1
|
Liu J, Zhang X, Zhang Q, Wang R, Ma J, Bai X, Wang D. Loxhd1b inhibits the hair cell development in zebrafish: Possible relation to the BDNF/TrkB/ERK pathway. Front Cell Neurosci 2022; 16:1065309. [PMID: 36505516 PMCID: PMC9729270 DOI: 10.3389/fncel.2022.1065309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/08/2022] [Indexed: 11/25/2022] Open
Abstract
Background Mutations in lipoxygenase homology domain 1 (LOXHD1) cause autosomal recessive inheritance, leading to high-frequency and intermediate-frequency hearing losses in patients. To date, studies on the localization of LOXHD1 gene expression are limited. In this study, we aimed to observe the expressions of Loxhd1b in zebrafish, C57BL/6 murine cochlea, and HEI-OC1 cells. Methods The expression of Loxhd1b in the auditory system of zebrafish was explored by in situ hybridization experiments of zebrafish embryos. The expression of Loxhd1b in cochlear and HEI-OC1 cells of C57BL/6 mice was analyzed by immunofluorescence staining. Confocal microscopic in vivo imaging was used to detect the number and morphological characteristics of lateral line neuromasts and inner ear hair cells in zebrafish that knocked down Loxhd1b gene. The effect of knockdown Loxhd1b gene on the development of zebrafish otolith and semicircular canal was observed using microscopic. Transcriptome sequencing was used to identify downstream molecules and associated signaling pathways and validated by western blotting, immunostaining, and rescue experiments. Results Results of the in situ hybridization with zebrafish embryos at different time points showed that Loxhd1b was expressed in zebrafish at the inner ear and olfactory pores, while the immunostaining showed that Loxhd1 was expressed in both C57BL/6 mouse cochlea and HEI-OC1 cells. Loxhd1b knockdown causes a decrease in the number of spinal and lateral line neuromasts in the inner ear of zebrafish, accompanied by weakened hearing function, and also leads to developmental defects of otoliths and ear follicles. The results of transcriptomics analysis revealed the downstream molecule brain-derived neurotrophic factor (BDNF) and verified that Loxhd1b and BDNF regulate the formation of zebrafish hair cells by synergistic regulation of BDNF/TrkB/ERK pathway based on western blotting, immunostaining, and rescue experiments. Conclusion This was the first time that the BDNF/TrkB/ERK pathway was identified to play a critical role in the molecular regulation of the development of zebrafish hair cells and the auditory development by Loxhd1b.
Collapse
Affiliation(s)
- Jingwen Liu
- Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China,Department of Ophthalmology, Jinan Second People’s Hospital, Jinan, China
| | - Xu Zhang
- Translational Medical Research Center, Wuxi No.2 People’s Hospital, Affiliated Wuxi Clinical College of Nantong University, Wuxi, China,Key Laboratory of Neuroregeneration of MOE, Nantong Laboratory of Development and Diseases, School of Life Sciences, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Qingchen Zhang
- Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Rongrong Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jingyu Ma
- Department of Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiaohui Bai
- Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Dawei Wang
- Department of Orthopedics, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China,Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China,*Correspondence: Dawei Wang,
| |
Collapse
|
2
|
Baratta AM, Brandner AJ, Plasil SL, Rice RC, Farris SP. Advancements in Genomic and Behavioral Neuroscience Analysis for the Study of Normal and Pathological Brain Function. Front Mol Neurosci 2022; 15:905328. [PMID: 35813067 PMCID: PMC9259865 DOI: 10.3389/fnmol.2022.905328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 06/06/2022] [Indexed: 11/16/2022] Open
Abstract
Psychiatric and neurological disorders are influenced by an undetermined number of genes and molecular pathways that may differ among afflicted individuals. Functionally testing and characterizing biological systems is essential to discovering the interrelationship among candidate genes and understanding the neurobiology of behavior. Recent advancements in genetic, genomic, and behavioral approaches are revolutionizing modern neuroscience. Although these tools are often used separately for independent experiments, combining these areas of research will provide a viable avenue for multidimensional studies on the brain. Herein we will briefly review some of the available tools that have been developed for characterizing novel cellular and animal models of human disease. A major challenge will be openly sharing resources and datasets to effectively integrate seemingly disparate types of information and how these systems impact human disorders. However, as these emerging technologies continue to be developed and adopted by the scientific community, they will bring about unprecedented opportunities in our understanding of molecular neuroscience and behavior.
Collapse
Affiliation(s)
- Annalisa M. Baratta
- Center for Neuroscience, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Adam J. Brandner
- Center for Neuroscience, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Sonja L. Plasil
- Department of Pharmacology & Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Rachel C. Rice
- Center for Neuroscience, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Sean P. Farris
- Center for Neuroscience, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Biomedical Informatics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
3
|
Abstract
The use of multiple species to model complex human psychiatric disorders, such as ADHD, can give important insights into conserved evolutionary patterns underlying multidomain behaviors (e.g., locomotion, attention, and impulsivity). Here we discuss the advantages and challenges in modelling ADHD-like phenotypes in zebrafish (Danio rerio), a vertebrate species that has been widely used in neuroscience and behavior research. Moreover, multiple behavioral tasks can be used to model the core symptoms of ADHD and its comorbidities. We present a critical review of current ADHD studies in zebrafish, and how this species might be used to accelerate the discovery of new drug treatments for this disorder.
Collapse
Affiliation(s)
- Barbara D Fontana
- Brain and Behaviour Laboratory, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - William H J Norton
- Department of Neuroscience, Psychology and Behaviour, College of Medicine, Biological Sciences and Psychology, University of Leicester, Leicester, UK.
- Department of Genetics, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary.
| | - Matthew O Parker
- Brain and Behaviour Laboratory, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK.
| |
Collapse
|
4
|
Zhang R, Qiao C, Liu Q, He J, Lai Y, Shang J, Zhong H. A Reliable High-Throughput Screening Model for Antidepressant. Int J Mol Sci 2021; 22:ijms22179505. [PMID: 34502414 PMCID: PMC8430800 DOI: 10.3390/ijms22179505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/17/2022] Open
Abstract
Depression is the most frequent affective disorder and is the leading cause of disability worldwide. In order to screen antidepressants and explore molecular mechanisms, a variety of animal models were used in experiments, but there is no reliable high-throughput screening method. Zebrafish is a common model organism for mental illness such as depression. In our research, we established chronic unpredictable mild stress (CUMS) models in C57BL/6 mice and zebrafish; the similarities in behavior and pathology suggest that zebrafish can replace rodents as high-throughput screening organisms. Stress mice (ip., 1 mg/kg/d, 3 days) and zebrafish (10 mg/L, 20 min) were treated with reserpine. As a result, reserpine caused depression-like behavior in mice, which was consistent with the results of the CUMS mice model. Additionally, reserpine reduced the locomotor ability and exploratory behavior of zebrafish, which was consistent with the results of the CUMS zebrafish model. Further analysis of the metabolic differences showed that the reserpine-induced zebrafish depression model was similar to the reserpine mice model and the CUMS mice model in the tyrosine metabolism pathway. The above results showed that the reserpine-induced depression zebrafish model was similar to the CUMS model from phenotype to internal metabolic changes and can replace the CUMS model for antidepressants screening. Moreover, the results from this model were obtained in a short time, which can shorten the cycle of drug screening and achieve high-throughput screening. Therefore, we believe it is a reliable high-throughput screening model.
Collapse
Affiliation(s)
- Rui Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; (R.Z.); (C.Q.); (Q.L.); (J.H.); (Y.L.)
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Caili Qiao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; (R.Z.); (C.Q.); (Q.L.); (J.H.); (Y.L.)
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Qiuyan Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; (R.Z.); (C.Q.); (Q.L.); (J.H.); (Y.L.)
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jingwen He
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; (R.Z.); (C.Q.); (Q.L.); (J.H.); (Y.L.)
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yifan Lai
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; (R.Z.); (C.Q.); (Q.L.); (J.H.); (Y.L.)
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jing Shang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; (R.Z.); (C.Q.); (Q.L.); (J.H.); (Y.L.)
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Correspondence: (J.S.); (H.Z.)
| | - Hui Zhong
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; (R.Z.); (C.Q.); (Q.L.); (J.H.); (Y.L.)
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Correspondence: (J.S.); (H.Z.)
| |
Collapse
|
5
|
de Abreu MS, C V V Giacomini A, Genario R, Fontana BD, Parker MO, Marcon L, Scolari N, Bueno B, Demin KA, Galstyan D, Kolesnikova TO, Amstislavskaya TG, Zabegalov KN, Strekalova T, Kalueff AV. Zebrafish models of impulsivity and impulse control disorders. Eur J Neurosci 2020; 52:4233-4248. [PMID: 32619029 DOI: 10.1111/ejn.14893] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/25/2020] [Accepted: 06/18/2020] [Indexed: 12/22/2022]
Abstract
Impulse control disorders (ICDs) are characterized by generalized difficulty controlling emotions and behaviors. ICDs are a broad group of the central nervous system (CNS) disorders including conduct disorder, intermittent explosive, oppositional-defiant disorder, antisocial personality disorder, kleptomania, pyromania and other illnesses. Although they all share a common feature (aberrant impulsivity), their pathobiology is complex and poorly understood. There are also currently no ICD-specific therapies to treat these illnesses. Animal models are a valuable tool for studying ICD pathobiology and potential therapies. The zebrafish (Danio rerio) has become a useful model organism to study CNS disorders due to high genetic and physiological homology to mammals, and sensitivity to various pharmacological and genetic manipulations. Here, we summarize experimental models of impulsivity and ICD in zebrafish and highlight their growing translational significance. We also emphasize the need for further development of zebrafish ICD models to improve our understanding of their pathogenesis and to search for novel therapeutic treatments.
Collapse
Affiliation(s)
- Murilo S de Abreu
- Bioscience Institute, University of Passo Fundo, Passo Fundo, Brazil.,The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA
| | - Ana C V V Giacomini
- Bioscience Institute, University of Passo Fundo, Passo Fundo, Brazil.,Postgraduate Program in Environmental Sciences, University of Passo Fundo, Passo Fundo, Brazil
| | - Rafael Genario
- Bioscience Institute, University of Passo Fundo, Passo Fundo, Brazil
| | - Barbara D Fontana
- Brain and Behaviour Laboratory, School of Pharmacy and Biomedical Sciences, University of Portsmouth, UK
| | - Matthew O Parker
- Brain and Behaviour Laboratory, School of Pharmacy and Biomedical Sciences, University of Portsmouth, UK
| | - Leticia Marcon
- Bioscience Institute, University of Passo Fundo, Passo Fundo, Brazil
| | - Naiara Scolari
- Bioscience Institute, University of Passo Fundo, Passo Fundo, Brazil
| | - Barbara Bueno
- Bioscience Institute, University of Passo Fundo, Passo Fundo, Brazil
| | - Konstantin A Demin
- Institute of Experimental Medicine, Almazov National Medical Research Center, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia.,Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - David Galstyan
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Tatyana O Kolesnikova
- Institute of Experimental Medicine, Almazov National Medical Research Center, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
| | | | | | - Tatyana Strekalova
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, Russia.,School for Mental Health and Neuroscience, Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands.,Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany.,Institute of General Pathology and Pathophysiology, University of Würzburg, Moscow, Russia
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China.,Laboratory of Petrochemistry, Ural Federal University, Ekaterinburg, Russia
| |
Collapse
|
6
|
Fontana BD, Franscescon F, Rosemberg DB, Norton WH, Kalueff AV, Parker MO. Zebrafish models for attention deficit hyperactivity disorder (ADHD). Neurosci Biobehav Rev 2019; 100:9-18. [DOI: 10.1016/j.neubiorev.2019.02.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/15/2019] [Accepted: 02/15/2019] [Indexed: 01/23/2023]
|
7
|
Modeling gut-brain interactions in zebrafish. Brain Res Bull 2019; 148:55-62. [DOI: 10.1016/j.brainresbull.2019.03.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 03/10/2019] [Accepted: 03/13/2019] [Indexed: 12/11/2022]
|
8
|
Kundap UP, Paudel YN, Kumari Y, Othman I, Shaikh MF. Embelin Prevents Seizure and Associated Cognitive Impairments in a Pentylenetetrazole-Induced Kindling Zebrafish Model. Front Pharmacol 2019; 10:315. [PMID: 31057394 PMCID: PMC6478791 DOI: 10.3389/fphar.2019.00315] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 03/14/2019] [Indexed: 01/10/2023] Open
Abstract
Epilepsy is a neuronal disorder associated with several neurological and behavioral alterations characterized by recurrent spontaneous epileptic seizures. Despite having more than 20 anti-epileptic drugs (AEDs), they only provide a symptomatic treatment. As well as, currently available AEDs also displayed cognitive alterations in addition to retarding seizure. This leads to the need for exploring new molecules that not only retard seizure but also improve cognitive impairment. Embelin (EMB) is a benzoquinone derivative which has already demonstrated its pharmacological potentials against arrays of neurological conditions. The current study developed a chronic kindling model in adult zebrafish by using repeated administration of small doses of pentylenetetrazole (PTZ) and a single dose of Kainic acid (KA) to investigate the associated memory impairment. This has been done by using the three-axis maze which is a conventional method to test the learning ability and egocentric memory in zebrafish. As well as, the ameliorative potential of EMB has been evaluated against chronic epilepsy-related memory alterations. Moreover the expression level of pro-inflammatory genes such as C-C motif ligand 2 (CCL2), toll-like receptor-4 (TLR4), tumor necrosis factor-α (TNF-α), interleukin-1 (IL-1) and interferon-γ (IFN-γ) were evaluated. The level of several neurotransmitters such as γ-aminobutyric acid (GABA), acetylcholine (Ach) and glutamate (Glu) was evaluated by liquid chromatography-mass spectrometry (LC-MS). The results showed that daily dose of PTZ 80 mg/kg for 10 days successfully induces a kindling effect in zebrafish, whereas the single dose of KA did not. As compared to control, the PTZ and KA group demonstrates impairment in memory as demonstrated by the three-axis maze. The PTZ group treated with a series of EMB doses (ranging from 0.156 to 0.625 mg/kg) was found to have retarded seizure as well as significantly reduces epilepsy-induced memory alteration. In addition, EMB treatment reduces the expression of inflammatory markers implicating its anti-inflammatory potential. Moreover, levels of GABA, Ach, and glutamate are increased in EMB administered group as compared to the PTZ administered group. Overall, findings demonstrate that EMB might be a potential candidate against chronic epilepsy-related cognitive dysfunction as EMB prevents the seizures, so we expect it to prevent the associated neuroinflammation and learning deficit.
Collapse
Affiliation(s)
- Uday Praful Kundap
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia.,University of Montreal Hospital Centre (CRCHUM), Montreal, QC, Canada
| | - Yam Nath Paudel
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Yatinesh Kumari
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Iekshan Othman
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Mohd Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
9
|
Genario R, Giacomini AC, Demin KA, dos Santos BE, Marchiori NI, Volgin AD, Bashirzade A, Amstislavskaya TG, de Abreu MS, Kalueff AV. The evolutionarily conserved role of melatonin in CNS disorders and behavioral regulation: Translational lessons from zebrafish. Neurosci Biobehav Rev 2019; 99:117-127. [DOI: 10.1016/j.neubiorev.2018.12.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/12/2018] [Accepted: 12/20/2018] [Indexed: 12/14/2022]
|
10
|
Neuropharmacology, pharmacogenetics and pharmacogenomics of aggression: The zebrafish model. Pharmacol Res 2019; 141:602-608. [DOI: 10.1016/j.phrs.2019.01.044] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/16/2018] [Accepted: 01/28/2019] [Indexed: 12/12/2022]
|
11
|
Meshalkina DA, Kysil EV, Warnick JE, Demin KA, Kalueff AV. Adult zebrafish in CNS disease modeling: a tank that's half-full, not half-empty, and still filling. Lab Anim (NY) 2018; 46:378-387. [PMID: 28984854 DOI: 10.1038/laban.1345] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 08/18/2017] [Indexed: 01/17/2023]
Abstract
The zebrafish (Danio rerio) is increasingly used in a broad array of biomedical studies, from cancer research to drug screening. Zebrafish also represent an emerging model organism for studying complex brain diseases. The number of zebrafish neuroscience studies is exponentially growing, significantly outpacing those conducted with rodents or other model organisms. Yet, there is still a substantial amount of resistance in adopting zebrafish as a first-choice model system. Studies of the repertoire of zebrafish neural and behavioral functions continue to reveal new opportunities for understanding the pathobiology of various CNS deficits. Although some of these models are well established in zebrafish, including models for anxiety, depression, and addiction, others are less recognized, for example, models of autism and obsessive-compulsive states. However, mounting data indicate that a wide spectrum of CNS diseases can be modeled in adult zebrafish. Here, we summarize recent findings using zebrafish CNS assays, discuss model limitations and the existing challenges, as well as outline future directions of research in this field.
Collapse
Affiliation(s)
- Darya A Meshalkina
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia.,The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, Louisiana, USA
| | - Elana V Kysil
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Jason E Warnick
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, Louisiana, USA.,Department of Behavioral Sciences, Arkansas Tech University, Russellville, Arkansas, USA
| | - Konstantin A Demin
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia.,The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, Louisiana, USA
| | - Allan V Kalueff
- School of Pharmaceutical Sciences, Southwest University, Chongqing, China.,Laboratory of Biological Psychiatry, ITBM, St. Petersburg State University, St. Petersburg, Russia.,Ural Federal University, Ekaterinburg, Russia.,ZENEREI Research Center, Slidell, Louisiana, USA
| |
Collapse
|
12
|
Fontana BD, Mezzomo NJ, Kalueff AV, Rosemberg DB. The developing utility of zebrafish models of neurological and neuropsychiatric disorders: A critical review. Exp Neurol 2018; 299:157-171. [DOI: 10.1016/j.expneurol.2017.10.004] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 09/15/2017] [Accepted: 10/04/2017] [Indexed: 12/30/2022]
|