (Y.M.); (T.K.); (Y.N.); (M.N.); (M.L.); (R.K.)
| | - Toshiki Kano
- Department of Nephrology, Faculty of Medicine, Juntendo University, Tokyo 113-8421, Japan; (Y.F.); (Y.M.); (T.K.); (Y.N.); (M.N.); (M.L.); (R.K.)
| | - Yoshihito Nihei
- Department of Nephrology, Faculty of Medicine, Juntendo University, Tokyo 113-8421, Japan; (Y.F.); (Y.M.); (T.K.); (Y.N.); (M.N.); (M.L.); (R.K.)
| | - Maiko Nakayama
- Department of Nephrology, Faculty of Medicine, Juntendo University, Tokyo 113-8421, Japan; (Y.F.); (Y.M.); (T.K.); (Y.N.); (M.N.); (M.L.); (R.K.)
| | - Mingfeng Lee
- Department of Nephrology, Faculty of Medicine, Juntendo University, Tokyo 113-8421, Japan; (Y.F.); (Y.M.); (T.K.); (Y.N.); (M.N.); (M.L.); (R.K.)
| | - Rina Kato
- Department of Nephrology, Faculty of Medicine, Juntendo University, Tokyo 113-8421, Japan; (Y.F.); (Y.M.); (T.K.); (Y.N.); (M.N.); (M.L.); (R.K.)
| | - Jer-Ming Chang
- Division of Nephrology, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan;
| | - Sang Ho Lee
- Division of Nephrology, Department of Internal Medicine, College of Medicine, Kyung Hee University, Seoul 130-701, Korea; (J.S.K.); (K.H.J.); (S.H.L.)
| | - Yusuke Suzuki
- Department of Nephrology, Faculty of Medicine, Juntendo University, Tokyo 113-8421, Japan; (Y.F.); (Y.M.); (T.K.); (Y.N.); (M.N.); (M.L.); (R.K.)
- Correspondence: (H.S.); (Y.S.)
| |
Collapse
|
50
|
Jäger C, Stampf S, Molyneux K, Barratt J, Golshayan D, Hadaya K, Huynh-Do U, Binet FI, Mueller TF, Koller M, Kim MJ. Recurrence of IgA nephropathy after kidney transplantation: experience from the Swiss transplant cohort study. BMC Nephrol 2022; 23:178. [PMID: 35538438 PMCID: PMC9088042 DOI: 10.1186/s12882-022-02802-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/25/2022] [Indexed: 11/17/2022] Open
Abstract
Background Recurrence of IgA nephropathy (IgAN) after kidney transplantation occurs in about 30% of patients. The relevance of recurrence for the long-term graft survival is expected to increase, since graft survival continues to improve. Methods In a nested study within the Swiss Transplant Cohort Study the incidence of IgAN recurrence, predictive factors, graft function and graft and patient survival were evaluated. Serum concentration of total IgA, total IgG, Gd-IgA1 and IgA-IgG immune complex were measured using ELISA-based immunologic assays. Results Between May 2008 and December 2016, 28 women and 133 men received their kidney allograft for end-stage kidney disease due to IgAN in Switzerland. Over a median follow-up time of 7 years after transplantation, 43 out of 161 patients (26.7%) developed an IgAN recurrence, of which six (13.9%) had an allograft failure afterwards and further four patients (9.3%) died. During the same follow-up period, 6 out of 118 patients (5%) each experienced allograft failure or died without prior IgAN recurrence. After 11 years the risk for IgAN recurrence was 27.7% (95%-CI: 20.6–35.3%). Renal function was similar in patients with and without recurrence up to 7 years after transplantation, but worsened thereafter in patients with recurrence (eGFR median (interquartile range) at 8 years: 49 ml/min/1.73m2 (29–68) vs. 60 ml/min/1.73m2 (38–78)). Serum concentration of total IgA, total IgG, Gd-IgA1 and IgA-IgG immune complex within the first year posttransplant showed no significant effect on the recurrence of IgAN. Younger recipients and women had a higher risk of recurrence, but the latter only in the short term. Conclusions Our study showed a recurrence risk of 28% at 11 years after transplantation, which is consistent with previous literature. However, the predictive value of known biomarkers, such as serum Gd-IgA1 and IgA-IgG IC, for IgAN recurrence could not be confirmed. Supplementary Information The online version contains supplementary material available at 10.1186/s12882-022-02802-x.
Collapse
Affiliation(s)
- Cédric Jäger
- Clinic for Nephrology and Dialysis, Cantonal Hospital Basel-Land, Liestal, Switzerland
| | - Susanne Stampf
- Clinic for Transplantation immunology and nephrology, University Hospital Basel, Basel & Swiss Transplant Cohort Study (STCS), Basel, Switzerland
| | - Karen Molyneux
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Jonathan Barratt
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Déla Golshayan
- Transplantation Center, CHUV University Hospital, Lausanne, Switzerland
| | - Karine Hadaya
- Division of Nephrology, Geneva University Hospital, Geneva, Switzerland
| | - Uyen Huynh-Do
- Department of Nephrology and Hypertension, University of Bern, Bern, Switzerland
| | - Francoise-Isabelle Binet
- Division of Nephrology/Transplantation Medicine, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Thomas F Mueller
- Division of Nephrology, University Hospital Zürich, Zürich, Switzerland
| | - Michael Koller
- Clinic for Transplantation immunology and nephrology, University Hospital Basel, Basel & Swiss Transplant Cohort Study (STCS), Basel, Switzerland
| | - Min Jeong Kim
- Division of Nephrology, Cantonal Hospital Aarau, Aarau, Switzerland.
| |
Collapse
|