1
|
Yang X, Chang Q, Wang Y, Dong S, Qu K. Bezafibrate protects blood-brain barrier (BBB) integrity against traumatic brain injury mediated by AMPK. Neuropeptides 2024; 107:102450. [PMID: 39002285 DOI: 10.1016/j.npep.2024.102450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/15/2024]
Abstract
Bezafibrate (BEZ) has displayed a wide range of neuroprotective effects in different types of neurological diseases. However, its pharmacological function in traumatic brain injury (TBI) is still unknown. In the current study, a TBI model was constructed in mice to examine the potential beneficial roles of BEZ. After TBI, mice were daily dieted with BEZ or vehicle solution. The motor function, learning and memory, brain edema, vascular inflammatory factors, the integrity of the blood-brain barrier (BBB), and the expression of the tight junction zona occludens 1 (ZO-1) were assessed. The findings demonstrate that after TBI, BEZ treatment significantly promoted the recovery of motor function and cognitive function deficits. Moreover, BEZ attenuated brain edema by reducing the levels of brain water content. We also found that administration of BEZ alleviated cerebral vascular pro-inflammation by suppressing the expression of ICAM-1, VCAM-1, and E-selectin. Notably, BEZ improved the impaired BBB integrity in TBI mice by restoring the expression of the tight junction (TJ) protein ZO-1. Further in vitro experiments show that treatment with BEZ prevented the aggravation of endothelial permeability and restored the reduction of trans-epithelial electrical resistance (TEER) as well as the expression of ZO-1 in TBI-exposed brain bEnd.3 cells. Mechanistically, we prove that the protective effects of BEZ are mediated by AMPK. Based on these findings, we conclude that BEZ improves TBI-induced BBB injury and it might be considered for the treatment or management of TBI.
Collapse
Affiliation(s)
- Xiubao Yang
- Department of Neurosurgery, Affiliated Zhongshan Hospital of Dalian University, Dalian City, Liaoning Province 116001, China
| | - Qingyong Chang
- Department of Neurosurgery, Affiliated Zhongshan Hospital of Dalian University, Dalian City, Liaoning Province 116001, China
| | - Yan Wang
- Department of Neurosurgery, Affiliated Zhongshan Hospital of Dalian University, Dalian City, Liaoning Province 116001, China
| | - Shicang Dong
- Department of Neurosurgery, Affiliated Zhongshan Hospital of Dalian University, Dalian City, Liaoning Province 116001, China
| | - Kai Qu
- Department of Neurosurgery, Affiliated Zhongshan Hospital of Dalian University, Dalian City, Liaoning Province 116001, China.
| |
Collapse
|
2
|
Keeling EG, Sisco NJ, McElvogue MM, Borazanci A, Dortch RD, Stokes AM. Rapid simultaneous estimation of relaxation rates using multi-echo, multi-contrast MRI. Magn Reson Imaging 2024; 112:116-127. [PMID: 38971264 PMCID: PMC11323764 DOI: 10.1016/j.mri.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/21/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
PURPOSE Multi-echo, multi-contrast methods are increasingly used in dynamic imaging studies to simultaneously quantify R2∗ and R2. To overcome the computational challenges associated with nonlinear least squares (NLSQ) fitting, we propose a generalized linear least squares (LLSQ) solution to rapidly fit R2∗ and R2. METHODS Spin- and gradient-echo (SAGE) data were simulated across T2∗ and T2 values at high (200) and low (20) SNR. Full (four-parameter) and reduced (three-parameter) parameter fits were implemented and compared with both LLSQ and NLSQ fitting. Fit data were compared to ground truth using concordance correlation coefficient (CCC) and coefficient of variation (CV). In vivo SAGE perfusion data were acquired in 20 subjects with relapsing-remitting multiple sclerosis. LLSQ R2∗ and R2, as well as cerebral blood volume (CBV), were compared with the standard NLSQ approach. RESULTS Across all fitting methods, T2∗ was well-fit at high (CCC = 1, CV = 0) and low (CCC ≥ 0.87, CV ≤ 0.08) SNR. Except for short T2∗ values (5-15 ms), T2 was well-fit at high (CCC = 1, CV = 0) and low (CCC ≥ 0.99, CV ≤ 0.03) SNR. In vivo, LLSQ R2∗ and R2 estimates were similar to NLSQ, and there were no differences in R2∗ across fitting methods at high SNR. However, there were some differences at low SNR and for R2 at high and low SNR. In vivo NLSQ and LLSQ three parameter fits performed similarly, as did NLSQ and LLSQ four-parameter fits. LLSQ CBV nearly matched the standard NLSQ method for R2∗- (0.97 ratio) and R2-CBV (0.98 ratio). Voxel-wise whole-brain fitting was faster for LLSQ (3-4 min) than NLSQ (16-18 h). CONCLUSIONS LLSQ reliably fit for R2∗ and R2 in simulated and in vivo data. Use of LLSQ methods reduced the computational demand, enabling rapid estimation of R2∗ and R2.
Collapse
Affiliation(s)
- Elizabeth G Keeling
- Barrow Neurological Institute, 350 W Thomas Rd, Phoenix, AZ 85013, USA; School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ 85281, USA.
| | - Nicholas J Sisco
- Barrow Neurological Institute, 350 W Thomas Rd, Phoenix, AZ 85013, USA
| | - Molly M McElvogue
- Barrow Neurological Institute, 350 W Thomas Rd, Phoenix, AZ 85013, USA.
| | - Aimee Borazanci
- Barrow Neurological Institute, 350 W Thomas Rd, Phoenix, AZ 85013, USA.
| | - Richard D Dortch
- Barrow Neurological Institute, 350 W Thomas Rd, Phoenix, AZ 85013, USA.
| | - Ashley M Stokes
- Barrow Neurological Institute, 350 W Thomas Rd, Phoenix, AZ 85013, USA.
| |
Collapse
|
3
|
Desmidt T, Dujardin PA, Andersson F, Brizard B, Réméniéras JP, Gissot V, Arlicot N, Barantin L, Espitalier F, Belzung C, Tanti A, Robert G, Bulteau S, Gallet Q, Kazour F, Cognet S, Camus V, El-Hage W, Poupin P, Karim HT. Changes in cerebral connectivity and brain tissue pulsations with the antidepressant response to an equimolar mixture of oxygen and nitrous oxide: an MRI and ultrasound study. Mol Psychiatry 2023; 28:3900-3908. [PMID: 37592013 DOI: 10.1038/s41380-023-02217-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/19/2023]
Abstract
Nitrous oxide (N2O) has recently emerged as a potential fast-acting antidepressant but the cerebral mechanisms involved in this effect remain speculative. We hypothesized that the antidepressant response to an Equimolar Mixture of Oxygen and Nitrous Oxide (EMONO) would be associated with changes in cerebral connectivity and brain tissue pulsations (BTP). Thirty participants (20 with a major depressive episode resistant to at least one antidepressant and 10 healthy controls-HC, aged 25-50, only females) were exposed to a 1-h single session of EMONO and followed for 1 week. We defined response as a reduction of at least 50% in the MADRS score 1 week after exposure. Cerebral connectivity of the Anterior Cingulate Cortex (ACC), using ROI-based resting state fMRI, and BTP, using ultrasound Tissue Pulsatility Imaging, were compared before and rapidly after exposure (as well as during exposure for BTP) among HC, non-responders and responders. We conducted analyses to compare group × time, group, and time effects. Nine (45%) depressed participants were considered responders and eleven (55%) non-responders. In responders, we observed a significant reduction in the connectivity of the subgenual ACC with the precuneus. Connectivity of the supracallosal ACC with the mid-cingulate also significantly decreased after exposure in HC and in non-responders. BTP significantly increased in the three groups between baseline and gas exposure, but the increase in BTP within the first 10 min was only significant in responders. We found that a single session of EMONO can rapidly modify the functional connectivity in the subgenual ACC-precuneus, nodes within the default mode network, in depressed participants responders to EMONO. In addition, larger increases in BTP, associated with a significant rise in cerebral blood flow, appear to promote the antidepressant response, possibly by facilitating optimal drug delivery to the brain. Our study identified potential cerebral mechanisms related to the antidepressant response of N2O, as well as potential markers for treatment response with this fast-acting antidepressant.
Collapse
Affiliation(s)
- Thomas Desmidt
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.
- CHU de Tours, Tours, France.
- CIC 1415, CHU de Tours, Inserm, Tours, France.
| | | | | | - Bruno Brizard
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | | | | | - Nicolas Arlicot
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
- CHU de Tours, Tours, France
| | | | - Fabien Espitalier
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
- CHU de Tours, Tours, France
| | | | - Arnaud Tanti
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | - Gabriel Robert
- Behavior and Basal Ganglia Host Team 4712, University of Rennes 1, Rennes, France Department of Psychiatry, Rennes University Hospital, Guillaume Régnier Hospital Centre, Rennes, France
| | - Samuel Bulteau
- Addictology and Liaison Psychiatry Department, CHU de Nantes, 44000, Nantes, France
| | - Quentin Gallet
- Department of Psychiatry, University Hospital, Angers, France
| | - François Kazour
- Department of Psychiatry, University Hospital, Angers, France
| | | | - Vincent Camus
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
- CHU de Tours, Tours, France
| | - Wissam El-Hage
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
- CHU de Tours, Tours, France
- CIC 1415, CHU de Tours, Inserm, Tours, France
| | | | - Helmet T Karim
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
4
|
Puglisi CH, Ander BP, Peterson C, Keiter JA, Hull H, Hawk CW, Kalistratova VS, Izadi A, Gurkoff GG, Sharp FR, Waldau B. Sustained ICP Elevation Is a Driver of Spatial Memory Deficits After Intraventricular Hemorrhage and Leads to Activation of Distinct Microglial Signaling Pathways. Transl Stroke Res 2023; 14:572-588. [PMID: 35821378 PMCID: PMC9834439 DOI: 10.1007/s12975-022-01061-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 01/16/2023]
Abstract
The mechanisms of cognitive decline after intraventricular hemorrhage (IVH) in some patients continue to be poorly understood. Multiple rodent models of intraventricular or subarachnoid hemorrhage have only shown mild or even no cognitive impairment on subsequent behavioral testing. In this study, we show that intraventricular hemorrhage only leads to a significant spatial memory deficit in the Morris water maze if it occurs in the setting of an elevated intracranial pressure (ICP). Histopathological analysis of these IVH + ICP animals did not show evidence of neuronal degeneration in the hippocampal formation after 2 weeks but instead showed significant microglial activation measured by lacunarity and fractal dimensions. RNA sequencing of the hippocampus showed distinct enrichment of genes in the IVH + ICP group but not in IVH alone having activated microglial signaling pathways. The most significantly activated signaling pathway was the classical complement pathway, which is used by microglia to remove synapses, followed by activation of the Fc receptor and DAP12 pathways. Thus, our study lays the groundwork for identifying signaling pathways that could be targeted to ameliorate behavioral deficits after IVH.
Collapse
Affiliation(s)
- Chloe H Puglisi
- Department of Neurological Surgery, University of California at Davis Medical Center, 4860 Y Street, ACC 3740, Sacramento, CA, 95817, USA
| | - Bradley P Ander
- Department of Neurology, University of California at Davis Medical Center, 4860 Y Street, ACC 3700, Sacramento, CA, 95817, USA
| | - Catherine Peterson
- Department of Neurological Surgery, University of California at Davis Medical Center, 4860 Y Street, ACC 3740, Sacramento, CA, 95817, USA
| | - Janet A Keiter
- Department of Neurological Surgery, University of California at Davis Medical Center, 4860 Y Street, ACC 3740, Sacramento, CA, 95817, USA
| | - Heather Hull
- Department of Neurology, University of California at Davis Medical Center, 4860 Y Street, ACC 3700, Sacramento, CA, 95817, USA
| | - Cameron W Hawk
- Department of Neurological Surgery, University of California at Davis Medical Center, 4860 Y Street, ACC 3740, Sacramento, CA, 95817, USA
| | - Venina S Kalistratova
- Department of Neurological Surgery, University of California at Davis Medical Center, 4860 Y Street, ACC 3740, Sacramento, CA, 95817, USA
| | - Ali Izadi
- Department of Neurological Surgery, University of California at Davis Medical Center, 4860 Y Street, ACC 3740, Sacramento, CA, 95817, USA
| | - Gene G Gurkoff
- Department of Neurological Surgery, University of California at Davis Medical Center, 4860 Y Street, ACC 3740, Sacramento, CA, 95817, USA
| | - Frank R Sharp
- Department of Neurology, University of California at Davis Medical Center, 4860 Y Street, ACC 3700, Sacramento, CA, 95817, USA
| | - Ben Waldau
- Department of Neurological Surgery, University of California at Davis Medical Center, 4860 Y Street, ACC 3740, Sacramento, CA, 95817, USA.
| |
Collapse
|
5
|
Li Z, Xu C, Wang Y. Poly d,l-(lactic-co-glycolic) Acid PEGylated Isoliquiritigenin Alleviates Traumatic Brain Injury by Reversing Cyclooxygenase 2 Level. J Biomed Nanotechnol 2022; 18:909-916. [PMID: 35715911 DOI: 10.1166/jbn.2022.3284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
As a severe neurological disease of trauma, traumatic brain injury (TBI) leads to other disorders, such as depression, dementia and epilepsy. This study investigated whether poly d,l-(lactic-co-glycolic) acid (PLGA) PEGylated isoliquiritigenin could alleviate TBI. One hundred and eighty-three patients with clinical brain trauma were divided into two groups with or without intracranial injury in magnetic resonance imaging. The clinical results showed that serum cyclooxygenase 2 (COX-2) levels were obviously increased in the TBI patients compared to the patients with head trauma only or healthy individuals. Intracranial injection of isoliquiritigenin in TBI rats reversed TBI induced increase of COX-2 level, significantly reduced water content and contusion volume. Our findings suggest that PLGA PEG nanoparticles loaded with isoliquiritigenin can achieve the same effects as intracranial administration of isoliquiritigenin in reducing serum COX-2 level.
Collapse
Affiliation(s)
- Zhengyang Li
- Department of Radiology, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou, 061001, Hebei, China
| | - Chao Xu
- Department of Radiology, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou, 061001, Hebei, China
| | - Yan Wang
- Department of Radiology, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou, 061001, Hebei, China
| |
Collapse
|
6
|
Wang Y, Jia F, Lin Y. Poly(butyl cyanoacrylate) nanoparticles-delivered β-nerve growth factor promotes the neurite outgrowth and reduces the mortality in the rat after traumatic brain injury. NANOTECHNOLOGY 2022; 33:135101. [PMID: 34929684 DOI: 10.1088/1361-6528/ac44e8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Several transport vectors, including nanoparticles, have been reported to be used for the delivery of therapeutic medicines crossing the impermeable blood-brain barrier (BBB) to treat the diseases in the central nerve system (CNS), such as traumatic brain injury (TBI). Poly(n-butyl-2-cyanoacrylate) (PBCA) nanoparticles, made from biocompatible material, are regarded as a better potential delivery tool than others such as gold nanoparticles due to their degradabilityin vivo. However, little is known whether PBCA nanoparticles can be used to deliver neurotrophic factors into the brain to treat TBI. In this study, we first synthesized PBCA-carriedβ-nerve growth factor, a neurotrophic agent with a large molecular weight, and then intravenously injected the compound into TBI rats. We found that despite undergoing several synthesis steps and host circulation,β-NGF was able to be successfully delivered into the injured brain by PBCA nanoparticles, still maintain its neurotrophic activity for neurite outgrowth, and reduce the mortality of TBI rats. Our findings indicate that PBCA nanoparticles, with Tween 80, are an efficient delivery vector and a protective reservoir for large molecular therapeutic agents to treat TBI intravenously.
Collapse
Affiliation(s)
- Yu Wang
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200127, People's Republic of China
| | - Feng Jia
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200127, People's Republic of China
| | - Yong Lin
- Traumatic Brain Injury Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200127, People's Republic of China
| |
Collapse
|
7
|
Sisco NJ, Borazanci A, Dortch R, Stokes AM. Investigating the relationship between multi-scale perfusion and white matter microstructural integrity in patients with relapsing-remitting MS. Mult Scler J Exp Transl Clin 2021; 7:20552173211037002. [PMID: 34377529 PMCID: PMC8330486 DOI: 10.1177/20552173211037002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 07/16/2021] [Indexed: 11/20/2022] Open
Abstract
Background Multiple sclerosis is characterized by the formation of central nervous system demyelinating lesions with microvasculature inflammation. Objective Evaluate how lesion cerebral perfusion relates to white matter microstructural integrity in patients with RRMS using perfusion MRI and myelin-related T1-weighted to T2-weighted (T1w/T2w) ratios. Methods Forty-eight patients with RRMS were imaged with dynamic susceptibility contrast imaging using SAGE (spin- and gradient-echo) to calculate global and capillary-sized perfusion parameters, including cerebral blood flow (CBF), volume (CBV), and mean transit time (MTT). T1w/T2w ratios were used to indirectly assess white matter microstructural integrity. Results For global perfusion metrics, CBF was reduced 28.4% in lesion regions of interest (ROIs) compared to normal appearing white matter (NAWM), CBV was reduced 25.9% in lesion ROIs compared to NAWM, and MTT increased 12.9%. For capillary perfusion metrics (via spin-echo (SE)), CBF-SE was reduced 35.7% in lesion ROIs compared to NAWM, CBV-SE was reduced 35.2% in lesion ROIs compared to NAWM, and MTT-SE increased 9.1%. Capillary-level CBF was correlated (ρ = 0.34, p = 0.024) with white matter microstructural integrity in lesion ROIs. Conclusion This study demonstrates that lesion perfusion is reduced at both the global and capillary level and capillary-associated hypoperfusion is associated with reduced white matter microstructural integrity in RRMS.
Collapse
Affiliation(s)
- Nicholas J Sisco
- Division of Neuroimaging Research, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Aimee Borazanci
- Division of Neuroimaging Research, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Richard Dortch
- Division of Neuroimaging Research, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Ashley M Stokes
- Division of Neuroimaging Research, Barrow Neurological Institute, Phoenix, AZ, USA
| |
Collapse
|
8
|
Amoo M, O'Halloran PJ, Henry J, Husien MB, Brennan P, Campbell M, Caird J, Curley GF. Permeability of the Blood-Brain Barrier after Traumatic Brain Injury; Radiological Considerations. J Neurotrauma 2021; 39:20-34. [PMID: 33632026 DOI: 10.1089/neu.2020.7545] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability, especially in young persons, and constitutes a major socioeconomic burden worldwide. It is regarded as the leading cause of mortality and morbidity in previously healthy young persons. Most of the mechanisms underpinning the development of secondary brain injury are consequences of disruption of the complex relationship between the cells and proteins constituting the neurovascular unit or a direct result of loss of integrity of the tight junctions (TJ) in the blood-brain barrier (BBB). A number of changes have been described in the BBB after TBI, including loss of TJ proteins, pericyte loss and migration, and altered expressions of water channel proteins at astrocyte end-feet processes. There is a growing research interest in identifying optimal biological and radiological biomarkers of severity of BBB dysfunction and its effects on outcomes after TBI. This review explores the microscopic changes occurring at the neurovascular unit, after TBI, and current radiological adjuncts for its evaluation in pre-clinical and clinical practice.
Collapse
Affiliation(s)
- Michael Amoo
- National Centre for Neurosurgery, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland.,Royal College of Surgeons in Ireland, Dublin, Ireland.,Beacon Academy, Beacon Hospital, Sandyford, Dublin, Ireland
| | - Philip J O'Halloran
- Royal College of Surgeons in Ireland, Dublin, Ireland.,Department of Neurosurgery, Royal London Hospital, Whitechapel, London, United Kingdom
| | - Jack Henry
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Mohammed Ben Husien
- National Centre for Neurosurgery, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland.,Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Paul Brennan
- Royal College of Surgeons in Ireland, Dublin, Ireland.,Department of Radiology, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | | | - John Caird
- National Centre for Neurosurgery, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Gerard F Curley
- Royal College of Surgeons in Ireland, Dublin, Ireland.,Department of Anaesthesia and Critical Care, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| |
Collapse
|
9
|
Michinaga S, Inoue A, Sonoda K, Mizuguchi H, Koyama Y. Down-regulation of astrocytic sonic hedgehog by activation of endothelin ET B receptors: Involvement in traumatic brain injury-induced disruption of blood brain barrier in a mouse model. Neurochem Int 2021; 146:105042. [PMID: 33838160 DOI: 10.1016/j.neuint.2021.105042] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/21/2021] [Accepted: 04/02/2021] [Indexed: 12/18/2022]
Abstract
In the adult brain, sonic hedgehog acts on cerebral microvascular endothelial cells to stabilize the blood-brain barrier. The expression of sonic hedgehog by astrocytes is altered during brain injury, and this change has been shown to affect permeability of blood-brain barrier. However, much remains unknown about the regulation of astrocytic sonic hedgehog production. Our results showed that endothelin-1 reduced sonic hedgehog mRNA expression and extracellular protein release in mouse cerebral cultured astrocytes, but had no effect in bEnd.3, a mouse brain microvascular endothelial-derived cell line. The effect of endothelin-1 on astrocyte sonic hedgehog expression was suppressed by an ETB antagonist BQ788, but was unchanged by the ETA antagonist FR139317. In cultured astrocytes and bEnd.3, endothelin-1 did not affect the expression of the sonic hedgehog receptor-related molecules, patched-1 and smoothened. In an animal model of traumatic brain injury, fluid percussion injury on the mouse cerebrum increased the expression of sonic hedgehog, patched-1, and smoothened. Repeated administration of BQ788 enhanced sonic hedgehog expression at 5 days after fluid percussion injury. Histochemical examination revealed sonic hedgehog expression in glial fibrillary acidic protein-positive astrocytes in the cerebrum after fluid percussion injury. Administration of exogenous sonic hedgehog and BQ788 suppressed Evans blue extravasation, an indicator of blood vessel permeability, induced by fluid percussion injury. The effects of BQ788 on fluid percussion injury-induced Evans blue extravasation were reduced by the administration of jervine, a sonic hedgehog inhibitor. Altogether, these results suggest that endothelin-1 down-regulates astrocytic sonic hedgehog to promote disruption of the blood-brain barrier during traumatic brain injury.
Collapse
Affiliation(s)
- Shotaro Michinaga
- Laboratory of Pharmacology, Faculty of Pharmacy, Osaka Ohtani University, 3-11-1 Nishikiori-Kita, Tondabayashi, Osaka, 584-8540, Japan
| | - Ayana Inoue
- Laboratory of Pharmacology, Faculty of Pharmacy, Osaka Ohtani University, 3-11-1 Nishikiori-Kita, Tondabayashi, Osaka, 584-8540, Japan
| | - Kyomi Sonoda
- Laboratory of Pharmacology, Faculty of Pharmacy, Osaka Ohtani University, 3-11-1 Nishikiori-Kita, Tondabayashi, Osaka, 584-8540, Japan
| | - Hiroyuki Mizuguchi
- Laboratory of Pharmacology, Faculty of Pharmacy, Osaka Ohtani University, 3-11-1 Nishikiori-Kita, Tondabayashi, Osaka, 584-8540, Japan
| | - Yutaka Koyama
- Laboratory of Pharmacology, Kobe Pharmaceutical University, 4-19-1 Motoyama-Kita, Higashinada, Kobe, 668-8558, Japan.
| |
Collapse
|
10
|
Avsenik J, Bajrović FF, Gradišek P, Kejžar N, Šurlan Popović K. Prognostic value of CT perfusion and permeability imaging in traumatic brain injury. J Trauma Acute Care Surg 2021; 90:484-491. [PMID: 33009337 DOI: 10.1097/ta.0000000000002964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Currently established prognostic models in traumatic brain injury (TBI) include noncontrast computed tomography (CT) which is insensitive to early perfusion alterations associated with secondary brain injury. Perfusion CT (PCT) on the other hand offers insight into early perfusion abnormalities. We hypothesized that adding CT perfusion and permeability data to the established outcome predictors improves the performance of the prognostic model. METHODS A prospective cohort study of consecutive 50 adult patients with head injury and Glasgow Coma Scale score of 12 or less was performed at a single Level 1 Trauma Centre. Perfusion CT was added to routine control CT 12 hours to 24 hours after admission. Region of interest analysis was performed in six major vascular territories on perfusion and permeability parametric maps. Glasgow Outcome Scale (GOS) was used 6 months later to categorize patients' functional outcomes to favorable (GOS score > 3) or unfavorable (GOS score ≤ 3). We defined core prognostic model, consisting of age, motor Glasgow Coma Scale score, pupillary reactivity, and CT Rotterdam Score. Next, we added perfusion and permeability data as predictors and compared updated models to the core model using cross-validated areas under the receiver operator curves (cv-AUC). RESULTS Significant advantage over core model was shown by the model, containing both mean cerebral extravascular-extracellular volume per unit of tissue volume and cerebral blood volume of the least perfused arterial territory in addition to core predictors (cv-AUC, 0.75; 95% confidence interval, 0.51-0.84 vs. 0.6; 95% confidence interval, 0.37-0.74). CONCLUSION The development of cerebral ischemia and traumatic cerebral edema constitutes the secondary brain injury and represents the target for therapeutic interventions. Our results suggest that adding CT perfusion and permeability data to the established outcome predictors improves the performance of the prognostic model in the setting of moderate and severe TBI. LEVEL OF EVIDENCE Prognostic study, level III.
Collapse
Affiliation(s)
- Jernej Avsenik
- From the Clinical Institute of Radiology (J.A., K.Š.P.), University Medical Centre Ljubljana; Department of Radiology (J.A., K.Š.P.), Faculty of Medicine, University of Ljubljana; Division of Neurology (F.F.B.), University Medical Centre Ljubljana; Institute of Pathophysiology (F.F.B.), Faculty of Medicine, University of Ljubljana; Clinical Department of Anaesthesiology and Intensive Therapy (P.G.), Centre for Intensive Therapy, University Medical Centre Ljubljana; Department of Anaesthesiology with Reanimatology (P.G.), Faculty of Medicine, University of Ljubljana and Institute for Biostatistics and Medical Informatics (N.K.), Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | | | | | | | | |
Collapse
|
11
|
van Vliet EA, Ndode-Ekane XE, Lehto LJ, Gorter JA, Andrade P, Aronica E, Gröhn O, Pitkänen A. Long-lasting blood-brain barrier dysfunction and neuroinflammation after traumatic brain injury. Neurobiol Dis 2020; 145:105080. [PMID: 32919030 DOI: 10.1016/j.nbd.2020.105080] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 08/16/2020] [Accepted: 09/05/2020] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) causes 10-20% of acquired epilepsy, which typically develops within 2 years post-injury with poorly understood mechanisms. We investigated the location, severity, evolution and persistence of blood-brain barrier (BBB) dysfunction and associated neuroinflammation after TBI, and their contribution to post-traumatic seizure susceptibility. METHODS TBI was induced with lateral fluid-percussion in adult male Sprague-Dawley rats (6 sham, 12 TBI). Permeability of the BBB was assessed using T1-weighted magnetic resonance imaging (MRI) with gadobutrol (Gd) contrast enhancement at 4 days, 2 weeks, 2 months, and 10 months post-injury and with intravenously administered fluorescein at 11 months post-TBI. Continuous (24/7) video-EEG monitoring was performed for 3 weeks at 11 months post-injury followed by the pentylenetetrazol (PTZ) seizure-susceptibility test. In the end, rats were perfused for histology to assess albumin extravasation, iron deposits, calcifications, reactive astrocytes, microglia and monocytes. To investigate the translational value of the data obtained, BBB dysfunction and neuroinflammation were investigated immunohistochemically in autopsy brain tissue from patients with TBI and PTE. RESULTS MRI indicated persistent Gd leakage in the impacted cortex and thalamus of variable severity in all rats with TBI which correlated with fluorescein extravasation. In the impacted cortex BBB dysfunction was evident from 4 days post-injury onwards to the end of the 10-months follow-up. In the ipsilateral thalamus, leakage was evident at 2 and 10 months post-injury. The greater the BBB leakage in the perilesional cortex at 10 months after the injury, the greater the expression of the endothelial cell antigen RECA-1 (r = 0.734, p < 0.01) and the activated macrophages/monocytes/microglia marker CD68 (r = 0.699, p < 0.05) at 11 months post-injury. Seven of the 12 rats with TBI showed increased seizure susceptibility in the PTZ-test. Unlike expected, we did not find any association between increased Gd-leakage or neuroinflammation with seizure susceptibility at 11 months post-TBI. Analysis of human autopsy tissue indicated that similar to the animal model, chronic BBB dysfunction was also evident in the perilesional cortex and thalamus of patients with PTE, characterized by presence of albumin, iron deposits and calcifications as well as markers of neuroinflammation, including reactive astrocytes, microglia and monocytes. CONCLUSIONS Rats and humans with TBI have long-lasting cortical BBB dysfunction and neuroinflammation. Focal Gd-enhancement matched with loci of neuroinflammation, particularly in the thalamus. Although BBB leakage did not associate with increased seizure susceptibility after TBI, our data suggest that for treatments aimed to mitigate BBB damage and its secondary pathologies like chronic neuroinflammation, there is a region-specific, long-lasting therapeutic time window.
Collapse
Affiliation(s)
- Erwin A van Vliet
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands; Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, Amsterdam Neuroscience, the Netherlands.
| | | | - Lauri J Lehto
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jan A Gorter
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Pedro Andrade
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, Amsterdam Neuroscience, the Netherlands; Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, the Netherlands
| | - Olli Gröhn
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Asla Pitkänen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
12
|
Michinaga S, Inoue A, Yamamoto H, Ryu R, Inoue A, Mizuguchi H, Koyama Y. Endothelin receptor antagonists alleviate blood-brain barrier disruption and cerebral edema in a mouse model of traumatic brain injury: A comparison between bosentan and ambrisentan. Neuropharmacology 2020; 175:108182. [PMID: 32561219 DOI: 10.1016/j.neuropharm.2020.108182] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/29/2020] [Accepted: 06/05/2020] [Indexed: 12/14/2022]
Abstract
Traumatic brain injury (TBI) is induced by the immediate physical disruption of brain tissue. TBI causes disruption of the blood-brain barrier (BBB) and brain edema. In the cerebrospinal fluid (CSF) of TBI patients, endothelin-1 (ET-1) is increased, suggesting that ET-1 aggravates TBI-induced brain damage. In this study, the effect of bosentan (ETA/ETB antagonist) and ambrisentan (ETA antagonist) on BBB dysfunction and brain edema were examined in a mouse model of TBI using lateral fluid percussion injury (FPI). FPI to the mouse cerebrum increased the expression levels of ET-1 and ETB receptors. Administration of bosentan (3 or 15 mg/kg/day) and ambrisentan (0.1 or 0.5 mg/kg/day) at 6 and 24 h after FPI ameliorated BBB disruption and cerebral brain edema. Delayed administration of bosentan from 2 days after FPI also reduced BBB disruption and brain edema, while ambrisentan had no significant effects. FPI-induced expression levels of ET-1 and ETB receptors were reduced by bosentan, but not by ambrisentan. In cultured mouse astrocytes and brain microvessel endothelial cells, ET-1 (100 nM) increased prepro--ET-1 mRNA, which was inhibited by bosentan, but not by ambrisentan. FPI-induced alterations of the expression levels of matrix metalloproteinase-9, vascular endothelial growth factor-A, and angiopoietin-1 in the mouse cerebrum were reduced by delayed administration of bosentan, while ambrisentan had no significant effects. These results suggest that ET antagonists are effective in improving BBB disruption and cerebral edema in TBI patients and that an ETA/ETB non-selective type of antagonists is more effective.
Collapse
Affiliation(s)
- Shotaro Michinaga
- Laboratory of Pharmacology, Faculty of Pharmacy, Osaka Ohtani University, 3-11-1 Nishikiori-Kita, Tondabayashi, Osaka, 584-8540, Japan
| | - Anna Inoue
- Laboratory of Pharmacology, Faculty of Pharmacy, Osaka Ohtani University, 3-11-1 Nishikiori-Kita, Tondabayashi, Osaka, 584-8540, Japan
| | - Hayato Yamamoto
- Laboratory of Pharmacology, Faculty of Pharmacy, Osaka Ohtani University, 3-11-1 Nishikiori-Kita, Tondabayashi, Osaka, 584-8540, Japan
| | - Ryotaro Ryu
- Laboratory of Pharmacology, Faculty of Pharmacy, Osaka Ohtani University, 3-11-1 Nishikiori-Kita, Tondabayashi, Osaka, 584-8540, Japan
| | - Ayana Inoue
- Laboratory of Pharmacology, Faculty of Pharmacy, Osaka Ohtani University, 3-11-1 Nishikiori-Kita, Tondabayashi, Osaka, 584-8540, Japan
| | - Hiroyuki Mizuguchi
- Laboratory of Pharmacology, Faculty of Pharmacy, Osaka Ohtani University, 3-11-1 Nishikiori-Kita, Tondabayashi, Osaka, 584-8540, Japan
| | - Yutaka Koyama
- Laboratory of Pharmacology, Kobe Pharmaceutical University, 4-19-1 Motoyama-Kita Higashinada, Kobe, 668-8558, Japan.
| |
Collapse
|
13
|
Wu F, Xu K, Xu K, Teng C, Zhang M, Xia L, Zhang K, Liu L, Chen Z, Xiao J, Wu Y, Zhang H, Chen D. Dl-3n-butylphthalide improves traumatic brain injury recovery via inhibiting autophagy-induced blood-brain barrier disruption and cell apoptosis. J Cell Mol Med 2020; 24:1220-1232. [PMID: 31840938 PMCID: PMC6991645 DOI: 10.1111/jcmm.14691] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 07/24/2019] [Accepted: 08/28/2019] [Indexed: 12/18/2022] Open
Abstract
Blood-brain barrier (BBB) disruption and neuronal apoptosis are important pathophysiological processes after traumatic brain injury (TBI). In clinical stroke, Dl-3n-butylphthalide (Dl-NBP) has a neuroprotective effect with anti-inflammatory, anti-oxidative, anti-apoptotic and mitochondrion-protective functions. However, the effect and molecular mechanism of Dl-NBP for TBI need to be further investigated. Here, we had used an animal model of TBI and SH-SY5Y/human brain microvascular endothelial cells to explore it. We found that Dl-NBP administration exerts a neuroprotective effect in TBI/OGD and BBB disorder, which up-regulates the expression of tight junction proteins and promotes neuronal survival via inhibiting mitochondrial apoptosis. The expressions of autophagy-related proteins, including ATG7, Beclin1 and LC3II, were significantly increased after TBI/OGD, and which were reversed by Dl-NBP treatment both in vivo and in vitro. Moreover, rapamycin treatment had abolished the effect of Dl-NBP for TBI recovery. Collectively, our current studies indicate that Dl-NBP treatment improved locomotor functional recovery after TBI by inhibiting the activation of autophagy and consequently blocking the junction protein loss and neuronal apoptosis. Dl-NBP, as an anti-inflammatory and anti-oxidative drug, may act as an effective strategy for TBI recovery.
Collapse
Affiliation(s)
- Fangfang Wu
- Department of EmergencyThe Second Affiliated Hospital and Yuying Children's HospitalWenzhou Medical UniversityWenzhouChina
| | - Ke Xu
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
- The Institute of Life Sciences, Engineering Laboratory of Zhejiang province for pharmaceutical development of growth factors,Biomedical Collaborative Innovation Center of WenzhouWenzhou UniversityWenzhouChina
| | - Kebin Xu
- Department of PharmacyHwaMei Hospital, University of Chinese Academy of SciencesNingboChina
| | - Chenhuai Teng
- Department of EmergencyThe Second Affiliated Hospital and Yuying Children's HospitalWenzhou Medical UniversityWenzhouChina
| | - Man Zhang
- Department of EmergencyThe Second Affiliated Hospital and Yuying Children's HospitalWenzhou Medical UniversityWenzhouChina
| | - Leilei Xia
- Department of EmergencyWenzhou People's Hospital, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou Medical UniversityWenzhouChina
| | - Kairui Zhang
- Department of EmergencyThe Second Affiliated Hospital and Yuying Children's HospitalWenzhou Medical UniversityWenzhouChina
| | - Lei Liu
- Department of EmergencyThe Second Affiliated Hospital and Yuying Children's HospitalWenzhou Medical UniversityWenzhouChina
| | - Zaifeng Chen
- Department of NeurosurgeryAffiliated Cixi Hospital, Wenzhou Medical UniversityNingboChina
| | - Jian Xiao
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
| | - Yanqing Wu
- The Institute of Life Sciences, Engineering Laboratory of Zhejiang province for pharmaceutical development of growth factors,Biomedical Collaborative Innovation Center of WenzhouWenzhou UniversityWenzhouChina
| | - Hongyu Zhang
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
- Experimental Research CentreDongyang People's HospitalWenzhou Medical UniversityJinhuaChina
| | - Daqing Chen
- Department of EmergencyThe Second Affiliated Hospital and Yuying Children's HospitalWenzhou Medical UniversityWenzhouChina
| |
Collapse
|
14
|
Wu F, Ding J, Li HB, Miao HC, Bao R, Yang S. Effects of Electroacupuncture on Expression of D1 Receptor (D1R), Phosphorylation of Extracellular-Regulated Protein Kinase 1/2 (p-ERK1/2), and c-Fos in the Insular Cortex of Ketamine-Addicted Rats. Med Sci Monit Basic Res 2019; 25:26-32. [PMID: 30700692 PMCID: PMC6369650 DOI: 10.12659/msmbr.913285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND The aim of this study was to investigate the effects of electroacupuncture (EA) on expression of the D1 receptor (D1R), phosphorylation of extracellular-regulated protein kinase 1/2 (p-ERK1/2) and c-Fos in the insular cortex (IC) of ketamine-addicted rats. MATERIAL AND METHODS Sprague-Dawley rats were randomly divided into 7 groups: the normal group, the normal saline (NS) group, the ketamine (Ket) group, the U0126+Ket group, the SCH23390+Ket group, the Ket+acupoints EA (EA1) group, and the Ket+ non-acupoints EA (EA2) group. We used immunohistochemistry to detect the expression of D1R, p-ERK1/2, and c-Fos. We also used Nissl staining techniques to study the morphology of IC neurons. RESULTS Our study demonstrated that the ketamine group had sparsely distributed neurons, large intracellular vacuoles, nuclei shift, and unclear nucleolus. The number of Nissl-positive (neuronal) cells in the ketamine group were decreased than in the normal group. Our results also indicated that there was significantly lower expression of D1R, p-ERK1/2, and c-Fos in the IC of the U0126+Ket group, SCH23390+Ket group, and Ket+EA1 group as compared with that of the Ket group. CONCLUSIONS Ketamine addiction induces c-Fos overexpression in the IC by increasing the expression of D1R and p-ERK1/2. Acupoints EA downregulate D1R and p-ERK1/2 by reducing the overexpression of c-Fos.
Collapse
Affiliation(s)
- Feng Wu
- Department of Anatomy, Wannan Medical College, Wuhu, Anhui, China (mainland)
| | - Jian Ding
- Department of Anatomy, Wannan Medical College, Wuhu, Anhui, China (mainland)
| | - Huai-Bin Li
- Department of Anatomy, Wannan Medical College, Wuhu, Anhui, China (mainland)
| | - Hua-Chun Miao
- Department of Anatomy, Wannan Medical College, Wuhu, Anhui, China (mainland)
| | - Rui Bao
- Department of Anatomy, Wannan Medical College, Wuhu, Anhui, China (mainland)
| | - Shan Yang
- Department of Anatomy, Wannan Medical College, Wuhu, Anhui, China (mainland)
| |
Collapse
|
15
|
Szczygielski J, Glameanu C, Müller A, Klotz M, Sippl C, Hubertus V, Schäfer KH, Mautes AE, Schwerdtfeger K, Oertel J. Changes in Posttraumatic Brain Edema in Craniectomy-Selective Brain Hypothermia Model Are Associated With Modulation of Aquaporin-4 Level. Front Neurol 2018; 9:799. [PMID: 30333785 PMCID: PMC6176780 DOI: 10.3389/fneur.2018.00799] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 09/04/2018] [Indexed: 12/19/2022] Open
Abstract
Both hypothermia and decompressive craniectomy have been considered as a treatment for traumatic brain injury. In previous experiments we established a murine model of decompressive craniectomy and we presented attenuated edema formation due to focal brain cooling. Since edema development is regulated via function of water channel proteins, our hypothesis was that the effects of decompressive craniectomy and of hypothermia are associated with a change in aquaporin-4 (AQP4) concentration. Male CD-1 mice were assigned into following groups (n = 5): sham, decompressive craniectomy, trauma, trauma followed by decompressive craniectomy and trauma + decompressive craniectomy followed by focal hypothermia. After 24 h, magnetic resonance imaging with volumetric evaluation of edema and contusion were performed, followed by ELISA analysis of AQP4 concentration in brain homogenates. Additional histopathological analysis of AQP4 immunoreactivity has been performed at more remote time point of 28d. Correlation analysis revealed a relationship between AQP4 level and both volume of edema (r2 = 0.45, p < 0.01, **) and contusion (r2 = 0.41, p < 0.01, **) 24 h after injury. Aggregated analysis of AQP4 level (mean ± SEM) presented increased AQP4 concentration in animals subjected to trauma and decompressive craniectomy (52.1 ± 5.2 pg/mL, p = 0.01; *), but not to trauma, decompressive craniectomy and hypothermia (45.3 ± 3.6 pg/mL, p > 0.05; ns) as compared with animals subjected to decompressive craniectomy only (32.8 ± 2.4 pg/mL). However, semiquantitative histopathological analysis at remote time point revealed no significant difference in AQP4 immunoreactivity across the experimental groups. This suggests that AQP4 is involved in early stages of brain edema formation after surgical decompression. The protective effect of selective brain cooling may be related to change in AQP4 response after decompressive craniectomy. The therapeutic potential of this interaction should be further explored.
Collapse
Affiliation(s)
- Jacek Szczygielski
- Department of Neurosurgery, Faculty of Medicine, Saarland University Medical Center, Saarland University, Homburg, Germany.,Institute of Neuropathology, Faculty of Medicine, Saarland University Medical Center, Saarland University, Homburg, Germany.,Faculty of Medicine, University of Rzeszów, Rzeszów, Poland
| | - Cosmin Glameanu
- Department of Neurosurgery, Faculty of Medicine, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Andreas Müller
- Department of Radiology, Faculty of Medicine, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Markus Klotz
- Working Group Enteric Nervous System (AGENS), University of Applied Sciences Kaiserslautern, Kaiserslautern, Germany
| | - Christoph Sippl
- Department of Neurosurgery, Faculty of Medicine, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Vanessa Hubertus
- Department of Neurosurgery, Faculty of Medicine, Saarland University Medical Center, Saarland University, Homburg, Germany.,Department of Neurosurgery, Charité University Medicine, Berlin, Germany
| | - Karl-Herbert Schäfer
- Working Group Enteric Nervous System (AGENS), University of Applied Sciences Kaiserslautern, Kaiserslautern, Germany
| | - Angelika E Mautes
- Department of Neurosurgery, Faculty of Medicine, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Karsten Schwerdtfeger
- Department of Neurosurgery, Faculty of Medicine, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Joachim Oertel
- Department of Neurosurgery, Faculty of Medicine, Saarland University Medical Center, Saarland University, Homburg, Germany
| |
Collapse
|
16
|
Zhang M, Wu Y, Xie L, Teng CH, Wu FF, Xu KB, Chen X, Xiao J, Zhang HY, Chen DQ. Isoliquiritigenin protects against blood‑brain barrier damage and inhibits the secretion of pro-inflammatory cytokines in mice after traumatic brain injury. Int Immunopharmacol 2018; 65:64-75. [PMID: 30290368 DOI: 10.1016/j.intimp.2018.09.046] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/23/2018] [Accepted: 09/27/2018] [Indexed: 12/15/2022]
Abstract
Traumatic brain injury (TBI) caused by an external mechanical force acting on the brain is a serious neurological condition. Inflammation plays an important role in prolonging secondary tissue injury after TBI, leading to neuronal cell death and dysfunction. Isoliquiritigenin (ILG) is a flavonoid monomer with anti-inflammatory characteristic. Thus, we had investigated the potential protective effects of ILG on TBI-induced injuries and identified the mechanisms underlying it. Here, we have demonstrated that ILG preserves blood brain barrier (BBB) integrity in vivo, suppresses the activation of microglia and inflammatory responses in mice after TBI, consequently leading to neurofunctional deficits, brain oedema, structural damage, and macrophage infiltration. In vitro, ILG exerts anti-inflammatory effect, and upregulates tight junction proteins 120‑β‑catenin and occludin in SH‑SY5Y cells under oxygen glucose deprivation/reoxygenation (OGD/D) condition. Additionally, we found that PI3K/AKT/GSK‑3β signalling pathway is involved in ILG treatment for TBI. To further confirm it, we had used SC79 (ethyl 2‑amino‑6‑chloro‑4‑(1‑cyano‑2‑ethoxy‑2‑oxoethyl)‑4H‑chromene‑3‑carboxylate), an Akt specific activator, to activate Akt, we found that SC79 partially reduces the protective effect of ILG for TBI. Overall, our current study reveals the neuroprotective role of ILG on TBI-induced BBB damage, downregulated tight junction proteins via PI3K/AKT/GSK‑3β signalling pathway. Furthermore, ILG suppresses the secretion of pro-inflammatory cytokines after TBI through inhibiting the PI3K/AKT/GSK‑3β/NF‑κB signalling pathway. Our findings suggest that GSK‑3β is a key regulatory factor during TBI-induced secretion of inflammatory cytokines, neuronal apoptosis and destruction of BBB.
Collapse
Affiliation(s)
- Man Zhang
- Department of Emergency, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yanqing Wu
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China; The Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Ling Xie
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chen-Huai Teng
- Department of Emergency, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Fang-Fang Wu
- Department of Emergency, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ke-Bin Xu
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiong Chen
- Department of Endocrinology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jian Xiao
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hong-Yu Zhang
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Da-Qing Chen
- Department of Emergency, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
17
|
Bharadwaj VN, Rowe RK, Harrison J, Wu C, Anderson TR, Lifshitz J, Adelson PD, Kodibagkar VD, Stabenfeldt SE. Blood-brainbarrier disruption dictates nanoparticle accumulation following experimental brain injury. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:2155-2166. [PMID: 29933022 DOI: 10.1016/j.nano.2018.06.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 05/09/2018] [Accepted: 06/11/2018] [Indexed: 01/03/2023]
Abstract
Clinically, traumatic brain injury (TBI) results in complex heterogeneous pathology that cannot be recapitulated in single pre-clinical animal model. Therefore, we focused on evaluating utility of nanoparticle (NP)-based therapeutics following three diffuse-TBI models: mildclosed-head injury (mCHI), repetitive-mCHI and midline-fluid percussion injury (FPI). We hypothesized that NP accumulation after diffuse TBI correlates directly with blood-brainbarrier permeability. Mice received PEGylated-NP cocktail (20-500 nm) (intravenously) after single- or repetitive-(1 impact/day, 5 consecutive days) CHI (immediately) and midline-FPI (1 h, 3 h and 6 h). NPs circulated for 1 h before perfusion/brain extraction. NP accumulation was analyzed using fluorescent microscopy in brain regions vulnerable to neuropathology. Minimal/no NP accumulation after mCHI/RmCHI was observed. In contrast, midlineFPI resulted in significant peak accumulation of up to 500 nm NP at 3 h post-injury compared to sham, 1 h, and 6 h groups in the cortex. Therefore, our study provides the groundwork for feasibility of NP-delivery based on NPinjection time and NPsize after mCHI/RmCHI and midline-FPI.
Collapse
Affiliation(s)
- Vimala N Bharadwaj
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ
| | - Rachel K Rowe
- Department of Child Health, University of Arizona, College of Medicine, Phoenix, AZ; BARROW Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ; Phoenix Veteran Affairs Healthcare System, Phoenix, AZ
| | - Jordan Harrison
- Interdisciplinary Graduate Program in Neuroscience, Arizona State University, Tempe, AZ
| | - Chen Wu
- Department of Child Health, University of Arizona, College of Medicine, Phoenix, AZ
| | - Trent R Anderson
- Basic Medical Sciences, University of Arizona, College of Medicine, Phoenix, AZ
| | - Jonathan Lifshitz
- Department of Child Health, University of Arizona, College of Medicine, Phoenix, AZ; BARROW Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ; Phoenix Veteran Affairs Healthcare System, Phoenix, AZ; Interdisciplinary Graduate Program in Neuroscience, Arizona State University, Tempe, AZ
| | - P David Adelson
- Department of Child Health, University of Arizona, College of Medicine, Phoenix, AZ; BARROW Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ
| | - Vikram D Kodibagkar
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ
| | - Sarah E Stabenfeldt
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ.
| |
Collapse
|
18
|
Main BS, Villapol S, Sloley SS, Barton DJ, Parsadanian M, Agbaegbu C, Stefos K, McCann MS, Washington PM, Rodriguez OC, Burns MP. Apolipoprotein E4 impairs spontaneous blood brain barrier repair following traumatic brain injury. Mol Neurodegener 2018; 13:17. [PMID: 29618365 PMCID: PMC5885297 DOI: 10.1186/s13024-018-0249-5] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 03/21/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Traumatic Brain Injury (TBI) is a major cause of disability and mortality, to which there is currently no comprehensive treatment. Blood Brain Barrier (BBB) dysfunction is well documented in human TBI patients, yet the molecular mechanisms that underlie this neurovascular unit (NVU) pathology remains unclear. The apolipoprotein-E (apoE) protein has been implicated in controlling BBB integrity in an isoform dependent manner, via suppression of Cyclophilin A (CypA)-Matrix metallopeptidase-9 (MMP-9) signaling cascades, however the contribution of this pathway in TBI-induced BBB permeability is not fully investigated. METHODS We exposed C57Bl/6 mice to controlled cortical impact and assessed NVU and BBB permeability responses up to 21 days post-injury. We pharmacologically probed the role of the CypA-MMP-9 pathway in BBB permeability after TBI using Cyclosporin A (CsA, 20 mg/kg). Finally, as the apoE4 protein is known to be functionally deficient compared to the apoE3 protein, we used humanized APOE mice as a clinically relevant model to study the role of apoE on BBB injury and repair after TBI. RESULTS In C57Bl/6 mice there was an inverse relationship between soluble apoE and BBB permeability, such that damaged BBB stabilizes as apoE levels increase in the days following TBI. TBI mice displayed acute pericyte loss, increased MMP-9 production and activity, and reduced tight-junction expression. Treatment with the CypA antagonist CsA in C57Bl/6 mice attenuates MMP-9 responses and enhances BBB repair after injury, demonstrating that MMP-9 plays an important role in the timing of spontaneous BBB repair after TBI. We also show that apoe mRNA is present in both astrocytes and pericytes after TBI. We report that APOE3 and APOE4 mice have similar acute BBB responses to TBI, but APOE3 mice display faster spontaneous BBB repair than APOE4 mice. Isolated microvessel analysis reveals delayed pericyte repopulation, augmented and sustained MMP-9 expression at the NVU, and impaired stabilization of Zonula Occludens-1, Occludin and Claudin-5 expression at tight junctions in APOE4 mice after TBI compared to APOE3 mice. CONCLUSIONS These data confirm apoE as an important modulator of spontaneous BBB stabilization following TBI, and highlights the APOE4 allele as a risk factor for poor outcome after TBI.
Collapse
Affiliation(s)
- Bevan S Main
- Laboratory for Brain Injury and Dementia, Department of Neuroscience, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Sonia Villapol
- Laboratory for Brain Injury and Dementia, Department of Neuroscience, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Stephanie S Sloley
- Laboratory for Brain Injury and Dementia, Department of Neuroscience, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - David J Barton
- Laboratory for Brain Injury and Dementia, Department of Neuroscience, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Maia Parsadanian
- Laboratory for Brain Injury and Dementia, Department of Neuroscience, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Chinyere Agbaegbu
- Laboratory for Brain Injury and Dementia, Department of Neuroscience, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Kathryn Stefos
- Laboratory for Brain Injury and Dementia, Department of Neuroscience, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Mondona S McCann
- Laboratory for Brain Injury and Dementia, Department of Neuroscience, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Patricia M Washington
- Laboratory for Brain Injury and Dementia, Department of Neuroscience, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Olga C Rodriguez
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Mark P Burns
- Laboratory for Brain Injury and Dementia, Department of Neuroscience, Georgetown University Medical Center, Washington, DC, 20057, USA. .,Department of Neuroscience, Georgetown University Medical Center, New Research Building-EG11, 3970 Reservoir Rd, NW, Washington, D.C, 20057, USA.
| |
Collapse
|
19
|
Ku MC, Waiczies S, Niendorf T, Pohlmann A. Assessment of Blood Brain Barrier Leakage with Gadolinium-Enhanced MRI. Methods Mol Biol 2018; 1718:395-408. [PMID: 29341021 DOI: 10.1007/978-1-4939-7531-0_23] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The integrity of the blood-brain barrier (BBB) can be noninvasively monitored by magnetic resonance imaging (MRI). Conventional MR contrast agents (CAs) containing gadolinium are used in association with MRI in routine clinical practice to detect and quantify BBB leakage. Under normal circumstances CAs do not cross the intact BBB. However due to their small size they extravasate from the blood into the brain tissue even when the BBB is partially compromised. Here we describe an MR method based on T1-weighted images taken prior to and after CA injection. This MR method is useful for investigating BBB permeability in in vivo mouse models and can be easily applied in a number of experimental disease conditions including neuroinflammation disorders, or to assess (un)wanted drug effects.
Collapse
Affiliation(s)
- Min-Chi Ku
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Sonia Waiczies
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany
| | - Andreas Pohlmann
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.
| |
Collapse
|
20
|
Damar U, Gersner R, Johnstone JT, Kapur K, Collins S, Schachter S, Rotenberg A. Alterations in the Timing of Huperzine A Cerebral Pharmacodynamics in the Acute Traumatic Brain Injury Setting. J Neurotrauma 2017; 35:393-397. [PMID: 29054135 DOI: 10.1089/neu.2017.5258] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Traumatic brain injury (TBI) may affect the pharmacodynamics of centrally acting drugs. Paired-pulse transcranial magnetic stimulation (ppTMS) is a safe and noninvasive measure of cortical gamma-aminobutyric acid (GABA)-mediated cortical inhibition. Huperzine A (HupA) is a naturally occurring acetylcholinesterase inhibitor with newly discovered potent GABA-mediated antiepileptic capacity, which is reliably detected by ppTMS. To test whether TBI alters cerebral HupA pharmacodynamics, we exposed rats to fluid percussion injury (FPI) and tested whether ppTMS metrics of cortical inhibition differ in magnitude and temporal pattern in injured rats. Anesthetized adult rats were exposed to FPI or sham injury. Ninety minutes post-TBI, rats were injected with HupA or saline (0.6 mg/kg, intraperitoneally). TBI resulted in reduced cortical inhibition 90 min after the injury (N = 18) compared to sham (N = 13) controls (p = 0.03). HupA enhanced cortical inhibition after both sham injury (N = 6; p = 0.002) and TBI (N = 6; p = 0.02). The median time to maximum HupA inhibition in sham and TBI groups were 46.4 and 76.5 min, respectively (p = 0.03). This was consistent with a quadratic trend comparison that projects HupA-mediated cortical inhibition to last longer in injured rats (p = 0.007). We show that 1) cortical GABA-mediated inhibition, as measured by ppTMS, decreases acutely post-TBI, 2) HupA restores lost post-TBI GABA-mediated inhibition, and 3) HupA-mediated enhancement of cortical inhibition is delayed post-TBI. The plausible reasons of the latter include 1) low HupA volume of distribution rendering HupA confined in the intravascular compartment, therefore vulnerable to reduced post-TBI cerebral perfusion, and 2) GABAR dysfunction and increased AChE activity post-TBI.
Collapse
Affiliation(s)
- Ugur Damar
- 1 F.M. Kirby Neurobiology Center , Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Roman Gersner
- 1 F.M. Kirby Neurobiology Center , Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | | | - Kush Kapur
- 1 F.M. Kirby Neurobiology Center , Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | | | - Steven Schachter
- 3 Department of Neurology, Beth Israel Deaconess Medical Center , and Massachusetts General Hospital,Harvard Medical School, Boston, Massachusetts
| | - Alexander Rotenberg
- 1 F.M. Kirby Neurobiology Center , Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
21
|
Li L, Chopp M, Ding G, Li Q, Mahmood A, Jiang Q. Chronic global analysis of vascular permeability and cerebral blood flow after bone marrow stromal cell treatment of traumatic brain injury in the rat: A long-term MRI study. Brain Res 2017; 1675:61-70. [PMID: 28899758 DOI: 10.1016/j.brainres.2017.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/29/2017] [Accepted: 09/04/2017] [Indexed: 12/11/2022]
Abstract
Vascular permeability and hemodynamic alteration in response to the transplantation of human bone marrow stromal cells (hMSCs) after traumatic brain injury (TBI) were longitudinally investigated in non directly injured and normal-appearing cerebral tissue using magnetic resonance imaging (MRI). Male Wistar rats (300-350g, n=30) subjected to controlled cortical impact TBI were intravenously injected with 1ml of saline (at 6-h or 1-week post-injury, n=5/group) or with hMSCs in suspension (∼3×106 hMSCs, at 6-h or 1-week post-injury, n=10/group). MRI measurements of T2-weighted imaging, cerebral blood flow (CBF) and blood-to-brain transfer constant (Ki) of gadolinium-diethylenetriamine pentaacetic acid (Gd-DTPA), and neurological behavioral estimates were performed on all animals at multiple time points up to 3-months post-injury. Our long-term imaging data show that blood-brain barrier (BBB) breakdown and hemodynamic disruption after TBI, as revealed by Ki and CBF, respectively, affect both hemispheres of the brain in a diffuse manner. Our data reveal a sensitive vascular permeability and hemodynamic reaction in response to the time-dependent transplantation of hMSCs. A more rapid reduction of Ki following cell treatment is associated with a higher level of CBF in the injured brain, and acute (6h) cell administration leads to enhanced therapeutic effects on both the recovery of vascular integrity and stabilization of cerebral perfusion compared to delayed (1w) cell engraftment. Our results indicate that cell-enhanced BBB reconstitution plays an important role in underlying the restoration of CBF in the injured brain, which in turn, contributes to the improvement of functional outcome.
Collapse
Affiliation(s)
- Lian Li
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA.
| | - Michael Chopp
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA; Department of Physics, Oakland University, Rochester, MI 48309, USA.
| | - Guangliang Ding
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA.
| | - Qingjiang Li
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA.
| | - Asim Mahmood
- Department of Neurosurgery, Henry Ford Health System, Detroit, MI 48208, USA.
| | - Quan Jiang
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA.
| |
Collapse
|
22
|
Truettner JS, Bramlett HM, Dietrich WD. Posttraumatic therapeutic hypothermia alters microglial and macrophage polarization toward a beneficial phenotype. J Cereb Blood Flow Metab 2017; 37:2952-2962. [PMID: 27864465 PMCID: PMC5536802 DOI: 10.1177/0271678x16680003] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Posttraumatic inflammatory processes contribute to pathological and reparative processes observed after traumatic brain injury (TBI). Recent findings have emphasized that these divergent effects result from subsets of proinflammatory (M1) or anti-inflammatory (M2) microglia and macrophages. Therapeutic hypothermia has been tested in preclinical and clinical models of TBI to limit secondary injury mechanisms including proinflammatory processes. This study evaluated the effects of posttraumatic hypothermia (PTH) on phenotype patterns of microglia/macrophages. Sprague-Dawley rats underwent moderate fluid percussion brain injury with normothermia (37℃) or hypothermia (33℃). Cortical and hippocampal regions were analyzed using flow cytometry and reverse transcription-polymerase chain reaction (RT-PCR) at several periods after injury. Compared to normothermia, PTH attenuated infiltrating cortical macrophages positive for CD11b+ and CD45high. At 24 h, the ratio of iNOS+ (M1) to arginase+ (M2) cells after hypothermia showed a decrease compared to normothermia. RT-PCR of M1-associated genes including iNOS and IL-1β was significantly reduced with hypothermia while M2-associated genes including arginase and CD163 were significantly increased compared to normothermic conditions. The injury-induced increased expression of the chemokine Ccl2 was also reduced with PTH. These studies provide a link between temperature-sensitive alterations in macrophage/microglia activation and polarization toward a M2 phenotype that could be permissive for cell survival and repair.
Collapse
Affiliation(s)
- Jessie S Truettner
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, USA
| | - Helen M Bramlett
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, USA
| | - W Dalton Dietrich
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, USA
| |
Collapse
|
23
|
Early Loss of Blood-Brain Barrier Integrity Precedes NOX2 Elevation in the Prefrontal Cortex of an Animal Model of Psychosis. Mol Neurobiol 2016; 54:2031-2044. [PMID: 26910819 PMCID: PMC5355521 DOI: 10.1007/s12035-016-9791-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 02/11/2016] [Indexed: 12/29/2022]
Abstract
The social isolation rearing of young adult rats is a model of psychosocial stress and provides a nonpharmacological tool to study alterations reminiscent of symptoms seen in psychosis. We have previously demonstrated that social isolation in rats leads to increased oxidative stress and to cerebral NOX2 elevations. Here, we investigated early alterations in mRNA expression leading to increased NOX2 in the brain. Rats were exposed to a short period of social isolation (1 week) and real-time polymerase chain reaction (PCR) for mRNA expression of genes involved in blood-brain barrier (BBB) formation and integrity (ORLs, Vof 21 and Vof 16, Leng8, Vnr1, and Trank 1 genes) was performed. Real-time PCR experiments, immunohistochemistry, and Western blotting analysis showed an increased expression of these genes and related proteins in isolated rats with respect to control animals. The expression of specific markers of BBB integrity, such as matrix metalloproteinase 2 (MMP2), matrix metalloproteinase 9 (MMP9), occludin 1, and plasmalemmal vesicle associated protein-1 (PV-1), was also significantly altered after 1 week of social isolation. BBB permeability, evaluated by quantification of Evans blue dye extravasation, as well as interstitial fluid, was significantly increased in rats isolated for 1 week with respect to controls. Isolation-induced BBB disruption was also accompanied by a significant increase of Interleukin 6 (IL-6) expression. Conversely, no differences in NOX2 levels were detected at this time point. Our study demonstrates that BBB disruption precedes NOX2 elevations in the brain. These results provide new insights in the interplay of mechanisms linking psychosocial stress to early oxidative stress in the brain, disruption of the BBB, and the development of mental disorders.
Collapse
|
24
|
A flow cytometric approach to analyzing mature and progenitor endothelial cells following traumatic brain injury. J Neurosci Methods 2016; 263:57-67. [PMID: 26854397 DOI: 10.1016/j.jneumeth.2016.01.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/27/2016] [Accepted: 01/29/2016] [Indexed: 01/23/2023]
Abstract
BACKGROUND Traumatic brain injury (TBI) continues to be a major source of death and disability worldwide, and one of the earliest and most profound deficits comes from vascular damage and breakdown of the blood-brain barrier (BBB). Cerebral vascular endothelial cells (cvECs) and endothelial progenitor cells (EPCs) have been shown to play essential roles in vessel repair and BBB stability, although their individual contributions remain poorly defined. NEW METHOD We employ TruCount beads with flow cytometry to precisely quantify cvECs, EPCs, and peripheral leukocytes in the murine cortex after controlled cortical impact (CCI) injury. RESULTS We found a significant reduction in the number of cvECs at 3 days post-injury (dpi), whereas the EPCs and invading peripheral leukocytes were significantly increased compared with sham controls. Proliferation studies demonstrate that both cvECs and EPCs are undergoing cell expansion in the first week post-injury. Furthermore, analysis of protein expression using mean fluorescence intensity found increases in PECAM-1, VEGFR-2, and VE-Cadherin expression per cell at 3 dpi, which is consistent with western blot analysis. COMPARISON WITH EXISTING METHODS Classic methods of cell analysis, such as histological cell counts, in the traumatic injured brain are labor intensive, time-consuming, and potentially biased; whereas flow cytometry provides an efficient, non-biased approach to simultaneously quantify multiple cell types. However, conventional flow cytometry that employs capped events can provide misleading results in CNS injured tissues. CONCLUSIONS We demonstrate that TruCount quantification using flow cytometry is a powerful tool for quantifying mature and progenitor endothelial cell changes after TBI.
Collapse
|
25
|
Characterization of Enhancing MS Lesions by Dynamic Texture Parameter Analysis of Dynamic Susceptibility Perfusion Imaging. BIOMED RESEARCH INTERNATIONAL 2016; 2016:9578139. [PMID: 26885524 PMCID: PMC4738712 DOI: 10.1155/2016/9578139] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 12/03/2015] [Indexed: 01/21/2023]
Abstract
Purpose. The purpose of this study was to investigate statistical differences with MR perfusion imaging features that reflect the dynamics of Gadolinium-uptake in MS lesions using dynamic texture parameter analysis (DTPA). Methods. We investigated 51 MS lesions (25 enhancing, 26 nonenhancing lesions) of 12 patients. Enhancing lesions (n = 25) were prestratified into enhancing lesions with increased permeability (EL+; n = 11) and enhancing lesions with subtle permeability (EL−; n = 14). Histogram-based feature maps were computed from the raw DSC-image time series and the corresponding texture parameters were analyzed during the inflow, outflow, and reperfusion time intervals. Results. Significant differences (p < 0.05) were found between EL+ and EL− and between EL+ and nonenhancing inactive lesions (NEL). Main effects between EL+ versus EL− and EL+ versus NEL were observed during reperfusion (mainly in mean and standard deviation (SD): EL+ versus EL− and EL+ versus NEL), while EL− and NEL differed only in their SD during outflow. Conclusion. DTPA allows grading enhancing MS lesions according to their perfusion characteristics. Texture parameters of EL− were similar to NEL, while EL+ differed significantly from EL− and NEL. Dynamic texture analysis may thus be further investigated as noninvasive endogenous marker of lesion formation and restoration.
Collapse
|
26
|
Wang ZG, Cheng Y, Yu XC, Ye LB, Xia QH, Johnson NR, Wei X, Chen DQ, Cao G, Fu XB, Li XK, Zhang HY, Xiao J. bFGF Protects Against Blood-Brain Barrier Damage Through Junction Protein Regulation via PI3K-Akt-Rac1 Pathway Following Traumatic Brain Injury. Mol Neurobiol 2015; 53:7298-7311. [PMID: 26687235 DOI: 10.1007/s12035-015-9583-6] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 11/29/2015] [Indexed: 01/07/2023]
Abstract
Many traumatic brain injury (TBI) survivors sustain neurological disability and cognitive impairments due to the lack of defined therapies to reduce TBI-induced blood-brain barrier (BBB) breakdown. Exogenous basic fibroblast growth factor (bFGF) has been shown to have neuroprotective function in brain injury. The present study therefore investigates the beneficial effects of bFGF on the BBB after TBI and the underlying mechanisms. In this study, we demonstrate that bFGF reduces neurofunctional deficits and preserves BBB integrity in a mouse model of TBI. bFGF suppresses RhoA and upregulates tight junction proteins, thereby mitigating BBB breakdown. In vitro, bFGF exerts a protective effect on BBB by upregulating tight junction proteins claudin-5, occludin, zonula occludens-1, p120-catenin, and β-catenin under oxygen glucose deprivation/reoxygenation (OGD) in human brain microvascular endothelial cells (HBMECs). Both the in vivo and in vitro effects are related to the activation of the downstream signaling pathway, PI3K/Akt/Rac-1. Inhibition of the PI3K/Akt or Rac-1 by specific inhibitors LY294002 or si-Rac-1, respectively, partially reduces the protective effect of bFGF on BBB integrity. Overall, our results indicate that the protective role of bFGF on BBB involves the regulation of tight junction proteins and RhoA in the TBI model and OGD-induced HBMECs injury, and that activation of the PI3K/Akt /Rac-1 signaling pathway underlies these effects.
Collapse
Affiliation(s)
- Zhou-Guang Wang
- School of Pharmacy, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yi Cheng
- School of Pharmacy, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, 325035, China
- Department of Pharmacy, Longyou People's Hospital, Quzhou, 324400, China
| | - Xi-Chong Yu
- School of Pharmacy, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, 325035, China
| | - Li-Bing Ye
- School of Pharmacy, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, 325035, China
| | - Qing-Hai Xia
- School of Pharmacy, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, 325035, China
| | - Noah R Johnson
- Department of Bioengineering and the McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA
| | - Xiaojie Wei
- Department of Neurosurgery, Cixi People's Hospital, Wenzhou Medical University, Ningbo, 315300, China
| | - Da-Qing Chen
- Department of Emergency, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China
| | - Guodong Cao
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Xiao-Bing Fu
- Institute of Basic Medical Science, Chinese PLA General Hospital, Beijing, 100853, China
| | - Xiao-Kun Li
- School of Pharmacy, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, 325035, China
| | - Hong-Yu Zhang
- School of Pharmacy, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Jian Xiao
- School of Pharmacy, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
27
|
Lopez-Rodriguez AB, Acaz-Fonseca E, Viveros MP, Garcia-Segura LM. Changes in cannabinoid receptors, aquaporin 4 and vimentin expression after traumatic brain injury in adolescent male mice. Association with edema and neurological deficit. PLoS One 2015; 10:e0128782. [PMID: 26039099 PMCID: PMC4454518 DOI: 10.1371/journal.pone.0128782] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 04/30/2015] [Indexed: 12/21/2022] Open
Abstract
Traumatic brain injury (TBI) incidence rises during adolescence because during this critical neurodevelopmental period some risky behaviors increase. The purpose of this study was to assess the contribution of cannabinoid receptors (CB1 and CB2), blood brain barrier proteins (AQP4) and astrogliosis markers (vimentin) to neurological deficit and brain edema formation in a TBI weight drop model in adolescent male mice. These molecules were selected since they are known to change shortly after lesion. Here we extended their study in three different timepoints after TBI, including short (24h), early mid-term (72h) and late mid-term (two weeks). Our results showed that TBI induced an increase in brain edema up to 72 h after lesion that was directly associated with neurological deficit. Neurological deficit appeared 24 h after TBI and was completely recovered two weeks after trauma. CB1 receptor expression decreased after TBI and was negatively correlated with edema formation and behavioral impairments. CB2 receptor increased after injury and was associated with high neurological deficit whereas no correlation with edema was found. AQP4 increased after TBI and was positively correlated with edema and neurological impairments as occurred with vimentin expression in the same manner. The results suggest that CB1 and CB2 differ in the mechanisms to resolve TBI and also that some of their neuroprotective effects related to the control of reactive astrogliosis may be due to the regulation of AQP4 expression on the end-feet of astrocytes.
Collapse
Affiliation(s)
- Ana Belen Lopez-Rodriguez
- Department of Animal Physiology (II), Biology Faculty, Complutense University of Madrid, Madrid, Spain
- Instituto Cajal, Consejo Superior de Investigaciones Cientificas (CSIC), Madrid, Spain
- * E-mail:
| | - Estefania Acaz-Fonseca
- Department of Animal Physiology (II), Biology Faculty, Complutense University of Madrid, Madrid, Spain
| | - Maria-Paz Viveros
- Instituto Cajal, Consejo Superior de Investigaciones Cientificas (CSIC), Madrid, Spain
| | - Luis M. Garcia-Segura
- Department of Animal Physiology (II), Biology Faculty, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
28
|
Lopez-Rodriguez AB, Acaz-Fonseca E, Giatti S, Caruso D, Viveros MP, Melcangi RC, Garcia-Segura LM. Correlation of brain levels of progesterone and dehydroepiandrosterone with neurological recovery after traumatic brain injury in female mice. Psychoneuroendocrinology 2015; 56:1-11. [PMID: 25770855 DOI: 10.1016/j.psyneuen.2015.02.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 02/20/2015] [Accepted: 02/24/2015] [Indexed: 11/15/2022]
Abstract
Traumatic brain injury (TBI) is an important cause of disability in humans. Neuroactive steroids, such as progesterone and dehydroepiandrosterone (DHEA), are neuroprotective in TBI models. However in order to design potential neuroprotective strategies based on neuroactive steroids it is important to determine whether its brain levels are altered by TBI. In this study we have used a weight-drop model of TBI in young adult female mice to determine the levels of neuroactive steroids in the brain and plasma at 24h, 72 h and 2 weeks after injury. We have also analyzed whether the levels of neuroactive steroids after TBI correlated with the neurological score of the animals. TBI caused neurological deficit detectable at 24 and 72 h, which recovered by 2 weeks after injury. Brain levels of progesterone, tetrahydroprogesterone (THP), isopregnanolone and 17β-estradiol were decreased 24h, 72 h and 2 weeks after TBI. DHEA and brain testosterone levels presented a transient decrease at 24h after lesion. Brain levels of progesterone and DHEA showed a positive correlation with neurological recovery. Plasma analyses showed that progesterone was decreased 72 h after lesion but, in contrast with brain progesterone, its levels did not correlate with neurological deficit. These findings indicate that TBI alters the levels of neuroactive steroids in the brain with independence of its plasma levels and suggest that the pharmacological increase in the brain of the levels of progesterone and DHEA may result in the improvement of neurological recovery after TBI.
Collapse
Affiliation(s)
- Ana Belen Lopez-Rodriguez
- Instituto Cajal, CSIC, Avenida Doctor Arce 37, 28002 Madrid, Spain; Department of Animal Physiology (Animal Physiology II), Faculty of Biology, Complutense University of Madrid, Madrid, Spain.
| | | | - Silvia Giatti
- Department of Pharmacological and Biomolecular Sciences, Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy
| | - Donatella Caruso
- Department of Pharmacological and Biomolecular Sciences, Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy
| | - Maria-Paz Viveros
- Department of Animal Physiology (Animal Physiology II), Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | - Roberto C Melcangi
- Department of Pharmacological and Biomolecular Sciences, Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy
| | | |
Collapse
|
29
|
Pathogenesis of brain edema and investigation into anti-edema drugs. Int J Mol Sci 2015; 16:9949-75. [PMID: 25941935 PMCID: PMC4463627 DOI: 10.3390/ijms16059949] [Citation(s) in RCA: 198] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 04/15/2015] [Accepted: 04/27/2015] [Indexed: 12/18/2022] Open
Abstract
Brain edema is a potentially fatal pathological state that occurs after brain injuries such as stroke and head trauma. In the edematous brain, excess accumulation of extracellular fluid results in elevation of intracranial pressure, leading to impaired nerve function. Despite the seriousness of brain edema, only symptomatic treatments to remove edema fluid are currently available. Thus, the development of novel anti-edema drugs is required. The pathogenesis of brain edema is classified as vasogenic or cytotoxic edema. Vasogenic edema is defined as extracellular accumulation of fluid resulting from disruption of the blood-brain barrier (BBB) and extravasations of serum proteins, while cytotoxic edema is characterized by cell swelling caused by intracellular accumulation of fluid. Various experimental animal models are often used to investigate mechanisms underlying brain edema. Many soluble factors and functional molecules have been confirmed to induce BBB disruption or cell swelling and drugs targeted to these factors are expected to have anti-edema effects. In this review, we discuss the mechanisms and involvement of factors that induce brain edema formation, and the possibility of anti-edema drugs targeting them.
Collapse
|
30
|
Wang Y, Fan R, Luo J, Tang T, Xing Z, Xia Z, Peng W, Wang W, Lv H, Huang W, Liang Y, Yi L, Lu H, Huang X. An ultra high performance liquid chromatography with tandem mass spectrometry method for plasma and cerebrospinal fluid pharmacokinetics of rhein in patients with traumatic brain injury after administration of rhubarb decoction. J Sep Sci 2015; 38:1100-8. [PMID: 25598181 DOI: 10.1002/jssc.201401197] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 01/04/2015] [Accepted: 01/05/2015] [Indexed: 12/24/2022]
Affiliation(s)
- Yang Wang
- Laboratory of Ethnopharmacology; Institute of Integrated Traditional Chinese and Western Medicine; Xiangya Hospital; Central South University; Changsha PR China
| | - Rong Fan
- Laboratory of Ethnopharmacology; Institute of Integrated Traditional Chinese and Western Medicine; Xiangya Hospital; Central South University; Changsha PR China
| | - Jiekun Luo
- Laboratory of Ethnopharmacology; Institute of Integrated Traditional Chinese and Western Medicine; Xiangya Hospital; Central South University; Changsha PR China
| | - Tao Tang
- Laboratory of Ethnopharmacology; Institute of Integrated Traditional Chinese and Western Medicine; Xiangya Hospital; Central South University; Changsha PR China
| | - Zhihua Xing
- Laboratory of Ethnopharmacology; Institute of Integrated Traditional Chinese and Western Medicine; Xiangya Hospital; Central South University; Changsha PR China
| | - Zian Xia
- Laboratory of Ethnopharmacology; Institute of Integrated Traditional Chinese and Western Medicine; Xiangya Hospital; Central South University; Changsha PR China
| | - Weijun Peng
- Laboratory of Ethnopharmacology; Institute of Integrated Traditional Chinese and Western Medicine; Xiangya Hospital; Central South University; Changsha PR China
| | - Wenzhu Wang
- Laboratory of Ethnopharmacology; Institute of Integrated Traditional Chinese and Western Medicine; Xiangya Hospital; Central South University; Changsha PR China
- Departments of Anesthesiology and Critical Care Medicine; Johns Hopkins University, School of Medicine; Baltimore MD USA
| | - Huiying Lv
- Hunan Agricultural Product Processing Institute; Hunan Academy of Agricultural Sciences; Changsha PR China
| | - Wei Huang
- Laboratory of Ethnopharmacology; Institute of Integrated Traditional Chinese and Western Medicine; Xiangya Hospital; Central South University; Changsha PR China
| | - Yizeng Liang
- College of Chemistry and Chemical Engineering; Central South University; Changsha PR China
| | - Lunzhao Yi
- Yunnan Food Safety Research Institute; Kunming University of Science and Technology; Kunming PR China
| | - Hongmei Lu
- College of Chemistry and Chemical Engineering; Central South University; Changsha PR China
| | - Xi Huang
- Laboratory of Ethnopharmacology; Institute of Integrated Traditional Chinese and Western Medicine; Xiangya Hospital; Central South University; Changsha PR China
| |
Collapse
|
31
|
Protective actions of PJ34, a poly(ADP-ribose)polymerase inhibitor, on the blood-brain barrier after traumatic brain injury in mice. Neuroscience 2015; 291:26-36. [PMID: 25668593 DOI: 10.1016/j.neuroscience.2015.01.070] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 01/30/2015] [Accepted: 01/30/2015] [Indexed: 01/12/2023]
Abstract
Poly(ADP-ribose) polymerase (PARP) is activated by oxidative stress and plays an important role in traumatic brain injury (TBI). The objective of this study was to investigate whether PARP activation participated in the blood-brain barrier (BBB) disruption and edema formation in a mouse model of controlled cortical impact (CCI). N-(6-oxo-5,6-dihydrophenanthridin-2-yl)-N,N-dimethylacetamide (PJ34) (10 mg/kg), a selective PARP inhibitor, was administered intraperitoneally at 5 min and 8 h after experimental CCI. After 6 h and 24 h of CCI, the permeability of the cortical BBB was determined after Evans Blue administration. The water content of the brain was also measured. Treatment with PJ34 markedly attenuated the permeability of the BBB and decreased the brain edema at 6 h and 24 h after CCI. Our data showed the up-regulation of nuclear factor-κB in cytosolic fractions and nuclear fractions in the injured cortex, and these changes were reversed by PJ34. Moreover, PJ34 significantly lessened the activities of myeloperoxidase and the levels of matrix metalloproteinase-9, enhanced the levels of occludin, laminin, collagen IV and integrin β1, reduced neurological deficits, decreased the contusion volume, and attenuated the necrotic and apoptotic neuronal cell death. These data suggest the protective effects of PJ34 on BBB integrity and cell death during acute TBI.
Collapse
|
32
|
Rozas NS, Redell JB, Hill JL, McKenna J, Moore AN, Gambello MJ, Dash PK. Genetic activation of mTORC1 signaling worsens neurocognitive outcome after traumatic brain injury. J Neurotrauma 2014; 32:149-58. [PMID: 25025304 DOI: 10.1089/neu.2014.3469] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Although the mechanisms that contribute to the development of traumatic brain injury (TBI)-related deficits are not fully understood, it has been proposed that altered energy utilization may be a contributing factor. The tuberous sclerosis complex, a heterodimer composed of hamartin/Tsc-1 and tuberin/Tsc-2, is a critical regulatory node that integrates nutritional and growth signals to govern energy using processes by regulating the activity of mechanistic Target of Rapamycin complex 1 (mTORC1). mTORC1 activation results in enhanced protein synthesis, an energy consuming process. We show that mice that have a heterozygous deletion of Tsc2 exhibit elevated basal mTORC1 activity in the cortex and the hippocampus while still exhibiting normal motor and neurocognitive functions. In addition, a mild closed head injury (mCHI) that did not activate mTORC1 in wild-type mice resulted in a further increase in mTORC1 activity in Tsc2(+/KO) mice above the level of activity observed in uninjured Tsc2(+/KO) mice. This enhanced level of increased mTORC1 activity was associated with worsened cognitive function as assessed using the Morris water maze and context discrimination tasks. These results suggest that there is a threshold of increased mTORC1 activity after a TBI that is detrimental to neurobehavioral performance, and interventions to inhibit excessive mTORC1 activation may be beneficial to neurocognitive outcome.
Collapse
Affiliation(s)
- Natalia S Rozas
- 1 Department of Neurobiology and Anatomy, the University of Texas Medical School , Houston, Texas
| | | | | | | | | | | | | |
Collapse
|
33
|
van Vliet E, Aronica E, Gorter J. Role of blood–brain barrier in temporal lobe epilepsy and pharmacoresistance. Neuroscience 2014; 277:455-73. [DOI: 10.1016/j.neuroscience.2014.07.030] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 07/17/2014] [Accepted: 07/21/2014] [Indexed: 12/14/2022]
|
34
|
Dual-energy CT Immediately after Endovascular Stroke Intervention: Prognostic Implications. Cardiovasc Intervent Radiol 2013; 37:1171-8. [DOI: 10.1007/s00270-013-0804-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 11/05/2013] [Indexed: 11/25/2022]
|
35
|
Tweedie D, Rachmany L, Rubovitch V, Zhang Y, Becker KG, Perez E, Hoffer BJ, Pick CG, Greig NH. Changes in mouse cognition and hippocampal gene expression observed in a mild physical- and blast-traumatic brain injury. Neurobiol Dis 2013; 54:1-11. [PMID: 23454194 PMCID: PMC3628969 DOI: 10.1016/j.nbd.2013.02.006] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 01/23/2013] [Accepted: 02/19/2013] [Indexed: 12/25/2022] Open
Abstract
Warfare has long been associated with traumatic brain injury (TBI) in militarized zones. Common forms of TBI can be caused by a physical insult to the head-brain or by the effects of a high velocity blast shock wave generated by the detonation of an explosive device. While both forms of trauma are distinctly different regarding the mechanism of trauma induction, there are striking similarities in the cognitive and emotional status of survivors. Presently, proven effective therapeutics for the treatment of either form of TBI are unavailable. To be able to develop efficacious therapies, studies involving animal models of physical- and blast-TBI are required to identify possible novel or existing medicines that may be of value in the management of clinical events. We examined indices of cognition and anxiety-like behavior and the hippocampal gene transcriptome of mice subjected to both forms of TBI. We identified common behavioral deficits and gene expression regulations, in addition to unique injury-specific forms of gene regulation. Molecular pathways presented a pattern similar to that seen in gene expression. Interestingly, pathways connected to Alzheimer's disease displayed a markedly different form of regulation depending on the type of TBI. While these data highlight similarities in behavioral outcomes after trauma, the divergence in hippocampal transcriptome observed between models suggests that, at the molecular level, the TBIs are quite different. These models may provide tools to help define therapeutic approaches for the treatment of physical- and blast-TBIs. Based upon observations of increasing numbers of personnel displaying TBI related emotional and behavioral changes in militarized zones, the development of efficacious therapies will become a national if not a global priority.
Collapse
Affiliation(s)
- David Tweedie
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Lital Rachmany
- Department of Anatomy and Anthropology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, 69978 Israel
| | - Vardit Rubovitch
- Department of Anatomy and Anthropology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, 69978 Israel
| | - Yongqing Zhang
- Gene Expression and Genomics Unit, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Kevin G. Becker
- Gene Expression and Genomics Unit, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Evelyn Perez
- Laboratory of Experimental Gerontology, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Barry J. Hoffer
- Department of Neurosurgery, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Chaim G. Pick
- Department of Anatomy and Anthropology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, 69978 Israel
| | - Nigel H. Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
36
|
Disruption of the blood-brain barrier in pigs naturally infected with Taenia solium, untreated and after anthelmintic treatment. Exp Parasitol 2013; 134:443-6. [PMID: 23684909 DOI: 10.1016/j.exppara.2013.05.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 04/01/2013] [Accepted: 05/05/2013] [Indexed: 11/23/2022]
Abstract
Neurocysticercosis is a widely prevalent disease in the tropics that causes seizures and a variety into of neurological symptoms in most of the world. Experimental models are limited and do not allow assessment of the degree of inflammation around brain cysts. The vital dye Evans Blue (EB) was injected to 11 pigs naturally infected with Taenia solium cysts to visually identify the extent of disruption of the blood-brain barrier. A total of 369 cysts were recovered from the 11 brains and classified according to the staining of their capsules as blue or unstained. The proportion of cysts with blue capsules was significantly higher in brains from pigs that had received anthelmintic treatment 48 and 120h before the EB infusion, indicating a greater compromise of the blood-brain barrier due to treatment. The model could be useful for understanding the pathology of treatment-induced inflammation in neurocysticercosis.
Collapse
|