1
|
Zhu H, Jin RU. The role of the fibroblast in Barrett's esophagus and esophageal adenocarcinoma. Curr Opin Gastroenterol 2024; 40:319-327. [PMID: 38626060 PMCID: PMC11155289 DOI: 10.1097/mog.0000000000001032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
PURPOSE OF REVIEW Barrett's esophagus (BE) is the number one risk factor for developing esophageal adenocarcinoma (EAC), a deadly cancer with limited treatment options that has been increasing in incidence in the US. In this report, we discuss current studies on the role of mesenchyme and cancer-associated fibroblasts (CAFs) in BE and EAC, and we highlight translational prospects of targeting these cells. RECENT FINDINGS New insights through studies using single-cell RNA sequencing (sc-RNA seq) have revealed an important emerging role of the mesenchyme in developmental signaling and cancer initiation. BE and EAC share similar stromal gene expression, as functional classifications of nonepithelial cells in BE show a remarkable similarity to EAC CAFs. Several recent sc-RNA seq studies and novel organoid fibroblast co-culture systems have characterized the subgroups of fibroblasts in BE and EAC, and have shown that these cells can directly influence the epithelium to induce BE development and cancer progression. Targeting the CAFs in EAC with may be a promising novel therapeutic strategy. SUMMARY The fibroblasts in the surrounding mesenchyme may have a direct role in influencing altered epithelial plasticity during BE development and progression to EAC.
Collapse
Affiliation(s)
- Huili Zhu
- Section of Hematology/Oncology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | | |
Collapse
|
2
|
Li X, Xu B, Yang H, Zhu Z. Gut Microbiota, Human Blood Metabolites, and Esophageal Cancer: A Mendelian Randomization Study. Genes (Basel) 2024; 15:729. [PMID: 38927665 PMCID: PMC11203100 DOI: 10.3390/genes15060729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/23/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Unbalances in the gut microbiota have been proposed as a possible cause of esophageal cancer (ESCA), yet the exact causal relationship remains unclear. PURPOSE To investigate the potential causal relationship between the gut microbiota and ESCA with Mendelian randomization (MR) analysis. METHODS Genome-wide association studies (GWASs) of 207 gut microbial taxa (5 phyla, 10 classes, 13 orders, 26 families, 48 genera, and 105 species) and 205 gut microbiota metabolic pathways conducted by the Dutch Microbiome Project (DMP) and a FinnGen cohort GWAS of esophageal cancer specified the summary statistics. To investigate the possibility of a mediation effect between the gut microbiota and ESCA, mediation MR analyses were performed for 1091 blood metabolites and 309 metabolite ratios. RESULTS MR analysis indicated that the relative abundance of 10 gut microbial taxa was associated with ESCA but all the 12 gut microbiota metabolic pathways with ESCA indicated no statistically significant association existing. Two blood metabolites and a metabolite ratio were discovered to be mediating factors in the pathway from gut microbiota to ESCA. CONCLUSION This research indicated the potential mediating effects of blood metabolites and offered genetic evidence in favor of a causal correlation between gut microbiota and ESCA.
Collapse
Affiliation(s)
- Xiuzhi Li
- State Key Laboratory of Oncology in South China, Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China;
| | - Bingchen Xu
- State Key Laboratory of Oncology in South China, Department of Minimally Invasive Intervention, Sun Yat-sen University Cancer Center, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China;
| | - Han Yang
- State Key Laboratory of Oncology in South China, Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China;
| | - Zhihua Zhu
- State Key Laboratory of Oncology in South China, Department of Thoracic Oncology, Sun Yat-sen University Cancer Center, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| |
Collapse
|
3
|
Maslenkina K, Mikhaleva L, Naumenko M, Vandysheva R, Gushchin M, Atiakshin D, Buchwalow I, Tiemann M. Signaling Pathways in the Pathogenesis of Barrett's Esophagus and Esophageal Adenocarcinoma. Int J Mol Sci 2023; 24:ijms24119304. [PMID: 37298253 DOI: 10.3390/ijms24119304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Barrett's esophagus (BE) is a premalignant lesion that can develop into esophageal adenocarcinoma (EAC). The development of Barrett's esophagus is caused by biliary reflux, which causes extensive mutagenesis in the stem cells of the epithelium in the distal esophagus and gastro-esophageal junction. Other possible cellular origins of BE include the stem cells of the mucosal esophageal glands and their ducts, the stem cells of the stomach, residual embryonic cells and circulating bone marrow stem cells. The classical concept of healing a caustic lesion has been replaced by the concept of a cytokine storm, which forms an inflammatory microenvironment eliciting a phenotypic shift toward intestinal metaplasia of the distal esophagus. This review describes the roles of the NOTCH, hedgehog, NF-κB and IL6/STAT3 molecular pathways in the pathogenesis of BE and EAC.
Collapse
Affiliation(s)
- Ksenia Maslenkina
- A.P. Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119991 Moscow, Russia
| | - Liudmila Mikhaleva
- A.P. Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119991 Moscow, Russia
| | - Maxim Naumenko
- A.P. Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119991 Moscow, Russia
| | - Rositsa Vandysheva
- A.P. Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119991 Moscow, Russia
| | - Michail Gushchin
- A.P. Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119991 Moscow, Russia
| | - Dmitri Atiakshin
- Research and Educational Resource Centre for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples' Friendship University of Russia Named after Patrice Lumumba, 117198 Moscow, Russia
| | - Igor Buchwalow
- Research and Educational Resource Centre for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples' Friendship University of Russia Named after Patrice Lumumba, 117198 Moscow, Russia
- Institute for Hematopathology, Fangdieckstr. 75a, 22547 Hamburg, Germany
| | - Markus Tiemann
- Institute for Hematopathology, Fangdieckstr. 75a, 22547 Hamburg, Germany
| |
Collapse
|
4
|
Wang M, Lou E, Xue Z. The role of bile acid in intestinal metaplasia. Front Physiol 2023; 14:1115250. [PMID: 36891144 PMCID: PMC9986488 DOI: 10.3389/fphys.2023.1115250] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 02/10/2023] [Indexed: 02/22/2023] Open
Abstract
A precancerous lesion of gastric cancer (GC), intestinal metaplasia (IM) is a pathological transformation of non-intestinal epithelium into an intestinal-like mucosa. It greatly raises the risk of developing the intestinal type of GC, which is frequently observed in the stomach and esophagus. It is understood that esophageal adenocarcinoma's precursor lesion, chronic gastroesophageal reflux disease (GERD), is what causes Barrett's esophagus (BE), an acquired condition. Recently, Bile acids (BAs), which are one of the compositions of gastric and duodenal contents, have been confirmed that it led to the occurrence and development of BE and gastric intestinal metaplasia (GIM). The objective of the current review is to discuss the mechanism of IM induced by bile acids. This review serves as a foundation for further research aimed at improving the way BE and GIM are currently managed.
Collapse
Affiliation(s)
- Menglei Wang
- Department of Digestive Diseases, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - Enzhe Lou
- Department of Digestive Diseases, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - Zengfu Xue
- Department of Digestive Diseases, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, China
| |
Collapse
|
5
|
Sugano K, Spechler SJ, El-Omar EM, McColl KEL, Takubo K, Gotoda T, Fujishiro M, Iijima K, Inoue H, Kawai T, Kinoshita Y, Miwa H, Mukaisho KI, Murakami K, Seto Y, Tajiri H, Bhatia S, Choi MG, Fitzgerald RC, Fock KM, Goh KL, Ho KY, Mahachai V, O'Donovan M, Odze R, Peek R, Rugge M, Sharma P, Sollano JD, Vieth M, Wu J, Wu MS, Zou D, Kaminishi M, Malfertheiner P. Kyoto international consensus report on anatomy, pathophysiology and clinical significance of the gastro-oesophageal junction. Gut 2022; 71:1488-1514. [PMID: 35725291 PMCID: PMC9279854 DOI: 10.1136/gutjnl-2022-327281] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/03/2022] [Indexed: 02/07/2023]
Abstract
OBJECTIVE An international meeting was organised to develop consensus on (1) the landmarks to define the gastro-oesophageal junction (GOJ), (2) the occurrence and pathophysiological significance of the cardiac gland, (3) the definition of the gastro-oesophageal junctional zone (GOJZ) and (4) the causes of inflammation, metaplasia and neoplasia occurring in the GOJZ. DESIGN Clinical questions relevant to the afore-mentioned major issues were drafted for which expert panels formulated relevant statements and textural explanations.A Delphi method using an anonymous system was employed to develop the consensus, the level of which was predefined as ≥80% of agreement. Two rounds of voting and amendments were completed before the meeting at which clinical questions and consensus were finalised. RESULTS Twenty eight clinical questions and statements were finalised after extensive amendments. Critical consensus was achieved: (1) definition for the GOJ, (2) definition of the GOJZ spanning 1 cm proximal and distal to the GOJ as defined by the end of palisade vessels was accepted based on the anatomical distribution of cardiac type gland, (3) chemical and bacterial (Helicobacter pylori) factors as the primary causes of inflammation, metaplasia and neoplasia occurring in the GOJZ, (4) a new definition of Barrett's oesophagus (BO). CONCLUSIONS This international consensus on the new definitions of BO, GOJ and the GOJZ will be instrumental in future studies aiming to resolve many issues on this important anatomic area and hopefully will lead to better classification and management of the diseases surrounding the GOJ.
Collapse
Affiliation(s)
- Kentaro Sugano
- Division of Gastroenterology, Department of Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Stuart Jon Spechler
- Division of Gastroenterology, Center for Esophageal Diseases, Baylor University Medical Center, Dallas, Texas, USA
| | - Emad M El-Omar
- Microbiome Research Centre, St George & Sutherland Clinical Campuses, School of Clinical Medicine, Faculty of Medicine & Health, Sydney, New South Wales, Australia
| | - Kenneth E L McColl
- Division of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Kaiyo Takubo
- Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Takuji Gotoda
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Mitsuhiro Fujishiro
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Katsunori Iijima
- Department of Gastroenterology, Akita University Graduate School of Medicine, Akita, Japan
| | - Haruhiro Inoue
- Digestive Disease Center, Showa University Koto Toyosu Hospital, Tokyo, Japan
| | - Takashi Kawai
- Department of Gastroenterological Endoscopy, Tokyo Medical University, Tokyo, Japan
| | | | - Hiroto Miwa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo College of Medicine, Kobe, Japan
| | - Ken-Ichi Mukaisho
- Education Center for Medicine and Nursing, Shiga University of Medical Science, Otsu, Japan
| | - Kazunari Murakami
- Department of Gastroenterology, Oita University Faculty of Medicine, Yuhu, Japan
| | - Yasuyuki Seto
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hisao Tajiri
- Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | | | - Myung-Gyu Choi
- Gastroenterology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, The Republic of Korea
| | - Rebecca C Fitzgerald
- Medical Research Council Cancer Unit, Hutchison/Medical Research Council Research Centre, University of Cambridge, Cambridge, UK
| | - Kwong Ming Fock
- Department of Gastroenterology and Hepatology, Duke NUS School of Medicine, National University of Singapore, Singapore
| | | | - Khek Yu Ho
- Department of Medicine, National University of Singapore, Singapore
| | - Varocha Mahachai
- Center of Excellence in Digestive Diseases, Thammasat University and Science Resarch and Innovation, Bangkok, Thailand
| | - Maria O'Donovan
- Department of Histopathology, Cambridge University Hospital NHS Trust UK, Cambridge, UK
| | - Robert Odze
- Department of Pathology, Tuft University School of Medicine, Boston, Massachusetts, USA
| | - Richard Peek
- Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Massimo Rugge
- Department of Medicine DIMED, Surgical Pathology and Cytopathology Unit, University of Padova, Padova, Italy
| | - Prateek Sharma
- Department of Gastroenterology and Hepatology, University of Kansas School of Medicine, Kansas City, Kansas, USA
| | - Jose D Sollano
- Department of Medicine, University of Santo Tomas, Manila, Philippines
| | - Michael Vieth
- Institute of Pathology, Klinikum Bayreuth, Friedrich-Alexander University Erlangen, Nurenberg, Germany
| | - Justin Wu
- Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
| | - Ming-Shiang Wu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Duowu Zou
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | - Peter Malfertheiner
- Medizinixhe Klinik und Poliklinik II, Ludwig Maximillian University Klinikum, Munich, Germany
- Klinik und Poliklinik für Radiologie, Ludwig Maximillian University Klinikum, Munich, Germany
| |
Collapse
|
6
|
Cranberry Polyphenols in Esophageal Cancer Inhibition: New Insights. Nutrients 2022; 14:nu14050969. [PMID: 35267943 PMCID: PMC8912450 DOI: 10.3390/nu14050969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 12/31/2022] Open
Abstract
Esophageal adenocarcinoma (EAC) is a cancer characterized by rapidly rising incidence and poor survival, resulting in the need for new prevention and treatment options. We utilized two cranberry polyphenol extracts, one proanthocyanidin enriched (C-PAC) and a combination of anthocyanins, flavonoids, and glycosides (AFG) to assess inhibitory mechanisms utilizing premalignant Barrett’s esophagus (BE) and EAC derived cell lines. We employed reverse phase protein arrays (RPPA) and Western blots to examine cancer-associated pathways and specific signaling cascades modulated by C-PAC or AFG. Viability results show that C-PAC is more potent than AFG at inducing cell death in BE and EAC cell lines. Based on the RPPA results, C-PAC significantly modulated 37 and 69 proteins in JH-EsoAd1 (JHAD1) and OE19 EAC cells, respectively. AFG treatment significantly altered 49 proteins in both JHAD1 and OE19 cells. Bioinformatic analysis of RPPA results revealed many previously unidentified pathways as modulated by cranberry polyphenols including NOTCH signaling, immune response, and epithelial to mesenchymal transition. Collectively, these results provide new insight regarding mechanisms by which cranberry polyphenols exert cancer inhibitory effects targeting EAC, with implications for potential use of cranberry constituents as cancer preventive agents.
Collapse
|
7
|
Lu F, Li Y, Wang X, Hu X, Liao X, Zhang Y. Early-life polyphenol intake promotes Akkermansia growth and increase of host goblet cells in association with the potential synergistic effect of Lactobacillus. Food Res Int 2021; 149:110648. [PMID: 34600650 DOI: 10.1016/j.foodres.2021.110648] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/03/2021] [Accepted: 08/18/2021] [Indexed: 12/17/2022]
Abstract
Mounting evidence suggests a critical role of gut microbiota in human colon health. Early life is a key developmental growth period, especially for building up gut microbiota and strengthening the colonic barrier. The connection between host colon and gut microbiota especially during early life is an area of increasing interest to researchers, also polyphenols improve host health through modulating this complex relationship. Postweaning (three-week-old) and adult (six-week-old) mice kept under specific pathogen-free conditions were used to investigate how early-life grape polyphenols supplementation influence the association between host colon and gut microbiota. Before grape polyphenols supplementation, postweaning mice had a higher original absolute abundance of Lactobacillus compared to adult mice. A 2-week grape polyphenols supplementation significantly boosted the abundance of Akkermansia and Lactobacillus and increased Lactobacillus-secreted lactate in postweaning mice. Early-life grape polyphenols supplementation also promoted the bloom of goblet cells and mucin 2, which benefitted both Akkermansia growth and colonic barrier. Moreover, the grape polyphenols-modulated bone morphogenetic protein (BMP), Notch and Wnt3 pathways triggered the bloom of goblet cells in GPs-administrated postweaning mice, and the increase in lactate could modulate those pathways. Meanwhile, adult mice were not affected by grape polyphenols supplementation. These results suggested that early-life polyphenol supplementation promoted Akkermansia growth and colonic barrier, which was in association with the sufficient abundance of Lactobacillus during early life. This study also indicated that Lactobacillus interact with Akkermansia through changing the physiology of host colonic goblet cells.
Collapse
Affiliation(s)
- Feng Lu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, Ministry of Science and Technology, Beijing 100083, China; Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Yuanyuan Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, Ministry of Science and Technology, Beijing 100083, China; Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Xiao Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, Ministry of Science and Technology, Beijing 100083, China; Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Xiaosong Hu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, Ministry of Science and Technology, Beijing 100083, China; Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, Ministry of Science and Technology, Beijing 100083, China; Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Yan Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, Ministry of Science and Technology, Beijing 100083, China; Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China.
| |
Collapse
|
8
|
Shersher E, Lahiry M, Alvarez-Trotta A, Diluvio G, Robbins DJ, Shiekhattar R, Capobianco AJ. NACK and INTEGRATOR act coordinately to activate Notch-mediated transcription in tumorigenesis. Cell Commun Signal 2021; 19:96. [PMID: 34551776 PMCID: PMC8456597 DOI: 10.1186/s12964-021-00776-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/14/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Notch signaling drives many aspects of neoplastic phenotype. Here, we report that the Integrator complex (INT) is a new component of the Notch transcriptional supercomplex. Together with Notch Activation Complex Kinase (NACK), INT activates Notch1 target genes by driving RNA polymerase II (RNAPII)-dependent transcription, leading to tumorigenesis. METHODS Size exclusion chromatography and CBF-1/RBPJ/Suppressor of Hairless/Lag-1 (CSL)-DNA affinity fast protein liquid chromatography (FPLC) was used to purify Notch/CSL-dependent complexes for liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Chromatin immunoprecipitation (ChIP) and quantitative polymerase chain reaction (qPCR) were performed to investigate transcriptional regulation of Notch target genes. Transfection of Notch Ternary Complex components into HEK293T cells was used as a recapitulation assay to study Notch-mediated transcriptional mechanisms. Gene knockdown was achieved via RNA interference and the effects of protein depletion on esophageal adenocarcinoma (EAC) proliferation were determined via a colony formation assay and murine xenografts. Western blotting was used to examine expression of INT subunits in EAC cells and evaluate apoptotic proteins upon INT subunit 11 knockdown (INTS11 KD). Gene KD effects were further explored via flow cytometry. RESULTS We identified the INT complex as part of the Notch transcriptional supercomplex. INT, together with NACK, activates Notch-mediated transcription. While NACK is required for the recruitment of RNAPII to a Notch-dependent promoter, the INT complex is essential for RNAPII phosphorylated at serine 5 (RNAPII-S5P), leading to transcriptional activation. Furthermore, INT subunits are overexpressed in EAC cells and INTS11 KD results in G2/M cell cycle arrest, apoptosis, and cell growth arrest in EAC. CONCLUSIONS This study identifies the INT complex as a novel co-factor in Notch-mediated transcription that together with NACK activates Notch target genes and leads to cancer cell proliferation. Video abstract.
Collapse
Affiliation(s)
- Elena Shersher
- Molecular Oncology Program, Division of Surgical Oncology, Dewitt Daughtry Family Department of Surgery, University of Miami, 1600 NW 10th Ave, Miami, FL, 33136, USA.,Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA.,Cancer Epigenetics Program, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Mohini Lahiry
- Molecular Oncology Program, Division of Surgical Oncology, Dewitt Daughtry Family Department of Surgery, University of Miami, 1600 NW 10th Ave, Miami, FL, 33136, USA.,Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Annamil Alvarez-Trotta
- Molecular Oncology Program, Division of Surgical Oncology, Dewitt Daughtry Family Department of Surgery, University of Miami, 1600 NW 10th Ave, Miami, FL, 33136, USA.,Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Giulia Diluvio
- Molecular Oncology Program, Division of Surgical Oncology, Dewitt Daughtry Family Department of Surgery, University of Miami, 1600 NW 10th Ave, Miami, FL, 33136, USA.,Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - David J Robbins
- Molecular Oncology Program, Division of Surgical Oncology, Dewitt Daughtry Family Department of Surgery, University of Miami, 1600 NW 10th Ave, Miami, FL, 33136, USA.,Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA.,Division of Surgical Oncology, Dewitt Daughtry Family Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Ramin Shiekhattar
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA.,Cancer Epigenetics Program, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA.,Department of Human Genetics, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Anthony J Capobianco
- Molecular Oncology Program, Division of Surgical Oncology, Dewitt Daughtry Family Department of Surgery, University of Miami, 1600 NW 10th Ave, Miami, FL, 33136, USA. .,Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA. .,Division of Surgical Oncology, Dewitt Daughtry Family Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA.
| |
Collapse
|
9
|
Issac J, Raveendran PS, Das AV. RFX1: a promising therapeutic arsenal against cancer. Cancer Cell Int 2021; 21:253. [PMID: 33964962 PMCID: PMC8106159 DOI: 10.1186/s12935-021-01952-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 04/26/2021] [Indexed: 02/08/2023] Open
Abstract
Regulatory factor X1 (RFX1) is an evolutionary conserved transcriptional factor that influences a wide range of cellular processes such as cell cycle, cell proliferation, differentiation, and apoptosis, by regulating a number of target genes that are involved in such processes. On a closer look, these target genes also play a key role in tumorigenesis and associated events. Such observations paved the way for further studies evaluating the role of RFX1 in cancer. These studies were indispensable due to the failure of conventional chemotherapeutic drugs to target key cellular hallmarks such as cancer stemness, cellular plasticity, enhanced drug efflux, de-regulated DNA repair machinery, and altered pathways evading apoptosis. In this review, we compile significant evidence for the tumor-suppressive activities of RFX1 while also analyzing its oncogenic potential in some cancers. RFX1 induction decreased cellular proliferation, modulated the immune system, induced apoptosis, reduced chemoresistance, and sensitized cancer stem cells for chemotherapy. Thus, our review discusses the pleiotropic function of RFX1 in multitudinous gene regulations, decisive protein–protein interactions, and also its role in regulating key cell signaling events in cancer. Elucidation of these regulatory mechanisms can be further utilized for RFX1 targeted therapy.
Collapse
Affiliation(s)
- Joby Issac
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thycaud.P.O, Thiruvananthapuram, 695014, Kerala, India
| | - Pooja S Raveendran
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thycaud.P.O, Thiruvananthapuram, 695014, Kerala, India
| | - Ani V Das
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thycaud.P.O, Thiruvananthapuram, 695014, Kerala, India.
| |
Collapse
|
10
|
Pepsin in gastroesophageal and extraesophageal reflux: molecular pathophysiology and diagnostic utility. Curr Opin Otolaryngol Head Neck Surg 2020; 28:401-409. [DOI: 10.1097/moo.0000000000000664] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
11
|
Kunze B, Wein F, Fang HY, Anand A, Baumeister T, Strangmann J, Gerland S, Ingermann J, Münch NS, Wiethaler M, Sahm V, Hidalgo-Sastre A, Lange S, Lightdale CJ, Bokhari A, Falk GW, Friedman RA, Ginsberg GG, Iyer PG, Jin Z, Nakagawa H, Shawber CJ, Nguyen T, Raab WJ, Dalerba P, Rustgi AK, Sepulveda AR, Wang KK, Schmid RM, Wang TC, Abrams JA, Quante M. Notch Signaling Mediates Differentiation in Barrett's Esophagus and Promotes Progression to Adenocarcinoma. Gastroenterology 2020; 159:575-590. [PMID: 32325086 PMCID: PMC7484392 DOI: 10.1053/j.gastro.2020.04.033] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 03/19/2020] [Accepted: 04/13/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Studies are needed to determine the mechanism by which Barrett's esophagus (BE) progresses to esophageal adenocarcinoma (EAC). Notch signaling maintains stem cells in the gastrointestinal tract and is dysregulated during carcinogenesis. We explored the relationship between Notch signaling and goblet cell maturation, a feature of BE, during EAC pathogenesis. METHODS We measured goblet cell density and levels of Notch messenger RNAs in BE tissues from 164 patients, with and without dysplasia or EAC, enrolled in a multicenter study. We analyzed the effects of conditional expression of an activated form of NOTCH2 (pL2.Lgr5.N2IC), conditional deletion of NOTCH2 (pL2.Lgr5.N2fl/fl), or loss of nuclear factor κB (NF-κB) (pL2.Lgr5.p65fl/fl), in Lgr5+ (progenitor) cells in L2-IL1B mice (which overexpress interleukin 1 beta in esophagus and squamous forestomach and are used as a model of BE). We collected esophageal and stomach tissues and performed histology, immunohistochemistry, flow cytometry, transcriptome, and real-time polymerase chain reaction analyses. Cardia and forestomach tissues from mice were cultured as organoids and incubated with inhibitors of Notch or NF-kB. RESULTS Progression of BE to EAC was associated with a significant reduction in goblet cell density comparing nondysplastic regions of tissues from patients; there was an inverse correlation between goblet cell density and levels of NOTCH3 and JAG2 messenger RNA. In mice, expression of the activated intracellular form of NOTCH2 in Lgr5+ cells reduced goblet-like cell maturation, increased crypt fission, and accelerated the development of tumors in the squamocolumnar junction. Mice with deletion of NOTCH2 from Lgr5+ cells had increased maturation of goblet-like cells, reduced crypt fission, and developed fewer tumors. Esophageal tissues from in pL2.Lgr5.N2IC mice had increased levels of RelA (which encodes the p65 unit of NF-κB) compared to tissues from L2-IL1B mice, and we found evidence of increased NF-κB activity in Lgr5+ cells. Esophageal tissues from pL2.Lgr5.p65fl/fl mice had lower inflammation and metaplasia scores than pL2.Lgr5.N2IC mice. In organoids derived from pL2-IL1B mice, the NF-κB inhibitor JSH-23 reduced cell survival and proliferation. CONCLUSIONS Notch signaling contributes to activation of NF-κB and regulates differentiation of gastric cardia progenitor cells in a mouse model of BE. In human esophageal tissues, progression of BE to EAC was associated with reduced goblet cell density and increased levels of Notch expression. Strategies to block this pathway might be developed to prevent EAC in patients with BE.
Collapse
Affiliation(s)
- Bettina Kunze
- II. Medizinische Klinik, Technische Universitat München, Munich, Germany
| | - Frederik Wein
- II. Medizinische Klinik, Technische Universitat München, Munich, Germany
| | - Hsin-Yu Fang
- II. Medizinische Klinik, Technische Universitat München, Munich, Germany
| | - Akanksha Anand
- II. Medizinische Klinik, Technische Universitat München, Munich, Germany
| | - Theresa Baumeister
- II. Medizinische Klinik, Technische Universitat München, Munich, Germany
| | - Julia Strangmann
- II. Medizinische Klinik, Technische Universitat München, Munich, Germany
| | - Sophie Gerland
- II. Medizinische Klinik, Technische Universitat München, Munich, Germany
| | - Jonas Ingermann
- II. Medizinische Klinik, Technische Universitat München, Munich, Germany
| | | | - Maria Wiethaler
- II. Medizinische Klinik, Technische Universitat München, Munich, Germany
| | - Vincenz Sahm
- II. Medizinische Klinik, Technische Universitat München, Munich, Germany
| | - Ana Hidalgo-Sastre
- II. Medizinische Klinik, Technische Universitat München, Munich, Germany
| | - Sebastian Lange
- II. Medizinische Klinik, Technische Universitat München, Munich, Germany
| | - Charles J Lightdale
- Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Aqiba Bokhari
- Yosemite Pathology Medical Group, Modesto, California
| | - Gary W Falk
- Department of Medicine, Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Richard A Friedman
- Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, New York; Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York
| | - Gregory G Ginsberg
- Department of Medicine, Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Prasad G Iyer
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Zhezhen Jin
- Department of Biostatistics, Columbia University Mailman School of Public Health, New York, New York
| | - Hiroshi Nakagawa
- Department of Medicine, Columbia University Irving Medical Center, New York, New York; Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York
| | - Carrie J Shawber
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, New York
| | - TheAnh Nguyen
- Oregon Health and Science University, Portland, Oregon
| | - William J Raab
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Piero Dalerba
- Department of Medicine, Columbia University Irving Medical Center, New York, New York; Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York; Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York; Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, New York
| | - Anil K Rustgi
- Department of Medicine, Columbia University Irving Medical Center, New York, New York; Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York
| | - Antonia R Sepulveda
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Kenneth K Wang
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Roland M Schmid
- II. Medizinische Klinik, Technische Universitat München, Munich, Germany
| | - Timothy C Wang
- Department of Medicine, Columbia University Irving Medical Center, New York, New York; Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York
| | - Julian A Abrams
- Department of Medicine, Columbia University Irving Medical Center, New York, New York; Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York.
| | - Michael Quante
- II. Medizinische Klinik, Technische Universitat München, Munich, Germany.
| |
Collapse
|
12
|
Badgery H, Chong L, Iich E, Huang Q, Georgy SR, Wang DH, Read M. Recent insights into the biology of Barrett's esophagus. Ann N Y Acad Sci 2020; 1481:198-209. [PMID: 32681541 DOI: 10.1111/nyas.14432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/04/2020] [Accepted: 06/17/2020] [Indexed: 12/21/2022]
Abstract
Barrett's esophagus (BE) is the only known precursor to esophageal adenocarcinoma (EAC), an aggressive cancer with a poor prognosis. Our understanding of the pathogenesis and Barrett's metaplasia is incomplete, and this has limited the development of new therapeutic targets and agents, risk stratification ability, and management strategies. This review outlines current insights into the biology of BE and addresses controversies surrounding cell of origin, cellular reprogramming theories, updates on esophageal epithelial barrier function, and the significance of goblet cell metaplasia and its association with malignant change. Further research into the basic biology of BE is vital as it will underpin novel therapies and improve our ability to predict malignant progression and help identify the minority of patients who will develop EAC.
Collapse
Affiliation(s)
- Henry Badgery
- Department of Upper Gastrointestinal Surgery, St Vincent's Hospital, Melbourne, Victoria, Australia
| | - Lynn Chong
- Department of Upper Gastrointestinal Surgery, St Vincent's Hospital, Melbourne, Victoria, Australia
| | - Elhadi Iich
- Cancer Biology and Surgical Oncology Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Qin Huang
- Department of Pathology and Laboratory Medicine, Veterans Affairs Boston Healthcare System and Harvard Medical School, West Roxbury, Massachusetts
| | - Smitha Rose Georgy
- Department of Anatomic Pathology, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - David H Wang
- Department of Hematology and Oncology, UT Southwestern Medical Centre and VA North Texas Health Care System, Dallas, Texas
| | - Matthew Read
- Department of Upper Gastrointestinal Surgery, St Vincent's Hospital, Melbourne, Victoria, Australia.,Department of Surgery, The University of Melbourne, St Vincent's Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
13
|
Mor A, Kobus K, Leszczyńska U, Reszeć J. Differentiating dysplasia markers in Barrette sophagus and adenocarcinoma. POSTEP HIG MED DOSW 2019. [DOI: 10.5604/01.3001.0013.5643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Barrett’s esophagus (BE) is the only known precursor of esophageal adenocarcinoma (EAC). This precancerous lesion can transform into low-grade and high-grade dysplasia, which may develop in the EAC. Therefore, the issues of dysplasia detection and monitoring and early diagnostics for the presence of EAC foci are extremely important factors in the surveillance of patients with BE progression. Histopathological examinations are regarded as the gold standard in the BE progression evaluation. They posses a large clinical utility in the identification of dysplasia and cancer risk stratification in patients with the BE. However, this method is a very subjective, and is heavily dependent on the knowledge and experience of the person conducting it. Therefore, it seems to be important to implement in the BE progression diagnostics sensitive and specific biomarkers that could be used as complementary tests. They could improve detection, stratification and monitoring of the progression of BE and the detection of the EAC early stages. Literature data concerning markers distinguishing between different stages of Barrett’s-related dysplasia and cancer is very scarce. In this article there we collected and characterized the most important data. Apart from this, there is a fairly large group of proteins and genes. Their expression levels allow for the detection of changes during the development of the BE progression. No studies have been carried out yet for their usefulness in differentiating between types of BE-related dysplasia and EAC, but we know that some of them could be useful as auxiliary markers differentiating between different stages of dysplasia and EAC. The article discusses those with the greatest potential.
Collapse
Affiliation(s)
- Adrian Mor
- Zakład Patomorfologii Lekarskiej Uniwersytetu Medycznego w Białymstoku, Białystok, Polska
| | - Krzysztof Kobus
- Samodzielny Publiczny Zakład Opieki Zdrowotnej w Sokółce, Oddział Chirurgii, Sokółka, Polska
| | - Urszula Leszczyńska
- Zakład Patomorfologii Lekarskiej Uniwersytetu Medycznego w Białymstoku, Białystok, Polska
| | - Joanna Reszeć
- Zakład Patomorfologii Lekarskiej Uniwersytetu Medycznego w Białymstoku, Białystok, Polska
| |
Collapse
|
14
|
Caspa Gokulan R, Garcia-Buitrago MT, Zaika AI. From genetics to signaling pathways: molecular pathogenesis of esophageal adenocarcinoma. Biochim Biophys Acta Rev Cancer 2019; 1872:37-48. [PMID: 31152823 PMCID: PMC6692203 DOI: 10.1016/j.bbcan.2019.05.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/10/2019] [Accepted: 05/10/2019] [Indexed: 02/07/2023]
Abstract
Esophageal adenocarcinoma (EAC) has one of the fastest rising incidence rates in the U.S. and many other Western countries. One of the unique risk factors for EAC is gastroesophageal reflux disease (GERD), a chronic digestive condition in which acidic contents from the stomach, frequently mixed with duodenal bile, enter the esophagus resulting in esophageal tissue injury. At the cellular level, progression to EAC is underlined by continuous DNA damage caused by reflux and chronic inflammatory factors that increase the mutation rate and promote genomic instability. Despite recent successes in cancer diagnostics and treatment, EAC remains a poorly treatable disease. Recent research has shed new light on molecular alterations underlying progression to EAC and revealed novel treatment options. This review focuses on the genetic and molecular studies of EAC. The molecular changes that occur during the transformation of normal Barrett's esophagus to esophageal adenocarcinoma are also discussed.
Collapse
Affiliation(s)
| | | | - Alexander I Zaika
- Department of Surgery, University of Miami, Miami, FL, United States of America; Department of Veterans Affairs, Miami VA Healthcare System, Miami, FL, United States of America.
| |
Collapse
|
15
|
Wanchai V, Jin J, Bircan E, Eng C, Orloff M. Genome-wide tracts of homozygosity and exome analyses reveal repetitive elements with Barrets esophagus/esophageal adenocarcinoma risk. BMC Bioinformatics 2019; 20:98. [PMID: 30871476 PMCID: PMC6419328 DOI: 10.1186/s12859-019-2622-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Barrett's esophagus (BE) is most commonly seen as the condition in which the normal squamous epithelium lining of the esophagus is replaced by goblet cells. Many studies show that BE is a predisposing factor for the development of esophageal adenocarcinoma (EAC), a particularly lethal cancer. The use of single nucleotide polymorphisms (SNPs) to map BE/EAC genes has previously provided insufficient genetic information to fully characterize the heterogeneous nature of the disease. We therefore hypothesize that rigorous interrogation of other types of genomic changes, e.g. tracts of homozygosity (TOH), repetitive elements, and insertion/deletions, may provide a comprehensive understanding of the development of BE/EAC. RESULTS First, we used a case-control framework to identify TOHs by using SNPs and tested for association with BE/EAC. Second, we used a case only approach on a validation series of eight samples subjected to exome sequencing to identify repeat elements and insertion/deletions. Third, insertion/deletions and repeat elements identified in the exomes were then mapped onto genes in the significant TOH regions. Overall, 24 TOH regions were significantly differentially represented among cases, as compared to controls (adjusted-P = 0.002-0.039). Interestingly, four BE/EAC-associated genes within the TOH regions consistently showed insertions and deletions that overlapped across eight exomes. Predictive functional analysis identified NOTCH, WNT, and G-protein inflammation pathways that affect BE and EAC. CONCLUSIONS The integration of common TOHs (cTOHs) with repetitive elements, insertions, and deletions within exomes can help functionally prioritize factors contributing to low to moderate penetrance predisposition to BE/EAC.
Collapse
Affiliation(s)
- Visanu Wanchai
- Arkansas Center for Genomic Epidemiology & Medicine and The Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR 72205 USA
| | - Jing Jin
- The Department of Epidemiology, University of Arkansas for Medical Sciences, Little Rock, AR 72205 USA
| | - Emine Bircan
- The Department of Epidemiology, University of Arkansas for Medical Sciences, Little Rock, AR 72205 USA
| | - Charis Eng
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH 44195 USA
| | - Mohammed Orloff
- The Department of Epidemiology, University of Arkansas for Medical Sciences, Little Rock, AR 72205 USA
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205 USA
| |
Collapse
|
16
|
Volstatova T, Marchica A, Hroncova Z, Bernardi R, Doskocil I, Havlik J. Effects of chlorogenic acid, epicatechin gallate, and quercetin on mucin expression and secretion in the Caco-2/HT29-MTX cell model. Food Sci Nutr 2019; 7:492-498. [PMID: 30847127 PMCID: PMC6392881 DOI: 10.1002/fsn3.818] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 09/03/2018] [Accepted: 09/04/2018] [Indexed: 12/13/2022] Open
Abstract
Mucins are a family of large glycoproteins that represent the major structural components of the mucus and are encoded by 20 different mucin genes. Mucin expression can be modulated by different stimuli. In this study, we analyzed four mucins (MUC2, MUC3, MUC13, and MUC17) in coculture of Caco-2/HT29-MTX cells to demonstrate the variation in gene expression in the presence of antioxidant compounds like chlorogenic acid, epicatechin gallate, and quercetin (apple, tea, and coffee polyphenols, respectively). coculture of Caco-2/HT29-MTX cells was treated with polyphenols, and the expression of four mucins was determined by reverse-transcriptase PCR. In addition, the secretion levels of MUC2 were established by enzyme-linked immunoassay (ELISA) analysis. The results showed that each polyphenol compound induces different expression patterns of the mucin genes. Statistically significant up-regulation of MUC17 was observed following incubation with epicatechin gallate and quercetin. ELISA results did not prove any significant differences in protein levels of MUC2 after treatment by the polyphenol compounds. The polyphenols considered in this study may influence mucin secretion and act on diverse salivary substrates to change the barrier properties of mucins for mucus secretion in different ways.
Collapse
Affiliation(s)
- Tereza Volstatova
- Department of Microbiology, Nutrition and DieteticsCzech University of Life Sciences PraguePragueCzech Republic
| | - Alessandra Marchica
- Department of Agricultural, Food and Agro‐Environmental SciencesUniversity of PisaPisaItaly
| | - Zuzana Hroncova
- Department of Microbiology, Nutrition and DieteticsCzech University of Life Sciences PraguePragueCzech Republic
- Department of Genetics and Breeding of Farm AnimalsInstitute of Animal SciencePragueCzech Republic
| | - Rodolfo Bernardi
- Department of Agricultural, Food and Agro‐Environmental SciencesUniversity of PisaPisaItaly
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”University of PisaPisaItaly
| | - Ivo Doskocil
- Department of Microbiology, Nutrition and DieteticsCzech University of Life Sciences PraguePragueCzech Republic
| | - Jaroslav Havlik
- Department of Quality of Agricultural ProductsCzech University of Life Sciences PraguePragueCzech Republic
| |
Collapse
|
17
|
Mozaffari Namin B, Soltan Dallal MM. Campylobacter Concisus and Its Effect on the Expression of CDX1 and COX2. Asian Pac J Cancer Prev 2018; 19:3211-3216. [PMID: 30486614 PMCID: PMC6318391 DOI: 10.31557/apjcp.2018.19.11.3211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 10/05/2018] [Indexed: 12/24/2022] Open
Abstract
Background: Barrett’s oesophagus (BO) is a pre-malignant condition in which normal squamous epithelium of the lower oesophagus and gastresophageal junction is replaced by columnar cells and progress to oesophageal adenocarcinoma. The increase burden of oesophagus cancer morbidity and mortality worldwide make study of factors involved in the pathogenesis of BO essential. However, most of studies that examine the environmental risk factors associated with increased incidence and prevalence of BO have largely ignored the potential role of bacteria in disease aetiology. Aims: This study examined the role of Campylobacter concisus isolated from Barrett’s and adenocarcinoma patient samples as one of possible environmental factors in the progression of Barrett’s oesophagus to oesophagus adenocarcinoma. Methods: We focused on the effect of C. concisus on the expression caudal type homeobox 1 gene (CDX1) and cyclooxygenase-2 (COX-2) in three BO cell lines using quantitative real-time PCR. In addition, the attachment and invasion characteristics of C. concisus were also tested. Results: Results showed that C. concisus had a strong attachment to the cell lines and induce the expression of CDX1 in Barrett’s cell lines in a time-dependent manner. Conclusion: Findings indicate that C. concisus could be as a new challenge in the progression of BO to adenocarcinoma.
Collapse
Affiliation(s)
- Behrooz Mozaffari Namin
- Department of Microbiology of Pathobiology, School of Public Health, Tehran University of Medical Sciences, International Campus (TUMS-IC), Tehran, Iran
- Microbiology and Gut Biology Group, University of Dundee, Ninewells Hospital Medical School, Dundee, UK.
| | | |
Collapse
|
18
|
Zhang W, Wang DH. Origins of Metaplasia in Barrett's Esophagus: Is this an Esophageal Stem or Progenitor Cell Disease? Dig Dis Sci 2018; 63:2005-2012. [PMID: 29675663 PMCID: PMC6783253 DOI: 10.1007/s10620-018-5069-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The incidence of esophageal adenocarcinoma has been increasing in Western countries over the past several decades. Though Barrett's esophagus, in which the normal esophageal squamous epithelium is replaced with metaplastic intestinalized columnar cells due to chronic damage from gastroesophageal reflux, is accepted as the requisite precursor lesion for esophageal adenocarcinoma, the Barrett's esophagus cell of origin and the molecular mechanism underlying esophageal epithelial metaplasia remain controversial. Much effort has been dedicated towards identifying the Barrett's esophagus cell of origin since this could lead to more effective prevention and treatment strategies for both Barrett's esophagus and esophageal adenocarcinoma. Previously, it was hypothesized that terminally differentiated esophageal squamous cells might undergo direct conversion into specialized intestinal columnar cells via the process of transdifferentiation. However, there is increasing evidence that stem and/or progenitor cells are molecularly reprogrammed through the process of transcommitment to differentiate into the columnar cell lineages that characterize Barrett's esophagus. Given that Barrett's esophagus originates at the gastroesophageal junction, the boundary between the distal esophagus and gastric cardia, potential sources of these stem and/or progenitor cells include columnar cells from the squamocolumnar junction or neighboring gastric cardia, native esophageal squamous cells, native esophageal cuboidal or columnar cells from submucosal glands or ducts, or circulating bone marrow-derived cells. In this review, we focus on native esophageal specific stem and/or progenitor cells and detail molecular mediators of transcommitment based on recent insights gained from novel mouse models and clinical observations from patients.
Collapse
Affiliation(s)
- Wei Zhang
- Esophageal Diseases Center, Department of Internal Medicine and the Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - David H. Wang
- Esophageal Diseases Center, Department of Internal Medicine and the Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA,Medical Service, Dallas VA Medical Center, Dallas, Texas, USA
| |
Collapse
|
19
|
Notch Signaling Pathway Is Inhibited in the Development of Barrett's Esophagus: An In Vivo and In Vitro Study. Can J Gastroenterol Hepatol 2018; 2018:4149317. [PMID: 29785394 PMCID: PMC5892280 DOI: 10.1155/2018/4149317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 01/28/2018] [Accepted: 02/19/2018] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE To explore the role of Notch signaling in the development of Barrett's esophagus. METHODS Patients with esophagectomy and gastric interposition were recruited as a human model of gastroesophageal reflux disease. The expressions of Notch signaling genes in normal esophagus from surgical specimen and columnar metaplasia in the esophageal remnant after esophagectomy were evaluated by real time quantitative Polymerase Chain Reaction (RT-qPCR) and immunohistochemistry (IHC). For in vitro experiments, Het-1A cells were treated with hydrochloric acid, deoxycholic acid, mixture of hydrochloric acid and deoxycholic acid, or Notch1-siRNA, and expressions of Notch1, Hes1, MUC2, and K13 were evaluated via RT-qPCR and western blot. RESULTS Samples were obtained from 36 patients with columnar metaplasia in the esophageal remnant. Both IHC and RT-qPCR indicated that Notch1 and Hes1 expressions were significantly higher in normal esophagus than that in metaplasia. Hydrochloric acid and deoxycholic acid suppressed Notch1, Hes1, and K13 expressions, in concert with increasing MUC2 expressions. Notch inhibition by Notch1-siRNA contributed to the downregulation of Notch1, Hes1, and K13 expressions, whereas MUC2 expression was enhanced. CONCLUSIONS Both hydrochloric acid and deoxycholic acid could suppress Notch signaling pathway in esophageal epithelial cells, and inhibited Notch signaling has important functions in the development of Barrett's esophagus.
Collapse
|
20
|
Mucin Expression in the Esophageal Malignant and Pre-malignant States: A Systematic Review and Meta-analysis. J Clin Gastroenterol 2018; 52:91-96. [PMID: 28697153 DOI: 10.1097/mcg.0000000000000863] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Mucins are heavily glycosylated glycoproteins, synthesized by mucosal surfaces and have an important role in healthy state and malignant diseases. Change in mucins synthesis or secretion may be primary event or secondary to inflammation or carcinogenesis. AIM The aim of this study is to assess the current knowledge about mucin expression in esophageal lesions, and to establish a role for different mucin expressions as prognostic markers. METHOD English Medical literature searches were conducted for "mucin" and "esophagus." Observational studies were included. Meta-analysis was performed using comprehensive meta-analysis software. Pooled odds ratios (OR) and 95% confidence intervals (CI) were calculated. RESULTS In the random-effect model, mucin expression was significantly higher in esophageal lesions than in normal esophageal mucosa with OR=5.456 (95% CI, 1.883-15.807, P=0.002). Measure of heterogeneity, demonstrated in the included studies, was high: Q=287.501, df (Q)=44.00, P<0.0001, I=84.696%. There is a gradient of mucin expression and complexity in esophageal premalignant to malignant lesions, lower in Barrett's mucosa with low grade dysplasia (LGD), increased in high grade dysplasia (HGD), and highest in esophageal adenocarcinoma (EAC). MUC2, MUC3, MUC5AC, and MUC6 expression was higher in EAC than HGD, and higher in HGD than in LGD mucosa. The opposite was found for MUC1 and MUC4. CONCLUSION Increased expression of certain mucin genes in esophageal mucosa may be further studied as a potential diagnostic tool, and this may add important information in the surveillance of Barrett's esophagus.
Collapse
|
21
|
Clark RJ, Craig MP, Agrawal S, Kadakia M. microRNA involvement in the onset and progression of Barrett's esophagus: a systematic review. Oncotarget 2018; 9:8179-8196. [PMID: 29487725 PMCID: PMC5814292 DOI: 10.18632/oncotarget.24145] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 12/22/2017] [Indexed: 12/13/2022] Open
Abstract
Esophageal adenocarcinoma (EAC) is a highly aggressive malignancy that develops from Barrett's esophagus (BE), an intestinal metaplasia of the distal esophagus. microRNAs (miRNAs), short non-coding regulatory RNAs, are frequently dysregulated in BE and are thought to play key roles in the onset of BE and its progression to EAC. miRNAs thus have potential diagnostic and prognostic value and are increasingly being used as cancer biomarkers. This review summarizes the current literature related to miRNAs that are dysregulated in BE within the context of Hedgehog, Notch, MAPK, NF kappa-B, Wnt and epithelial-mesenchymal transition (EMT) signaling which are thought to drive BE onset and progression. This comprehensive analysis of miRNAs and their associated signaling in the regulation of BE provides an overview of vital discoveries in this field and highlights gaps in our understanding of BE pathophysiology that warrant further investigation.
Collapse
Affiliation(s)
- Reilly J Clark
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH, USA
| | - Michael P Craig
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH, USA
| | | | - Madhavi Kadakia
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH, USA
| |
Collapse
|
22
|
Yuan Y, Tong TJ, Zeng XX, Yang YS, Wang ZQ, Wang YC, Gou JH, Chen LQ. Longitudinal study of esophageal mucosal damage after esophagectomy and gastric interposition: relationship between reflux-related mucosal injury and Notch signaling. J Thorac Dis 2017; 9:5249-5260. [PMID: 29312733 DOI: 10.21037/jtd.2017.11.16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Background Esophagectomy with gastric interposition could serve as a good human reflux model to study the molecular pathogenesis of esophageal mucosal damage induced by gastroesophageal reflux. This study was to investigate the role of Notch signaling in reflux injury of esophageal mucosa. Methods Patients undergoing Ivor-Lewis esophagectomy for early stage esophageal squamous cell carcinoma were included. Follow-ups were scheduled at 6, 18, 36 and 48 months postoperatively, including reflux symptom assessment, endoscopic and histological evaluation of esophageal mucosal damage. The expressions of Notch1 and its downstream target gene Hes1 were evaluated by real-time polymerase chain reaction (PCR) and immunohistochemistry (IHC). Results Forty-four out of 48 patients completed four follow-ups. Injuries of esophageal remnant confirmed by endoscopical and histological examinations were both more often with a longer postoperative period (P<0.05). The mRNA expression levels of Notch1 and Hes1 were decreased in a time-dependent manner after operation (P<0.001). Notch1 and Hes1 mRNA levels were significantly higher in normal squamous mucosa than in esophagitis, and higher in esophagitis than in metaplasia (P<0.05). Immunohistochemical study also demonstrated a similar protein expression pattern. Samples with endoscopic evidence of mucosal damage exhibited lower expression of Notch1 mRNA levels as compared to biopsies without visualized damage (P=0.035). Conclusions This is the first longitudinal study on Notch signaling in human esophagectomy model, our preliminary findings suggest decreased Notch signaling might be involved in the development of mucosa damage caused by gastroesophageal reflux.
Collapse
Affiliation(s)
- Yong Yuan
- Department of Thoracic Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Tie-Jun Tong
- Department of Mathematics, Hong Kong Baptist University, Hong Kong 999077, China
| | - Xiao-Xi Zeng
- West China Biomedical Big Data Center, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yu-Shang Yang
- Department of Thoracic Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Zhi-Qiang Wang
- Department of Mathematics, Hong Kong Baptist University, Hong Kong 999077, China
| | - Yun-Cang Wang
- Department of Thoracic Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Jun-He Gou
- Department of Pathology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Long-Qi Chen
- Department of Thoracic Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| |
Collapse
|
23
|
Gassler N. Paneth cells in intestinal physiology and pathophysiology. World J Gastrointest Pathophysiol 2017; 8:150-160. [PMID: 29184701 PMCID: PMC5696613 DOI: 10.4291/wjgp.v8.i4.150] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 07/28/2017] [Accepted: 08/16/2017] [Indexed: 02/06/2023] Open
Abstract
Small intestinal mucosa is characterised by villus forming connective tissues with highly specialised surface lining epithelial cells essentially contributing to the establishment of the intestinal border. In order to perform these diverse functions, spatially distinct compartments of epithelial differentiation are found along the crypt-villus axis, including Paneth cells as a highly specialised cell type. Paneth cells locate in crypts and assist undifferentiated columnar cells, called crypt base columnar cells, and rapidly amplifying cells in the regeneration of absorptive and secretory cell types. There is some evidence that Paneth cells are involved in the configuration and function of the stem cell zone as well as intestinal morphogenesis and crypt fission. However, the flow of Paneth cells to crypt bottoms requires strong Wnt signalling guided by EphB3 and partially antagonised by Notch. In addition, mature Paneth cells are essential for the production and secretion of antimicrobial peptides including α-defensins/cryptdins. These antimicrobials are physiologically involved in shaping the composition of the microbiome. The autophagy related 16-like 1 (ATG16L1) is a genetic risk factor and is involved in the exocytosis pathway of Paneth cells as well as a linker molecule to PPAR signalling and lipid metabolism. There is evidence that injuries of Paneth cells are involved in the etiopathogenesis of different intestinal diseases. The review provides an overview of the key points of Paneth cell activities in intestinal physiology and pathophysiology.
Collapse
Affiliation(s)
- Nikolaus Gassler
- Institute of Pathology, RWTH Aachen University, Braunschweig 38114, Germany
| |
Collapse
|
24
|
Souza RF. Reflux esophagitis and its role in the pathogenesis of Barrett's metaplasia. J Gastroenterol 2017; 52:767-776. [PMID: 28451845 PMCID: PMC5488728 DOI: 10.1007/s00535-017-1342-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 04/11/2017] [Indexed: 02/04/2023]
Abstract
Reflux esophagitis damages the squamous epithelium that normally lines the esophagus, and promotes replacement of the damaged squamous lining by the intestinal metaplasia of Barrett's esophagus, the precursor of esophageal adenocarcinoma. Therefore, to prevent the development of Barrett's metaplasia and esophageal adenocarcinoma, the pathogenesis of reflux esophagitis must be understood. We have reported that reflux esophagitis, both in a rat model and in humans, develops as a cytokine-mediated inflammatory injury (i.e., cytokine sizzle), not as a caustic chemical injury (i.e., acid burn), as traditionally has been assumed. Moreover, reflux induces activation of hypoxia inducible factor (HIF)-2α, which enhances the transcriptional activity of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) causing increases in pro-inflammatory cytokines and in migration of T lymphocytes, an underlying molecular mechanism for this cytokine-mediated injury. In some individuals, reflux esophagitis heals with Barrett's metaplasia. A number of possibilities exist for the origin of the progenitor cells that give rise to this intestinal metaplasia including those of the esophagus, the proximal stomach, or the bone marrow. However, intestinal cells are not normally found in the esophagus, the stomach, or the bone marrow. Thus, the development of Barrett's intestinal metaplasia must involve some molecular reprogramming of key developmental transcription factors within the progenitor cell, a process termed transcommitment, which may be initiated by the noxious components of the gastric refluxate. This review will highlight recent studies on the pathogenesis of reflux esophagitis and on reflux-related molecular reprogramming of esophageal squamous epithelial cells in the pathogenesis of Barrett's metaplasia.
Collapse
Affiliation(s)
- Rhonda F. Souza
- Center for Esophageal Research, Baylor Scott and White Research Institute, Dallas, TX, USA
| |
Collapse
|
25
|
Abu-Farsakh S, Wu T, Lalonde A, Sun J, Zhou Z. High expression of Claudin-2 in esophageal carcinoma and precancerous lesions is significantly associated with the bile salt receptors VDR and TGR5. BMC Gastroenterol 2017; 17:33. [PMID: 28212604 PMCID: PMC5316202 DOI: 10.1186/s12876-017-0590-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 02/14/2017] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Claudins are a family of integral membrane proteins and are components of tight junctions (TJs). Many TJ proteins are known to tighten the cell structure and maintain a barrier. Claudin-2 forms gated paracellular channels and allows sodium ions and other small positively charged ions to cross between adjacent cells. Recently, we found that vitamin D receptor (VDR) enhanced Claudin-2 expression in colon and that bile salt receptors VDR and Takeda G-protein coupled receptor5 (TGR5) were highly expressed in esophageal adenocarcinoma (EAC) and precancerous lesions. Here, we examined the expression of Claudin-2 in EAC and precancerous lesions and its association with VDR and TGR5 expression. METHODS Claudin-2 expression was examined by immunohistochemistry on tissue microarrays, containing EAC, high grade dysplasia (HGD), low grade dysplasia (LGD), Barrett's esophagus (BE), columnar cell metaplasia (CM), squamous cell carcinoma (SCC), and squamous epithelium (SE) cases. Intensity (0 to 3) and percentage were scored for each case. High expression was defined as 2-3 intensity in ≥ 10% of cells. RESULTS Claudin-2 was highly expressed in 77% EAC (86/111), 38% HGD (5/13), 61% LGD (17/28), 46% BE (18/39), 45% CM (29/65), 88% SCC (23/26), and 14% SE (11/76). It was significantly more highly-expressed in EAC, SCC and glandular lesions than in SE and more in EAC than in BE and CM. A significant association was found between Claudin-2 expression and VDR and TGR5 expression. No significant association was found between expression of Claudin-2 and age, gender, grade, stage, or patients' survival time in EAC and SCC. CONCLUSIONS We conclude that Claudin-2 expression is significantly associated with bile acid receptors VDR and TGR5 expression. Our studies identify a novel role of a tight junction protein in the development and progression of esophageal mucosal metaplasia, dysplasia and carcinoma.
Collapse
Affiliation(s)
- Sohaib Abu-Farsakh
- Department of Pathology and Laboratory Medicine, University of Rochester, Box 626, 601 Elmwood Ave, Rochester, NY, 14642, USA
| | - Tongtong Wu
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, 265 Crittenden Boulevard CU 420630, Rochester, NY, 14642-0630, USA
| | - Amy Lalonde
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, 265 Crittenden Boulevard CU 420630, Rochester, NY, 14642-0630, USA
| | - Jun Sun
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Illinois College of Medicine, 840 South Wood Street MC 716, Chicago, IL, 60612, USA
| | - Zhongren Zhou
- Department of Pathology and Laboratory Medicine, University of Rochester, Box 626, 601 Elmwood Ave, Rochester, NY, 14642, USA.
| |
Collapse
|
26
|
Pang C, LaLonde A, Godfrey TE, Que J, Sun J, Wu TT, Zhou Z. Bile salt receptor TGR5 is highly expressed in esophageal adenocarcinoma and precancerous lesions with significantly worse overall survival and gender differences. Clin Exp Gastroenterol 2017; 10:29-37. [PMID: 28223834 PMCID: PMC5304980 DOI: 10.2147/ceg.s117842] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Bile acid reflux in the esophagus plays an important role in the carcinogenesis of esophageal adenocarcinoma (EAC). The G-protein coupled bile acid receptor (TGR5) has been associated with the development of gastrointestinal cancer. However, little is known regarding the role of TGR5 in esophageal carcinoma and precancerous lesions. We analyzed genomic DNA from 116 EACs for copy number aberrations via Affymetrix SNP6.0 microarrays. The TGR5 gene locus was amplified in 12.7% (14/116) of the EACs. The TGR5 protein expression was also assessed using immunohistochemistry from tissue microarrays, including Barrett’s esophagus (BE), low-(LGD) and high-grade dysplasia (HGD), columnar cell metaplasia (CM), squamous epithelium (SE), EAC and squamous cell carcinoma. The TGR5 protein was highly expressed in 71% of EAC (75/106), 100% of HGD (11/11), 72% of LGD (13/18), 66% of BE (23/35), 84% of CM (52/62), and 36% of SE (30/83). The patients with high expression of TGR5 exhibited significantly worse overall survival compared to the patients with nonhigh expression. TGR5 high expression was significantly increased in the males compared to the females in all cases with an odds ratio of 1.9 times. The vitamin D receptor (VDR) was significantly correlated with TGR5 expression. Our findings indicated that TGR5 may play an important role in the development and prognosis of EAC through a bile acid ligand. Gender differences in TGR5 and VDR expression may explain why males have a higher incidence of EAC compared to females.
Collapse
Affiliation(s)
- Chunhong Pang
- Department of Pathology, China-Japan Friendship Hospital; Department of Pathology and Laboratory Medicine
| | - Amy LaLonde
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY
| | - Tony E Godfrey
- Department of Surgery, Boston University Medical Center, Boston, MA
| | - Jianwen Que
- Center for Human Development; Division of Digestive and Liver Diseases, Columbia University, New York, NY
| | - Jun Sun
- Division of Gastroenterology and Hepatology, University of Illinois College of Medicine, Chicago, IL, USA
| | - Tong Tong Wu
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY
| | | |
Collapse
|
27
|
Song JH, Han YM, Kim WH, Park JM, Jeong M, Go EJ, Hong SP, Hahm KB. Oxidative stress from reflux esophagitis to esophageal cancer: the alleviation with antioxidants. Free Radic Res 2016; 50:1071-1079. [DOI: 10.1080/10715762.2016.1181262] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ji Hyun Song
- Digestive Disease Center, CHA University Bundang Medical Center, Seongnam, Korea
| | - Young-Min Han
- CHA Cancer Prevention Research Center, CHA Bio Complex, Seongnam, Korea
| | - Won Hee Kim
- Digestive Disease Center, CHA University Bundang Medical Center, Seongnam, Korea
| | - Jong-Min Park
- CHA Cancer Prevention Research Center, CHA Bio Complex, Seongnam, Korea
| | - Migyeong Jeong
- CHA Cancer Prevention Research Center, CHA Bio Complex, Seongnam, Korea
| | - Eun Jin Go
- CHA Cancer Prevention Research Center, CHA Bio Complex, Seongnam, Korea
| | - Sung Pyo Hong
- Digestive Disease Center, CHA University Bundang Medical Center, Seongnam, Korea
| | - Ki Baik Hahm
- Digestive Disease Center, CHA University Bundang Medical Center, Seongnam, Korea
- CHA Cancer Prevention Research Center, CHA Bio Complex, Seongnam, Korea
| |
Collapse
|
28
|
Bile acids induce Delta-like 1 expression via Cdx2-dependent pathway in the development of Barrett's esophagus. J Transl Med 2016; 96:325-37. [PMID: 26568294 DOI: 10.1038/labinvest.2015.137] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 09/22/2015] [Accepted: 10/10/2015] [Indexed: 02/06/2023] Open
Abstract
Crosstalk between the Notch signaling pathway and Caudal-related homeobox 2 (Cdx2) has important roles in the development of Barrett's esophagus (BE). We investigated the expression and function of the Notch signaling ligand Delta-like 1 (Dll1) during the development of BE. We determined the expression levels of Dll1 and intracellular signaling molecules related to Notch signaling ((Notch1, Hairy/enhancer of split 1 (Hes1), and Atonal homolog 1 (ATOH1)) in human esophageal squamous and Barrett's epithelium samples. Next, those expression levels in esophageal squamous cells (Het-1A) and Barrett's esophageal cells (CP-A and BAR-T) following stimulation with either bile acids or gamma-secretase inhibitor were investigated. Finally, changes in those expression levels following transfection of a Cdx2 or Dll1 expression vector into Het-1A cells were examined. In addition, changes in those expression levels following knockdown of Cdx2 or Dll1 in CP-A cells were also examined. Dll1 was found to be upregulated and localized in the cell membrane and cytoplasm in BE. Bile acids enhanced cytoplasmic expression of Dll1 in CP-A cells, while cleaved Notch1 expression did not change, suggesting lack of a Dll1 agonistic effect on Notch signaling. Cells transfected with Cdx2 revealed significantly enhanced Dll1, while forced expression of Dll1 enhanced ATOH1, Cdx2, and MUC2 expression levels. Nevertheless, enhanced Dll1 did not induce Hes1 expression, suggesting that Dll1 may primarily function as an intracellular signaling molecule and not a Notch agonistic ligand in the canonical pathway. In addition, knockdown of Cdx2 completely abrogated any increase in Dll1 expression upon treatment with bile acids. Our results revealed a novel function of Dll1: facilitation of intestinal metaplasia in conjunction with Cdx2 expression. Furthermore, they suggest that intracellular induction of Dll1 expression in esophageal epithelial cells due to Cdx2 induction in response to bile acids has important roles in BE development.
Collapse
|
29
|
Ahrens TD, Timme S, Hoeppner J, Ostendorp J, Hembach S, Follo M, Hopt UT, Werner M, Busch H, Boerries M, Lassmann S. Selective inhibition of esophageal cancer cells by combination of HDAC inhibitors and Azacytidine. Epigenetics 2016; 10:431-45. [PMID: 25923331 DOI: 10.1080/15592294.2015.1039216] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Esophageal cancers are highly aggressive tumors with poor prognosis despite some recent advances in surgical and radiochemotherapy treatment options. This study addressed the feasibility of drugs targeting epigenetic modifiers in esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC) cells. We tested inhibition of histone deacetylases (HDACs) by SAHA, MS-275, and FK228, inhibition of DNA methyltransferases by Azacytidine (AZA) and Decitabine (DAC), and the effect of combination treatment using both types of drugs. The drug targets, HDAC1/2/3 and DNMT1, were expressed in normal esophageal epithelium and tumor cells of ESCC or EAC tissue specimens, as well as in non-neoplastic esophageal epithelial (Het-1A), ESCC (OE21, Kyse-270, Kyse-410), and EAC (OE33, SK-GT-4) cell lines. In vitro, HDAC activity, histone acetylation, and p21 expression were similarly affected in non-neoplastic, ESCC, and EAC cell lines post inhibitor treatment. Combined MS-275/AZA treatment, however, selectively targeted esophageal cancer cell lines by inducing DNA damage, cell viability loss, and apoptosis, and by decreasing cell migration. Non-neoplastic Het-1A cells were protected against HDACi (MS-275)/AZA treatment. RNA transcriptome analyses post MS-275 and/or AZA treatment identified novel regulated candidate genes (up: BCL6, Hes2; down: FAIM, MLKL), which were specifically associated with the treatment responses of esophageal cancer cells. In summary, combined HDACi/AZA treatment is efficient and selective for the targeting of esophageal cancer cells, despite similar target expression of normal and esophageal cancer epithelium, in vitro and in human esophageal carcinomas. The precise mechanisms of action of treatment responses involve novel candidate genes regulated by HDACi/AZA in esophageal cancer cells. Together, targeting of epigenetic modifiers in esophageal cancers may represent a potential future therapeutic approach.
Collapse
Key Words
- 5mC, 5-methylcytidine
- AZA, Azacytidine
- DAC, Decitabine
- DNMT, DNA (cytosine-5)-methyltransferase
- EAC, esophageal adenocarcinoma
- ESCC, esophageal squamous cell carcinoma
- FAIM, Fas apoptotic inhibitory molecule
- GEJ, gastro-esophageal junction
- H3Ac, histone H3 acetylation
- H3K4me3, histone H3 trimethylation at lysine 4
- H3K9Ac, histone 3 lysine 9 acetylation
- HDAC, histone deacetylases
- HDACi, HDAC inhibitor
- Hes-2, Hairy and enhancer of split 2
- SAHA, suberoylanilide hydroxamic acid
- TSA, Trichostatin A
- azacytidine/gene pathway regulation
- epigenetics/HDAC inhibitor
- esophageal cancer
Collapse
Affiliation(s)
- Theresa D Ahrens
- a Dept. of Pathology; University Medical Center ; Freiburg , Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Wang DH, Souza RF. Transcommitment: Paving the Way to Barrett's Metaplasia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 908:183-212. [PMID: 27573773 DOI: 10.1007/978-3-319-41388-4_10] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Barrett's esophagus is the condition in which metaplastic columnar epithelium that predisposes to cancer development replaces stratified squamous epithelium in the distal esophagus. Potential sources for the cell or tissue of origin for metaplastic Barrett's epithelium are reviewed including native esophageal differentiated squamous cells, progenitor cells native to the esophagus located within the squamous epithelium or in the submucosal glands or ducts, circulating bone marrow-derived stem cells, and columnar progenitor cells from the squamocolumnar junction or the gastric cardia that proximally shift into the esophagus to fill voids left by damaged squamous epithelium. Wherever its source the original cell must undergo molecular reprogramming (i.e., either transdifferentiation or transcommitment) to give rise to specialized intestinal metaplasia. Transcription factors that specify squamous, columnar, intestinal, and mucus-secreting epithelial differentiation are discussed. An improved understanding of how esophageal columnar metaplasia forms could lead to development of effective treatment or prevention strategies for Barrett's esophagus. It could also more broadly inform upon normal tissue development and differentiation, wound healing, and stem cell biology.
Collapse
Affiliation(s)
- David H Wang
- Division of Hematology and Oncology, Department of Internal Medicine, Harold C. Simmons Comprehensive Cancer Center, Esophageal Diseases Center, Medical Service, VA North Texas Health Care System, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390-8852, USA.
| | - Rhonda F Souza
- Division of Digestive and Liver Diseases, Department of Internal Medicine, Harold C. Simmons Comprehensive Cancer Center, Esophageal Diseases Center, Medical Service (111B1), VA North Texas Health Care System, University of Texas Southwestern Medical Center, 4500 S. Lancaster Road, Dallas, TX, 75216, USA
| |
Collapse
|
31
|
Dilly AK, Song X, Zeh HJ, Guo ZS, Lee YJ, Bartlett DL, Choudry HA. Mitogen-activated protein kinase inhibition reduces mucin 2 production and mucinous tumor growth. Transl Res 2015; 166:344-54. [PMID: 25890193 DOI: 10.1016/j.trsl.2015.03.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 03/17/2015] [Accepted: 03/24/2015] [Indexed: 12/13/2022]
Abstract
Excessive accumulation of mucin 2 (MUC2) protein (a gel-forming secreted mucin) within the peritoneal cavity is the major cause of morbidity and mortality in pseudomyxoma peritonei (PMP), a unique mucinous malignancy of the appendix. Mitogen-activated protein kinase (MAPK) signaling pathway is upregulated in PMP and has been shown to modulate MUC2 promoter activity. We hypothesized that targeted inhibition of the MAPK pathway would be a novel, effective, and safe therapeutic strategy to reduce MUC2 production and mucinous tumor growth. We tested RDEA119, a specific MEK1/2 (MAPK extracellular signal-regulated kinase [ERK] kinase) inhibitor, in MUC2-secreting LS174T cells, human PMP explant tissue, and in a unique intraperitoneal murine xenograft model of PMP. RDEA119 reduced ERK1/2 phosphorylation and inhibited MUC2 messenger RNA and protein expression in vitro. In the xenograft model, chronic oral therapy with RDEA119 inhibited mucinous tumor growth in an MAPK pathway-dependent manner and this translated into a significant improvement in survival. RDEA119 downregulated phosphorylated ERK1/2 and nuclear factor κB p65 protein signaling and reduced activating protein 1 (AP1) transcription factor binding to the MUC2 promoter in LS174T cells. This study provides a preclinical rationale for the use of MEK inhibitors to treat patients with PMP.
Collapse
Affiliation(s)
- Ashok K Dilly
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Xinxin Song
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Herbert J Zeh
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Zong S Guo
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Yong J Lee
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA; Department of Pharmacology and Chemical Biology, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - David L Bartlett
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Haroon A Choudry
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA.
| |
Collapse
|
32
|
Vega ME, Giroux V, Natsuizaka M, Liu M, Klein-Szanto AJ, Stairs DB, Nakagawa H, Wang KK, Wang TC, Lynch JP, Rustgi AK. Inhibition of Notch signaling enhances transdifferentiation of the esophageal squamous epithelium towards a Barrett's-like metaplasia via KLF4. Cell Cycle 2015; 13:3857-66. [PMID: 25558829 DOI: 10.4161/15384101.2014.972875] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Barrett's esophagus (BE) is defined as an incomplete intestinal metaplasia characterized generally by the presence of columnar and goblet cells in the formerly stratified squamous epithelium of the esophagus. BE is known as a precursor for esophageal adenocarcinoma. Currently, the cell of origin for human BE has yet to be clearly identified. Therefore, we investigated the role of Notch signaling in the initiation of BE metaplasia. Affymetrix gene expression microarray revealed that BE samples express decreased levels of Notch receptors (NOTCH2 and NOTCH3) and one of the the ligands (JAG1). Furthermore, BE tissue microarray showed decreased expression of NOTCH1 and its downstream target HES1. Therefore, Notch signaling was inhibited in human esophageal epithelial cells by expression of dominant-negative-Mastermind-like (dnMAML), in concert with MYC and CDX1 overexpression. Cell transdifferentiation was then assessed by 3D organotypic culture and evaluation of BE-lineage specific gene expression. Notch inhibition promoted transdifferentiation of esophageal epithelial cells toward columnar-like cells as demonstrated by increased expression of columnar keratins (K8, K18, K19, K20) and glandular mucins (MUC2, MUC3B, MUC5B, MUC17) and decreased expression of squamous keratins (K5, K13, K14). In 3D culture, elongated cells were observed in the basal layer of the epithelium with Notch inhibition. Furthermore, we observed increased expression of KLF4, a potential driver of the changes observed by Notch inhibition. Interestingly, knockdown of KLF4 reversed the effects of Notch inhibition on BE-like metaplasia. Overall, Notch signaling inhibition promotes transdifferentiation of esophageal cells toward BE-like metaplasia in part via upregulation of KLF4. These results support a novel mechanism through which esophageal epithelial transdifferentiation promotes the evolution of BE.
Collapse
Affiliation(s)
- Maria E Vega
- a Division of Gastroenterology; Department of Medicine ; University of Pennsylvania ; Philadelphia , PA , USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Wang DH, Tiwari A, Kim ME, Clemons NJ, Regmi NL, Hodges WA, Berman DM, Montgomery EA, Watkins DN, Zhang X, Zhang Q, Jie C, Spechler SJ, Souza RF. Hedgehog signaling regulates FOXA2 in esophageal embryogenesis and Barrett's metaplasia. J Clin Invest 2014; 124:3767-80. [PMID: 25083987 DOI: 10.1172/jci66603] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 06/12/2014] [Indexed: 12/20/2022] Open
Abstract
Metaplasia can result when injury reactivates latent developmental signaling pathways that determine cell phenotype. Barrett's esophagus is a squamous-to-columnar epithelial metaplasia caused by reflux esophagitis. Hedgehog (Hh) signaling is active in columnar-lined, embryonic esophagus and inactive in squamous-lined, adult esophagus. We showed previously that Hh signaling is reactivated in Barrett's metaplasia and overexpression of Sonic hedgehog (SHH) in mouse esophageal squamous epithelium leads to a columnar phenotype. Here, our objective was to identify Hh target genes involved in Barrett's pathogenesis. By microarray analysis, we found that the transcription factor Foxa2 is more highly expressed in murine embryonic esophagus compared with postnatal esophagus. Conditional activation of Shh in mouse esophageal epithelium induced FOXA2, while FOXA2 expression was reduced in Shh knockout embryos, establishing Foxa2 as an esophageal Hh target gene. Evaluation of patient samples revealed FOXA2 expression in Barrett's metaplasia, dysplasia, and adenocarcinoma but not in esophageal squamous epithelium or squamous cell carcinoma. In esophageal squamous cell lines, Hh signaling upregulated FOXA2, which induced expression of MUC2, an intestinal mucin found in Barrett's esophagus, and the MUC2-processing protein AGR2. Together, these data indicate that Hh signaling induces expression of genes that determine an intestinal phenotype in esophageal squamous epithelial cells and may contribute to the development of Barrett's metaplasia.
Collapse
|
34
|
Xu T, Zhang XQ, Zou XP. Mechanisms of esophageal epithelial injury in gastroesophageal reflux disease. Shijie Huaren Xiaohua Zazhi 2014; 22:3030-3035. [DOI: 10.11569/wcjd.v22.i21.3030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Gastroesophageal reflux disease (GERD) is a disease frequently encountered in gastroenterology department. Domestic scholars paid much attention on the anatomical basis of reflux when trying to describe the mechanisms of GERD, such as the decrease of tension of the lower esophageal sphincter (LES) and a transient lower esophageal sphincter (tLESR) and diaphragmatic hernia, and neglected the pathophysiological mechanisms of esophageal epithelial histological changes including cell necrosis, dilated intercellular space (DIS), and infiltration of inflammatory cells which were induced by the reflux contents including gastric acid, pepsin and bile. In this paper, we will elaborate the mechanisms of esophageal epithelia injury induced by common reflux contents at the cellular and molecular levels, focusing on the introduction and analysis of immune injury mechanism.
Collapse
|
35
|
Chemoprevention of esophageal adenocarcinoma in a rat model by ursodeoxycholic acid. Clin Exp Med 2014; 15:343-50. [PMID: 25034655 DOI: 10.1007/s10238-014-0301-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 06/24/2014] [Indexed: 12/11/2022]
Abstract
Reflux of bile acid into the esophagus induces esophagitis, inflammation-stimulated hyperplasia, metaplasia such as Barrett's esophagus (BE), and esophageal adenocarcinoma (EAC). Caudal-type homeobox 2 (Cdx2) via nuclear factor (NF)-κB induced by bile acid is an important factor in the development of BE and EAC. In colorectal cancer, experimental data suggest a chemopreventive effect of ursodeoxycholic acid (UDCA). We hypothesized that UDCA may protect against the esophageal inflammation-metaplasia-carcinoma sequence by decreasing the overall proportion of the toxic bile acids. Wistar male rats that underwent a duodenoesophageal reflux procedure were divided into two groups. One group was given commercial chow (control group), and the other was given experimental chow containing UDCA (UDCA group). The animals were killed at 40 weeks after surgery, and their bile and esophagus were examined. In the UDCA group, the esophagitis was milder and the incidence of BE was significantly lower (p < 0.05) than in the control group, and EAC was not observed (p < 0.05). In analysis of the compartment of bile acid, UDCA was markedly increased in the UDCA group compared with the control group (32.7 ± 11.4 vs. 0.82 ± 0.33 mmol/L, p < 0.05) and cholic acid was decreased (32.7 ± 4.05 vs. 60.9 ± 8.26 mmol/L, p < 0.05). Expression intensity of Cdx2 and NF-κB was greater in the control group than in the UDCA group (p < 0.05). UDCA may be a chemopreventive agent against EAC by varying the bile acid composition.
Collapse
|
36
|
Zhou Z, Xia Y, Bandla S, Zakharov V, Wu S, Peters J, Godfrey TE, Sun J. Vitamin D receptor is highly expressed in precancerous lesions and esophageal adenocarcinoma with significant sex difference. Hum Pathol 2014; 45:1744-51. [PMID: 24951052 DOI: 10.1016/j.humpath.2014.02.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 01/28/2014] [Accepted: 02/07/2014] [Indexed: 12/19/2022]
Abstract
Bile acid reflux into the esophagus is important in the development of esophageal adenocarcinoma (EAC). Recently, vitamin D receptor (VDR) was recognized as a bile acid receptor as well as a vitamin receptor. Expression of VDR is reported to influence the development of various types of cancer, such as those of the breast, liver, and colon. However, little is known about the role of VDR in esophageal neoplasms. We investigated the clinicopathological role of VDR in esophageal tumors. We analyzed genomic DNA from 116 EACs for copy number aberrations. The VDR locus was amplified in 7% of EACs. Expression of the VDR protein was also detected by immunohistochemistry from tissue microarrays created from tissues of Barrett esophagus (BE), low-grade (LGD) and high-grade dysplasia (HGD), columnar cell metaplasia (CCM), squamous epithelium (SE), EAC, and esophageal squamous cell carcinoma (ESCC). The protein was highly expressed in 88% of CCM (58/66), 95% of BE (35/37), 100% of the 19 LGD, 94% of HGD (15/16), and 79% of EAC (86/109), but expression in SE and ESCC was rare. Female patients with EAC and CCM were significantly less likely to have high VDR expression than male patients. The overall survival rate was significantly different for patients with tumors exhibiting VDR amplification versus nonamplification. Our findings suggest that VDR plays a role in the early development of EAC through a bile acid ligand. The sex difference in VDR expression may help to explain why men have a high incidence of EAC.
Collapse
Affiliation(s)
- Zhongren Zhou
- Department of Pathology, University of Rochester Medical Center, Rochester, NY 14642.
| | - Yinglin Xia
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY 14642
| | - Santhoshi Bandla
- Department of Surgery, University of Rochester Medical Center, Rochester, NY 14642
| | - Vladislav Zakharov
- Department of Pathology, University of Rochester Medical Center, Rochester, NY 14642
| | - Shaoping Wu
- Department of Biochemistry, Rush University Medical Center, Chicago, IL 60612
| | - Jeffery Peters
- Department of Surgery, University of Rochester Medical Center, Rochester, NY 14642
| | - Tony E Godfrey
- Department of Surgery, University of Rochester Medical Center, Rochester, NY 14642
| | - Jun Sun
- Department of Biochemistry, Rush University Medical Center, Chicago, IL 60612.
| |
Collapse
|
37
|
Abstract
PURPOSE OF REVIEW To review recent data supporting the development of new histology-based definitions of gastro-esophageal reflux disease (GERD). RECENT FINDINGS Three precisely definable columnar epithelial types--cardiac, oxyntocardiac and intestinal--may be interposed between esophageal squamous epithelium and gastric oxyntic (acid secreting) mucosa. This enables definition of a new histologic concept: the squamo-oxyntic gap. The squamo-oxyntic gap is zero or very small in autopsies performed on patients without evidence of GERD. The gap progressively increases in length with the severity of GERD, indicating that the squamo-oxyntic gap is a marker for chronic GERD. The distal part of the gap lines gastric-type rugal folds and, therefore, is distal to the present endoscopic definition of the gastro-esophageal junction. I contend that this distal gap segment (which has esophageal submucosal glands) is actually the dilated distal esophagus; this is the pathologic correlate of destruction of the abdominal segment of the lower esophageal sphincter. The dilated distal esophagus is mistaken for 'gastric cardia' by present endoscopic definitions. SUMMARY I believe that these data support the adoption of novel histologic definitions of GERD as follows: the presence of any squamo-oxyntic gap defines GERD; the length of the gap is a measure of severity of chronic GERD; and the presence of intestinal metaplasia in the gap defines Barrett esophagus and cancer risk.
Collapse
|
38
|
Clemons NJ, Phillips WA, Lord RV. Signaling pathways in the molecular pathogenesis of adenocarcinomas of the esophagus and gastroesophageal junction. Cancer Biol Ther 2013; 14:782-95. [PMID: 23792587 PMCID: PMC3909547 DOI: 10.4161/cbt.25362] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Esophageal adenocarcinoma develops in response to severe gastroesophageal reflux disease through the precursor lesion Barrett esophagus, in which the normal squamous epithelium is replaced by a columnar lining. The incidence of esophageal adenocarcinoma in the United States has increased by over 600% in the past 40 years and the overall survival rate remains less than 20% in the community. This review highlights some of the signaling pathways for which there is some evidence of a role in the development of esophageal adenocarcinoma. An increasingly detailed understanding of the biology of this cancer has emerged recently, revealing that in addition to the well-recognized alterations in single genes such as p53, p16, APC, and telomerase, there are interactions between the components of the reflux fluid, the homeobox gene Cdx2, and the Wnt, Notch, and Hedgehog signaling pathways.
Collapse
Affiliation(s)
- Nicholas J Clemons
- Surgical Oncology Research Laboratory; Peter MacCallum Cancer Centre; East Melbourne, Australia; Sir Peter MacCallum Department of Oncology; University of Melbourne, Melbourne, Australia; Department of Surgery (St. Vincent's Hospital); University of Melbourne; Melbourne, Australia
| | - Wayne A Phillips
- Surgical Oncology Research Laboratory; Peter MacCallum Cancer Centre; East Melbourne, Australia; Sir Peter MacCallum Department of Oncology; University of Melbourne, Melbourne, Australia; Department of Surgery (St. Vincent's Hospital); University of Melbourne; Melbourne, Australia
| | - Reginald V Lord
- St. Vincent's Centre for Applied Medical Research; Sydney, Australia; Notre Dame University School of Medicine; Sydney, Australia
| |
Collapse
|
39
|
Pan Q, Nicholson AM, Barr H, Harrison LA, Wilson GD, Burkert J, Jeffery R, Alison MR, Looijenga L, Lin WR, McDonald SAC, Wright NA, Harrison R, Peppelenbosch MP, Jankowski JA. Identification of lineage-uncommitted, long-lived, label-retaining cells in healthy human esophagus and stomach, and in metaplastic esophagus. Gastroenterology 2013; 144:761-70. [PMID: 23266557 DOI: 10.1053/j.gastro.2012.12.022] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 12/10/2012] [Accepted: 12/14/2012] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS The existence of slowly cycling, adult stem cells has been challenged by the identification of actively cycling cells. We investigated the existence of uncommitted, slowly cycling cells by tracking 5-iodo-2'-deoxyuridine (IdU) label-retaining cells (LRCs) in normal esophagus, Barrett's esophagus (BE), esophageal dysplasia, adenocarcinoma, and healthy stomach tissues from patients. METHODS Four patients (3 undergoing esophagectomy, 1 undergoing esophageal endoscopic mucosal resection for dysplasia and an esophagectomy for esophageal adenocarcinoma) received intravenous infusion of IdU (200 mg/m(2) body surface area; maximum dose, 400 mg) over a 30-minute period; the IdU had a circulation half-life of 8 hours. Tissues were collected at 7, 11, 29, and 67 days after infusion, from regions of healthy esophagus, BE, dysplasia, adenocarcinoma, and healthy stomach; they were analyzed by in situ hybridization, flow cytometry, and immunohistochemical analyses. RESULTS No LRCs were found in dysplasias or adenocarcinomas, but there were significant numbers of LRCs in the base of glands from BE tissue, in the papillae of the basal layer of the esophageal squamous epithelium, and in the neck/isthmus region of healthy stomach. These cells cycled slowly because IdU was retained for at least 67 days and co-labeling with Ki-67 was infrequent. In glands from BE tissues, most cells did not express defensin-5, Muc-2, or chromogranin A, indicating that they were not lineage committed. Some cells labeled for endocrine markers and IdU at 67 days; these cells represented a small population (<0.1%) of epithelial cells at this time point. The epithelial turnover time of the healthy esophageal mucosa was approximately 11 days (twice that of the intestine). CONCLUSIONS LRCs of human esophagus and stomach have many features of stem cells (long lived, slow cycling, uncommitted, and multipotent), and can be found in a recognized stem cell niche. Further analyses of these cells, in healthy and metaplastic epithelia, is required.
Collapse
Affiliation(s)
- Qiuwei Pan
- Department of Gastroenterology and Hepatology, Rotterdam, the Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
The small and large intestines are tubular organs composed of several tissue types. The columnar epithelium that lines the inner surface of the intestines distinguishes the digestive physiology of each region of the intestine and consists of several distinct cell types that are rapidly and continually renewed by intestinal stem cells that reside near the base of the crypts of Lieberkühn. Notch signaling controls the fate of intestinal stem cells by regulating the expression of Hes genes and by repressing Atoh1. Alternate models of Notch pathway control of cell fate determination are presented. Roles for Notch signaling in development of the intestine, including mesenchymal and neural cells, are discussed. The oncogenic activities of Notch in colorectal cancer, as well as the tumor suppressive activities of Atoh1, are reviewed. Therapeutic targeting of the Notch pathway in colorectal cancers is discussed, along with potential caveats.
Collapse
Affiliation(s)
- Taeko K Noah
- Division of Gastroenterology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | | |
Collapse
|