1
|
Qian L, Hu W, Wang Y, Waheed YA, Hu S, Sun D, Li S. LncRNA TUG1 mitigates chronic kidney disease through miR-542-3p/HIF-1α/VEGF axis. Heliyon 2025; 11:e40891. [PMID: 39811365 PMCID: PMC11730199 DOI: 10.1016/j.heliyon.2024.e40891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/29/2024] [Accepted: 12/02/2024] [Indexed: 01/16/2025] Open
Abstract
Renal interstitial fibrosis (RIF) is a common pathway in chronic kidney disease (CKD) that ultimately leads to end-stage renal failure, worsening both glomerulosclerosis and interstitial fibrosis. Ten percent of the adult population in the world suffers from CKD, and as the ageing population continues to rise, it is increasingly regarded as a global threat-a silent epidemic. CKD has been discovered to be closely associated with both long noncoding RNAs (lncRNAs) and microRNAs (miRNAs), while the precise molecular processes behind this relationship are still unclear. This study evaluated the impact of miR-542-3p and lncRNA TUG1 on renal fibrosis, along with the underlying regulatory mechanisms. Through in vitro tube formation assays, research demonstrated that knocking down lncRNA TUG1 may enhance angiogenesis and repair damaged endothelial cell-cell connections. We used Western blot and qRT-PCR methods in the unilateral ureteral obstruction (UUO) model to identify tissue hypoxia and fibrotic lesions. Additionally, a cutting-edge method known as fluorescence microangiography (FMA) was employed to detect damage to the peritubular capillaries (PTCs), with MATLAB software utilised for data evaluation. Furthermore, the coexpression of CD31 and α-SMA helped identify cells in the obstructed kidney that were transitioning from endothelium to myofibroblasts. On the contrary, lncRNA TUG1 downregulation showed a protective effect against the transition from endothelial cells to myofibroblasts. Additionally, knocking down lncRNA TUG1 has been shown to reduce the expression of fibrotic markers by alleviating tissue hypoxia. This effect was significantly counteracted by the inhibition of miR-542-3p. Collectively, our findings offer fresh perspectives on how lncRNA TUG1 and the miR-542-3p/HIF-1α/VEGF axis are regulated as renal fibrosis advances.
Collapse
Affiliation(s)
- Luoxiang Qian
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, 221002, China
- Department of Internal Medicine, Weinan Maternal and Child Health Hospital, Weinan, 714000, China
| | - Wanru Hu
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, 221002, China
| | - Yanping Wang
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, 221002, China
| | | | - Shuqun Hu
- Laboratory of Emergency Medicine, Second Clinical Medical College of Xuzhou Medical University, Xuzhou, 221002, China
| | - Dong Sun
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, 221002, China
- Department of Internal Medicine and Diagnostics, Xuzhou Medical University, Xuzhou, 221002, China
| | - Shulin Li
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, 221002, China
| |
Collapse
|
2
|
Liu Z, Dai B, Bao J, Pan Y. T cell metabolism in kidney immune homeostasis. Front Immunol 2024; 15:1498808. [PMID: 39737193 PMCID: PMC11684269 DOI: 10.3389/fimmu.2024.1498808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/27/2024] [Indexed: 01/01/2025] Open
Abstract
Kidney immune homeostasis is intricately linked to T cells. Inappropriate differentiation, activation, and effector functions of T cells lead to a spectrum of kidney disease. While executing immune functions, T cells undergo a series of metabolic rewiring to meet the rapid energy demand. The key enzymes and metabolites involved in T cell metabolism metabolically and epigenetically modulate T cells' differentiation, activation, and effector functions, thereby being capable of modulating kidney immune homeostasis. In this review, we first summarize the latest advancements in T cell immunometabolism. Second, we outline the alterations in the renal microenvironment under certain kidney disease conditions. Ultimately, we highlight the metabolic modulation of T cells within kidney immune homeostasis, which may shed light on new strategies for treating kidney disease.
Collapse
Affiliation(s)
- Zikang Liu
- Department of Nephrology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Binbin Dai
- Department of Nephrology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Jiwen Bao
- Department of Nephrology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Yangbin Pan
- Department of Nephrology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| |
Collapse
|
3
|
Zhang X, Xu Z, Chen Q, Zhou Z. Notch signaling regulates pulmonary fibrosis. Front Cell Dev Biol 2024; 12:1450038. [PMID: 39450276 PMCID: PMC11499121 DOI: 10.3389/fcell.2024.1450038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
Pulmonary fibrosis is a progressive interstitial lung disease associated with aging. The pathogenesis of pulmonary fibrosis remains unclear, however, alveolar epithelial cell injury, myofibroblast activation, and extracellular matrix (ECM) accumulation are recognized as key contributors. Moreover, recent studies have implicated cellular senescence, endothelial-mesenchymal transition (EndMT), and epigenetic modifications in the pathogenesis of fibrotic diseases. Various signaling pathways regulate pulmonary fibrosis, including the TGF-β, Notch, Wnt, Hedgehog, and mTOR pathways. Among these, the TGF-β pathway is extensively studied, while the Notch pathway has emerged as a recent research focus. The Notch pathway influences the fibrotic process by modulating immune cell differentiation (e.g., macrophages, lymphocytes), inhibiting autophagy, and promoting interstitial transformation. Consequently, inhibiting Notch signaling represents a promising approach to mitigating pulmonary fibrosis. In this review, we discuss the role of Notch signaling pathway in pulmonary fibrosis, aiming to offer insights for future therapeutic investigations.
Collapse
Affiliation(s)
| | - Zhihao Xu
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, China
| | | | | |
Collapse
|
4
|
Zhang Y, Yang Y, Hu X, Wei B, Shen Q, Shi C, Chen P. RAS protein activator-like 2 (RASAL2) initiates peritubular capillary rarefaction in hypoxic renal interstitial fibrosis. Transl Res 2024; 269:14-30. [PMID: 38453052 DOI: 10.1016/j.trsl.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 03/04/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
The progression of chronic kidney disease (CKD) often involves renal interstitial fibrosis (RIF) and subsequent loss of peritubular capillaries (PTCs), which enhances disease severity. Despite advancements in our understanding of fibrosis, effective interventions for reversing capillary loss remain elusive. Notably, RIF exhibits reduced capillary density, whereas renal cell carcinoma (RCC) shows robust angiogenesis under hypoxic conditions. Using RNA sequencing and bioinformatics, we identified differentially expressed genes (DEGs) in hypoxic human renal tubular epithelial cells (HK-2) and renal cancer cells (786-0). Analysis of altered Ras and PI3K/Akt pathways coupled with hub gene investigation revealed RAS protein activator-like 2 (RASAL2) as a key candidate. Subsequent in vitro and in vivo studies confirmed RASAL2's early-stage response in RIF, which reduced with fibrosis progression. RASAL2 suppression in HK-2 cells enhanced angiogenesis, as evidenced by increased proliferation, migration, and branching of human umbilical vein endothelial cells (HUVECs) co-cultured with HK-2 cells. In mice, RASAL2 knockdown improved Vascular endothelial growth factor A (VEGFA) and Proliferating cell nuclear antigen (PCNA) levels in unilateral ureteral occlusion (UUO)-induced fibrosis (compared to wild type). Hypoxia-inducible factor 1 alpha (HIF-1α) emerged as a pivotal mediator, substantiated by chromatin immunoprecipitation (ChIP) sequencing, with its induction linked to activation. Hypoxia increased the production of RASAL2-enriched extracellular vesicles (EVs) derived from tubular cells, which were internalized by endothelial cells, contributing to the exacerbation of PTC loss. These findings underscore RASAL2's role in mediating reduced angiogenesis in RIF and reveal a novel EV-mediated communication between hypoxic tubular- and endothelial cells, demonstrating a complex interplay between angiogenesis and fibrosis in CKD pathogenesis.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Pathology, School of Medicine, Southeast University, Nanjing, China
| | - Yiqiong Yang
- Department of Pathology, School of Medicine, Southeast University, Nanjing, China
| | - Xiuxiu Hu
- Department of Pathology, School of Medicine, Southeast University, Nanjing, China
| | - Bizhen Wei
- Department of Pathology, School of Medicine, Southeast University, Nanjing, China
| | - Qian Shen
- Department of Pathology, School of Medicine, Southeast University, Nanjing, China
| | - Chuanbing Shi
- Department of Pathology, Pukou Branch of Jiangsu People's Hospital, Nanjing, China
| | - Pingsheng Chen
- Department of Pathology, School of Medicine, Southeast University, Nanjing, China; Institute of Nephrology, Zhong Da Hospital, School of Medicine, Southeast University, Nanjing, China.
| |
Collapse
|
5
|
Zhou X, Zhang C, Yang S, Yang L, Luo W, Zhang W, Zhang X, Chao J. Macrophage-derived MMP12 promotes fibrosis through sustained damage to endothelial cells. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132733. [PMID: 37816293 DOI: 10.1016/j.jhazmat.2023.132733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 09/16/2023] [Accepted: 10/04/2023] [Indexed: 10/12/2023]
Abstract
Macrophages are essential for the maintenance of endothelial cell function. However, the potential impact and mechanisms of crosstalk between macrophages and endothelial cells during silicosis progression remain unexplored. To fill this knowledge gap, a mouse model of silicosis was established. Single cell sequencing, spatial transcriptome sequencing, western blotting, immunofluorescence staining, tube-forming and wound healing assays were used to explore the effects of silicon dioxide on macrophage-endothelial interactions. To investigate the mechanism of macrophage-mediated fibrosis, MMP12 was specifically inactivated using siRNA and pharmacological approaches, and macrophages were depleted using disodium chlorophosphite liposomes. Compared to the normal saline group, the silica dust group showed altered macrophage-endothelial interactions. Matrix metalloproteinase family member MMP12 was identified as a key mediator of the altered function of macrophage-endothelial interactions after silica exposure, which was accompanied by pro-inflammatory macrophage activation and fibrotic progression. By using ablation strategies, macrophage-derived MMP12 was shown to mediate endothelial cell dysfunction by accumulating on the extracellular matrix. During the inflammatory phase of silicosis, MMP12 secreted by pro-inflammatory macrophages caused decreased endothelial cell viability, reduced migration, decreased trans-endothelial resistance and increased permeability; while during the fibrotic phase, macrophage-derived MMP12 sustained endothelial cell injury through accumulation on the extracellular matrix.
Collapse
Affiliation(s)
- Xinbei Zhou
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Zhongda Hospital, Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Cong Zhang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Zhongda Hospital, Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Shaoqi Yang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Zhongda Hospital, Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Liliang Yang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Zhongda Hospital, Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Wei Luo
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Zhongda Hospital, Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China; Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China
| | - Wei Zhang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Zhongda Hospital, Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Xinxin Zhang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Zhongda Hospital, Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Jie Chao
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Zhongda Hospital, Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210009, China; Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China; School of Medicine, Xizang Minzu University, Xianyang, Shanxi, 712082, China.
| |
Collapse
|
6
|
Zhang Y, Shi C, Yang Y, Hu X, Ni H, Li L, Cheng Z, Huang J, Chen P. Identifying key genes related to the peritubular capillary rarefaction in renal interstitial fibrosis by bioinformatics. Sci Rep 2023; 13:19611. [PMID: 37949939 PMCID: PMC10638415 DOI: 10.1038/s41598-023-46934-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023] Open
Abstract
Renal interstitial fibrosis (RIF) is a key feature of progressive chronic kidney disease (CKD), characterized by tubular epithelial cell (TEC) hypoxia and peritubular capillary (PTC) rarefaction. However, the mechanisms underlying these processes remain poorly understood. To address this knowledge gap, we conducted a comparative transcriptome analysis of hypoxic and normoxic HK-2 cells, identifying 572 differentially expressed genes (DEGs). Subsequent Gene Ontology (GO), protein‒protein interaction (PPI) network, and hub gene analyses revealed significant enrichment of DEGs in the HIF-1 signaling pathway based on KEGG enrichment analysis. To further explore TEC modulation under hypoxic conditions, we performed chromatin immunoprecipitation (ChIP) sequencing targeting HIF-1α, identifying 2915 genes potentially regulated by HIF-1α. By comparing RNA sequencing and ChIP sequencing data, we identified 43 overlapping DEGs. By performing GO analysis and peak annotation with IGV, we identified two candidate molecules, VEGFA and BTG1, that are associated with angiogenesis and whose gene sequences were reliably bound by HIF-1α. Our study elucidates the molecular mechanisms underlying RIF, providing valuable insights for potential therapeutic interventions.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Pathology, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Chuanbing Shi
- Department of Pathology, Pukou Branch of Jiangsu People's Hospital, Nanjing, Jiangsu, China
| | - Yiqiong Yang
- Department of Pathology, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Xiuxiu Hu
- Department of Pathology, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Haifeng Ni
- Institute of Nephrology, Zhong Da Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Li Li
- Department of Pathology, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Zhengyuan Cheng
- Department of Internal Medicine, Ma'anshan People's Hospital Affiliated to Medical School of Southeast University, Ma'anshan, Anhui, China
| | - Jing Huang
- Department of Respiratory and Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Pingsheng Chen
- Department of Pathology, School of Medicine, Southeast University, Nanjing, Jiangsu, China.
- Institute of Nephrology, Zhong Da Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China.
| |
Collapse
|
7
|
Habas E, Al Adab A, Arryes M, Alfitori G, Farfar K, Habas AM, Akbar RA, Rayani A, Habas E, Elzouki A. Anemia and Hypoxia Impact on Chronic Kidney Disease Onset and Progression: Review and Updates. Cureus 2023; 15:e46737. [PMID: 38022248 PMCID: PMC10631488 DOI: 10.7759/cureus.46737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
Chronic kidney disease (CKD) is caused by hypoxia in the renal tissue, leading to inflammation and increased migration of pathogenic cells. Studies showed that leukocytes directly sense hypoxia and respond by initiating gene transcription, encoding the 2-integrin adhesion molecules. Moreover, other mechanisms participate in hypoxia, including anemia. CKD-associated anemia is common, which induces and worsens hypoxia, contributing to CKD progression. Anemia correction can slow CKD progression, but it should be cautiously approached. In this comprehensive review, the underlying pathophysiology mechanisms and the impact of renal tissue hypoxia and anemia in CKD onset and progression will be reviewed and discussed in detail. Searching for the latest updates in PubMed Central, Medline, PubMed database, Google Scholar, and Google search engines were conducted for original studies, including cross-sectional studies, cohort studies, clinical trials, and review articles using different keywords, phrases, and texts such as "CKD progression, anemia in CKD, CKD, anemia effect on CKD progression, anemia effect on CKD progression, and hypoxia and CKD progression". Kidney tissue hypoxia and anemia have an impact on CKD onset and progression. Hypoxia causes nephron cell death, enhancing fibrosis by increasing interstitium protein deposition, inflammatory cell activation, and apoptosis. Severe anemia correction improves life quality and may delay CKD progression. Detection and avoidance of the risk factors of hypoxia prevent recurrent acute kidney injury (AKI) and reduce the CKD rate. A better understanding of kidney hypoxia would prevent AKI and CKD and lead to new therapeutic strategies.
Collapse
Affiliation(s)
| | - Aisha Al Adab
- Internal Medicine, Hamad General Hospital, Doha, QAT
| | - Mehdi Arryes
- Internal Medicine, Hamad General Hospital, Doha, QAT
| | | | | | - Ala M Habas
- Internal Medicine, Tripoli University, Tripoli, LBY
| | - Raza A Akbar
- Internal Medicine, Hamad General Hospital, Doha, QAT
| | - Amnna Rayani
- Hemat-oncology Department, Pediatric Tripoli Hospital, Tripoli University, Tripoli, LBY
| | - Eshrak Habas
- Internal Medicine, Tripoli University, Tripoli, LBY
| | | |
Collapse
|
8
|
Gao X, Chang J, Chang Y, Fan L, Liu Z, Zhang C, Shimosawa T, Yang F, Xu Q. Esaxerenone Inhibits Renal Angiogenesis and Endothelial-Mesenchymal Transition via the VEGFA and TGF-β1 Pathways in Aldosterone-Infused Mice. Int J Mol Sci 2023; 24:11766. [PMID: 37511521 PMCID: PMC10380380 DOI: 10.3390/ijms241411766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Renal fibrosis is an inevitable process in the progression of chronic kidney disease (CKD). Angiogenesis plays an important role in this process. Vascular endothelial cells are involved in renal fibrosis by phenotypic transformation and secretion of extracellular matrix. Aldosterone stimulates mineralocorticoid receptor (MR) activation and induces inflammation, which is important for angiogenesis. Clinically, MR blockers (MRBs) have a protective effect on damaged kidneys, which may be associated with inhibition of angiogenesis. In this study, we used aldosterone-infused mice and found that aldosterone induced angiogenesis and that endothelial-mesenchymal transition (EndMT) in neovascular endothelial cells was involved in renal fibrosis. Notably, aldosterone induced inflammation and stimulated macrophages to secrete vascular endothelial growth factor (VEGF) A to regulate angiogenesis by activating MR, whereas EndMT occurred in response to transforming growth factor-β1 (TGF-β1) induction and participated in renal fibrosis. These effects were antagonized by the MRB esaxerenone. These findings suggest that reducing angiogenesis may be an effective strategy for treating renal fibrosis.
Collapse
Affiliation(s)
- Xiaomeng Gao
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Jingyue Chang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Yi Chang
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
- Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Lili Fan
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Ziqian Liu
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Cuijuan Zhang
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
- Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Tatsuo Shimosawa
- Department of Clinical Laboratory, School of Medicine, International University of Health and Welfare, Narita 286-8686, Japan
| | - Fan Yang
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
- Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Qingyou Xu
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
- Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| |
Collapse
|
9
|
Santos J, Calabrese DR, Greenland JR. Lymphocytic Airway Inflammation in Lung Allografts. Front Immunol 2022; 13:908693. [PMID: 35911676 PMCID: PMC9335886 DOI: 10.3389/fimmu.2022.908693] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022] Open
Abstract
Lung transplant remains a key therapeutic option for patients with end stage lung disease but short- and long-term survival lag other solid organ transplants. Early ischemia-reperfusion injury in the form of primary graft dysfunction (PGD) and acute cellular rejection are risk factors for chronic lung allograft dysfunction (CLAD), a syndrome of airway and parenchymal fibrosis that is the major barrier to long term survival. An increasing body of research suggests lymphocytic airway inflammation plays a significant role in these important clinical syndromes. Cytotoxic T cells are observed in airway rejection, and transcriptional analysis of airways reveal common cytotoxic gene patterns across solid organ transplant rejection. Natural killer (NK) cells have also been implicated in the early allograft damage response to PGD, acute rejection, cytomegalovirus, and CLAD. This review will examine the roles of lymphocytic airway inflammation across the lifespan of the allograft, including: 1) The contribution of innate lymphocytes to PGD and the impact of PGD on the adaptive immune response. 2) Acute cellular rejection pathologies and the limitations in identifying airway inflammation by transbronchial biopsy. 3) Potentiators of airway inflammation and heterologous immunity, such as respiratory infections, aspiration, and the airway microbiome. 4) Airway contributions to CLAD pathogenesis, including epithelial to mesenchymal transition (EMT), club cell loss, and the evolution from constrictive bronchiolitis to parenchymal fibrosis. 5) Protective mechanisms of fibrosis involving regulatory T cells. In summary, this review will examine our current understanding of the complex interplay between the transplanted airway epithelium, lymphocytic airway infiltration, and rejection pathologies.
Collapse
Affiliation(s)
- Jesse Santos
- Department of Medicine University of California, San Francisco, San Francisco, CA, United States
| | - Daniel R. Calabrese
- Department of Medicine University of California, San Francisco, San Francisco, CA, United States
- Medical Service, Veterans Affairs Health Care System, San Francisco, CA, United States
| | - John R. Greenland
- Department of Medicine University of California, San Francisco, San Francisco, CA, United States
- Medical Service, Veterans Affairs Health Care System, San Francisco, CA, United States
| |
Collapse
|
10
|
Yu Y, Xie S, Wang K, Zhang F, Jiang C, Qiu C, Zhu J, Shen W. Perfusion Analysis of Kidney Injury in Rats With Cirrhosis Induced by Common Bile Duct Ligation Using Arterial Spin Labeling MRI. J Magn Reson Imaging 2022; 55:1393-1404. [PMID: 34499757 DOI: 10.1002/jmri.27917] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Arterial spin labeling (ASL) has been proven to be effective in ischemia-induced acute kidney injury (AKI); however, validation of ASL magnetic resonance imaging (MRI) is limited in AKI in the presence of cirrhosis. PURPOSE To investigate the feasibility of ASL in revealing renal blood flow (RBF) changes in kidney injury in the presence of cirrhosis and to assess its value in the early diagnosis of disease. STUDY TYPE Longitudinal. ANIMAL MODEL Rats were randomized into baseline group (N = 3), sham surgery group (N = 18), and common bile duct ligation (BDL) group (N = 48). All groups were divided into six subgroups based on different sacrificed time points. FIELD STRENGTH/SEQUENCE 3 T scanner, prototypic pulsed ASL sequence using flow-sensitive alternating inversion recovery preparation, half-Fourier acquisition single-shot turbo spin echo sequence. ASSESSMENT RBF measurement was performed by ASL. Hematoxylin-eosin (HE) score, Hypoxia-inducible factor-1alpha (HIF-1α) score, peritubular capillar (PTC) density, alanine aminotransferase, aspartate aminotransferase, serum total bilirubin, total bile acids, serum creatinine (Scr), and blood urea nitrogen (BUN) were harvested. STATISTICAL TESTS Analysis of variance, Pearson's correlation coefficient, and receiver operating characteristic curves were performed. P < 0.05 was considered statistically significant. RESULTS RBF, HE score, HIF-1α score, and PTC density after BDL were significantly different from baseline. RBF was highly correlated with HE score, HIF-1α score, and PTC density (r = -0.7598, r = -0.7434, r = 0.6406, respectively). RBF and Scr began to differ significantly from baseline at day 3 and 7 after intervention, respectively. The areas under the curves of RBF, Scr, and BUN for distinguishing non-AKI from AKI in cirrhosis were 1.00, 0.888, and 0.911, while those for distinguishing mild from severe kidney injury were 0.961, 0.830, and 0.857, respectively. DATA CONCLUSION ASL allows the longitudinal assessment of the degree of AKI induced by cholestatic cirrhosis in rats and can serve as a noninvasive marker for the early and accurate diagnosis of AKI. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY STAGE: 2.
Collapse
Affiliation(s)
- Yongquan Yu
- Department of Radiology, First Central Clinical College, Tianjin Medical University, Tianjin, China
- Department of Radiology, Weihai Central Hospital, Shandong, China
| | - Shuangshuang Xie
- Department of Radiology, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Kaiqi Wang
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Fuzhi Zhang
- Department of Pathology, Rushan People's Hospital, Shandong, China
| | - Chao Jiang
- Department of Public Health, Zhangye People's Hospital Affiliated to Hexi University, Zhangye, China
| | - Caixin Qiu
- Department of Radiology, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Jinxia Zhu
- MR Collaboration, Siemens Healthcare Ltd, Beijing, China
| | - Wen Shen
- Department of Radiology, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
11
|
van Dinther M, Voorter PH, Jansen JF, Jones EA, van Oostenbrugge RJ, Staals J, Backes WH. Assessment of microvascular rarefaction in human brain disorders using physiological magnetic resonance imaging. J Cereb Blood Flow Metab 2022; 42:718-737. [PMID: 35078344 PMCID: PMC9014687 DOI: 10.1177/0271678x221076557] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cerebral microvascular rarefaction, the reduction in number of functional or structural small blood vessels in the brain, is thought to play an important role in the early stages of microvascular related brain disorders. A better understanding of its underlying pathophysiological mechanisms, and methods to measure microvascular density in the human brain are needed to develop biomarkers for early diagnosis and to identify targets for disease modifying treatments. Therefore, we provide an overview of the assumed main pathophysiological processes underlying cerebral microvascular rarefaction and the evidence for rarefaction in several microvascular related brain disorders. A number of advanced physiological MRI techniques can be used to measure the pathological alterations associated with microvascular rarefaction. Although more research is needed to explore and validate these MRI techniques in microvascular rarefaction in brain disorders, they provide a set of promising future tools to assess various features relevant for rarefaction, such as cerebral blood flow and volume, vessel density and radius and blood-brain barrier leakage.
Collapse
Affiliation(s)
- Maud van Dinther
- Department of Neurology, Maastricht University Medical Center, The Netherlands.,CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands
| | - Paulien Hm Voorter
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, The Netherlands.,MHeNs - School for Mental Health and Neuroscience, Maastricht University, The Netherlands
| | - Jacobus Fa Jansen
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, The Netherlands.,MHeNs - School for Mental Health and Neuroscience, Maastricht University, The Netherlands
| | | | - Robert J van Oostenbrugge
- Department of Neurology, Maastricht University Medical Center, The Netherlands.,CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands.,MHeNs - School for Mental Health and Neuroscience, Maastricht University, The Netherlands
| | - Julie Staals
- Department of Neurology, Maastricht University Medical Center, The Netherlands.,CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands
| | - Walter H Backes
- CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands.,Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, The Netherlands.,MHeNs - School for Mental Health and Neuroscience, Maastricht University, The Netherlands
| |
Collapse
|
12
|
Francis CR, Kushner EJ. Trafficking in blood vessel development. Angiogenesis 2022; 25:291-305. [PMID: 35449244 PMCID: PMC9249721 DOI: 10.1007/s10456-022-09838-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/03/2022] [Indexed: 02/17/2023]
Abstract
Blood vessels demonstrate a multitude of complex signaling programs that work in concert to produce functional vasculature networks during development. A known, but less widely studied, area of endothelial cell regulation is vesicular trafficking, also termed sorting. After moving through the Golgi apparatus, proteins are shuttled to organelles, plugged into membranes, recycled, or degraded depending on the internal and extrinsic cues. A snapshot of these protein-sorting systems can be viewed as a trafficking signature that is not only unique to endothelial tissue, but critically important for blood vessel form and function. In this review, we will cover how vesicular trafficking impacts various aspects of angiogenesis, such as sprouting, lumen formation, vessel stabilization, and secretion, emphasizing the role of Rab GTPase family members and their various effectors.
Collapse
Affiliation(s)
- Caitlin R Francis
- Department of Biological Sciences, University of Denver, Denver, CO, 80210, USA
| | - Erich J Kushner
- Department of Biological Sciences, University of Denver, Denver, CO, 80210, USA.
| |
Collapse
|
13
|
Wang B, Li ZL, Zhang YL, Wen Y, Gao YM, Liu BC. Hypoxia and chronic kidney disease. EBioMedicine 2022; 77:103942. [PMID: 35290825 PMCID: PMC8921539 DOI: 10.1016/j.ebiom.2022.103942] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/22/2022] [Accepted: 03/01/2022] [Indexed: 12/12/2022] Open
Abstract
Hypoxia is an inherent pathophysiological characteristic of chronic kidney disease (CKD), which is closely associated with the development of renal inflammation and fibrosis, as well as CKD-related complications such as anaemia, cardiovascular events, and sarcopenia. This review outlined the characteristics of oxygen supply in the kidney, changes in oxygen metabolism and factors leading to hypoxia in CKD. Mechanistically, we discussed how hypoxia contributes to renal injury as well as complications associated with CKD. Furthermore, we also discussed the potential therapeutic approaches that target chronic hypoxia, as well as the challenges in the study of oxygen homeostasis imbalance in CKD.
Collapse
Affiliation(s)
- Bin Wang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Zuo-Lin Li
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Yi-Lin Zhang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Yi Wen
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Yue-Ming Gao
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Bi-Cheng Liu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China.
| |
Collapse
|
14
|
Zhu S, Shan H, Li J, Pan L, Wang S, Zhu J, Guo H, Mi F, Wu X, Yin J, Pang K. Therapeutic potential of topical administration of acriflavine against hypoxia-inducible factors for corneal fibrosis. Front Pharmacol 2022; 13:996635. [PMID: 36339559 PMCID: PMC9634531 DOI: 10.3389/fphar.2022.996635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/12/2022] [Indexed: 11/29/2022] Open
Abstract
Transdifferentiation of keratocytes into fibroblasts or further into myofibroblasts, which produced denser and more disorganized extracellular matrix, is the major cause of corneal fibrosis and scarring, leading to corneal blindness. TGF-β1 is the critical cytokine for the myofibroblast's transdifferentiation and survival. Hypoxia Inducible Factor (HIF) was found to play an important role in promoting fibrosis in lung, kidney, and dermal tissues recently. Our preliminary study demonstrated that topical administration of the acriflavine (ACF), a drug inhibiting HIF dimerization, delayed corneal opacity and neovascularization after the alkali burn. To know whether ACF could prevent corneal fibrosis and improve corneal transparency, we created a mouse mechanical corneal injury model and found that topical administration of ACF significantly inhibited corneal fibrosis at day 14 post-injury. The reduction of myofibroblast marker α-SMA, and fibronectin, one of the disorganized extracellular matrix molecules, in the corneal stroma were confirmed by the examination of immunohistochemistry and real-time PCR. Furthermore, the ACF inhibited the expression of α-SMA and fibronectin in both TGF-β1 stimulated or unstimulated fibroblasts in vitro. This effect was based on the inhibition of HIF signal pathways since the levels of the HIF-1α downstream genes including Slc2a1, Bnip3 and VEGFA were downregulated. To our knowledge, this is the first time to implicate that HIFs might be a new treatment target for controlling corneal fibrosis in mechanical corneal injuries.
Collapse
Affiliation(s)
- Shuyan Zhu
- Xi'an People's Hospital (Xi'an Fourth Hospital), Shanxi Eye Hospital, Xi'an, Shanxi, China
| | - Huimin Shan
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jianqiao Li
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Lijie Pan
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Shudan Wang
- Department of Ophthalmology, Harvard Medical School, Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, United States
| | - Jing Zhu
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Hui Guo
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Fenghua Mi
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xinyi Wu
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jia Yin
- Department of Ophthalmology, Harvard Medical School, Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, United States
| | - Kunpeng Pang
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
15
|
Song Y, Li X, Shi D, Sun T, Liu W, Li X, Qiao S, Chen X, Guo Y, Li J. A senolysis-based theragnostic prodrug strategy towards chronic renal failure. Chem Sci 2022; 13:11738-11745. [PMID: 36320912 PMCID: PMC9580481 DOI: 10.1039/d2sc03525a] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/15/2022] [Indexed: 11/21/2022] Open
Abstract
Selective elimination of senescent cells (senolysis) has become a promising therapeutic strategy for the management of chronic renal failure (CRF), but the senolytic molecular pathways towards CRF therapy are limited. Here, we present for the first time a senescence-associated β-galactosidase (SA-β-gal) activatable theragnostic prodrug strategy to pertinently and effectively treat CRF in mice with the aid of fluorescence-guided senolysis. The signs of premature senescence, including the overexpression of β-gal, have been found in kidneys of mice with CRF, making this enzyme particularly suitable as a trigger of prodrugs for CRF therapy. With this unique design, our pioneering prodrug TSPD achieved the activation of a fluorophore for tracking and the specific release of the parent drug, gemcitabine, in β-gal-enriched cells after activation with SA-β-gal. In mice with CRF, abdominal administration of TSPD was effective for improvement of the kidney functions, supporting the feasibility of the SA-β-gal-dependent senolysis therapy towards CRF. Here, we report a senescence-associated β-galactosidase activatable theragnostic prodrug to pertinently treat chronic renal failure (CRF) in mice with the aid of fluorescence-guided senolysis, providing a creative molecular approach to CRF therapy.![]()
Collapse
Affiliation(s)
- Yihe Song
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xinming Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Donglei Shi
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Tianyue Sun
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Wenwen Liu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, College of Pharmacy, Hainan University, Haikou 570228, Hainan, China
| | - Xiaokang Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Sicong Qiao
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xin Chen
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yuan Guo
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Jian Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, College of Pharmacy, Hainan University, Haikou 570228, Hainan, China
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200092, China
- Yunnan Key Laboratory of Screening and Research on Anti-pathogenic Plant Resources from West Yunnan, College of Pharmacy, Dali University, Dali 671000, China
| |
Collapse
|
16
|
Akinbote A, Beltran-Sastre V, Cherubini M, Visone R, Hajal C, Cobanoglu D, Haase K. Classical and Non-classical Fibrosis Phenotypes Are Revealed by Lung and Cardiac Like Microvascular Tissues On-Chip. Front Physiol 2021; 12:735915. [PMID: 34690810 PMCID: PMC8528192 DOI: 10.3389/fphys.2021.735915] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 08/31/2021] [Indexed: 11/13/2022] Open
Abstract
Fibrosis, a hallmark of many cardiac and pulmonary diseases, is characterized by excess deposition of extracellular matrix proteins and increased tissue stiffness. This serious pathologic condition is thought to stem majorly from local stromal cell activation. Most studies have focused on the role of fibroblasts; however, the endothelium has been implicated in fibrosis through direct and indirect contributions. Here, we present a 3D vascular model to investigate vessel-stroma crosstalk in normal conditions and following induced fibrosis. Human-induced pluripotent stem cell-derived endothelial cells (hiPSC-ECs) are co-cultured with (and without) primary human cardiac and lung fibroblasts (LFs) in a microfluidic device to generate perfusable microvasculature in cardiac- and pulmonary-like microenvironments. Endothelial barrier function, vascular morphology, and matrix properties (stiffness and diffusivity) are differentially impacted by the presence of stromal cells. These vessels (with and without stromal cells) express inflammatory cytokines, which could induce a wound-healing state. Further treatment with transforming growth factor-β (TGF-β) induced varied fibrotic phenotypes on-chip, with LFs resulting in increased stiffness, lower MMP activity, and increased smooth muscle actin expression. Taken together, our work demonstrates the strong impact of stromal-endothelial interactions on vessel formation and extravascular matrix regulation. The role of TGF-β is shown to affect co-cultured microvessels differentially and has a severe negative impact on the endothelium without stromal cell support. Our human 3D in vitro model has the potential to examine anti-fibrotic therapies on patient-specific hiPSCs in the future.
Collapse
Affiliation(s)
- Akinola Akinbote
- European Molecular Biology Laboratory, Barcelona, Spain.,Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | | | | | - Roberta Visone
- Politecnico di Milano, Department of Electronics, Information, and Bioengineering, Milan Italy.,Massachusetts Institute of Technology, Department of Mechanical Engineering, Cambridge, MA, United States
| | - Cynthia Hajal
- Massachusetts Institute of Technology, Department of Mechanical Engineering, Cambridge, MA, United States
| | - Defne Cobanoglu
- European Molecular Biology Laboratory, Barcelona, Spain.,Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | | |
Collapse
|
17
|
Yang Y, Wang J, Zhang Y, Hu X, Li L, Chen P. Hypoxic tubular epithelial cells regulate the angiogenesis of HMEC-1 cells via mediation of Rab7/MMP-2 axis. Aging (Albany NY) 2021; 13:23769-23779. [PMID: 34695807 PMCID: PMC8580335 DOI: 10.18632/aging.203648] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 10/18/2021] [Indexed: 04/16/2023]
Abstract
Renal hypoxia is associated with persisting peritubular capillary rarefaction in progression of chronic kidney disease (CKD), and this phenomenon mainly resulted from the dysregulated angiogenesis. Rab7 is known to be involved in renal hypoxia. However, the mechanism by which Rab7 regulates the renal hypoxia remains unclear. Protein expression was detected by western blot. Cell proliferation was detected by EdU staining. Cell migration was tested by transwell assay. Rab7 was upregulated in HK-2 cells under hypoxia conditions. Hypoxia significantly inhibited the viability and proliferation of human microvascular endothelial cells (HMEC-1 cells), while this phenomenon was obviously reversed by Rab7 silencing. Consistently, Hypoxia significantly decreased the migration and tube length of HMECs, which was partially reversed by knockdown of Rab7. Moreover, hypoxia-induced inhibition of MMP2 activity was significantly rescued by knockdown of Rab7. Moreover, ARP100 (MMP-2 inhibitor) significantly reversed the effect of Rab7 shRNA on cell viability, migration and angiogenesis. Furthermore, knockdown of Rab7 significantly alleviated the fibrosis in tissues of mice. Knockdown of Rab7 significantly alleviated the renal hypoxia in chronic kidney disease through regulation of MMP-2. Thus, our study might shed new light on exploring the new strategies against CKD.
Collapse
Affiliation(s)
- Yiqiong Yang
- Department of Pathology and Pathophysiology, Medical School, Southeast University, Nanjing 210009, Jiangsu, China
| | - Jing Wang
- Institute of Andrology, The Affiliated Drum Tower Hospital, Nanjing University, Nanjing 210008, Jiangsu, China
| | - Yu Zhang
- Department of Pathology and Pathophysiology, Medical School, Southeast University, Nanjing 210009, Jiangsu, China
| | - Xiuxiu Hu
- Department of Pathology and Pathophysiology, Medical School, Southeast University, Nanjing 210009, Jiangsu, China
| | - Li Li
- Department of Pathology and Pathophysiology, Medical School, Southeast University, Nanjing 210009, Jiangsu, China
| | - Pingsheng Chen
- Institute of Nephrology, The Affiliated Zhongda Hospital, Southeast University, Nanjing 210009, Jiangsu, China
| |
Collapse
|
18
|
Yang J, Yang S, Xu Y, Lu F, You L, He Z, Zhan S, Ye C, Liu M, Fu C, Wang C. Evaluation of Renal Oxygenation and Hemodynamics in Patients with Chronic Kidney Disease by Blood Oxygenation Level-dependent Magnetic Resonance Imaging and Intrarenal Doppler Ultrasonography. Nephron Clin Pract 2021; 145:653-663. [PMID: 34182563 DOI: 10.1159/000516637] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 04/15/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION The basic pathophysiologic derangement of chronic kidney disease (CKD) begins with the loss of nephrons, leading to renal hemodynamic changes, eventually causing a reduced nephron count and renal hypoxia. The purpose of this study was to observe the renal oxygenation and renal hemodynamics of patients with CKD using blood oxygenation level-dependent (BOLD) magnetic resonance imaging (MRI) and intrarenal Doppler ultrasonography (IDU). METHODS The study enrolled 39 patients with stage 1-4 CKD and 19 healthy volunteers (HVs). Based on their estimated glomerular filtration rate (eGFR), CKD patients were divided into 2 subgroups: a mild renal impairment (MI) group and a moderate to severe renal impairment (MSI) group. We monitored the participants' mean cortical T2* (COT2*) and mean medullary T2* (MET2*) values on BOLD-MRI, and measured the peak systolic velocities (PSVs), end-diastolic velocities (EDVs), renal resistive index (RI), and kidney length by IDU. We also recorded clinical indicators such as age, sex, body mass index (BMI), 24-h urinary protein (24-h Upr), serum creatinine (sCr), blood urea nitrogen (BUN), and eGFR. BOLD-MRI, IDU measurements, and the clinical indicators were compared in CKD patients and HVs by the analysis of variance and Kruskal-Wallis H test. Spearman's correlation was used to assess the relationship between data from BOLD-MRI and IDU and clinical indicators. RESULTS The COT2* values were significantly higher than the MET2* values in the HV, MI, and MSI groups. COT2*, MET2*, EDV, PSV, and kidney length gradually decreased in the HV, MI, and MSI groups (all p < 0.05), whereas RI and 24-h Upr gradually increased (both p < 0.05). Spearman correlation analysis showed that COT2* and MET2* were significantly positively correlated with eGFR, PSV, EDV, and kidney length but were significantly negatively correlated with sCr, BUN, and 24-h Upr (all p < 0.05). There was no correlation observed between the COT2* and MET2* and the RI and BMI values. CONCLUSIONS Renal oxygenation and blood flow velocities were found declined as the CKD stage progressed. The BOLD-MRI and IDU techniques may have clinical value by measuring intrarenal oxygenation and renal blood perfusion to judge the severity of renal damage in patients with CKD.
Collapse
Affiliation(s)
- Jing Yang
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China, .,TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Shanghai, China, .,Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, Shanghai, China, .,Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China,
| | - Shuohui Yang
- Department of Radiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Radiology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yizeng Xu
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, Shanghai, China.,Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fang Lu
- Department of Radiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lan You
- Department of Radiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zheng He
- Department of Ultrasonography, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Songhua Zhan
- Department of Radiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chaoyang Ye
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, Shanghai, China.,Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mengxiao Liu
- MR Scientific Marketing, Siemens Healthcare, Shanghai, China
| | - Caixia Fu
- MR Applications Development, Siemens Shenzhen Magnetic Resonance Ltd., Shenzhen, China
| | - Chen Wang
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, Shanghai, China.,Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
19
|
Detection of pro angiogenic and inflammatory biomarkers in patients with CKD. Sci Rep 2021; 11:8786. [PMID: 33888746 PMCID: PMC8062467 DOI: 10.1038/s41598-021-87710-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 03/30/2021] [Indexed: 11/08/2022] Open
Abstract
Cardiovascular disease (CVD) is the most common cause of death in patients with native and post-transplant chronic kidney disease (CKD). To identify new biomarkers of vascular injury and inflammation, we analyzed the proteome of plasma and circulating extracellular vesicles (EVs) in native and post-transplant CKD patients utilizing an aptamer-based assay. Proteins of angiogenesis were significantly higher in native and post-transplant CKD patients versus healthy controls. Ingenuity pathway analysis (IPA) indicated Ephrin receptor signaling, serine biosynthesis, and transforming growth factor-β as the top pathways activated in both CKD groups. Pro-inflammatory proteins were significantly higher only in the EVs of native CKD patients. IPA indicated acute phase response signaling, insulin-like growth factor-1, tumor necrosis factor-α, and interleukin-6 pathway activation. These data indicate that pathways of angiogenesis and inflammation are activated in CKD patients' plasma and EVs, respectively. The pathways common in both native and post-transplant CKD may signal similar mechanisms of CVD.
Collapse
|
20
|
Li L, Liao J, Yuan Q, Hong X, Li J, Peng Y, He M, Zhu H, Zhu M, Hou FF, Fu H, Liu Y. Fibrillin-1-enriched microenvironment drives endothelial injury and vascular rarefaction in chronic kidney disease. SCIENCE ADVANCES 2021; 7:7/5/eabc7170. [PMID: 33571112 PMCID: PMC7840119 DOI: 10.1126/sciadv.abc7170] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 12/10/2020] [Indexed: 05/05/2023]
Abstract
Endothelial cell injury leading to microvascular rarefaction is a characteristic feature of chronic kidney disease (CKD). However, the mechanism underlying endothelial cell dropout is poorly defined. Here, we show a central role of the extracellular microenvironment in controlling endothelial cell survival and proliferation in CKD. When cultured on a decellularized kidney tissue scaffold (KTS) from fibrotic kidney, endothelial cells increased the expression of proapoptotic proteins. Proteomics profiling identified fibrillin-1 (FBN1) as a key component of the fibrotic KTS, which was up-regulated in animal models and patients with CKD. FBN1 induced apoptosis of endothelial cells and inhibited their proliferation in vitro. RNA sequencing uncovered activated integrin αvβ6/transforming growth factor-β signaling, and blocking this pathway abolished FBN1-triggered endothelial injury. In a mouse model of CKD, depletion of FBN1 ameliorated renal fibrotic lesions and mitigated vascular rarefaction. These studies illustrate that FBN1 plays a role in mediating vascular rarefaction by orchestrating a hostile microenvironment for endothelial cells.
Collapse
Affiliation(s)
- Li Li
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jinlin Liao
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qian Yuan
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xue Hong
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jing Li
- Department of Cardiology, The 924th Hospital of Chinese People's Liberation Army Joint Service Support Force, Guilin, China
| | - Yiling Peng
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Meizhi He
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haili Zhu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mingsheng Zhu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fan Fan Hou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Haiyan Fu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Youhua Liu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
21
|
Xu Y, Li H, Wang C, Zhang M, Wang Q, Xie Y, Shao X, Tian L, Yuan Y, Yan W, Feng T, Li F, Ni Z, Mou S. Improving Prognostic and Chronicity Evaluation of Chronic Kidney Disease with Contrast-Enhanced Ultrasound Index-Derived Peak Intensity. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:2945-2955. [PMID: 32782087 DOI: 10.1016/j.ultrasmedbio.2020.06.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 06/23/2020] [Accepted: 06/26/2020] [Indexed: 06/11/2023]
Abstract
The capability of contrast-enhanced ultrasound (CEUS) to assess the prognosis and chronicity of chronic kidney disease (CKD) was evaluated in patients diagnosed with CKD in 2014 at Ren Ji Hospital, Shanghai, China. Time-intensity curves and quantitative indexes were created using QLab quantification software. Kidney biopsies were analyzed with α-smooth muscle actin immunohistochemistry. According to the renal chronicity score, patients were divided into four groups: minimal (n = 14), mild (n = 73), moderate (n = 49) and severe (n = 31). Multivariate logistic regression analysis revealed that the derived peak intensity (DPI) was independently associated with the renal chronicity score. Of 167 CKD patients (median follow-up: 30.4 ± 18.7 mo), 31 (18.6%) exhibited CKD progression, with a decline in the glomerular filtration rate of more than 25% or end-stage renal disease. Multivariate Cox regression analysis revealed that a lower DPI was independently associated with CKD progression. This study indicates that DPI is a reliable CEUS parameter for evaluating chronic renal changes and an independent prognostic factor of CKD.
Collapse
Affiliation(s)
- Yao Xu
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hongli Li
- Department of Ultrasound, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chunlin Wang
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Minfang Zhang
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qin Wang
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuanyuan Xie
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xinghua Shao
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Tian
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yanhong Yuan
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Yan
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tienan Feng
- Faculty of Public Health, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fenghua Li
- Department of Ultrasound, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhaohui Ni
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shan Mou
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
22
|
Chen L, Wang Y, Li S, Zuo B, Zhang X, Wang F, Sun D. Exosomes derived from GDNF-modified human adipose mesenchymal stem cells ameliorate peritubular capillary loss in tubulointerstitial fibrosis by activating the SIRT1/eNOS signaling pathway. Theranostics 2020; 10:9425-9442. [PMID: 32802201 PMCID: PMC7415791 DOI: 10.7150/thno.43315] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 07/12/2020] [Indexed: 01/08/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have emerged as ideal cell-based therapeutic candidates for the structural and functional restoration of the diseased kidney. Glial cell line-derived neurotrophic factor (GDNF) has been demonstrated to promote the therapeutic effect of MSCs on ameliorating renal injury. The mechanism may involve the transfer of endogenous molecules via paracrine factors to salvage injured cells, but these factors remain unknown. Methods: GDNF was transfected into human adipose mesenchymal stem cells via a lentiviral transfection system, and exosomes were isolated (GDNF-AMSC-exos). Using the unilateral ureteral obstruction (UUO) mouse model and human umbilical vein endothelial cells (HUVECs) against hypoxia/serum deprivation (H/SD) injury models, we investigated whether GDNF-AMSC-exos ameliorate peritubular capillary (PTC) loss in tubulointerstitial fibrosis and whether this effect is mediated by the Sirtuin 1 (SIRT1) signaling pathway. Additionally, by using SIRT1 activators or siRNAs, the roles of the candidate mRNA and its downstream gene in GDNF-AMSC-exo-induced regulation of endothelial cell function were assessed. PTC characteristics were detected by fluorescent microangiography (FMA) and analyzed by the MATLAB software. Results: The green fluorescent PKH67-labeled exosomes were visualized in the UUO kidneys and colocalized with CD81. GDNF-AMSC-exos significantly decreased PTC rarefaction and renal fibrosis scores in mice with UUO. In vitro studies revealed that GDNF-AMSC-exos exerted cytoprotective effects on HUVECs against H/SD injury by stimulating migration and angiogenesis as well as conferring apoptosis resistance. Mechanistically, GDNF-AMSC-exos enhanced SIRT1 signaling, which was accompanied by increased levels of phosphorylated endothelial nitric oxide synthase (p-eNOS). We also confirmed the SIRT1-eNOS interaction in HUVECs by immunoprecipitation. Furthermore, we observed a correlation of the PTC number with the SIRT1 expression level in the kidney in vivo. Conclusion: Our study unveiled a mechanism by which exosomes ameliorate renal fibrosis: GDNF-AMSC-exos may activate an angiogenesis program in surviving PTCs after injury by activating the SIRT1/eNOS signaling pathway.
Collapse
|
23
|
Lovisa S, Fletcher-Sananikone E, Sugimoto H, Hensel J, Lahiri S, Hertig A, Taduri G, Lawson E, Dewar R, Revuelta I, Kato N, Wu CJ, Bassett RL, Putluri N, Zeisberg M, Zeisberg EM, LeBleu VS, Kalluri R. Endothelial-to-mesenchymal transition compromises vascular integrity to induce Myc-mediated metabolic reprogramming in kidney fibrosis. Sci Signal 2020; 13:13/635/eaaz2597. [PMID: 32518142 DOI: 10.1126/scisignal.aaz2597] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Endothelial-to-mesenchymal transition (EndMT) is a cellular transdifferentiation program in which endothelial cells partially lose their endothelial identity and acquire mesenchymal-like features. Renal capillary endothelial cells can undergo EndMT in association with persistent damage of the renal parenchyma. The functional consequence(s) of EndMT in kidney fibrosis remains unexplored. Here, we studied the effect of Twist or Snail deficiency in endothelial cells on EndMT in kidney fibrosis. Conditional deletion of Twist1 (which encodes Twist) or Snai1 (which encodes Snail) in VE-cadherin+ or Tie1+ endothelial cells inhibited the emergence of EndMT and improved kidney fibrosis in two different kidney injury/fibrosis mouse models. Suppression of EndMT limited peritubular vascular leakage, reduced tissue hypoxia, and preserved tubular epithelial health and function. Hypoxia, which was exacerbated by EndMT, resulted in increased Myc abundance in tubular epithelial cells, enhanced glycolysis, and suppression of fatty acid oxidation. Pharmacological suppression or epithelial-specific genetic ablation of Myc in tubular epithelial cells ameliorated fibrosis and restored renal parenchymal function and metabolic homeostasis. Together, these findings demonstrate a functional role for EndMT in the response to kidney capillary endothelial injury and highlight the contribution of endothelial-epithelial cross-talk in the development of kidney fibrosis with a potential for therapeutic intervention.
Collapse
Affiliation(s)
- Sara Lovisa
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Eliot Fletcher-Sananikone
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Hikaru Sugimoto
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA.,Division of Matrix Biology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Janine Hensel
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Sharmistha Lahiri
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Alexandre Hertig
- Division of Matrix Biology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Gangadhar Taduri
- Division of Matrix Biology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Erica Lawson
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Rajan Dewar
- Division of Matrix Biology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Ignacio Revuelta
- Division of Matrix Biology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Noritoshi Kato
- Division of Matrix Biology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Chang-Jiun Wu
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Roland L Bassett
- Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Nagireddy Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michael Zeisberg
- Department of Nephrology and Rheumatology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Elisabeth M Zeisberg
- Department of Cardiology and Pneumology, University Medical Center Göttingen, German Center for Cardiovascular Research (DZHK), Partner Site, Göttingen 37075, Germany
| | - Valerie S LeBleu
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA.,Division of Matrix Biology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA.,Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Raghu Kalluri
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA. .,Division of Matrix Biology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.,Department of Bioengineering, Rice University, Houston, TX 77030, USA
| |
Collapse
|
24
|
Deluque AL, de Almeida LF, Francescato HDC, da Silva CGA, Costa RS, Antunes-Rodrigues J, Coimbra TM. Effect of Calcitriol on the Renal Microvasculature Differentiation Disturbances Induced by AT 1 Blockade During Nephrogenesis in Rats. Front Med (Lausanne) 2020; 7:23. [PMID: 32118008 PMCID: PMC7016013 DOI: 10.3389/fmed.2020.00023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 01/15/2020] [Indexed: 12/11/2022] Open
Abstract
Alterations in the renal vasculature during fetal programming can cause disturbances in renal structure and function that persist into adulthood. Calcitriol can affect cellular differentiation and proliferation, and promote endothelial cell maintenance, each of which is a key event in nephrogenesis. Calcitriol is a negative endocrine regulator of the renin gene. Rats exposed to renin-angiotensin system (RAS) antagonists during lactation have been shown to develop renal disorders, which demonstrated that the RAS may play an important role in mammalian kidney development. We evaluated the effects of calcitriol administration on losartan [angiotensin II receptor antagonist (ANGII), AT1]-induced changes in renal differentiation in rats during lactation. Rats treated with losartan showed alterations in renal function and structure that persisted into adulthood. These disruptions included hydronephrosis, papillary atrophy, endothelial dysfunction, and aberrant endothelial structure. These changes were mitigated by treatment with calcitriol. The results of our study showed that animals exposed to AT1 blockade during lactation exhibited altered renal microvasculature differentiation in adulthood that was attenuated by treatment with calcitriol.
Collapse
Affiliation(s)
- Amanda L Deluque
- Laboratory of Renal Physiology, Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Lucas F de Almeida
- Laboratory of Renal Physiology, Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Heloísa D C Francescato
- Laboratory of Renal Physiology, Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Cleonice G A da Silva
- Laboratory of Renal Physiology, Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Roberto S Costa
- Laboratory of Renal Pathology, Division of Nephrology, Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - José Antunes-Rodrigues
- Laboratory of Neuroendocrinology, Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Terezila M Coimbra
- Laboratory of Renal Physiology, Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
25
|
Saifi MA, Godugu C. Inhibition of lysyl oxidase ameliorates renal injury by inhibiting CD44-mediated pericyte detachment and loss of peritubular capillaries. Life Sci 2020; 243:117294. [PMID: 31927047 DOI: 10.1016/j.lfs.2020.117294] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/30/2019] [Accepted: 01/07/2020] [Indexed: 12/21/2022]
Abstract
Renal fibrosis is a common pathological manifestation of almost all forms of kidney disease irrespective of the etiological cause. Microvascular rarefaction represents itself as an important phenomenon associated with renal fibrosis and shows strong correlation with decline in renal functions. Lysyl oxidase (LOX) catalyzes crosslinking of extracellular matrix (ECM) proteins including collagens, plays an important role in stabilization of degradation resistant matrix. Since, there seems to be a causal link between deposition of excessive ECM and microvascular rarefaction, we investigated the effects of reduction in renal fibrosis on microvascular rarefaction in acute as well as end stage kidney. We used a well-established unilateral ureteral obstruction (UUO)-induced renal fibrosis model to produce renal fibrosis in animals. We treated animals with a LOX inhibitor, β-aminopropionitrile (BAPN, 100 mg/kg, i.p.) and investigated effects on renal fibrosis and microvascular rarefaction. We observed that LOX inhibition was associated with reduction in collagen deposition in UUO-induced renal fibrosis animal model. Further, ECM normalization by LOX inhibition decreased the loss of peritubular capillaries (PTCs) in fibrotic kidney in acute study while the LOX inhibition failed to inhibit PTCs loss in end stage kidney. The results of present study suggested that inhibition of LOX reduces collagen deposition and renal fibrosis. Further, the reduction in fibrosis fails to protect from PTCs loss in chronic study suggesting the absence of strong link between reduction in fibrosis and improvement in PTCs in an end stage kidney.
Collapse
Affiliation(s)
- Mohd Aslam Saifi
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Chandraiah Godugu
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India.
| |
Collapse
|
26
|
Sun X, Nkennor B, Mastikhina O, Soon K, Nunes SS. Endothelium-mediated contributions to fibrosis. Semin Cell Dev Biol 2019; 101:78-86. [PMID: 31791693 DOI: 10.1016/j.semcdb.2019.10.015] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/25/2019] [Accepted: 10/30/2019] [Indexed: 02/07/2023]
Abstract
Fibrosis, characterized by abnormal and excessive deposition of extracellular matrix, results in compromised tissue and organ structure. This can lead to reduced organ function and eventual failure. Although activated fibroblasts, called myofibroblasts, are considered the central players in fibrosis, the contribution of endothelial cells to the inception and progression of fibrosis has become increasingly recognized. Endothelial cells can contribute to fibrosis by acting as a source of myofibroblasts via endothelial-mesenchymal transition (EndoMT), or by becoming senescent, by secretion of profibrotic mediators and pro-inflammatory cytokines, chemokines and exosomes, promoting the recruitment of immune cells, and by participating in vascular rarefaction and decreased angiogenesis. In this review, we provide an overview of the different aspects of fibrosis in which endothelial cells have been implicated.
Collapse
Affiliation(s)
- Xuetao Sun
- University Health Network, Toronto General Hospital Research Institute, 101 College St., Canada
| | - Blessing Nkennor
- University Health Network, Toronto General Hospital Research Institute, 101 College St., Canada; Department of Biological Sciences, University of Toronto Scarborough, Canada
| | - Olya Mastikhina
- University Health Network, Toronto General Hospital Research Institute, 101 College St., Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Canada
| | - Kayla Soon
- University Health Network, Toronto General Hospital Research Institute, 101 College St., Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Canada
| | - Sara S Nunes
- University Health Network, Toronto General Hospital Research Institute, 101 College St., Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Canada; Heart & Stroke/Richard Lewar Centre of Excellence, University of Toronto, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Canada.
| |
Collapse
|
27
|
Shammout B, Johnson JR. Pericytes in Chronic Lung Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1147:299-317. [PMID: 31147884 DOI: 10.1007/978-3-030-16908-4_14] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Pericytes are supportive mesenchymal cells located on the abluminal surface of the microvasculature, with key roles in regulating microvascular homeostasis, leukocyte extravasation, and angiogenesis. A subpopulation of pericytes with progenitor cell function has recently been identified, with evidence demonstrating the capacity of tissue-resident pericytes to differentiate into the classic MSC triad, i.e., osteocytes, chondrocytes, and adipocytes. Beyond the regenerative capacity of these cells, studies have shown that pericytes play crucial roles in various pathologies in the lung, both acute (acute respiratory distress syndrome and sepsis-related pulmonary edema) and chronic (pulmonary hypertension, lung tumors, idiopathic pulmonary fibrosis, asthma, and chronic obstructive pulmonary disease). Taken together, this body of evidence suggests that, in the presence of acute and chronic pulmonary inflammation, pericytes are not associated with tissue regeneration and repair, but rather transform into scar-forming myofibroblasts, with devastating outcomes regarding lung structure and function. It is hoped that further studies into the mechanisms of pericyte-to-myofibroblast transition and migration to fibrotic foci will clarify the roles of pericytes in chronic lung disease and open up new avenues in the search for novel treatments for human pulmonary pathologies.
Collapse
Affiliation(s)
- Bushra Shammout
- Biosciences Department, School of Life and Health Sciences, Aston University, Birmingham, UK
| | - Jill R Johnson
- Biosciences Department, School of Life and Health Sciences, Aston University, Birmingham, UK.
| |
Collapse
|
28
|
Zhuo H, Zhou D, Wang Y, Mo H, Yu Y, Liu Y. Sonic hedgehog selectively promotes lymphangiogenesis after kidney injury through noncanonical pathway. Am J Physiol Renal Physiol 2019; 317:F1022-F1033. [PMID: 31411078 DOI: 10.1152/ajprenal.00077.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Kidney fibrosis is associated with an increased lymphangiogenesis, characterized by the formation and expansion of new lymphatic vessels. However, the trigger and underlying mechanism responsible for the growth of lymphatic vessels in diseased kidney remain poorly defined. Here, we report that tubule-derived sonic hedgehog (Shh) ligand is a novel lymphangiogenic factor that plays a crucial role in mediating lymphatic endothelial cell proliferation and expansion. Shh was induced in renal tubular epithelium in various models of fibrotic chronic kidney disease, and this was accompanied by an expansion of lymphatic vessels in adjacent areas. In vitro, Shh selectively promoted the proliferation of human dermal lymphatic endothelial cells (HDLECs) but not human umbilical vein endothelial cells, as assessed by cell counting, MTT assay, and bromodeoxyuridine incorporation. Shh also induced the expression of vascular endothelial growth factor receptor-3, cyclin D1, and proliferating cell nuclear antigen in HDLECs. Shh did not affect the expression of Gli1, the downstream target and readout of canonical hedgehog signaling, but activated ERK-1/2 in HDLECs. Inhibition of Smoothened with small-molecule inhibitor or blockade of ERK-1/2 activation abolished the lymphatic endothelial cell proliferation induced by Shh. In vivo, inhibition of Smoothened also repressed lymphangiogenesis and attenuated renal fibrosis. This study identifies Shh as a novel mitogen that selectively promotes lymphatic, but not vascular, endothelial cell proliferation and suggests that tubule-derived Shh plays an essential role in mediating lymphangiogenesis after kidney injury.
Collapse
Affiliation(s)
- Hui Zhuo
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Dong Zhou
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Yuanyuan Wang
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Hongyan Mo
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Ying Yu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Youhua Liu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
29
|
Peng Z, Luo R, Xie T, Zhang W, Liu H, Wang W, Tao L, Kellems RE, Xia Y. Erythrocyte Adenosine A2B Receptor-Mediated AMPK Activation: A Missing Component Counteracting CKD by Promoting Oxygen Delivery. J Am Soc Nephrol 2019; 30:1413-1424. [PMID: 31278195 DOI: 10.1681/asn.2018080862] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 04/22/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Oxygen deprivation or hypoxia in the kidney drives CKD and contributes to end organ damage. The erythrocyte's role in delivery of oxygen (O2) is regulated by hypoxia, but the effects of CKD are unknown. METHODS We screened all of the metabolites in the whole blood of mice infused with angiotensin II (Ang II) at 140 ng/kg per minute up to 14 days to simulate CKD and compared their metabolites with those from untreated mice. Mice lacking a receptor on their erythrocytes called ADORA2B, which increases O2 delivery, and patients with CKD were studied to assess the role of ADORA2B-mediated O2 delivery in CKD. RESULTS Untargeted metabolomics showed increased production of 2,3-biphosphoglycerate (2,3-BPG), an erythrocyte-specific metabolite promoting O2 delivery, in mice given Ang II to induce CKD. Genetic studies in mice revealed that erythrocyte ADORA2B signaling leads to AMPK-stimulated activation of BPG mutase, promoting 2,3-BPG production and O2 delivery to counteract kidney hypoxia, tissue damage, and disease progression in Ang II-induced CKD. Enhancing AMPK activation in mice offset kidney hypoxia by triggering 2,3-BPG production and O2 delivery. Patients with CKD had higher 2,3-BPG levels, AMPK activity, and O2 delivery in their erythrocytes compared with controls. Changes were proportional to disease severity, suggesting a protective effect. CONCLUSIONS Mouse and human evidence reveals that ADORA2B-AMPK signaling cascade-induced 2,3-BPG production promotes O2 delivery by erythrocytes to counteract kidney hypoxia and progression of CKD. These findings pave a way to novel therapeutic avenues in CKD targeting this pathway.
Collapse
Affiliation(s)
- Zhangzhe Peng
- Departments of Biochemistry and Molecular Biology, University of Texas Health Science Center McGovern Medical School, Houston, Texas.,Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Renna Luo
- Departments of Biochemistry and Molecular Biology, University of Texas Health Science Center McGovern Medical School, Houston, Texas.,Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Tingting Xie
- Departments of Biochemistry and Molecular Biology, University of Texas Health Science Center McGovern Medical School, Houston, Texas.,Department of Rheumatology and Immunology and
| | - Weiru Zhang
- Departments of Biochemistry and Molecular Biology, University of Texas Health Science Center McGovern Medical School, Houston, Texas.,Department of Rheumatology and Immunology and
| | - Hong Liu
- Departments of Biochemistry and Molecular Biology, University of Texas Health Science Center McGovern Medical School, Houston, Texas.,Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; and.,Graduate School of Biomedical Science, University of Texas at Houston, Houston, Texas
| | - Wei Wang
- Departments of Biochemistry and Molecular Biology, University of Texas Health Science Center McGovern Medical School, Houston, Texas.,Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lijian Tao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Rodney E Kellems
- Departments of Biochemistry and Molecular Biology, University of Texas Health Science Center McGovern Medical School, Houston, Texas.,Graduate School of Biomedical Science, University of Texas at Houston, Houston, Texas
| | - Yang Xia
- Departments of Biochemistry and Molecular Biology, University of Texas Health Science Center McGovern Medical School, Houston, Texas; .,Graduate School of Biomedical Science, University of Texas at Houston, Houston, Texas
| |
Collapse
|
30
|
Sickinghe AA, Korporaal SJA, den Ruijter HM, Kessler EL. Estrogen Contributions to Microvascular Dysfunction Evolving to Heart Failure With Preserved Ejection Fraction. Front Endocrinol (Lausanne) 2019; 10:442. [PMID: 31333587 PMCID: PMC6616854 DOI: 10.3389/fendo.2019.00442] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 06/19/2019] [Indexed: 12/14/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a syndrome involving microvascular dysfunction. No treatment is available yet and as the HFpEF patient group is expanding due to the aging population, more knowledge on dysfunction of the cardiac microvasculature is required. Endothelial dysfunction, impaired angiogenesis, (perivascular) fibrosis and the pruning of capillaries (rarefaction) may all contribute to microvascular dysfunction in the heart and other organs, e.g., the kidneys. The HFpEF patient group consists mainly of post-menopausal women and female sex itself is a risk factor for this syndrome. This may point toward a role of estrogen depletion after menopause in the development of HFpEF. Estrogens favor the ratio of vasodilating over vasoconstricting factors, which results in an overall lower blood pressure in women than in men. Furthermore, estrogens improve angiogenic capacity and attenuate (perivascular) fibrosis formation. Therefore, we hypothesize that the drop of estrogen levels after menopause contributes to myocardial microvascular dysfunction and renders post-menopausal women more vulnerable for heart diseases that involve the microvasculature. This review provides a detailed summary of molecular targets of estrogen, which might guide future research and treatment options.
Collapse
Affiliation(s)
| | | | | | - Elise L. Kessler
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
31
|
Grosu I, Bob F, Sporea I, Popescu A, Sirli R, Schiller A. Two-Dimensional Shear-Wave Elastography for Kidney Stiffness Assessment. Ultrasound Q 2019; 37:144-148. [PMID: 31166295 DOI: 10.1097/ruq.0000000000000461] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT This study aimed to analyze the utility of bidimensional shear-wave elastography for renal assessment and in the prediction of chronic kidney disease (CKD).The study included 92 subjects: 50 healthy volunteers and 42 patients with different degrees of CKD (mean age, 57.5 ± 13.4; 50% were female), excluding those undergoing renal replacement therapies, obstructive pathology, or renal lithiasis. We performed kidney shear-wave velocity (KSWV) determinations in the midportion of the parenchyma of each kidney. The median values were expressed in meters per second.We obtained successful assessments in 94% of the cases for the right kidney (RK) and 90.2% for the left kidney (LK), with an intraclass correlation coefficient of 0.96 (RK) and 0.91 (LK). We obtained significantly lower KSWV values in the CKD lot as opposed to the healthy volunteers: RK: 1.38 ± 0.1 versus 1.78 ± 0.1 m/s, P = 0.05; LK: 1.37 ± 0.1 m/s versus 1.72 ± 0.1 m/s. We could predict the presence of CKD with a sensitivity of 89.2% and a specificity of 76.9% for a KSWV of less than 1.47 m/s, with a tendency of KSWV to decrease with CKD progression.Our study shows that KSWV measured using bidimensional shear-wave elastography decreases in patients with CKD compared with normal subjects, and that for a cutoff value of below 1.47 m/s we could predict, with a good sensitivity and specificity, the presence of CKD.
Collapse
Affiliation(s)
| | | | - Ioan Sporea
- Gastroenterology and Hepatology, "Victor Babeș" University of Medicine and Pharmacy, Timișoara, Romania
| | - Alina Popescu
- Gastroenterology and Hepatology, "Victor Babeș" University of Medicine and Pharmacy, Timișoara, Romania
| | - Roxana Sirli
- Gastroenterology and Hepatology, "Victor Babeș" University of Medicine and Pharmacy, Timișoara, Romania
| | | |
Collapse
|
32
|
Li S, Wang Y, Chen L, Wang Z, Liu G, Zuo B, Liu C, Sun D. Beraprost sodium mitigates renal interstitial fibrosis through repairing renal microvessels. J Mol Med (Berl) 2019; 97:777-791. [PMID: 30923844 DOI: 10.1007/s00109-019-01769-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 02/12/2019] [Accepted: 03/05/2019] [Indexed: 12/17/2022]
Abstract
Beraprost sodium (BPS), as a prostacyclin analog, plays a significant role in various diseases based on its antiplatelet and vasodilation functions. However, its regulation and role in chronic kidney disease (CKD) still remain elusive. Here, we determined whether BPS could alleviate renal interstitial fibrosis, and improve the renal function and its therapeutic mechanism. In vitro, BPS increased angiogenesis in the HUVECs incubated with BPS detected by tube formation assay and repair damaged endothelial cell-cell junctions induced by hypoxia. In vivo, mice were randomly assigned to a sham-operation group (sham), a unilateral ureteral obstruction group (UUO), and a BPS intragastrical administration group (BPS), and sacrificed at days 3 and 7 post-surgery (six in each group). In UUO model, tissue hypoxia, renal inflammation, oxidative stress, and fibrotic lesions were detected by q-PCR and Western blot techniques and peritubular capillaries (PTCs) injury was detected by a novel technique of fluorescent microangiography (FMA) and analyzed by MATLAB software. Meanwhile, we identified cells undergoing endothelial cell-to-myofibroblast transition by the coexpression of endothelial cell (CD31) and myofibroblast (a-SMA) markers in the obstructed kidney. In contrast, BPS protected against interstitial fibrosis and substantially reduced the number of endothelial cell-to-myofibroblast transition cells. In conclusion, our data indicate the potent therapeutic of BPS in mitigating fibrosis through repairing renal microvessels and suppressing endothelial-mesenchymal transition (EndMT) progression after inhibiting inflammatory and oxidative stress effects. KEY MESSAGES: BPS could improve renal recovery through anti-inflammatory and anti-oxidative pathways. BPS could mitigate fibrosis through repairing renal microvessels and suppressing endothelial-mesenchymal transition (EndMT).
Collapse
Affiliation(s)
- Shulin Li
- Department of Internal Medicine and Diagnostics, Xuzhou Medical University, Xuzhou, 221002, China.,Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, 99 West Huai-hai Road, Xuzhou, 221002, Jiangsu, China
| | - Yanping Wang
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, 99 West Huai-hai Road, Xuzhou, 221002, Jiangsu, China
| | - Lu Chen
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, 99 West Huai-hai Road, Xuzhou, 221002, Jiangsu, China
| | - Zhuojun Wang
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, 99 West Huai-hai Road, Xuzhou, 221002, Jiangsu, China
| | - Guodong Liu
- Department of Orthopedics, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, China
| | - Bangjie Zuo
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, 99 West Huai-hai Road, Xuzhou, 221002, Jiangsu, China
| | - Caixia Liu
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, 99 West Huai-hai Road, Xuzhou, 221002, Jiangsu, China.
| | - Dong Sun
- Department of Internal Medicine and Diagnostics, Xuzhou Medical University, Xuzhou, 221002, China. .,Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, 99 West Huai-hai Road, Xuzhou, 221002, Jiangsu, China.
| |
Collapse
|
33
|
How Acute Kidney Injury Contributes to Renal Fibrosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1165:117-142. [PMID: 31399964 DOI: 10.1007/978-981-13-8871-2_7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Acute kidney injury (AKI) is a widespread clinical syndrome directly associated with patient short-term and long-term morbidity and mortality. During the last decade, the incidence rate of AKI has been increasing, the repeated and severe episodes of AKI have been recognized as a major risk factor chronic kidney diseases (CKD) and end-stage kidney disease (ESRD) leading to global disease burden. Proposed pathological processes and risk factors that add to the transition of AKI to CKD and ESRD include severity and frequency of kidney injury, older age, gender, genetics and chronic health conditions like diabetes, hypertension, and obesity. Therefore, there is a great interest in learning about the mechanism of AKI leading to renal fibrosis, the ultimate renal lesions of CKD. Over the last several years, a significant attention has been given to the field of renal fibrosis with impressive progression in knowing the mechanism of renal fibrosis to detailed cellular characterization and molecular pathways implicated in tubulointerstitial fibrosis. Research and clinical trial are underway for emerging biomarkers detecting early kidney injury, predicting kidney disease progression and developing strategies to efficiently treat AKI and to minimize AKI progression to CKD and ESRD. Specific interventions to prevent renal fibrosis are still experimental. Potential therapeutic advances based on those molecular mechanisms will hopefully offer promising insights into the development of new therapeutic interventions for patients in the near future.
Collapse
|
34
|
Li S, Zhao Y, Wang Z, Wang J, Liu C, Sun D. Transplantation of Amniotic Fluid-Derived Stem Cells Preconditioned with Glial Cell Line-Derived Neurotrophic Factor Gene Alleviates Renal Fibrosis. Cell Transplant 2018; 28:65-78. [PMID: 30497277 PMCID: PMC6322139 DOI: 10.1177/0963689718815850] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Amniotic fluid-derived stem cells (AFSCs), which exhibit both embryonic and mesenchymal stem cell characteristics, have been shown to mitigate the degree of renal interstitial fibrosis. The aim of the present study was to determine whether transplantation of glial cell line-derived neurotrophic factor (GDNF)–modified AFSCs is more useful than transplantation of unmodified AFSCs for the treatment of renal interstitial fibrosis. Mice were randomly assigned to a sham-operation group (sham), a unilateral ureteral obstruction (UUO)-saline solution group (UUO), an AFSC transplantation group (AFSC) and a GDNF-modified AFSC transplantation group (GDNF-AFSC) and sacrificed at days 3 and 7 post-surgery (six in each group). We showed that GDNF-AFSCs noticeably suppressed oxidative stress and inflammation; additionally, GDNF-AFSCs positively regulated peritubular capillaries (PTCs), vascular endothelial growth factor (VEGF), hypoxia inducible factor-1α (HIF-1α), and transforming growth factor-β1 (TGF-β1) protein levels. Transmission electron microscopy (TEM) revealed that mitochondrial injury induced by the UUO model was significantly ameliorated after the mice were treated with GDNF-AFSCs. Therefore, we determined that GDNF gene promotes the abilities of AFSCs to inhibit inflammatory and oxidative stress effects, repair renal microvessels, relieve tissue hypoxia and mitochondrial damage, and, ultimately, alleviate renal interstitial fibrosis.
Collapse
Affiliation(s)
- Shulin Li
- 1 Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yuan Zhao
- 1 Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Zhuojun Wang
- 1 Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Jia Wang
- 1 Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Caixia Liu
- 1 Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Dong Sun
- 1 Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,2 Department of Internal Medicine and Diagnostics, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
35
|
Grosu I, Bob F, Sporea I, Popescu A, Şirli R, Schiller A. Correlation of Point Shear Wave Velocity and Kidney Function in Chronic Kidney Disease. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2018; 37:2613-2620. [PMID: 29689600 DOI: 10.1002/jum.14621] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/19/2018] [Accepted: 02/10/2018] [Indexed: 05/03/2023]
Abstract
OBJECTIVES Point shear wave elastography is a quantitative ultrasound-based imaging method used in the assessment of renal disease. Among point shear wave elastographic options, 2 techniques have been studied considerably: Virtual Touch quantification (VTQ; Siemens AG, Erlangen, Germany) and ElastPQ (EPQ; Philips Healthcare, Bothell, WA). Both rely on the tissue response to an acoustic beam generated by the ultrasound transducer. The data on renal VTQ are more extensive, whereas EPQ has been used less thus far in the assessment of the kidneys. This study aimed to evaluate the performance of EPQ in the kidney and compare it with VTQ. METHODS We studied 124 participants using EPQ: 22 with no renal disease and 102 with chronic kidney disease (CKD). Ninety-one were studied with both the EPQ and VTQ methods. We obtained 5 valid measurements in each kidney, expressed in meters per second. RESULTS The mean kidney stiffness measurements ± SD obtained with EPQ in the healthy control group were as follows: right kidney, 1.23 ± 0.33 m/s; and left kidney, 1.26 ± 0.32 m/s (P = .6). In the patients with CKD (all stages), the mean kidney stiffness measurements obtained were significantly lower: right kidney, 1.09 ± 0.39 m/s; and left kidney, 1.04 ± 0.38 m/s (P = .4). We observed that, similar to VTQ, EPQ values decreased with CKD progression, based on analysis of variance results using different CKD stages. From a receiver operating characteristic curve analysis, the cutoff value for an estimated glomerular filtration rate of less than 45 mL/min was 1.24 m/s, and the value for an estimated glomerular filtration rate of less than 30 mL/min was 1.07 m/s. CONCLUSIONS When using EPQ, the kidney shear wave velocity is decreased in patients with CKD, an observation similar to that obtained by using the VTQ method.
Collapse
Affiliation(s)
- Iulia Grosu
- Department of Nephrology, Victor Babeş University of Medicine and Pharmacy, Timişoara, Romania
| | - Flaviu Bob
- Department of Nephrology, Victor Babeş University of Medicine and Pharmacy, Timişoara, Romania
| | - Ioan Sporea
- Department of Gastroenterology and Hepatology, Victor Babeş University of Medicine and Pharmacy, Timişoara, Romania
| | - Alina Popescu
- Department of Nephrology, Victor Babeş University of Medicine and Pharmacy, Timişoara, Romania
| | - Roxana Şirli
- Department of Gastroenterology and Hepatology, Victor Babeş University of Medicine and Pharmacy, Timişoara, Romania
| | - Adalbert Schiller
- Department of Nephrology, Victor Babeş University of Medicine and Pharmacy, Timişoara, Romania
| |
Collapse
|
36
|
Changes in Renal Peritubular Capillaries in Canine and Feline Chronic Kidney Disease. J Comp Pathol 2018; 160:79-83. [DOI: 10.1016/j.jcpa.2018.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/19/2018] [Accepted: 03/24/2018] [Indexed: 02/01/2023]
|
37
|
Stock E, Duchateau L, Saunders JH, Volckaert V, Polis I, Vanderperren K. Repeatability of Contrast-Enhanced Ultrasonography of the Kidneys in Healthy Cats. ULTRASOUND IN MEDICINE & BIOLOGY 2018; 44:426-433. [PMID: 29174044 DOI: 10.1016/j.ultrasmedbio.2017.09.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 09/20/2017] [Accepted: 09/25/2017] [Indexed: 06/07/2023]
Abstract
Contrast-enhanced ultrasound can be used to image and quantify tissue perfusion. It holds great potential for the use in the diagnosis of various diffuse renal diseases in both human and veterinary medicine. Nevertheless, the technique is known to have an inherent relatively high variability, related to various factors associated with the patient, the contrast agent and machine settings. Therefore, the aim of this study was to assess week-to-week intra- and inter-cat variation of several perfusion parameters obtained with CEUS of both kidneys of 12 healthy cats. Repeatability was determined by calculating the coefficient of variation (CV). The contrast-enhanced ultrasound parameters with the lowest variation for the renal cortex were time-to-peak (CV 6.0%), rise time (CV 13%), fall time (CV 19%) and mean transit time (24%). Intensity-related parameters and parameters related to the slope of the time-intensity curve had a CV of >35%. Lower repeatability was present for perfusion parameters derived from the renal medulla compared with the renal cortex. Normalization to the inter-lobar artery does not cause a reduction in variation. In conclusion, time-related parameters for the cortex show a reasonable repeatability; whereas poor repeatability is present for intensity-related parameters and parameters related to in- and outflow of contrast agent. Poor repeatability is also present for all perfusion parameters for the renal medulla, except for time to peak, which has a good repeatability.
Collapse
Affiliation(s)
- Emmelie Stock
- Department of Veterinary Medical Imaging and Small Animal Orthopedics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
| | - Luc Duchateau
- Department of Comparative Physiology and Biometrics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Jimmy H Saunders
- Department of Veterinary Medical Imaging and Small Animal Orthopedics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Veerle Volckaert
- Department of Veterinary Medical Imaging and Small Animal Orthopedics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Ingeborgh Polis
- Department of Medicine and Clinical Biology of Small Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Katrien Vanderperren
- Department of Veterinary Medical Imaging and Small Animal Orthopedics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
38
|
Afsar B, Afsar RE, Dagel T, Kaya E, Erus S, Ortiz A, Covic A, Kanbay M. Capillary rarefaction from the kidney point of view. Clin Kidney J 2017; 11:295-301. [PMID: 29988260 PMCID: PMC6007395 DOI: 10.1093/ckj/sfx133] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 10/04/2017] [Indexed: 12/18/2022] Open
Abstract
Capillary rarefaction is broadly defined as a reduction in vascular density. Capillary rarefaction in the kidneys is thought to promote hypoxia, impair hemodynamic responses and predispose to chronic kidney disease (CKD) progression and hypertension development. Various mechanisms have been suggested to play a role in the development of capillary rarefaction, including inflammation, an altered endothelial-tubular epithelial cell crosstalk, a relative deficiency in angiogenic growth factors, loss of pericytes, increased activity of Transforming growth factor -β1 and thrombospondin-1, vitamin D deficiency, a link to lymphatic neoangiogenesis and INK4a/ARF (Cylin-dependent kinase inhibitor 2a; CDKN2A). In this review, we summarize the tools available to monitor capillary rarefaction noninvasively in the clinic, the contribution of capillary rarefaction to CKD and hypertension, the known mechanisms of capillary rarefaction, and potential future strategies to attenuate capillary rarefaction and reduce its negative impact. Therapeutic strategies to be explored in more detail include optimization of antihypertensive therapy, vitamin D receptor activators, sirtuin 1 activators, Hypoxia inducible factor prolyl hydroxylase inhibitors and stem cell therapy.
Collapse
Affiliation(s)
- Baris Afsar
- Division of Nephrology, Department of Internal Medicine, Suleyman Demirel University School of Medicine, Isparta, Turkey
| | - Rengin E Afsar
- Division of Nephrology, Department of Internal Medicine, Suleyman Demirel University School of Medicine, Isparta, Turkey
| | - Tuncay Dagel
- Department of Nephrology, Koc University Hospital, Istanbul, Turkey
| | - Ege Kaya
- Koc University School of Medicine, Istanbul, Turkey
| | - Suat Erus
- Department of Thoracic Surgery, Koc University Hospital, Istanbul, Turkey
| | - Alberto Ortiz
- Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Fundación Renal Iñigo Alvarez de Toledo, Madrid, Spain
| | - Adrian Covic
- Department of Nephrology, Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania
| | - Mehmet Kanbay
- Division of Nephrology, Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| |
Collapse
|
39
|
Cannito S, Novo E, Parola M. Therapeutic pro-fibrogenic signaling pathways in fibroblasts. Adv Drug Deliv Rev 2017; 121:57-84. [PMID: 28578015 DOI: 10.1016/j.addr.2017.05.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 04/28/2017] [Accepted: 05/26/2017] [Indexed: 02/07/2023]
Abstract
Myofibroblasts (MFs) play a critical role in the progression of chronic inflammatory and fibroproliferative diseases in different tissues/organs, whatever the etiology. Fibrosis is preceded and sustained by persistent injury and inflammatory response in a profibrogenic scenario involving mutual interactions, operated by several mediators and pathways, of MFs and related precursor cells with innate immunity cells and virtually any cell type in a defined tissue. These interactions, mediators and related signaling pathways are critical in initiating and perpetuating the differentiation of precursor cells into MFs that in different tissues share peculiar traits and phenotypic responses, including the ability to proliferate, produce ECM components, migrate and contribute to the modulation of inflammatory response and tissue angiogenesis. Literature studies related to liver, lung and kidney fibrosis have outlined a number of MF-related core regulatory fibrogenic signaling pathways conserved across these different organs and potentially targetable in order to develop effective antifibrotic therapeutic strategies.
Collapse
|
40
|
Zhang X, Liu L, Liu J, Cheng Z, Wang Z, Shi C, Ding F, Chen S, Chen P. Endothelial cells co-cultured with renal carcinoma cells significantly reduce RECK expression under chemical hypoxia. Cell Biol Int 2017; 41:922-927. [PMID: 28561419 DOI: 10.1002/cbin.10801] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/29/2017] [Indexed: 11/07/2022]
Abstract
Renal cell carcinoma (RCC) is characterized by excessive angiogenesis, while chronic kidney disease (CKD) suffers from the opposite problem-failure of reparative angiogenesis. It can be due to their different responses to hypoxic environment. But the specific molecular regulators are still unclear. This study is aimed to explore the influence of human renal cell cancer cells (786-0) and human renal tubular epithelial cells (HK-2) on RECK expression, proliferation, and angiogenesis of adjacent microvascular endothelial cells (HMEC-1) under chemical hypoxia. Cobalt chloride (CoCl2 ) treatment was used to simulate the hypoxia environment in RCC and CKD. Co-culture, cell proliferation assay, and tube formation assay were used to evaluate the influence of 786-0 or HK-2 cells on proliferation and angiogenesis of adjacent HMEC-1 cells. Effects of different environments on RECK expressions in 786-0, HK2, or HMEC-1 cells were determined by Western blot. We found that both 786-0 cells and HK2 cells can upregulate RECK expression of adjacent HMEC-1 cells in normoxic conditions. However, under hypoxia, the HMEC-1 cells co-cultured with 786-0 significantly reduced RECK expression and there was no significant change in HMEC-1 cells co-cultured with HK2 cells. We also found that 786-0 significantly enhanced the proliferation and angiogenesis of adjacent HMEC-1 cells. Our results suggested that some paracrine substances produced by 786-0 cells may reduce RECK expression of adjacent HMEC-1 cells and enhance their proliferation and in vitro angiogenic capacity.
Collapse
Affiliation(s)
- Xiaoyi Zhang
- Department of Pathology, Medical School of Southeast University, Nanjing, Jiangsu, 210009, P.R. China
| | - Lei Liu
- Department of Pathology, Medical School of Southeast University, Nanjing, Jiangsu, 210009, P.R. China
| | - Jing Liu
- Department of Pathology, Medical School of Southeast University, Nanjing, Jiangsu, 210009, P.R. China
| | - Zhengyuan Cheng
- Department of Pathology, Medical School of Southeast University, Nanjing, Jiangsu, 210009, P.R. China
| | - Zhi Wang
- Department of Pathology, Medical School of Southeast University, Nanjing, Jiangsu, 210009, P.R. China
| | - Chuanbing Shi
- Department of Pathology, Medical School of Southeast University, Nanjing, Jiangsu, 210009, P.R. China
| | - Fengan Ding
- Department of Pathology, Medical School of Southeast University, Nanjing, Jiangsu, 210009, P.R. China
| | - Sijie Chen
- Department of Pathology, Medical School of Southeast University, Nanjing, Jiangsu, 210009, P.R. China
| | - Pingsheng Chen
- Department of Pathology, Medical School of Southeast University, Nanjing, Jiangsu, 210009, P.R. China
| |
Collapse
|
41
|
Wang X, Wang Y, Zhang J, Guan X, Chen M, Li Y, Zhang L. Galectin-3 contributes to vascular fibrosis in monocrotaline-induced pulmonary arterial hypertension rat model. J Biochem Mol Toxicol 2016; 31. [PMID: 27870162 DOI: 10.1002/jbt.21879] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 10/13/2016] [Accepted: 10/20/2016] [Indexed: 01/31/2023]
Abstract
Galectin-3 (Gal-3) plays a critical role in vascular inflammation and fibrosis. The role of TGF-β1 in mediating pulmonary vascular fibrosis is well documented; thus, we suspected that Gal-3 could be an important factor in TGF-β1-induced fibrosis in pulmonary adventitial fibroblasts (PAFs). We treated rats with monocrotaline (MCT) and cultured PAFs with TGF-β1 to stimulate fibrosis. We found that MCT injection induced vessel thickening and extracellular matrix deposition in vivo. TGF-β1 stimulated the production of collagen and fibronectin (Fn) protein in vitro. TGF-β1 promoted the expression of Gal-3 and its translocation, while silencing Gal-3 reduced Col-1a deposition. Blockage of STAT3 decreased the expression of Gal-3 induced by TGF-β1. Gal-3 increased Col-1a accumulation and downregulated matrix metallopeptidase 9 (MMP-9) expression in PAFs, but it did not affect Fn expression. These findings demonstrate that Gal-3 is required for TGF-β1-stimulated vascular fibrosis via a STAT3 signaling cascade and that MMP-9 is also involved in TGF-β1/Gal-3-induced vascular fibrosis.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Key Laboratory of Cardiovascular Medicine Research (Harbin Medical University), Ministry of Education, People's Republic of China.,Department of Physiology, Harbin Medical University-Daqing, Daqing, Heilongjiang Province, 163319, People's Republic of China
| | - Yanli Wang
- Department of Cardiology, Kailuan General Hospital, Tangshan, Hebei Province, 063000, People's Republic of China
| | - Jinbo Zhang
- Key Laboratory of Cardiovascular Medicine Research (Harbin Medical University), Ministry of Education, People's Republic of China
| | - Xue Guan
- Key Laboratory of Cardiovascular Medicine Research (Harbin Medical University), Ministry of Education, People's Republic of China
| | - Minggang Chen
- Key Laboratory of Cardiovascular Medicine Research (Harbin Medical University), Ministry of Education, People's Republic of China
| | - Yumei Li
- Key Laboratory of Cardiovascular Medicine Research (Harbin Medical University), Ministry of Education, People's Republic of China.,Department of Pharmacology, Harbin Medical University-Daqing, Daqing, Heilongjiang Province, 163319, China
| | - Li Zhang
- Key Laboratory of Cardiovascular Medicine Research (Harbin Medical University), Ministry of Education, People's Republic of China.,Department of Pharmacology, Harbin Medical University-Daqing, Daqing, Heilongjiang Province, 163319, China
| |
Collapse
|
42
|
Abstract
Individuals age >65 years old are the fastest expanding population demographic throughout the developed world. Consequently, more aged patients than before are receiving diagnoses of impaired renal function and nephrosclerosis-age-associated histologic changes in the kidneys. Recent studies have shown that the aged kidney undergoes a range of structural changes and has altered transcriptomic, hemodynamic, and physiologic behavior at rest and in response to renal insults. These changes impair the ability of the kidney to withstand and recover from injury, contributing to the high susceptibility of the aged population to AKI and their increased propensity to develop subsequent progressive CKD. In this review, we examine these features of the aged kidney and explore the various validated and putative pathways contributing to the changes observed with aging in both experimental animal models and humans. We also discuss the potential for additional study to increase understanding of the aged kidney and lead to novel therapeutic strategies.
Collapse
Affiliation(s)
- Eoin D O'Sullivan
- Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom;
| | - Jeremy Hughes
- Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom.,MRC Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom; and
| | - David A Ferenbach
- Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom.,MRC Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom; and.,Renal and.,Biomedical Engineering Divisions, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
43
|
Abstract
Glomerular diseases are common and important. They can arise from systemic inflammatory or metabolic diseases that affect the kidney. Alternately, they are caused primarily by local glomerular abnormalities, including genetic diseases. Both intrinsic glomerular cells and leukocytes are critical to the healthy glomerulus and to glomerular dysregulation in disease. Mesangial cells, endothelial cells, podocytes, and parietal epithelial cells within the glomerulus all play unique and specialized roles. Although a specific disease often primarily affects a particular cell type, the close proximity, and interdependent functions and interactions between cells mean that even diseases affecting one cell type usually indirectly influence others. In addition to those cells intrinsic to the glomerulus, leukocytes patrol the glomerulus in health and mediate injury in disease. Distinct leukocyte types and subsets are present, with some being involved in different ways in an individual glomerular disease. Cells of the innate and adaptive immune systems are important, directing systemic immune and inflammatory responses, locally mediating injury, and potentially dampening inflammation and facilitating repair. The advent of new genetic and molecular techniques, and new disease models means that we better understand both the basic biology of the glomerulus and the pathogenesis of glomerular disease. This understanding should lead to better diagnostic techniques, biomarkers, and predictors of prognosis, disease severity, and relapse. With this knowledge comes the promise of better therapies in the future, directed toward halting pathways of injury and fibrosis, or interrupting the underlying pathophysiology of the individual diseases that lead to significant and progressive glomerular disease.
Collapse
Affiliation(s)
- A. Richard Kitching
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences, Monash University, Clayton, Victoria, Australia
- Department of Nephrology, and
- Department of Pediatric Nephrology, Monash Medical Centre, Clayton, Victoria, Australia
| | - Holly L. Hutton
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences, Monash University, Clayton, Victoria, Australia
- Department of Nephrology, and
| |
Collapse
|
44
|
von Stillfried S, Apitzsch JC, Ehling J, Penzkofer T, Mahnken AH, Knüchel R, Floege J, Boor P. Contrast-enhanced CT imaging in patients with chronic kidney disease. Angiogenesis 2016; 19:525-35. [PMID: 27582011 DOI: 10.1007/s10456-016-9524-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 08/22/2016] [Indexed: 11/29/2022]
Abstract
Renal microvascular rarefaction characterizes chronic kidney disease (CKD). In murine models of CKD, micro-CT imaging reflected capillary rarefaction using quantification of renal relative blood volume (rBV). In addition, micro-CT imaging revealed morphological alterations of the intrarenal vasculature including reduced vascular branching and lumen diameter. Here, we retrospectively quantified rBV in contrast-enhanced CT angiography in patients and found that, compared to non-CKD patients, those with CKD and renal fibrosis had significantly reduced rBV in the renal cortex. rBV values closely mirrored capillary rarefaction in the corresponding nephrectomy specimens. In patients with follow-up CT angiography, reduction of renal function was paralleled by a decline in rBV. Using virtual autopsy, i.e., postmortem CT angiography, morphometry of intrarenal arteries in 3D-rendered CT images revealed significantly reduced arterial diameter and branching in CKD compared to non-CKD cases. In conclusion, in CKD patients, contrast-enhanced CT imaging with quantification of rBV correlates with functional renal vasculature, whereas virtual autopsy allows morphometric analyses of macrovascular changes. Importantly, the observed vascular alterations in CKD patients mirror those in animals with progressive CKD, suggesting a high relevance of animal models for studying vascular alterations in CKD and renal fibrosis.
Collapse
Affiliation(s)
- Saskia von Stillfried
- Institute of Pathology, Aachen University Hospital, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Jonas C Apitzsch
- Department of Diagnostic and Interventional Radiology, RWTH Aachen University Hospital, Aachen, Germany.,Department of Diagnostic and Interventional Radiology, University Hospital, Philipps University Marburg, Marburg, Germany
| | - Josef Ehling
- Department of Experimental Molecular Imaging, University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Tobias Penzkofer
- Department of Diagnostic and Interventional Radiology, RWTH Aachen University Hospital, Aachen, Germany
| | - Andreas H Mahnken
- Department of Diagnostic and Interventional Radiology, RWTH Aachen University Hospital, Aachen, Germany.,Department of Diagnostic and Interventional Radiology, University Hospital, Philipps University Marburg, Marburg, Germany
| | - Ruth Knüchel
- Institute of Pathology, Aachen University Hospital, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Jürgen Floege
- Department of Nephrology, RWTH Aachen University Hospital, Aachen, Germany
| | - Peter Boor
- Institute of Pathology, Aachen University Hospital, Pauwelsstrasse 30, 52074, Aachen, Germany. .,Department of Nephrology, RWTH Aachen University Hospital, Aachen, Germany.
| |
Collapse
|
45
|
Darby IA, Hewitson TD. Hypoxia in tissue repair and fibrosis. Cell Tissue Res 2016; 365:553-62. [PMID: 27423661 DOI: 10.1007/s00441-016-2461-3] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 06/23/2016] [Indexed: 12/23/2022]
|
46
|
Furtado MB, Nim HT, Boyd SE, Rosenthal NA. View from the heart: cardiac fibroblasts in development, scarring and regeneration. Development 2016; 143:387-97. [PMID: 26839342 DOI: 10.1242/dev.120576] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the adult, tissue repair after injury is generally compromised by fibrosis, which maintains tissue integrity with scar formation but does not restore normal architecture and function. The process of regeneration is necessary to replace the scar and rebuild normal functioning tissue. Here, we address this problem in the context of heart disease, and discuss the origins and characteristics of cardiac fibroblasts, as well as the crucial role that they play in cardiac development and disease. We discuss the dual nature of cardiac fibroblasts, which can lead to scarring, pathological remodelling and functional deficit, but can also promote heart function in some contexts. Finally, we review current and proposed approaches whereby regeneration could be fostered by interventions that limit scar formation.
Collapse
Affiliation(s)
- Milena B Furtado
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Hieu T Nim
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia Systems Biology Institute (SBI) Australia, Monash University, Clayton, Victoria 3800, Australia
| | - Sarah E Boyd
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia Systems Biology Institute (SBI) Australia, Monash University, Clayton, Victoria 3800, Australia
| | - Nadia A Rosenthal
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia Systems Biology Institute (SBI) Australia, Monash University, Clayton, Victoria 3800, Australia National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK The Jackson Laboratory, Bar Harbor, ME 04609, USA
| |
Collapse
|
47
|
Yang J, Zhu F, Wang X, Yao W, Wang M, Pei G, Hu Z, Guo Y, Zhao Z, Wang P, Mou J, Sun J, Zeng R, Xu G, Liao W, Yao Y. Continuous AMD3100 Treatment Worsens Renal Fibrosis through Regulation of Bone Marrow Derived Pro-Angiogenic Cells Homing and T-Cell-Related Inflammation. PLoS One 2016; 11:e0149926. [PMID: 26900858 PMCID: PMC4763993 DOI: 10.1371/journal.pone.0149926] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 02/05/2016] [Indexed: 11/18/2022] Open
Abstract
AMD3100 is a small molecule inhibitor of chemokine receptor type 4 (CXCR4), which is located in the cell membranes of CD34+ cells and a variety of inflammatory cells and has been reported to reduce organ fibrosis in the lung, liver and myocardium. However, the effect of AMD3100 on renal fibrosis is unknown. This study investigated the impact of AMD3100 on renal fibrosis. C57bl/6 mice were subjected to unilateral ureteral obstruction (UUO) surgery with or without AMD3100 administration. Tubular injury, collagen deposition and fibrosis were detected and analyzed by histological staining, immunocytochemistry and Western Blot. Bone marrow derived pro-angiogenic cells (CD45+, CD34+ and CD309+ cells) and capillary density (CD31+) were measured by flow cytometry (FACS) and immunofluorescence (IF). Inflammatory cells, chemotactic factors and T cell proliferation were characterized. We found that AMD3100 treatment did not alleviate renal fibrosis but, rather, increased tissue damage and renal fibrosis. Continuous AMD3100 administration did not improve bone marrow derived pro-angiogenic cells mobilization but, rather, inhibited the migration of bone marrow derived pro-angiogenic cells into the fibrotic kidney. Additionally, T cell infiltration was significantly increased in AMD3100-treated kidneys compared to un-treated kidneys. Thus, treatment of UUO mice with AMD3100 led to an increase in T cell infiltration, suggesting that AMD3100 aggravated renal fibrosis.
Collapse
Affiliation(s)
- Juan Yang
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, Hubei, China
| | - Fengming Zhu
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, Hubei, China
| | - Xiaohui Wang
- Department of Nephrology, Fifth Hospital of Wuhan, 122 Xianzheng Street, Hanyang district, Wuhan 430050, Hubei, China
| | - Weiqi Yao
- Wuhan Hamilton Biotechnology-Co.LTD., B6-4, Wuhan institute of biotechnology, #666 Gaoxin Road, Wuhan 430073, Hubei, China
| | - Meng Wang
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, Hubei, China
| | - Guangchang Pei
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, Hubei, China
| | - Zhizhi Hu
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, Hubei, China
| | - Yujiao Guo
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, Hubei, China
| | - Zhi Zhao
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, Hubei, China
| | - Pengge Wang
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, Hubei, China
| | - Jingyi Mou
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, Hubei, China
| | - Jie Sun
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, Hubei, China
| | - Rui Zeng
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, Hubei, China
| | - Gang Xu
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, Hubei, China
| | - Wenhui Liao
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, Hubei, China
- * E-mail: (WL); (YY)
| | - Ying Yao
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan 430030, Hubei, China
- * E-mail: (WL); (YY)
| |
Collapse
|