1
|
Gai X, Xia Q, Wang H, Bi H, Wang J, Zhao Y. Study on the mechanism of echinacoside in preventing and treating hypoxic pulmonary hypertension based on proteomic analyses. Pharmacol Res Perspect 2024; 12:e70025. [PMID: 39401152 PMCID: PMC11472809 DOI: 10.1002/prp2.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 09/11/2024] [Accepted: 09/29/2024] [Indexed: 10/17/2024] Open
Abstract
Hypoxic pulmonary hypertension (HPH), a chronic condition affecting the cardiopulmonary system, has high mortality. Echinacoside (ECH) is a phenylethanoid glycoside, which is used to ameliorate pulmonary vascular remodeling and pulmonary vasoconstriction in rats. Accordingly, we aimed to explore the mechanism of ECH in preventing and treating HPH. Sprague Dawley rats were housed in a hypobaric hypoxia chamber for 28 days to obtain the HPH model. The experimental rats were randomly allocated into the following several groups: normoxia group, chronic hypoxia group, and ECH group. The therapeutic results of ECH (10, 20, and 40 mg/kg) showed that ECH reduced mPAP, Hb, Hct, and RVHI in HPH rats. Then this work employed label-free quantitative proteomic analysis, western blotting, and RT-PCR to investigate the mechanism by which ECH prevents HPH. The results found that in the chronic hypoxia group, the levels of ACSL1, COL6A1, COL4A2, COL1A1, and PC increased compared to the normoxia group. However, the opposite effect was observed in the chronic hypoxia group treated with ECH. The study indicates that the administration of ECH may slow the pathological progression of HPH by suppressing the inflammatory response, inhibiting smooth muscle cell proliferation, and minimizing the deposition of extracellular matrix.
Collapse
Affiliation(s)
- Xiangyun Gai
- Department of PharmacyQinghai Minzu UniversityXiningChina
| | - Qingqing Xia
- Department of PharmacyQinghai Minzu UniversityXiningChina
| | - Hongmai Wang
- Department of PharmacyQinghai Minzu UniversityXiningChina
| | - Hongtao Bi
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety EvaluationNorthwest Institute of Plateau Biology, Chinese Academy of ScienceXiningChina
| | - Jinyu Wang
- Department of PharmacyQinghai Minzu UniversityXiningChina
| | - Yuefu Zhao
- Department of PharmacyQinghai Minzu UniversityXiningChina
| |
Collapse
|
2
|
Xiao Y, Vazquez-Padron RI, Martinez L, Singer HA, Woltmann D, Salman LH. Role of platelet factor 4 in arteriovenous fistula maturation failure: What do we know so far? J Vasc Access 2024; 25:390-406. [PMID: 35751379 PMCID: PMC9974241 DOI: 10.1177/11297298221085458] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The rate of arteriovenous fistula (AVF) maturation failure remains unacceptably high despite continuous efforts on technique improvement and careful pre-surgery planning. In fact, half of all newly created AVFs are unable to be used for hemodialysis (HD) without a salvage procedure. While vascular stenosis in the venous limb of the access is the culprit, the underlying factors leading to vascular narrowing and AVF maturation failure are yet to be determined. We have recently demonstrated that AVF non-maturation is associated with post-operative medial fibrosis and fibrotic stenosis, and post-operative intimal hyperplasia (IH) exacerbates the situation. Multiple pathological processes and signaling pathways are underlying the stenotic remodeling of the AVF. Our group has recently indicated that a pro-inflammatory cytokine platelet factor 4 (PF4/CXCL4) is upregulated in veins that fail to mature after AVF creation. Platelet factor 4 is a fibrosis marker and can be detected in vascular stenosis tissue, suggesting that it may contribute to AVF maturation failure through stimulation of fibrosis and development of fibrotic stenosis. Here, we present an overview of the how PF4-mediated fibrosis determines AVF maturation failure.
Collapse
Affiliation(s)
- Yuxuan Xiao
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Roberto I Vazquez-Padron
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Laisel Martinez
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Harold A Singer
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Daniel Woltmann
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Loay H Salman
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
- Division of Nephrology and Hypertension, Albany Medical College, Albany, NY, USA
| |
Collapse
|
3
|
Jahnke L, Perrenoud V, Zandi S, Li Y, Conedera FM, Enzmann V. Modulation of Extracellular Matrix Composition and Chronic Inflammation with Pirfenidone Promotes Scar Reduction in Retinal Wound Repair. Cells 2024; 13:164. [PMID: 38247855 PMCID: PMC10814251 DOI: 10.3390/cells13020164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/11/2024] [Accepted: 01/13/2024] [Indexed: 01/23/2024] Open
Abstract
Wound repair in the retina is a complex mechanism, and a deeper understanding of it is necessary for the development of effective treatments to slow down or even prevent degenerative processes leading to photoreceptor loss. In this study, we harnessed a laser-induced retinal degeneration model (532-nm laser photocoagulation with 300 μm spot size, 60 ms duration and 60 mV pulse), enabling a profound molecular elucidation and a comprehensive, prolonged observation of the wound healing sequence in a murine laser-induced degeneration model (C57BL/6J mice, 6-12 weeks) until day 49 post-laser. Our observations included the expression of specific extracellular matrix proteins and myofibroblast activity, along with an analysis of gene expression related to extracellular matrix and adhesion molecules through RNA measurements. Furthermore, the administration of pirfenidone (10 mg/kg via drinking water), an anti-inflammatory and anti-fibrotic compound, was used to modulate scar formation after laser treatment. Our data revealed upregulated collagen expression in late regenerative phases and sustained inflammation in the damaged tissue. Notably, treatment with pirfenidone was found to mitigate scar tissue formation, effectively downregulating collagen production and diminishing the presence of inflammatory markers. However, it did not lead to the regeneration of the photoreceptor layer.
Collapse
Affiliation(s)
- Laura Jahnke
- Department of Ophthalmology, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Department of BioMedical Research, University of Bern, 3008 Bern, Switzerland
| | - Virginie Perrenoud
- Department of Ophthalmology, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Souska Zandi
- Department of Ophthalmology, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Department of BioMedical Research, University of Bern, 3008 Bern, Switzerland
| | - Yuebing Li
- Department of Ophthalmology, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Department of BioMedical Research, University of Bern, 3008 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Federica Maria Conedera
- Department of Ophthalmology, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Department of Oncology, Microbiology and Immunology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Volker Enzmann
- Department of Ophthalmology, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Department of BioMedical Research, University of Bern, 3008 Bern, Switzerland
| |
Collapse
|
4
|
Bordini M, Mazzoni M, Di Nunzio M, Zappaterra M, Sirri F, Meluzzi A, Petracci M, Soglia F. Time course evaluation of collagen type IV in Pectoralis major muscles of broiler chickens selected for different growth-rates. Poult Sci 2024; 103:103179. [PMID: 37931400 PMCID: PMC10652102 DOI: 10.1016/j.psj.2023.103179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/25/2023] [Accepted: 10/06/2023] [Indexed: 11/08/2023] Open
Abstract
Collagen type IV (COL4) is one of the major components of animals' and humans' basement membranes of several tissues, such as skeletal muscles and vascular endothelia. Alterations in COL4 assembly and secretion are associated to muscular disorders in humans and animals among which growth-related abnormalities such as white striping and wooden breast affecting Pectoralis major muscles (PMs) in modern fast-growing (FG) chickens. Considering the high prevalence of these myopathies in FG broilers and that a worsening is observed as the bird slaughter age is increased, the present study was intended to evaluate the distribution and the expression level of COL4 protein and its coding genes in PMs of FG broilers at different stages of muscle development (i.e., 7, 14, 21, 28, 35, and 42 d of age). Medium-growing (MG) chickens have been considered as the control group in consideration of the lower selection pressure on breast muscle growth rate and hypertrophy. Briefly, 5 PM/sampling time/genotype were selected for western blot, immunohistochemistry (IHC), and gene expression analyses. The normalized expression levels of COL4 coding genes showed an overexpression of COL4A2 in FG than MG at d 28, as well as a significant decrease in its expression over their rearing period. Overall, results obtained through the gene expression analysis suggested that selection for the hypertrophic growth of FG broilers may have led to an altered regulation of fibroblast proliferation and COL4 synthesis. Moreover, western blot and IHC analyses suggested an altered secretion and/or degradation of COL4 protein in FG broilers, as evidenced by the fluctuating trend of 2 bands observed in FG over time. In view of the above, the present research supports the evidence about a potential aberrant synthesis and/or degradation of COL4 and corroborates the hypothesis regarding a likely involvement of COL4 in the series of events underlying the growth-related abnormalities in modern FG broilers.
Collapse
Affiliation(s)
- Martina Bordini
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Maurizio Mazzoni
- Department of Veterinary Medical Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Mattia Di Nunzio
- Department of Food, Environmental and Nutritional Sciences (Defens), University of Milan, Milan, 20133, Italy
| | - Martina Zappaterra
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Federico Sirri
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Adele Meluzzi
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Massimiliano Petracci
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy.
| | - Francesca Soglia
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| |
Collapse
|
5
|
Shinohara M, Lau QY, Torizal FG, Choi H, Sakai Y. Inflammatory liver tissue formation using oxygen permeable membrane based culture platform. J Biosci Bioeng 2023; 136:327-333. [PMID: 37573250 DOI: 10.1016/j.jbiosc.2023.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 08/14/2023]
Abstract
During chronic liver injury, inflammation leads to liver fibrosis, particularly due to the activation of hepatic stellate cells (HSCs). The involvement of inflammatory cytokines in HSC activation and the interplay among different liver cells are elaborated. To examine their interactions in vitro, many cultured liver tissue models are performed in organoid or spheroid culture with random 3D structure. Herein, we demonstrated the hierarchical coculture of primary rat hepatocytes with non-parenchymal cells such as the human-derived HSC line (LX-2) and liver sinusoidal endothelial cell line (TMNK-1). The cocultured tissue had high usability with simple operation of separating solid and liquid phases with improved liver functions such as albumin production and hepatic cytochrome P450 3A4 activity. We also studied the effects of stimulation by both oxygen tension and the key pro-fibrogenic cytokine, transforming growth factor beta (TGF-β), on HSC activation. Gene expression of collagen type I and alpha-smooth muscle actin were enhanced in the hierarchical coculture under lower oxygen tension and TGF-β1 stimulation. Therefore, this hierarchical in vitro cocultured liver tissue could provide a useful platform as a disease model for elucidating the interactions of various liver cell types and biochemical signals in future liver fibrogenesis studies.
Collapse
Affiliation(s)
- Marie Shinohara
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan.
| | - Qiao You Lau
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan; Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Fuad Gandhi Torizal
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; Department of Chemical System Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hyunjin Choi
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; Department of Chemical System Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yasuyuki Sakai
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan; Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; Department of Chemical System Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
6
|
May J, Mitchell JA, Jenkins RG. Beyond epithelial damage: vascular and endothelial contributions to idiopathic pulmonary fibrosis. J Clin Invest 2023; 133:e172058. [PMID: 37712420 PMCID: PMC10503802 DOI: 10.1172/jci172058] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive scarring disease of the lung with poor survival. The incidence and mortality of IPF are rising, but treatment remains limited. Currently, two drugs can slow the scarring process but often at the expense of intolerable side effects, and without substantially changing overall survival. A better understanding of mechanisms underlying IPF is likely to lead to improved therapies. The current paradigm proposes that repetitive alveolar epithelial injury from noxious stimuli in a genetically primed individual is followed by abnormal wound healing, including aberrant activity of extracellular matrix-secreting cells, with resultant tissue fibrosis and parenchymal damage. However, this may underplay the importance of the vascular contribution to fibrogenesis. The lungs receive 100% of the cardiac output, and vascular abnormalities in IPF include (a) heterogeneous vessel formation throughout fibrotic lung, including the development of abnormal dilated vessels and anastomoses; (b) abnormal spatially distributed populations of endothelial cells (ECs); (c) dysregulation of endothelial protective pathways such as prostacyclin signaling; and (d) an increased frequency of common vascular and metabolic comorbidities. Here, we propose that vascular and EC abnormalities are both causal and consequential in the pathobiology of IPF and that fuller evaluation of dysregulated pathways may lead to effective therapies and a cure for this devastating disease.
Collapse
|
7
|
Guo Y, Yuan Z, Hu Z, Gao Y, Guo H, Zhu H, Hong K, Cen K, Mai Y, Bai Y, Yang X. Diagnostic model constructed by five EMT-related genes for renal fibrosis and reflecting the condition of immune-related cells. Front Immunol 2023; 14:1161436. [PMID: 37266443 PMCID: PMC10229861 DOI: 10.3389/fimmu.2023.1161436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/28/2023] [Indexed: 06/03/2023] Open
Abstract
Background Renal fibrosis is a physiological and pathological characteristic of chronic kidney disease (CKD) to end-stage renal disease. Since renal biopsy is the gold standard for evaluating renal fibrosis, there is an urgent need for additional non-invasive diagnostic biomarkers. Methods We used R package "limma" to screen out differently expressed genes (DEGs) based on Epithelial-mesenchymal transformation (EMT), and carried out the protein interaction network and GO, KEGG enrichment analysis of DEGs. Secondly, the least absolute shrinkage and selection operator (LASSO), random forest tree (RF), and support vector machine-recursive feature elimination (SVM-RFE) algorithms were used to identify candidate diagnostic genes. ROC curves were plotted to evaluate the clinical diagnostic value of these genes. In addition, mRNA expression levels of candidate diagnostic genes were analyzed in control samples and renal fibrosis samples. CIBERSORT algorithm was used to evaluate immune cells level. Additionally, gene set enrichment analysis (GSEA) and drug sensitivity were conducted. Results After obtaining a total of 24 DEGs, we discovered that they were mostly involved in several immunological and inflammatory pathways, including NF-KappaB signaling, AGE-RAGE signaling, and TNF signaling. Five genes (COL4A2, CXCL1, TIMP1, VCAM1, and VEGFA) were subsequently identified as biomarkers for renal fibrosis through machine learning, and their expression levels were confirmed by validation cohort data sets and in vitro RT-qPCR experiment. The AUC values of these five genes demonstrated significant clinical diagnostic value in both the training and validation sets. After that, CIBERSORT analysis showed that these biomarkers were strongly associated with immune cell content in renal fibrosis patients. GSEA also identifies the potential roles of these diagnostic genes. Additionally, diagnostic candidate genes were found to be closely related to drug sensitivity. Finally, a nomogram for diagnosing renal fibrosis was developed. Conclusion COL4A2, CXCL1, TIMP1, VCAM1, and VEGFA are promising diagnostic biomarkers of tissue and serum for renal fibrosis.
Collapse
Affiliation(s)
- Yangyang Guo
- Department of General Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Ziwei Yuan
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zujian Hu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yuanyuan Gao
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hangcheng Guo
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hengyue Zhu
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kai Hong
- Department of General Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Kenan Cen
- The Affiliated Hospital of Medical School of Ningbo University, Ningbo, China
| | - Yifeng Mai
- The Affiliated Hospital of Medical School of Ningbo University, Ningbo, China
| | - Yongheng Bai
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xuejia Yang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
8
|
Niu W, Zhang Y, Liu H, Liang N, Xu L, Li Y, Yao W, Shi W, Liu Z. Single-Cell Profiling Uncovers the Roles of Endometrial Fibrosis and Microenvironmental Changes in Adenomyosis. J Inflamm Res 2023; 16:1949-1965. [PMID: 37179754 PMCID: PMC10167994 DOI: 10.2147/jir.s402734] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/29/2023] [Indexed: 05/15/2023] Open
Abstract
Purpose Adenomyosis (AM) is a common benign uterine disorder that has deleterious effects on women's health. However, the pathogenesis of AM is not clearly understood. We aimed to investigate the pathophysiological changes and molecular mechanism in AM. Methods Single-cell RNA sequencing (scRNA-seq) was employed to construct a transcriptomic atlas of various cell subsets from the ectopic endometrium (EC) and eutopic endometrium (EM) of one AM patient and evaluate differential expression. The Cell Ranger software pipeline (version 4.0.0) was applied to conduct sample demultiplexing, barcode processing and mapping reads to the reference genome (human GRCh38). Different cell types were classified with markers with the "FindAllMarkers" function, and differential gene expression analysis was performed with Seurat software in R. The findings were confirmed by Reverse Transcription Real-Time PCR using samples from three AM patients. Results We identified nine cell types: endothelial cells, epithelial cells, myoepithelial cells, smooth muscle cells, fibroblasts, lymphocytes, mast cells, macrophages and unknown cells. A number of differentially expressed genes, including CLO4A1, MMP1, TPM2 and CXCL8, were identified from all cell types. Functional enrichment showed that aberrant gene expression in fibroblasts and immune cells was related to fibrosis-associated terms, such as extracellular matrix dysregulation, focal adhesion and the PI3K-Akt signaling pathway. We also identified fibroblast subtypes and determined a potential developmental trajectory related to AM. In addition, we identified increased cell-cell communication patterns in EC, highlighting the imbalanced microenvironment in AM progression. Conclusion Our results support the theory of endometrial-myometrial interface disruption for AM, and repeated tissue injury and repair could lead to increased fibrosis in the endometrium. Therefore, the present study reveals the association between fibrosis, the microenvironment, and AM pathogenesis. This study provides insight into the molecular mechanisms regulating AM progression.
Collapse
Affiliation(s)
- Weipin Niu
- Central Laboratory, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China
| | - Yinuo Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China
| | - Hongyun Liu
- Department of Gynecology, Linyi Central Hospital, Linyi, People’s Republic of China
| | - Na Liang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, Jinan, People’s Republic of China
| | - Li Xu
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China
| | - Yalin Li
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China
| | - Wei Yao
- Department of Gynecology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China
| | - Wei Shi
- Department of Gynecology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China
| | - Zhiyong Liu
- Central Laboratory, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China
| |
Collapse
|
9
|
Kong L, Pokatayev V, Lefkovith A, Carter GT, Creasey EA, Krishna C, Subramanian S, Kochar B, Ashenberg O, Lau H, Ananthakrishnan AN, Graham DB, Deguine J, Xavier RJ. The landscape of immune dysregulation in Crohn's disease revealed through single-cell transcriptomic profiling in the ileum and colon. Immunity 2023; 56:444-458.e5. [PMID: 36720220 PMCID: PMC9957882 DOI: 10.1016/j.immuni.2023.01.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 11/14/2022] [Accepted: 01/06/2023] [Indexed: 01/31/2023]
Abstract
Crohn's disease (CD) is a chronic gastrointestinal disease that is increasing in prevalence worldwide. CD is multifactorial, involving the complex interplay of genetic, immune, and environmental factors, necessitating a system-level understanding of its etiology. To characterize cell-type-specific transcriptional heterogeneity in active CD, we profiled 720,633 cells from the terminal ileum and colon of 71 donors with varying inflammation status. Our integrated datasets revealed organ- and compartment-specific responses to acute and chronic inflammation; most immune changes were in cell composition, whereas transcriptional changes dominated among epithelial and stromal cells. These changes correlated with endoscopic inflammation, but small and large intestines exhibited distinct responses, which were particularly apparent when focusing on IBD risk genes. Finally, we mapped markers of disease-associated myofibroblast activation and identified CHMP1A, TBX3, and RNF168 as regulators of fibrotic complications. Altogether, our results provide a roadmap for understanding cell-type- and organ-specific differences in CD and potential directions for therapeutic development.
Collapse
Affiliation(s)
- Lingjia Kong
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Vladislav Pokatayev
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Ariel Lefkovith
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Grace T Carter
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Elizabeth A Creasey
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Chirag Krishna
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Sathish Subramanian
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Bharati Kochar
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Orr Ashenberg
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Helena Lau
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ashwin N Ananthakrishnan
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Daniel B Graham
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jacques Deguine
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ramnik J Xavier
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Boston, MA 02114, USA.
| |
Collapse
|
10
|
Huang Y, Guzy R, Ma SF, Bonham CA, Jou J, Schulte JJ, Kim JS, Barros AJ, Espindola MS, Husain AN, Hogaboam CM, Sperling AI, Noth I. Central lung gene expression associates with myofibroblast features in idiopathic pulmonary fibrosis. BMJ Open Respir Res 2023; 10:10/1/e001391. [PMID: 36725082 PMCID: PMC9896241 DOI: 10.1136/bmjresp-2022-001391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 01/13/2023] [Indexed: 02/03/2023] Open
Abstract
RATIONALE Contribution of central lung tissues to pathogenesis of idiopathic pulmonary fibrosis (IPF) remains unknown. OBJECTIVE To ascertain the relationship between cell types of IPF-central and IPF-peripheral lung explants using RNA sequencing (RNA-seq) transcriptome. METHODS Biopsies of paired IPF-central and IPF-peripheral along with non-IPF lungs were selected by reviewing H&E data. Criteria for differentially expressed genes (DEG) were set at false discovery rate <5% and fold change >2. Computational cell composition deconvolution was performed. Signature scores were computed for each cell type. FINDINGS Comparison of central IPF versus non-IPF identified 1723 DEG (1522 upregulated and 201 downregulated). Sixty-two per cent (938/1522) of the mutually upregulated genes in central IPF genes were also upregulated in peripheral IPF versus non-IPF. Moreover, 85 IPF central-associated genes (CAG) were upregulated in central IPF versus both peripheral IPF and central non-IPF. IPF single-cell RNA-seq analysis revealed the highest CAG signature score in myofibroblasts and significantly correlated with a previously published activated fibroblasts signature (r=0.88, p=1.6×10-4). CAG signature scores were significantly higher in IPF than in non-IPF myofibroblasts (p=0.013). Network analysis of central-IPF genes identified a module significantly correlated with the deconvoluted proportion of myofibroblasts in central IPF and anti-correlated with inflammation foci trait in peripheral IPF. The module genes were over-represented in idiopathic pulmonary fibrosis signalling pathways. INTERPRETATION Gene expression in central IPF lung regions demonstrates active myofibroblast features that contributes to disease progression. Further elucidation of pathological transcriptomic state of cells in the central regions of the IPF lung that are relatively spared from morphological rearrangements may provide insights into molecular changes in the IPF progression.
Collapse
Affiliation(s)
- Yong Huang
- Division of Pulmonary & Critical Care Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Rob Guzy
- Section of Pulmonary & Critical Care Medicine, University of Chicago, Chicago, Illinois, USA
| | - Shwu-Fan Ma
- Division of Pulmonary & Critical Care Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Catherine A Bonham
- Division of Pulmonary & Critical Care Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Jonathan Jou
- Department of Surgery, University of Illinois, Peoria, Illinois, USA
| | - Jefree J Schulte
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - John S Kim
- Division of Pulmonary & Critical Care Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Andrew J Barros
- Division of Pulmonary & Critical Care Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Milena S Espindola
- Division of Pulmonary & Critical Care Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Aliya N Husain
- Department of Pathology, University of Chicago, Chicago, Illinois, USA
| | - Cory M Hogaboam
- Division of Pulmonary & Critical Care Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Anne I Sperling
- Division of Pulmonary & Critical Care Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Imre Noth
- Division of Pulmonary & Critical Care Medicine, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
11
|
Beaven E, Kumar R, Bhatt HN, Esquivel SV, Nurunnabi M. Myofibroblast specific targeting approaches to improve fibrosis treatment. Chem Commun (Camb) 2022; 58:13556-13571. [PMID: 36445310 PMCID: PMC9946855 DOI: 10.1039/d2cc04825f] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Fibrosis has been shown to develop in individuals with underlying health conditions, especially chronic inflammatory diseases. Fibrosis is often diagnosed in various organs, including the liver, lungs, kidneys, heart, and skin, and has been described as excessive accumulation of extracellular matrix that can affect specific organs in the body or systemically throughout the body. Fibrosis as a chronic condition can result in organ failure and result in death of the individual. Understanding and identification of specific biomarkers associated with fibrosis has emerging potential in the development of diagnosis and targeting treatment modalities. Therefore, in this review, we will discuss multiple signaling pathways such as TGF-β, collagen, angiotensin, and cadherin and outline the chemical nature of the different signaling pathways involved in fibrogenesis as well as the mechanisms. Although it has been well established that TGF-β is the main catalyst initiating and driving multiple pathways for fibrosis, targeting TGF-β can be challenging as this molecule regulates essential functions throughout the body that help to keep the body in homeostasis. We also discuss collagen, angiotensin, and cadherins and their role in fibrosis. We comprehensively discuss the various delivery systems used to target collagen, angiotensin, and cadherins to manage fibrosis. Nevertheless, understanding the steps by which this molecule drives fibrosis development can aid in the development of specific targets of its cascading mechanism. Throughout the review, we will demonstrate the mechanism of fibrosis targeting to improve targeting delivery and therapy.
Collapse
Affiliation(s)
- Elfa Beaven
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX 79902, USA.
- Department of Biomedical Engineering, The University of Texas El Paso, El Paso, TX 79968, USA
| | - Raj Kumar
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX 79902, USA.
- Department of Biomedical Engineering, The University of Texas El Paso, El Paso, TX 79968, USA
| | - Himanshu N Bhatt
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX 79902, USA.
- Department of Biomedical Engineering, The University of Texas El Paso, El Paso, TX 79968, USA
| | - Stephanie V Esquivel
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX 79902, USA.
- Aerospace Center (cSETR), The University of Texas El Paso, El Paso, TX 79968, USA
| | - Md Nurunnabi
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX 79902, USA.
- Department of Biomedical Engineering, The University of Texas El Paso, El Paso, TX 79968, USA
- Aerospace Center (cSETR), The University of Texas El Paso, El Paso, TX 79968, USA
- Border Biomedical Research Center, The University of Texas El Paso, El Paso, TX 79968, USA
| |
Collapse
|
12
|
Shih AJ, Adelson RP, Vashistha H, Khalili H, Nayyar A, Puran R, Herrera R, Chatterjee PK, Lee AT, Truskinovsky AM, Elmaliki K, DeFranco M, Metz CN, Gregersen PK. Single-cell analysis of menstrual endometrial tissues defines phenotypes associated with endometriosis. BMC Med 2022; 20:315. [PMID: 36104692 PMCID: PMC9476391 DOI: 10.1186/s12916-022-02500-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 07/27/2022] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Endometriosis is a common, complex disorder which is underrecognized and subject to prolonged delays in diagnosis. It is accompanied by significant changes in the eutopic endometrial lining. METHODS We have undertaken the first single-cell RNA-sequencing (scRNA-Seq) comparison of endometrial tissues in freshly collected menstrual effluent (ME) from 33 subjects, including confirmed endometriosis patients (cases) and controls as well as symptomatic subjects (who have chronic symptoms suggestive of endometriosis but have not been diagnosed). RESULTS We identify a unique subcluster of proliferating uterine natural killer (uNK) cells in ME-tissues from controls that is almost absent from endometriosis cases, along with a striking reduction of total uNK cells in the ME of cases (p < 10-16). In addition, an IGFBP1+ decidualized subset of endometrial stromal cells are abundant in the shed endometrium of controls when compared to cases (p < 10-16) confirming findings of compromised decidualization of cultured stromal cells from cases. By contrast, endometrial stromal cells from cases are enriched in cells expressing pro-inflammatory and senescent phenotypes. An enrichment of B cells in the cases (p = 5.8 × 10-6) raises the possibility that some may have chronic endometritis, a disorder which predisposes to endometriosis. CONCLUSIONS We propose that characterization of endometrial tissues in ME will provide an effective screening tool for identifying endometriosis in patients with chronic symptoms suggestive of this disorder. This constitutes a major advance, since delayed diagnosis for many years is a major clinical problem in the evaluation of these patients. Comprehensive analysis of ME is expected to lead to new diagnostic and therapeutic approaches to endometriosis and other associated reproductive disorders such as female infertility.
Collapse
Affiliation(s)
- Andrew J Shih
- Robert S. Boas Center for Genomics and Human Genetics, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Robert P Adelson
- Robert S. Boas Center for Genomics and Human Genetics, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Himanshu Vashistha
- Robert S. Boas Center for Genomics and Human Genetics, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Houman Khalili
- Robert S. Boas Center for Genomics and Human Genetics, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Ashima Nayyar
- Robert S. Boas Center for Genomics and Human Genetics, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Radha Puran
- Robert S. Boas Center for Genomics and Human Genetics, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Rixsi Herrera
- Robert S. Boas Center for Genomics and Human Genetics, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Prodyot K Chatterjee
- Robert S. Boas Center for Genomics and Human Genetics, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Annette T Lee
- Robert S. Boas Center for Genomics and Human Genetics, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
- Donald and Barbara Zucker School of Medicine, 500 Hofstra Blvd, Hempstead, NY, USA
| | - Alexander M Truskinovsky
- Donald and Barbara Zucker School of Medicine, 500 Hofstra Blvd, Hempstead, NY, USA
- Department of Pathology, North Shore University Hospital, Northwell Health, 300 Community Drive, Manhasset, NY, USA
| | - Kristine Elmaliki
- Robert S. Boas Center for Genomics and Human Genetics, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Margaret DeFranco
- Robert S. Boas Center for Genomics and Human Genetics, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Christine N Metz
- Robert S. Boas Center for Genomics and Human Genetics, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA.
- Donald and Barbara Zucker School of Medicine, 500 Hofstra Blvd, Hempstead, NY, USA.
| | - Peter K Gregersen
- Robert S. Boas Center for Genomics and Human Genetics, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA.
- Donald and Barbara Zucker School of Medicine, 500 Hofstra Blvd, Hempstead, NY, USA.
| |
Collapse
|
13
|
Bianchi L, Altera A, Barone V, Bonente D, Bacci T, De Benedetto E, Bini L, Tosi GM, Galvagni F, Bertelli E. Untangling the Extracellular Matrix of Idiopathic Epiretinal Membrane: A Path Winding among Structure, Interactomics and Translational Medicine. Cells 2022; 11:cells11162531. [PMID: 36010606 PMCID: PMC9406781 DOI: 10.3390/cells11162531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 12/16/2022] Open
Abstract
Idiopathic epiretinal membranes (iERMs) are fibrocellular sheets of tissue that develop at the vitreoretinal interface. The iERMs consist of cells and an extracellular matrix (ECM) formed by a complex array of structural proteins and a large number of proteins that regulate cell–matrix interaction, matrix deposition and remodelling. Many components of the ECM tend to produce a layered pattern that can influence the tractional properties of the membranes. We applied a bioinformatics approach on a list of proteins previously identified with an MS-based proteomic analysis on samples of iERM to report the interactome of some key proteins. The performed pathway analysis highlights interactions occurring among ECM molecules, their cell receptors and intra- or extracellular proteins that may play a role in matrix biology in this special context. In particular, integrin β1, cathepsin B, epidermal growth factor receptor, protein-glutamine gamma-glutamyltransferase 2 and prolow-density lipoprotein receptor-related protein 1 are key hubs in the outlined protein–protein cross-talks. A section on the biomarkers that can be found in the vitreous humor of patients affected by iERM and that can modulate matrix deposition is also presented. Finally, translational medicine in iERM treatment has been summed up taking stock of the techniques that have been proposed for pharmacologic vitreolysis.
Collapse
Affiliation(s)
- Laura Bianchi
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Annalisa Altera
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Virginia Barone
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Denise Bonente
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Tommaso Bacci
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
| | - Elena De Benedetto
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
| | - Luca Bini
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Gian Marco Tosi
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
| | - Federico Galvagni
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Eugenio Bertelli
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
- Correspondence:
| |
Collapse
|
14
|
Savin IA, Markov AV, Zenkova MA, Sen’kova AV. Asthma and Post-Asthmatic Fibrosis: A Search for New Promising Molecular Markers of Transition from Acute Inflammation to Pulmonary Fibrosis. Biomedicines 2022; 10:biomedicines10051017. [PMID: 35625754 PMCID: PMC9138542 DOI: 10.3390/biomedicines10051017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 12/15/2022] Open
Abstract
Asthma is a heterogeneous pulmonary disorder, the progression and chronization of which leads to airway remodeling and fibrogenesis. To understand the molecular mechanisms of pulmonary fibrosis development, key genes forming the asthma-specific regulome and involved in lung fibrosis formation were revealed using a comprehensive bioinformatics analysis. The bioinformatics data were validated using a murine model of ovalbumin (OVA)-induced asthma and post-asthmatic fibrosis. The performed analysis revealed a range of well-known pro-fibrotic markers (Cat, Ccl2, Ccl4, Ccr2, Col1a1, Cxcl12, Igf1, Muc5ac/Muc5b, Spp1, Timp1) and a set of novel genes (C3, C3ar1, Col4a1, Col4a2, Cyp2e1, Fn1, Thbs1, Tyrobp) mediating fibrotic changes in lungs already at the stage of acute/subacute asthma-driven inflammation. The validation of genes related to non-allergic bleomycin-induced pulmonary fibrosis on asthmatic/fibrotic lungs allowed us to identify new universal genes (Col4a1 and Col4a2) associated with the development of lung fibrosis regardless of its etiology. The similarities revealed in the expression profiles of nodal fibrotic genes between asthma-driven fibrosis in mice and nascent idiopathic pulmonary fibrosis in humans suggest a tight association of identified genes with the early stages of airway remodeling and can be considered as promising predictors and early markers of pulmonary fibrosis.
Collapse
|
15
|
Wilson SE, Shiju TM, Sampaio LP, Hilgert GL. Corneal fibroblast collagen type IV negative feedback modulation of TGF beta: A fibrosis modulating system likely active in other organs. Matrix Biol 2022; 109:162-172. [PMID: 35421526 DOI: 10.1016/j.matbio.2022.04.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/02/2022] [Accepted: 04/05/2022] [Indexed: 12/15/2022]
Abstract
Collagen type IV (COL IV) is a major component of basement membranes (BM) in all organs. It serves functions related to BM organization and modulates the passage of growth factors from one tissue compartment to another. COL IV binds transforming growth factor (TGF) beta-1 and TGF beta-2 and, therefore, is a major modulator of TGF beta pro-fibrotic functions. After fibrotic corneal injury, TGF beta enters into the stroma from the tears, epithelium, endothelium and/or aqueous humor and markedly upregulates COL IV production in corneal fibroblasts in the adjacent stroma far removed from BMs. It is hypothesized this non-BM stromal COL IV binds TGF beta-1 (and likely TGF beta-2) in competition with the binding of the growth factors to TGF beta cognate receptors and serves as a negative feedback regulatory pathway to mitigate the effects of TGF beta on stromal cells, including reducing the developmental transition of corneal fibroblasts and fibrocytes into myofibroblasts. Losartan, a known TGF beta signaling inhibitor, when applied topically to the cornea after fibrotic injury, alters this COL IV-TGF beta pathway by down-regulating COL IV production by corneal fibroblasts. Non-BM COL IV produced in response to injuries in other organs, including the lung, skin, liver, kidney, and gut, may participate in similar COL IV-TGF beta pathways and have an important role in controlling TGF beta pro-fibrotic effects in these organs.
Collapse
|
16
|
Zhang Y, Sheng K, Song F, Pan Z, Zou X, Liu Y, Huang P. Efficacy of Qingfei oral liquid for idiopathic pulmonary fibrosis in rats and related network pharmacology study. Zhejiang Da Xue Xue Bao Yi Xue Ban 2022; 51:53-61. [PMID: 35576111 PMCID: PMC9109760 DOI: 10.3724/zdxbyxb-2021-0203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 11/20/2021] [Indexed: 06/15/2023]
Abstract
To investigate the therapeutic effect and mechanism of Qingfei oral liquid in idiopathic pulmonary fibrosis. Seventy-two male SD rats were divided into control group, model group, pirofenidone group and Qingfei group with 18 animals in each group. The idiopathic pulmonary fibrosis was induced in last three groups by intratracheal injection of bleomycin; pirofenidone group was given oral administration of pirofenidone b.i.d for 21 d, and Qingfei group was given Qingfei oral liquid 3.6 mL/kg q.d for Lung tissues were obtained for HE staining, Masson staining and transforming growth factor (TGF)-β immunohistochemical staining. Superoxide dismutase (SOD), malondialdehyde (MDA) and glutathione (GSH) were detected in tissue homogenates. The BATMAN-TCM database was used to retrieve the chemical components and their corresponding targets of Qingfei oral solution by network pharmacology method, and then the component-target-disease network diagram was constructed. Finally, the pathway enrichment analysis was carried out to explore the molecular mechanism of Qingfei oral liquid against idiopathic fibrosis. Histopathology results showed that Qingfei oral liquid had a similar relieving effect on pulmonary fibrosis as the positive drug pirfenidone; TGF-β secretion had a significant reduction in lung tissues of Qingfei group; and Qingfei oral liquid had better regulatory effect on SOD, MDA and GSH than pirfenidone. The results of component-target-disease network and pathway enrichment analysis showed that the related molecular pathways were concentrated in inflammation, extracellular matrix and cytokines. Qingfei oral liquid has a good therapeutic effect on idiopathic pulmonary fibrosis in rats via regulation of inflammation, extracellular matrix and cytokines.
Collapse
|
17
|
Staab-Weijnitz CA. Fighting the Fiber: Targeting Collagen in Lung Fibrosis. Am J Respir Cell Mol Biol 2021; 66:363-381. [PMID: 34861139 DOI: 10.1165/rcmb.2021-0342tr] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Organ fibrosis is characterized by epithelial injury and aberrant tissue repair, where activated effector cells, mostly fibroblasts and myofibroblasts, excessively deposit collagen into the extracellular matrix. Fibrosis frequently results in organ failure and has been estimated to contribute to at least one third of all global deaths. Also lung fibrosis, in particular idiopathic pulmonary fibrosis (IPF), is a fatal disease with rising incidence worldwide. As current treatment options targeting fibrogenesis are insufficient, there is an urgent need for novel therapeutic strategies. During the last decade, several studies have proposed to target intra- and extracellular components of the collagen biosynthesis, maturation, and degradation machinery. This includes intra- and extracellular targets directly acting on collagen gene products, but also such that anabolize essential building blocks of collagen, in particular glycine and proline biosynthetic enzymes. Collagen, however, is a ubiquitous molecule in the body and fulfils essential functions as a macromolecular scaffold, growth factor reservoir, and receptor binding site in virtually every tissue. This review summarizes recent advances and future directions in this field. Evidence for the proposed therapeutic targets and where they currently stand in terms of clinical drug development for treatment of fibrotic disease is provided. The drug targets are furthermore discussed in light of (1) specificity for collagen biosynthesis, maturation and degradation, and (2) specificity for disease-associated collagen. As therapeutic success and safety of these drugs may largely depend on targeted delivery, different strategies for specific delivery to the main effector cells and to the extracellular matrix are discussed.
Collapse
Affiliation(s)
- Claudia A Staab-Weijnitz
- Helmholtz Zentrum Munchen Deutsches Forschungszentrum fur Gesundheit und Umwelt, 9150, Comprehensive Pneumology Center/Institute of Lung Biology and Disease, Member of the German Center of Lung Research (DZL), München, Germany;
| |
Collapse
|
18
|
Jandl K, Mutgan AC, Eller K, Schaefer L, Kwapiszewska G. The basement membrane in the cross-roads between the lung and kidney. Matrix Biol 2021; 105:31-52. [PMID: 34839001 DOI: 10.1016/j.matbio.2021.11.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/05/2021] [Accepted: 11/18/2021] [Indexed: 12/23/2022]
Abstract
The basement membrane (BM) is a specialized layer of extracellular matrix components that plays a central role in maintaining lung and kidney functions. Although the composition of the BM is usually tissue specific, the lung and the kidney preferentially use similar BM components. Unsurprisingly, diseases with BM defects often have severe pulmonary or renal manifestations, sometimes both. Excessive remodeling of the BM, which is a hallmark of both inflammatory and fibrosing diseases in the lung and the kidney, can lead to the release of BM-derived matrikines, proteolytic fragments with distinct biological functions. These matrikines can then influence disease activity at the site of liberation. However, they are also released to the circulation, where they can directly affect the vascular endothelium or target other organs, leading to extrapulmonary or extrarenal manifestations. In this review, we will summarize the current knowledge of the composition and function of the BM and its matrikines in health and disease, both in the lung and in the kidney. By comparison, we will highlight, why the BM and its matrikines may be central in establishing a renal-pulmonary interaction axis.
Collapse
Affiliation(s)
- Katharina Jandl
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria; Otto Loewi Research Center, Department of Pharmacology, Medical University of Graz, Graz, Austria
| | - Ayse Ceren Mutgan
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria; Otto Loewi Research Center, Department of Physiology, Medical University of Graz, Graz, Austria
| | - Kathrin Eller
- Clinical Division of Nephrology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Liliana Schaefer
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt, Germany
| | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria; Otto Loewi Research Center, Department of Physiology, Medical University of Graz, Graz, Austria; Institute for Lung Health (ILH), Giessen, Germany..
| |
Collapse
|
19
|
Kreus M, Lehtonen S, Skarp S, Kaarteenaho R. Extracellular matrix proteins produced by stromal cells in idiopathic pulmonary fibrosis and lung adenocarcinoma. PLoS One 2021; 16:e0250109. [PMID: 33905434 PMCID: PMC8078755 DOI: 10.1371/journal.pone.0250109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/30/2021] [Indexed: 11/29/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) and lung cancer share common risk factors, epigenetic and genetic alterations, the activation of similar signaling pathways and poor survival. The aim of this study was to examine the gene expression profiles of stromal cells from patients with IPF and lung adenocarcinoma (ADC) as well as from normal lung. The gene expression levels of cultured stromal cells derived from non-smoking patients with ADC from the tumor (n = 4) and the corresponding normal lung (n = 4) as well as from patients with IPF (n = 4) were investigated with Affymetrix microarrays. The expression of collagen type IV alpha 1 chain, periostin as well as matrix metalloproteinase-1 and -3 in stromal cells and lung tissues were examined with quantitative real-time reverse transcriptase polymerase chain reaction and immunohistochemistry, respectively. Twenty genes were similarly up- or down-regulated in IPF and ADC compared to control, while most of the altered genes in IPF and ADC were differently expressed, including several extracellular matrix genes. Collagen type IV alpha 1 chain as well as matrix metalloproteinases-1 and -3 were differentially expressed in IPF compared to ADC. Periostin was up-regulated in both IPF and ADC in comparison to control. All studied factors were localized by immunohistochemistry in stromal cells within fibroblast foci in IPF and stroma of ADC. Despite the similarities found in gene expressions of IPF and ADC, several differences were also detected, suggesting that the molecular changes occurring in these two lung illnesses are somewhat different.
Collapse
Affiliation(s)
- Mervi Kreus
- Research Unit of Internal Medicine, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital, Oulu, Finland
- * E-mail:
| | - Siri Lehtonen
- Medical Research Center Oulu, Oulu University Hospital, Oulu, Finland
- Department of Obstetrics and Gynecology, Oulu University Hospital, Oulu, Finland
| | - Sini Skarp
- Northern Finland Birth Cohorts, Infrastructure for Population Studies, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Riitta Kaarteenaho
- Research Unit of Internal Medicine, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
20
|
de Castro Brás LE, Frangogiannis NG. Extracellular matrix-derived peptides in tissue remodeling and fibrosis. Matrix Biol 2020; 91-92:176-187. [PMID: 32438055 DOI: 10.1016/j.matbio.2020.04.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 04/29/2020] [Accepted: 04/29/2020] [Indexed: 12/26/2022]
Abstract
Alterations in the composition of the extracellular matrix (ECM) critically regulate the cellular responses in tissue repair, remodeling, and fibrosis. After injury, proteolytic degradation of ECM generates bioactive ECM fragments, named matricryptins, exposing cryptic sites with actions distinct from the parent molecule. Matricryptins contribute to the regulation of inflammatory, reparative, and fibrogenic cascades through effects on several different cell types both in acute and chronic settings. Fibroblasts play a major role in matricryptin generation not only as the main cellular source of ECM proteins, but also as producers of matrix-degrading proteases. Moreover, several matricryptins exert fibrogenic or reparative actions by modulating fibroblast phenotype and function. This review manuscript focuses on the mechanisms of matricyptin generation in injured and remodeling tissues with an emphasis on fibroblast-matricryptin interactions.
Collapse
Affiliation(s)
- Lisandra E de Castro Brás
- The Brody School of Medicine, East Carolina University, Department of Physiology, Greenville 27858 North Carolina.
| | - Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
21
|
Lemieszek MK, Rzeski W, Golec M, Mackiewicz B, Zwoliński J, Dutkiewicz J, Milanowski J. Pantoea agglomerans chronic exposure induces epithelial-mesenchymal transition in human lung epithelial cells and mice lungs. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 194:110416. [PMID: 32146192 DOI: 10.1016/j.ecoenv.2020.110416] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/27/2020] [Accepted: 03/01/2020] [Indexed: 06/10/2023]
Abstract
Pantoea agglomerans is gram-negative bacteria widely distributed in nature. It predominates in inhalable dust from grain, herbs, and flax, and was identified as the most important cause of hypersensitivity pneumonitis (HP) in eastern Poland. To better understand the molecular mechanism of HP development studies focused on the interactions between P. agglomerans and alveolar epithelial cells as well as lung tissue with particular emphasis on the epithelial-mesenchymal transition (EMT). The studies were conducted on human normal lung epithelial NL20 cells and mice strain C57BL/6J. Cells and mice underwent chronic exposure to saline extract of P. agglomerans (SE-PA). Morphological changes were evaluated under light microscopy, the concentration of fibrosis markers was examined by the ELISA method, while the expression of genes involved in EMT was evaluated by RealTime PCR. During incubation with SE-PA epithelial cells underwent conversion and assumed fibroblast phenotype characterized by a decrease in epithelial cells markers (CDH1, CLDN1, JUP) and increase in mesenchymal cells markers (FN1, VIM, CDH2). Mice lungs collected after 14 days of SE-PA treatment revealed inflammation with marked lymphocytes infiltration. The intensified inflammatory process accompanied by increased proliferation of fibrous connective tissue was noted in mice lungs after 28 days of SE-PA exposure. Histological changes correlated with an increase of fibrosis markers (hydroxyproline, collagens), downregulation of epithelial markers (Cdh1, Cldn1, Jup, Ocln) and upregulation of myofibroblasts markers (Acta2, Cdh2, Fn1, Vim). Obtained results revealed SE-PA ability to induce EMT in human lung epithelial cells and mice lung tissue, with the scale of changes proportional to the time of treatment.
Collapse
Affiliation(s)
| | - Wojciech Rzeski
- Department of Medical Biology, Institute of Rural Health, Lublin, Poland; Department of Functional Anatomy and Cytobiology, Maria Curie-Skłodowska University, Lublin, Poland
| | - Marcin Golec
- Unit of Fibroproliferative Diseases, Institute of Rural Health, Lublin, Poland
| | - Barbara Mackiewicz
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, Lublin, Poland
| | - Jacek Zwoliński
- Department of Biological Health Hazards and Parasitology, Institute of Rural Health, Lublin, Poland
| | - Jacek Dutkiewicz
- Department of Biological Health Hazards and Parasitology, Institute of Rural Health, Lublin, Poland
| | - Janusz Milanowski
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
22
|
Regoli M, Tosi GM, Neri G, Altera A, Orazioli D, Bertelli E. The Peculiar Pattern of Type IV Collagen Deposition in Epiretinal Membranes. J Histochem Cytochem 2019; 68:149-162. [PMID: 31858878 DOI: 10.1369/0022155419897258] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Idiopathic epiretinal membranes are sheets of tissue that develop in the vitreoretinal interface. They are formed by cells and extracellular matrix, and they are considered the expression of a fibrotic disorder of the eye. Confocal and immunoelectron microscopy of the extracellular matrix of excised membranes, revealed high contents of type IV collagen. It was distributed within epiretinal membranes in basement membrane-like structures associated with cells and in interstitial deposits. In both cases, type IV collagen was always associated with type I collagen. Col IV was also coupled with Col VI and laminin. At high magnification, type IV collagen immunolabelling was associated with interstitial deposits and showed a reticular appearance due to the intersection of beaded microfilaments. The microfilaments are about 12 nm in diameter with interbead distance of 30-40 nm. Cells of the epiretinal membranes showed intracellular lysosome-like bodies heavily labeled for type IV collagen suggesting an active role in membrane remodeling. Hence, type IV collagen is not necessarily always associated with basement membranes; the molecular interactions that it may develop when not incorporated in basement membranes are still unknown. It is conceivable, however, that they might have implications in the progression of epiretinal membranes and other fibrotic disorders.
Collapse
Affiliation(s)
- Marì Regoli
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Gian Marco Tosi
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Giovanni Neri
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Annalisa Altera
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy.,Department of Life Sciences, University of Siena, Siena, Italy
| | - Daniela Orazioli
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Eugenio Bertelli
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| |
Collapse
|
23
|
Kuhn H, Zobel C, Vollert G, Gurcke M, Jenszöwski C, Barina C, Frille A, Wirtz H. High amplitude stretching of ATII cells and fibroblasts results in profibrotic effects. Exp Lung Res 2019; 45:167-174. [PMID: 31290711 DOI: 10.1080/01902148.2019.1636424] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Background: Inappropriate mechanical forces act on alveolar epithelial cells during mechanical ventilation e.g. in ARDS and possibly in patients with pulmonary fibrosis. These forces can cause lung injury and may contribute to the development or aggravation of pulmonary fibrosis. Aim of the study: We investigated the hypothesis that high amplitude mechanical stretching of alveolar type II (ATII) cells and lung fibroblasts promotes profibrotic processes. Material and Methods: ATII cells and fibroblasts were stretched on elastic membranes using a pattern of higher amplitudes ("unphysiological"). The production of profibrotic cytokines and extra cellular matrix (ECM) proteins were investigated in supernatants. In addition, we determined the expression of relevant microRNAs (miRNA) and the process of epithelial-mesenchymal transition (EMT) in ATII cells. Results: Unphysiological stretch of ATII cells led to increased release of TGF-β1 into supernatants. We also found elevated protein levels of collagen I and IV in supernatants of stretched cells. By contrast, stretching of fibroblasts changed neither the expression of fibrosis-modulating factors nor ECM-proteins. However, fibroblasts significantly withstood stretch-induced cell injury and seemed to have a survival benefit. Further, stretched ATII cells exhibited a higher expression of miRNAs (miR-15b, miR-25, let-7d) relevant to EMT. The process of EMT, which is characterized by an increase of vimentin and a decrease of cytokeratin expression, was significantly accelerated due to stretching of ATII cells. Conclusion: These data provide evidence that unphysiological mechanical stretching of lung cells induced several profibrotic effects and accelerated EMT, which may have critical implications in terms of development or aggravation of pulmonary fibrosis in the clinical context.
Collapse
Affiliation(s)
- Hartmut Kuhn
- a Department of Respiratory Medicine, University of Leipzig , Leipzig , Germany
| | - Christian Zobel
- a Department of Respiratory Medicine, University of Leipzig , Leipzig , Germany
| | - Gordon Vollert
- a Department of Respiratory Medicine, University of Leipzig , Leipzig , Germany
| | - Maurice Gurcke
- a Department of Respiratory Medicine, University of Leipzig , Leipzig , Germany
| | | | - Christine Barina
- a Department of Respiratory Medicine, University of Leipzig , Leipzig , Germany
| | - Armin Frille
- a Department of Respiratory Medicine, University of Leipzig , Leipzig , Germany.,b Integrated Research and Treatment Center (IFB) Adiposity Diseases, University Medical Center Leipzig , Leipzig , Germany
| | - Hubert Wirtz
- a Department of Respiratory Medicine, University of Leipzig , Leipzig , Germany
| |
Collapse
|
24
|
Good RB, Eley JD, Gower E, Butt G, Blanchard AD, Fisher AJ, Nanthakumar CB. A high content, phenotypic 'scar-in-a-jar' assay for rapid quantification of collagen fibrillogenesis using disease-derived pulmonary fibroblasts. BMC Biomed Eng 2019; 1:14. [PMID: 32903343 PMCID: PMC7422573 DOI: 10.1186/s42490-019-0014-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 05/27/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Excessive extracellular matrix (ECM) deposition is a hallmark feature in fibrosis and tissue remodelling diseases. Typically, mesenchymal cells will produce collagens under standard 2D cell culture conditions, however these do not assemble into fibrils. Existing assays for measuring ECM production are often low throughput and not disease relevant. Here we describe a robust, high content, pseudo-3D phenotypic assay to quantify mature fibrillar collagen deposition which is both physiologically relevant and amenable to high throughput compound screening. Using pulmonary fibroblasts derived from patients with idiopathic pulmonary fibrosis (IPF), we developed the 'scar-in-a-jar' assay into a medium-throughput phenotypic assay to robustly quantify collagen type I deposition and other extracellular matrix (ECM) proteins over 72 h. RESULTS This assay utilises macromolecular crowding to induce an excluded volume effect and enhance enzyme activity, which in combination with TGF-β1 stimulation significantly accelerates ECM production. Collagen type I is upregulated approximately 5-fold with a negligible effect on cell number. We demonstrate the robustness of the assay achieving a Z prime of approximately 0.5, and % coefficient of variance (CV) of < 5 for the assay controls SB-525334 (ALK5 inhibitor) and CZ415 (mTOR inhibitor). This assay has been used to confirm the potency of a number of potential anti-fibrotic agents. Active compounds from the 'scar-in-a-jar' assay can be further validated for other markers of ECM deposition and fibroblast activation such as collagen type IV and α-smooth muscle actin exhibiting a 4-fold and 3-fold assay window respectively. CONCLUSION In conclusion, we have developed 'scar -in-a-jar is' into a robust disease-relevant medium-throughput in vitro assay to accurately quantify ECM deposition. This assay may enable iterative compound profiling for IPF and other fibroproliferative and tissue remodelling diseases.
Collapse
Affiliation(s)
- Robert B. Good
- Fibrosis Discovery Performance Unit, Respiratory Therapy Area, Medicines Research Centre, GlaxoSmithKline R&D, Gunnels Wood Road, Stevenage, SG1 2NY UK
| | - Jessica D. Eley
- Fibrosis Discovery Performance Unit, Respiratory Therapy Area, Medicines Research Centre, GlaxoSmithKline R&D, Gunnels Wood Road, Stevenage, SG1 2NY UK
| | - Elaine Gower
- Fibrosis Discovery Performance Unit, Respiratory Therapy Area, Medicines Research Centre, GlaxoSmithKline R&D, Gunnels Wood Road, Stevenage, SG1 2NY UK
| | - Genevieve Butt
- Fibrosis Discovery Performance Unit, Respiratory Therapy Area, Medicines Research Centre, GlaxoSmithKline R&D, Gunnels Wood Road, Stevenage, SG1 2NY UK
| | - Andrew D. Blanchard
- Fibrosis Discovery Performance Unit, Respiratory Therapy Area, Medicines Research Centre, GlaxoSmithKline R&D, Gunnels Wood Road, Stevenage, SG1 2NY UK
| | - Andrew J. Fisher
- Institute of Transplantation, Newcastle upon Tyne Hospitals NHS Trust and Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle, UK
| | - Carmel B. Nanthakumar
- Fibrosis Discovery Performance Unit, Respiratory Therapy Area, Medicines Research Centre, GlaxoSmithKline R&D, Gunnels Wood Road, Stevenage, SG1 2NY UK
| |
Collapse
|
25
|
Urushiyama H, Terasaki Y, Nagasaka S, Kokuho N, Endo Y, Terasaki M, Kunugi S, Makita K, Isago H, Hosoki K, Souma K, Ishii T, Matsuzaki H, Hiraishi Y, Mikami Y, Noguchi S, Tamiya H, Mitani A, Yamauchi Y, Shimizu A, Nagase T. Naftopidil reduced the proliferation of lung fibroblasts and bleomycin-induced lung fibrosis in mice. J Cell Mol Med 2019; 23:3563-3571. [PMID: 30873733 PMCID: PMC6484423 DOI: 10.1111/jcmm.14255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 02/05/2019] [Accepted: 02/09/2019] [Indexed: 01/16/2023] Open
Abstract
Naftopidil, an α‐1 adrenoceptor antagonist with few adverse effects, is prescribed for prostate hyperplasia. Naftopidil inhibits prostate fibroblast proliferation; however, its effects on lung fibroblasts and fibrosis remain largely unknown. Two normal and one idiopathic pulmonary fibrosis human lung fibroblast lines were cultured with various naftopidil concentrations with or without phenoxybenzamine, an irreversible α‐1 adrenoceptor inhibitor. We examined the incorporation of 5‐bromo‐2ʹ‐deoxyuridine into DNA and lactic acid dehydrogenase release by enzyme‐linked immunosorbent assay, cell cycle analysis by flow cytometry, scratch wound‐healing assay, and mRNA expressions of type IV collagen and α‐smooth muscle actin by polymerase chain reaction. Effects of naftopidil on bleomycin‐induced lung fibrosis in mice were evaluated using histology, micro‐computed tomography, and surfactant protein‐D levels in serum. Naftopidil, dose‐dependently but independently of phenoxybenzamine, inhibited 5‐bromo‐2ʹ‐deoxyuridine incorporation in lung fibroblasts. Naftopidil induced G1 cell cycle arrest, but lactic acid dehydrogenase release and migration ability of lung fibroblasts were unaffected. Naftopidil decreased mRNA expressions of type IV collagen and α‐smooth muscle actin in one normal lung fibroblast line. Histological and micro‐computed tomography examination revealed that naftopidil attenuated lung fibrosis and decreased serum surfactant protein‐D levels in bleomycin‐induced lung fibrosis in mice. In conclusion, naftopidil may have therapeutic effects on lung fibrosis.
Collapse
Affiliation(s)
- Hirokazu Urushiyama
- Department of Respiratory Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan.,Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan
| | - Yasuhiro Terasaki
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan
| | - Shinya Nagasaka
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan
| | - Nariaki Kokuho
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan
| | - Youko Endo
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan
| | - Mika Terasaki
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan
| | - Shinobu Kunugi
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan
| | - Kosuke Makita
- Department of Respiratory Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Hideaki Isago
- Department of Respiratory Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Keisuke Hosoki
- Department of Respiratory Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Kunihiko Souma
- Department of Respiratory Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Takashi Ishii
- Department of Respiratory Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Hirotaka Matsuzaki
- Department of Respiratory Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Yoshihisa Hiraishi
- Department of Respiratory Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Yu Mikami
- Department of Respiratory Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Satoshi Noguchi
- Department of Respiratory Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Hiroyuki Tamiya
- Department of Respiratory Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Akihisa Mitani
- Department of Respiratory Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Yasuhiro Yamauchi
- Department of Respiratory Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Akira Shimizu
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan
| | - Takahide Nagase
- Department of Respiratory Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| |
Collapse
|
26
|
Karsdal MA, Nielsen SH, Leeming DJ, Langholm LL, Nielsen MJ, Manon-Jensen T, Siebuhr A, Gudmann NS, Rønnow S, Sand JM, Daniels SJ, Mortensen JH, Schuppan D. The good and the bad collagens of fibrosis - Their role in signaling and organ function. Adv Drug Deliv Rev 2017; 121:43-56. [PMID: 28736303 DOI: 10.1016/j.addr.2017.07.014] [Citation(s) in RCA: 316] [Impact Index Per Article: 45.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 07/14/2017] [Accepted: 07/17/2017] [Indexed: 12/11/2022]
Abstract
Usually the dense extracellular structure in fibrotic tissues is described as extracellular matrix (ECM) or simply as collagen. However, fibrosis is not just fibrosis, which is already exemplified by the variant morphological characteristics of fibrosis due to viral versus cholestatic, autoimmune or toxic liver injury, with reticular, chicken wire and bridging fibrosis. Importantly, the overall composition of the ECM, especially the relative amounts of the many types of collagens, which represent the most abundant ECM molecules and which centrally modulate cellular functions and physiological processes, changes dramatically during fibrosis progression. We hypothesize that there are good and bad collagens in fibrosis and that a change of location alone may change the function from good to bad. Whereas basement membrane collagen type IV anchors epithelial and other cells in a polarized manner, the interstitial fibroblast collagens type I and III do not provide directional information. In addition, feedback loops from biologically active degradation products of some collagens are examples of the importance of having the right collagen at the right place and at the right time controlling cell function, proliferation, matrix production and fate. Examples are the interstitial collagen type VI and basement membrane collagen type XVIII. Their carboxyterminal propeptides serve as an adipose tissue hormone, endotrophin, and as a regulator of angiogenesis, endostatin, respectively. We provide an overview of the 28 known collagen types and propose that the molecular composition of the ECM in fibrosis needs careful attention to assess its impact on organ function and its potential to progress or reverse. Consequently, to adequately assess fibrosis and to design optimal antifibrotic therapies, we need to dissect the molecular entity of fibrosis for the molecular composition and spatial distribution of collagens and the associated ECM.
Collapse
Affiliation(s)
- M A Karsdal
- Nordic Bioscience Biomarkers & Research A/S, Herlev, Denmark.
| | - S H Nielsen
- Nordic Bioscience Biomarkers & Research A/S, Herlev, Denmark
| | - D J Leeming
- Nordic Bioscience Biomarkers & Research A/S, Herlev, Denmark
| | - L L Langholm
- Nordic Bioscience Biomarkers & Research A/S, Herlev, Denmark
| | - M J Nielsen
- Nordic Bioscience Biomarkers & Research A/S, Herlev, Denmark
| | - T Manon-Jensen
- Nordic Bioscience Biomarkers & Research A/S, Herlev, Denmark
| | - A Siebuhr
- Nordic Bioscience Biomarkers & Research A/S, Herlev, Denmark
| | - N S Gudmann
- Nordic Bioscience Biomarkers & Research A/S, Herlev, Denmark
| | - S Rønnow
- Nordic Bioscience Biomarkers & Research A/S, Herlev, Denmark
| | - J M Sand
- Nordic Bioscience Biomarkers & Research A/S, Herlev, Denmark
| | - S J Daniels
- Nordic Bioscience Biomarkers & Research A/S, Herlev, Denmark
| | - J H Mortensen
- Nordic Bioscience Biomarkers & Research A/S, Herlev, Denmark
| | - D Schuppan
- Institute of Translational Immunology and Research Center for Immune Therapy, University Medical Center, Johannes Gutenberg University, Mainz, Germany; Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|