1
|
Jian Y, Chen Q, Al-Danakh A, Xu Z, Xu C, Sun X, Yu X, Yang D, Wang S. Identification and validation of sialyltransferase ST3Gal5 in bladder cancer through bioinformatics and experimental analysis. Int Immunopharmacol 2024; 138:112569. [PMID: 38959540 DOI: 10.1016/j.intimp.2024.112569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/12/2024] [Accepted: 06/24/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND Bladder cancer (BLCA) is one of the top ten most common cancers in the world. Aberrant sialylation is a common feature in tumorigenesis and tumor immunity. This study seeks to explore the potential impact of sialyltransferase ST3Gal5 on BLCA. METHODS Initially, glycosyltransferase-related DEGs (GRDEGs) were identified using multiple bioinformatics approaches in TCGA-BLCA cohort and validated using GEO databases. Clinical prognosis integration facilitated the determination of ST3Gal5 as an independent prognostic factor in BLCA, employing univariate and multivariate Cox regression analyses. Immune cell infiltration was assessed via CIBERSORT and ssGSEA analyses, while HLA and immune checkpoint genes' levels, along with drug sensitivity, were evaluated in low- and high-ST3Gal5 groups. The TIDE and IPS scores were used to gauge the immune checkpoint blockade (ICB) response. Furthermore, functional experiments, both in vivo and in vitro, were conducted to elucidate the biological roles of ST3Gal5. RESULTS In agreement with bioinformatics findings, ST3Gal5 expression was down-regulated in BLCA tissues and cells, correlating with poorer prognostic outcomes. The StromalScore, ImmuneScore, and ESTIMATEScore were significantly elevated in low-ST3Gal5 group. Moreover, the levels of HLA and immune checkpoint genes were upregulated in low-ST3Gal5 group. Down-regulated ST3Gal5 promoted the proliferation, migration, and invasion of BLCA cells in vivo and in vitro. CONCLUSION Our findings demonstrated that low ST3Gal5 level promoted tumorigenesis and progression of BLCA, implying its potential as a predictive biomarker and therapeutic target.
Collapse
Affiliation(s)
- Yuli Jian
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian 116011, China; Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Qiwei Chen
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian 116011, China; Zhongda Hospital, Medical School, Advanced Institute for Life and Health, Southeast University, Nanjing 210096, China
| | - Abdullah Al-Danakh
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian 116011, China
| | - Zhongyang Xu
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Chunyan Xu
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Xiaoxin Sun
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Xiao Yu
- Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Deyong Yang
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian 116011, China.
| | - Shujing Wang
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
2
|
Hong J, Sim D, Lee BH, Sarangthem V, Park RW. Multifunctional elastin-like polypeptide nanocarriers for efficient miRNA delivery in cancer therapy. J Nanobiotechnology 2024; 22:293. [PMID: 38802812 PMCID: PMC11131307 DOI: 10.1186/s12951-024-02559-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND The exogenous delivery of miRNA to mimic and restore miRNA-34a activity in various cancer models holds significant promise in cancer treatment. Nevertheless, its effectiveness is often impeded by challenges, including a short half-life, propensity for off-target accumulation, susceptibility to inactivation by blood-based enzymes, concerns regarding patient safety, and the substantial cost associated with scaling up. As a means of overcoming these barriers, we propose the development of miRNA-loaded Tat-A86 nanoparticles by virtue of Tat-A86's ability to shield the loaded agent from external environmental factors, reducing degradation and inactivation, while enhancing circulation time and targeted accumulation. RESULTS Genetically engineered Tat-A86, featuring 16 copies of the interleukin-4 receptor (IL-4R)-binding peptide (AP1), Tat for tumor penetration, and an elastin-like polypeptide (ELP) for presenting target ligands and ensuring stability, served as the basis for this delivery system. Comparative groups, including Tat-E60 and A86, were employed to discern differences in binding and penetration. The designed ELP-based nanoparticle Tat-A86 effectively condensed miRNA, forming stable nanocomplexes under physiological conditions. The miRNA/Tat-A86 formulation bound specifically to tumor cells and facilitated stable miRNA delivery into them, effectively inhibiting tumor growth. The efficacy of miRNA/Tat-A86 was further evaluated using three-dimensional spheroids of lewis lung carcinoma (LLC) as in vitro model and LLC tumor-bearing mice as an in vivo model. It was found that miRNA/Tat-A86 facilitates effective cell killing by markedly improving miRNA penetration, leading to a substantial reduction in the size of LLC spheroids. Compared to other controls, Tat-A86 demonstrated superior efficacy in suppressing the growth of 3D cellular aggregates. Moreover, at equivalent doses, miRNA-34a delivered by Tat-A86 inhibited the growth of LLC cells in allograft mice. CONCLUSIONS Overall, these studies demonstrate that Tat-A86 nanoparticles can deliver miRNA systemically, overcoming the basic hurdles impeding miRNA delivery by facilitating both miRNA uptake and stability, ultimately leading to improved therapeutic effects.
Collapse
Affiliation(s)
- Jisan Hong
- Department of Biochemistry and Cell Biology, Cell & Matrix Research Institute, Kyungpook National University, School of Medicine, Daegu, 41944, Republic of Korea
| | - Dahye Sim
- Department of Biochemistry and Cell Biology, Cell & Matrix Research Institute, Kyungpook National University, School of Medicine, Daegu, 41944, Republic of Korea
| | - Byung-Heon Lee
- Department of Biochemistry and Cell Biology, Cell & Matrix Research Institute, Kyungpook National University, School of Medicine, Daegu, 41944, Republic of Korea
| | - Vijaya Sarangthem
- Department of Biochemistry and Cell Biology, Cell & Matrix Research Institute, Kyungpook National University, School of Medicine, Daegu, 41944, Republic of Korea.
| | - Rang-Woon Park
- Department of Biochemistry and Cell Biology, Cell & Matrix Research Institute, Kyungpook National University, School of Medicine, Daegu, 41944, Republic of Korea.
| |
Collapse
|
3
|
van der Haar Àvila I, Zhang T, Lorrain V, de Bruin F, Spreij T, Nakayama H, Iwabuchi K, García-Vallejo JJ, Wuhrer M, van Kooyk Y, van Vliet SJ. Limited impact of cancer-derived gangliosides on anti-tumor immunity in colorectal cancer. Glycobiology 2024; 34:cwae036. [PMID: 38785323 PMCID: PMC11137322 DOI: 10.1093/glycob/cwae036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/02/2024] [Indexed: 05/25/2024] Open
Abstract
Aberrant glycosylation is a key mechanism employed by cancer cells to evade immune surveillance, induce angiogenesis and metastasis, among other hallmarks of cancer. Sialic acids, distinctive terminal glycan structures located on glycoproteins or glycolipids, are prominently upregulated across various tumor types, including colorectal cancer (CRC). Sialylated glycans modulate anti-tumor immune responses through their interactions with Siglecs, a family of glycan-binding receptors with specificity for sialic acid-containing glycoconjugates, often resulting in immunosuppression. In this paper, we investigated the immunomodulatory function of ST3Gal5, a sialyltransferase that catalyzes the addition of α2-3 sialic acids to glycosphingolipids, since lower expression of ST3Gal5 is associated with better survival of CRC patients. We employed CRISPR/Cas9 to knock out the ST3Gal5 gene in two murine CRC cell lines MC38 and CT26. Glycomics analysis confirmed the removal of sialic acids on glycolipids, with no discernible impact on glycoprotein sialylation. Although knocking out ST3Gal5 in both cell lines did not affect in vivo tumor growth, we observed enhanced levels of regulatory T cells in CT26 tumors lacking ST3Gal5. Moreover, we demonstrate that the absence of ST3Gal5 affected size and blood vessel density only in MC38 tumors. In summary, we ascertain that sialylation of glycosphingolipids has a limited influence on the anti-tumor immune response in CRC, despite detecting alterations in the tumor microenvironment, possibly due to a shift in ganglioside abundance.
Collapse
Affiliation(s)
- Irene van der Haar Àvila
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, de Boelelaan 1117, 1081 HZ Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands
- Cancer Immunology, Amterdam institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | - Tao Zhang
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Victor Lorrain
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, de Boelelaan 1117, 1081 HZ Amsterdam, the Netherlands
| | - Florance de Bruin
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, de Boelelaan 1117, 1081 HZ Amsterdam, the Netherlands
| | - Tianne Spreij
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, de Boelelaan 1117, 1081 HZ Amsterdam, the Netherlands
| | - Hitoshi Nakayama
- Graduate School of Health Care and Nursing, Laboratory of Biochemistry, Juntendo University, 2-5-1 Takasu Urayasu-shi, Chiba, 279-0023, Japan
| | - Kazuhisa Iwabuchi
- Graduate School of Health Care and Nursing, Laboratory of Biochemistry, Juntendo University, 2-5-1 Takasu Urayasu-shi, Chiba, 279-0023, Japan
| | - Juan J García-Vallejo
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, de Boelelaan 1117, 1081 HZ Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands
- Cancer Immunology, Amterdam institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Yvette van Kooyk
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, de Boelelaan 1117, 1081 HZ Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands
- Cancer Immunology, Amterdam institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | - Sandra J van Vliet
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, de Boelelaan 1117, 1081 HZ Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands
- Cancer Immunology, Amterdam institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| |
Collapse
|
4
|
Pessino G, Scotti C, Maggi M, Immuno-Hub Consortium. Hepatocellular Carcinoma: Old and Emerging Therapeutic Targets. Cancers (Basel) 2024; 16:901. [PMID: 38473265 DOI: 10.3390/cancers16050901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Liver cancer, predominantly hepatocellular carcinoma (HCC), globally ranks sixth in incidence and third in cancer-related deaths. HCC risk factors include non-viral hepatitis, alcohol abuse, environmental exposures, and genetic factors. No specific genetic alterations are unequivocally linked to HCC tumorigenesis. Current standard therapies include surgical options, systemic chemotherapy, and kinase inhibitors, like sorafenib and regorafenib. Immunotherapy, targeting immune checkpoints, represents a promising avenue. FDA-approved checkpoint inhibitors, such as atezolizumab and pembrolizumab, show efficacy, and combination therapies enhance clinical responses. Despite this, the treatment of hepatocellular carcinoma (HCC) remains a challenge, as the complex tumor ecosystem and the immunosuppressive microenvironment associated with it hamper the efficacy of the available therapeutic approaches. This review explores current and advanced approaches to treat HCC, considering both known and new potential targets, especially derived from proteomic analysis, which is today considered as the most promising approach. Exploring novel strategies, this review discusses antibody drug conjugates (ADCs), chimeric antigen receptor T-cell therapy (CAR-T), and engineered antibodies. It then reports a systematic analysis of the main ligand/receptor pairs and molecular pathways reported to be overexpressed in tumor cells, highlighting their potential and limitations. Finally, it discusses TGFβ, one of the most promising targets of the HCC microenvironment.
Collapse
Affiliation(s)
- Greta Pessino
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Claudia Scotti
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Maristella Maggi
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Immuno-Hub Consortium
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
5
|
Horie M, Takagane K, Itoh G, Kuriyama S, Yanagihara K, Yashiro M, Umakoshi M, Goto A, Arita J, Tanaka M. Exosomes secreted by ST3GAL5 high cancer cells promote peritoneal dissemination by establishing a premetastatic microenvironment. Mol Oncol 2024; 18:21-43. [PMID: 37716915 PMCID: PMC10766203 DOI: 10.1002/1878-0261.13524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 08/29/2023] [Accepted: 09/15/2023] [Indexed: 09/18/2023] Open
Abstract
Peritoneal dissemination of cancer affects patient survival. The behavior of peritoneal mesothelial cells (PMCs) and immune cells influences the establishment of a microenvironment that promotes cancer cell metastasis in the peritoneum. Here, we investigated the roles of lactosylceramide alpha-2,3-sialyltransferase (ST3G5; also known as ST3GAL5 and GM3 synthase) in the exosome-mediated premetastatic niche in peritoneal milky spots (MSs). Exosomes secreted from ST3G5high cancer cells (ST3G5high -cExos) were found to contain high levels of hypoxia-inducible factor 1-alpha (HIF1α) and accumulated in MSs via uptake in macrophages (MΦs) owing to increased expression of sialic acid-binding Ig-like lectin 1 (CD169; also known as SIGLEC1). ST3G5high -cExos induced pro-inflammatory cytokines and glucose metabolic changes in MΦs, and the interaction of these MΦs with PMCs promoted mesothelial-mesenchymal transition (MMT) in PMCs, thereby generating αSMA+ myofibroblasts. ST3G5high -cExos also increased the expression of immune checkpoint molecules and T-cell exhaustion in MSs, which accelerated metastasis to the omentum. These events were prevented following ST3G5 depletion in cancer cells. Mechanistically, ST3G5high -cExos upregulated chemokines, including CC-chemokine ligand 5 (CCL5), in recipient MΦs and dendritic cells (DCs), which induced MMT and immunosuppression via activation of signal transducer and activator of transcription 3 (STAT3). Maraviroc, a C-C chemokine receptor type 5 (CCR5) antagonist, prevented ST3G5high -cExo-mediated MMT, T-cell suppression, and metastasis in MSs. Our results suggest ST3G5 as a suitable therapeutic target for preventing cExo-mediated peritoneal dissemination.
Collapse
Affiliation(s)
- Misato Horie
- Department of Molecular Medicine and BiochemistryAkita University Graduate School of MedicineJapan
- Department of Gastroenterological SurgeryAkita University Graduate School of MedicineJapan
| | - Kurara Takagane
- Department of Molecular Medicine and BiochemistryAkita University Graduate School of MedicineJapan
| | - Go Itoh
- Department of Molecular Medicine and BiochemistryAkita University Graduate School of MedicineJapan
| | - Sei Kuriyama
- Department of Molecular Medicine and BiochemistryAkita University Graduate School of MedicineJapan
| | - Kazuyoshi Yanagihara
- Division of Rare Cancer ResearchNational Cancer Center Research InstituteTokyoJapan
| | - Masakazu Yashiro
- Department of Molecular Oncology and TherapeuticsOsaka Metropolitan University Graduate School of MedicineJapan
| | - Michinobu Umakoshi
- Department of Cellular and Organ PathologyAkita University Graduate School of MedicineJapan
| | - Akiteru Goto
- Department of Cellular and Organ PathologyAkita University Graduate School of MedicineJapan
| | - Junichi Arita
- Department of Gastroenterological SurgeryAkita University Graduate School of MedicineJapan
| | - Masamitsu Tanaka
- Department of Molecular Medicine and BiochemistryAkita University Graduate School of MedicineJapan
| |
Collapse
|
6
|
van der Haar Àvila I, Windhouwer B, van Vliet SJ. Current state-of-the-art on ganglioside-mediated immune modulation in the tumor microenvironment. Cancer Metastasis Rev 2023; 42:941-958. [PMID: 37266839 PMCID: PMC10584724 DOI: 10.1007/s10555-023-10108-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/13/2023] [Indexed: 06/03/2023]
Abstract
Gangliosides are sialylated glycolipids, mainly present at the cell surface membrane, involved in a variety of cellular signaling events. During malignant transformation, the composition of these glycosphingolipids is altered, leading to structural and functional changes, which are often negatively correlated to patient survival. Cancer cells have the ability to shed gangliosides into the tumor microenvironment, where they have a strong impact on anti-tumor immunity and promote tumor progression. Since most ganglioside species show prominent immunosuppressive activities, they might be considered checkpoint molecules released to counteract ongoing immunosurveillance. In this review, we highlight the current state-of-the-art on the ganglioside-mediated immunomodulation, specified for the different immune cells and individual gangliosides. In addition, we address the dual role that certain gangliosides play in the tumor microenvironment. Even though some ganglioside species have been more extensively studied than others, they are proven to contribute to the defense mechanisms of the tumor and should be regarded as promising therapeutic targets for inclusion in future immunotherapy regimens.
Collapse
Affiliation(s)
- Irene van der Haar Àvila
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan, 1117, Amsterdam, the Netherlands
- Cancer Biology and Immunology, Cancer Center Amsterdam, Amsterdam, the Netherlands
- Cancer Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Britt Windhouwer
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan, 1117, Amsterdam, the Netherlands
| | - Sandra J van Vliet
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan, 1117, Amsterdam, the Netherlands.
- Cancer Biology and Immunology, Cancer Center Amsterdam, Amsterdam, the Netherlands.
- Cancer Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands.
| |
Collapse
|
7
|
Wang Y, Chen H. Protein glycosylation alterations in hepatocellular carcinoma: function and clinical implications. Oncogene 2023:10.1038/s41388-023-02702-w. [PMID: 37193819 DOI: 10.1038/s41388-023-02702-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/18/2023]
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer death worldwide. Understanding the cancer mechanisms provides novel diagnostic, prognostic, and therapeutic markers for the management of HCC disease. In addition to genomic and epigenomic regulation, post-translational modification exerts a profound influence on protein functions and plays a critical role in regulating various biological processes. Protein glycosylation is one of the most common and complex post-translational modifications of newly synthesized proteins and acts as an important regulatory mechanism that is implicated in fundamental molecular and cell biology processes. Recent studies in glycobiology suggest that aberrant protein glycosylation in hepatocytes contributes to the malignant transformation to HCC by modulating a wide range of pro-tumorigenic signaling pathways. The dysregulated protein glycosylation regulates cancer growth, metastasis, stemness, immune evasion, and therapy resistance, and is regarded as a hallmark of HCC. Changes in protein glycosylation could serve as potential diagnostic, prognostic, and therapeutic factors in HCC. In this review, we summarize the functional importance, molecular mechanism, and clinical application of protein glycosylation alterations in HCC.
Collapse
Affiliation(s)
- Yifei Wang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Huarong Chen
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, China.
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
8
|
Tang X, Tena J, Di Lucente J, Maezawa I, Harvey DJ, Jin LW, Lebrilla CB, Zivkovic AM. Transcriptomic and glycomic analyses highlight pathway-specific glycosylation alterations unique to Alzheimer's disease. Sci Rep 2023; 13:7816. [PMID: 37188790 PMCID: PMC10185676 DOI: 10.1038/s41598-023-34787-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/08/2023] [Indexed: 05/17/2023] Open
Abstract
Glycosylation has been found to be altered in the brains of individuals with Alzheimer's disease (AD). However, it is unknown which specific glycosylation-related pathways are altered in AD dementia. Using publicly available RNA-seq datasets covering seven brain regions and including 1724 samples, we identified glycosylation-related genes ubiquitously changed in individuals with AD. Several differentially expressed glycosyltransferases found by RNA-seq were confirmed by qPCR in a different set of human medial temporal cortex (MTC) samples (n = 20 AD vs. 20 controls). N-glycan-related changes predicted by expression changes in these glycosyltransferases were confirmed by mass spectrometry (MS)-based N-glycan analysis in the MTC (n = 9 AD vs. 6 controls). About 80% of glycosylation-related genes were differentially expressed in at least one brain region of AD participants (adjusted p-values < 0.05). Upregulation of MGAT1 and B4GALT1 involved in complex N-linked glycan formation and galactosylation, respectively, were reflected by increased concentrations of corresponding N-glycans. Isozyme-specific changes were observed in expression of the polypeptide N-acetylgalactosaminyltransferase (GALNT) family and the alpha-N-acetylgalactosaminide alpha-2,6-sialyltransferase (ST6GALNAC) family of enzymes. Several glycolipid-specific genes (UGT8, PIGM) were upregulated. The critical transcription factors regulating the expression of N-glycosylation and elongation genes were predicted and found to include STAT1 and HSF5. The miRNA predicted to be involved in regulating N-glycosylation and elongation glycosyltransferases were has-miR-1-3p and has-miR-16-5p, respectively. Our findings provide an overview of glycosylation pathways affected by AD and potential regulators of glycosyltransferase expression that deserve further validation and suggest that glycosylation changes occurring in the brains of AD dementia individuals are highly pathway-specific and unique to AD.
Collapse
Affiliation(s)
- Xinyu Tang
- Department of Nutrition, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA
| | - Jennyfer Tena
- Department of Chemistry, University of California, Davis, Davis, CA, USA
| | - Jacopo Di Lucente
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California, Davis, Sacramento, CA, USA
- UC Davis MIND Institute, Sacramento, CA, USA
| | - Izumi Maezawa
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California, Davis, Sacramento, CA, USA
- UC Davis MIND Institute, Sacramento, CA, USA
| | - Danielle J Harvey
- Division of Biostatistics, Department of Public Health Sciences, School of Medicine, University of California, Davis, Davis, CA, USA
| | - Lee-Way Jin
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California, Davis, Sacramento, CA, USA
- UC Davis MIND Institute, Sacramento, CA, USA
| | - Carlito B Lebrilla
- Department of Chemistry, University of California, Davis, Davis, CA, USA
| | - Angela M Zivkovic
- Department of Nutrition, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA.
| |
Collapse
|
9
|
Srivastava S, Garg I, Singh Y, Meena R, Ghosh N, Kumari B, Kumar V, Eslavath MR, Singh S, Dogra V, Bargotya M, Bhattar S, Gupta U, Jain S, Hussain J, Varshney R, Ganju L. Evaluation of altered miRNA expression pattern to predict COVID-19 severity. Heliyon 2023; 9:e13388. [PMID: 36743852 PMCID: PMC9889280 DOI: 10.1016/j.heliyon.2023.e13388] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 01/20/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
Outbreak of COVID-19 pandemic in December 2019 affected millions of people globally. After substantial research, several biomarkers for COVID-19 have been validated however no specific and reliable biomarker for the prognosis of patients with COVID-19 infection exists. Present study was designed to identify specific biomarkers to predict COVID-19 severity and tool for formulating treatment. A small cohort of subjects (n = 43) were enrolled and categorized in four study groups; Dead (n = 16), Severe (n = 10) and Moderate (n = 7) patients and healthy controls (n = 10). Small RNA sequencing was done on Illumina platform after isolation of microRNA from peripheral blood. Differential expression (DE) of miRNA (patients groups compared to control) revealed 118 down-regulated and 103 up-regulated known miRNAs with fold change (FC) expression ≥2 folds and p ≤ 0.05. DE miRNAs were then subjected to functional enrichment and network analysis. Bioinformatic analysis resulted in 31 miRNAs (24 Down-regulated; 7 up-regulated) significantly associated with COVID-19 having AUC>0.8 obtained from ROC curve. Seventeen out of 31 DE miRNAs have been linked to COVID-19 in previous studies. Three miRNAs, hsa-miR-147b-5p and hsa-miR-107 (down-regulated) and hsa-miR-1299 (up-regulated) showed significant unique DE in Dead patients. Another set of 4 miRNAs, hsa-miR-224-5p (down-regulated) and hsa-miR-4659b-3p, hsa-miR-495-3p and hsa-miR-335-3p were differentially up-regulated uniquely in Severe patients. Members of three miRNA families, hsa-miR-20, hsa-miR-32 and hsa-miR-548 were significantly down-regulated in all patients group in comparison to healthy controls. Thus a distinct miRNA expression profile was observed in Dead, Severe and Moderate COVID-19 patients. Present study suggests a panel of miRNAs which identified in COVID-19 patients and could be utilized as potential diagnostic biomarkers for predicting COVID-19 severity.
Collapse
Affiliation(s)
- Swati Srivastava
- Genomics Division, Defence Institute of Physiology and Allied Science (DIPAS), Lucknow Road, Timarpur, Delhi, 110054, India,Corresponding author
| | - Iti Garg
- Genomics Division, Defence Institute of Physiology and Allied Science (DIPAS), Lucknow Road, Timarpur, Delhi, 110054, India,Corresponding author
| | - Yamini Singh
- Genomics Division, Defence Institute of Physiology and Allied Science (DIPAS), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Ramesh Meena
- Genomics Division, Defence Institute of Physiology and Allied Science (DIPAS), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Nilanjana Ghosh
- Genomics Division, Defence Institute of Physiology and Allied Science (DIPAS), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Babita Kumari
- Genomics Division, Defence Institute of Physiology and Allied Science (DIPAS), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Vinay Kumar
- Genomics Division, Defence Institute of Physiology and Allied Science (DIPAS), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Malleswara Rao Eslavath
- Genomics Division, Defence Institute of Physiology and Allied Science (DIPAS), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Sayar Singh
- Genomics Division, Defence Institute of Physiology and Allied Science (DIPAS), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Vikas Dogra
- Pulmonary Medicine, Rajiv Gandhi Super Speciality Hospital (RGSSH), Delhi, India
| | - Mona Bargotya
- Pulmonary Medicine, Rajiv Gandhi Super Speciality Hospital (RGSSH), Delhi, India
| | - Sonali Bhattar
- Pulmonary Medicine, Rajiv Gandhi Super Speciality Hospital (RGSSH), Delhi, India
| | - Utkarsh Gupta
- Pulmonary Medicine, Rajiv Gandhi Super Speciality Hospital (RGSSH), Delhi, India
| | - Shruti Jain
- Pulmonary Medicine, Rajiv Gandhi Super Speciality Hospital (RGSSH), Delhi, India
| | - Javid Hussain
- Pulmonary Medicine, Rajiv Gandhi Super Speciality Hospital (RGSSH), Delhi, India
| | - Rajeev Varshney
- Genomics Division, Defence Institute of Physiology and Allied Science (DIPAS), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Lilly Ganju
- Genomics Division, Defence Institute of Physiology and Allied Science (DIPAS), Lucknow Road, Timarpur, Delhi, 110054, India
| |
Collapse
|
10
|
Duca M, Malagolini N, Dall’Olio F. The Mutual Relationship between Glycosylation and Non-Coding RNAs in Cancer and Other Physio-Pathological Conditions. Int J Mol Sci 2022; 23:ijms232415804. [PMID: 36555445 PMCID: PMC9781064 DOI: 10.3390/ijms232415804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Glycosylation, which consists of the enzymatic addition of sugars to proteins and lipids, is one of the most important post-co-synthetic modifications of these molecules, profoundly affecting their activity. Although the presence of carbohydrate chains is crucial for fine-tuning the interactions between cells and molecules, glycosylation is an intrinsically stochastic process regulated by the relative abundance of biosynthetic (glycosyltransferases) and catabolic (glycosidases) enzymes, as well as sugar carriers and other molecules. Non-coding RNAs, which include microRNAs, long non-coding RNAs and circRNAs, establish a complex network of reciprocally interacting molecules whose final goal is the regulation of mRNA expression. Likewise, these interactions are stochastically regulated by ncRNA abundance. Thus, while protein sequence is deterministically dictated by the DNA/RNA/protein axis, protein abundance and activity are regulated by two stochastic processes acting, respectively, before and after the biosynthesis of the protein axis. Consequently, the worlds of glycosylation and ncRNA are closely interconnected and mutually interacting. In this paper, we will extensively review the many faces of the ncRNA-glycosylation interplay in cancer and other physio-pathological conditions.
Collapse
|
11
|
Qian X, Wang Y, Hu W, Xu X, Gao L, Meng Y, Yan J. MiR-369-5p inhibits the proliferation and migration of hepatocellular carcinoma cells by down-regulating HOXA13 expression. Tissue Cell 2022; 74:101721. [DOI: 10.1016/j.tice.2021.101721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 02/07/2023]
|
12
|
Dabi Y, Suisse S, Jornea L, Bouteiller D, Touboul C, Puchar A, Daraï E, Bendifallah S. Clues for Improving the Pathophysiology Knowledge for Endometriosis Using Plasma Micro-RNA Expression. Diagnostics (Basel) 2022; 12:175. [PMID: 35054341 PMCID: PMC8774370 DOI: 10.3390/diagnostics12010175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/06/2022] [Accepted: 01/09/2022] [Indexed: 02/07/2023] Open
Abstract
The pathophysiology of endometriosis remains poorly understood. The aim of the present study was to investigate functions and pathways associated with the various miRNAs differentially expressed in patients with endometriosis. Plasma samples of the 200 patients from the prospective "ENDO-miRNA" study were analyzed and all known human miRNAs were sequenced. For each miRNA, sensitivity, specificity, and ROC AUC values were calculated for the diagnosis of endometriosis. miRNAs with an AUC ≥ 0.6 were selected for further analysis. A comprehensive review of recent articles from the PubMed, Clinical Trials.gov, Cochrane Library, and Web of Science databases was performed to identify functions and pathways associated with the selected miRNAs. In total, 2633 miRNAs were found in the patients with endometriosis. Among the 57 miRNAs with an AUC ≥ 0.6: 20 had never been reported before; one (miR-124-3p) had previously been observed in endometriosis; and the remaining 36 had been reported in benign and malignant disorders. miR-124-3p is involved in ectopic endometrial cell proliferation and invasion and plays a role in the following pathways: mTOR, STAT3, PI3K/Akt, NF-κB, ERK, PLGF-ROS, FGF2-FGFR, MAPK, GSK3B/β-catenin. Most of the remaining 36 miRNAs are involved in carcinogenesis through cell proliferation, apoptosis, and invasion. The three main pathways involved are Wnt/β-catenin, PI3K/Akt, and NF-KB. Our results provide evidence of the relation between the miRNA profiles of patients with endometriosis and various signaling pathways implicated in its pathophysiology.
Collapse
Affiliation(s)
- Yohann Dabi
- Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, Sorbonne University, 4 Rue de la Chine, 75020 Paris, France; (Y.D.); (C.T.); (A.P.); (E.D.)
- Clinical Research Group (GRC) Paris 6, Centre Expert Endométriose (C3E), Sorbonne University (GRC6 C3E SU), 4 Rue de la Chine, 75020 Paris, France
- Cancer Biology and Therapeutics, Centre de Recherche Saint-Antoine (CRSA), Sorbonne University, INSERM UMR_S_938, 75020 Paris, France
| | | | - Ludmila Jornea
- Paris Brain Institute—Institut du Cerveau—ICM, Inserm U1127, CNRS UMR 7225, AP-HP—Hôpital Pitié-Salpêtrière, Sorbonne University, 4 Rue de la Chine, 75020 Paris, France;
| | - Delphine Bouteiller
- Gentoyping and Sequencing Core Facility, iGenSeq, Institut du Cerveau et de la Moelle Épinière, ICM, Hôpital Pitié-Salpêtrière, 47-83 Boulevard de l’Hôpital, 75013 Paris, France;
| | - Cyril Touboul
- Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, Sorbonne University, 4 Rue de la Chine, 75020 Paris, France; (Y.D.); (C.T.); (A.P.); (E.D.)
- Clinical Research Group (GRC) Paris 6, Centre Expert Endométriose (C3E), Sorbonne University (GRC6 C3E SU), 4 Rue de la Chine, 75020 Paris, France
- Cancer Biology and Therapeutics, Centre de Recherche Saint-Antoine (CRSA), Sorbonne University, INSERM UMR_S_938, 75020 Paris, France
| | - Anne Puchar
- Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, Sorbonne University, 4 Rue de la Chine, 75020 Paris, France; (Y.D.); (C.T.); (A.P.); (E.D.)
| | - Emile Daraï
- Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, Sorbonne University, 4 Rue de la Chine, 75020 Paris, France; (Y.D.); (C.T.); (A.P.); (E.D.)
| | - Sofiane Bendifallah
- Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, Sorbonne University, 4 Rue de la Chine, 75020 Paris, France; (Y.D.); (C.T.); (A.P.); (E.D.)
- Clinical Research Group (GRC) Paris 6, Centre Expert Endométriose (C3E), Sorbonne University (GRC6 C3E SU), 4 Rue de la Chine, 75020 Paris, France
| |
Collapse
|
13
|
Gao Z, Xu M, Yue S, Shan H, Xia J, Jiang J, Yang S. Abnormal sialylation and fucosylation of saliva glycoproteins: Characteristics of lung cancer-specific biomarkers. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 3:100079. [PMID: 35005612 PMCID: PMC8718573 DOI: 10.1016/j.crphar.2021.100079] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 10/31/2021] [Accepted: 12/15/2021] [Indexed: 12/23/2022] Open
Abstract
Dysregulated surface glycoproteins play an important role in tumor cell proliferation and progression. Abnormal glycosylation of these glycoproteins may activate tumor signal transduction and lead to tumor development. The tumor microenvironment alters its molecular composition, some of which regulate protein glycosylation biosynthesis. The glycosylation of saliva proteins in lung cancer patients is different from healthy controls, in which the glycans of cancer patients are highly sialylated and hyperfucosylated. Most studies have shown that O-glycans from cancer are truncated O-glycans, while N-glycans contain fucoses and sialic acids. Because glycosylation analysis is challenging, there are few reports on how glycosylation of saliva proteins is related to the occurrence or progression of lung cancer. In this review, we discussed glycoenzymes involved in protein glycosylation, their changes in tumor microenvironment, potential tumor biomarkers present in body fluids, and abnormal glycosylation of saliva or lung glycoproteins. We further explored the effect of glycosylation changes on tumor signal transduction, and emphasized the role of receptor tyrosine kinases in tumorigenesis and metastasis.
Collapse
Affiliation(s)
- Ziyuan Gao
- Center for Clinical Mass Spectrometry, School of Pharmaceutical Sciences, Soochow University, Jiangsu, 215123, China
- Department of Respiratory and Critical Care Medicine, Dushu Lake Hospital to Soochow University, Suzhou, Jiangsu, 215125, China
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Soochow University; Suzhou Jiangsu, 215006, China
| | - Mingming Xu
- Center for Clinical Mass Spectrometry, School of Pharmaceutical Sciences, Soochow University, Jiangsu, 215123, China
| | - Shuang Yue
- Center for Clinical Mass Spectrometry, School of Pharmaceutical Sciences, Soochow University, Jiangsu, 215123, China
| | - Huang Shan
- Center for Clinical Mass Spectrometry, School of Pharmaceutical Sciences, Soochow University, Jiangsu, 215123, China
| | - Jun Xia
- Department of Clinical Laboratory Center, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Junhong Jiang
- Department of Respiratory and Critical Care Medicine, Dushu Lake Hospital to Soochow University, Suzhou, Jiangsu, 215125, China
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Soochow University; Suzhou Jiangsu, 215006, China
| | - Shuang Yang
- Center for Clinical Mass Spectrometry, School of Pharmaceutical Sciences, Soochow University, Jiangsu, 215123, China
| |
Collapse
|
14
|
Li Y, Zhang M, Feng H, Mahati S. The Tumorigenic Properties of EZH2 are Mediated by MiR-26a in Uveal Melanoma. Front Mol Biosci 2021; 8:713542. [PMID: 34381816 PMCID: PMC8350384 DOI: 10.3389/fmolb.2021.713542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 06/28/2021] [Indexed: 12/04/2022] Open
Abstract
Background: The polycomb group protein enhancer of zeste homolog 2 (EZH2) has been found to be highly expressed in various tumors, and microRNA-26a (miR-26a) is often unmodulated in cancers. However, the functions of these two molecules in uveal melanoma (UM) and their relationships have not been reported. Methods: We explored the effects of the miR-26a–EZH2 axis in UM by examining the levels of miR-26a and EZH2. The EZH2 levels in various tumor types and the correlations between EZH2 levels and overall survival and disease-free survival were reanalyzed. The binding of miR-26a to the 3′-untranslated region of EZH2 mRNA was measured using the luciferase reporter assay. The regulation of EZH2 gene expression by miR-26a was also identified, and the effect of elevated EZH2 expression on UM cell function was further examined. Results: miR-26a was downregulated and EZH2 was upregulated in UM cells. Overexpression of miR-26a inhibited cell proliferation, and knockdown of EZH2 suppressed cell growth. EZH2 was a direct target of miR-26a in UM cells. The knockout of EZH2 mimicked the tumor inhibition of miR-26a in UM cells, whereas the reintroduction of EZH2 abolished this effect. In addition, a network of EZH2 and its interacting proteins (UBC, CDK1, HDAC1, SUZ12, EED) was found to participate in miR-26a-mediated tumor progression. Conclusion: The newly identified miR-26a–EZH2 axis may be a potential target for the development of treatment strategies for UM.
Collapse
Affiliation(s)
- Yao Li
- Department of Ophthalmology, Xinjiang Medical University Affiliated First Hospital, Urumqi, China
| | - Mingmei Zhang
- Department of Ophthalmology, Xinjiang Medical University Affiliated First Hospital, Urumqi, China
| | - Huayin Feng
- Department of Ophthalmology, Xinjiang Medical University Affiliated First Hospital, Urumqi, China
| | - Shaya Mahati
- Department of Oncology, Xinjiang Medical University Affiliated First Hospital, Urumqi, China
| |
Collapse
|
15
|
Xing Y, Ruan G, Ni H, Qin H, Chen S, Gu X, Shang J, Zhou Y, Tao X, Zheng L. Tumor Immune Microenvironment and Its Related miRNAs in Tumor Progression. Front Immunol 2021; 12:624725. [PMID: 34084160 PMCID: PMC8167795 DOI: 10.3389/fimmu.2021.624725] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 04/29/2021] [Indexed: 12/11/2022] Open
Abstract
MiRNA is a type of small non-coding RNA, by regulating downstream gene expression that affects the progression of multiple diseases, especially cancer. MiRNA can participate in the biological processes of tumor, including proliferation, invasion and escape, and exhibit tumor enhancement or inhibition. The tumor immune microenvironment contains numerous immune cells. These cells include lymphocytes with tumor suppressor effects such as CD8+ T cells and natural killer cells, as well as some tumor-promoting cells with immunosuppressive functions, such as regulatory T cells and myeloid-derived suppressor cells. MiRNA can affect the tumor immune microenvironment by regulating the function of immune cells, which in turn modulates the progression of tumor cells. Investigating the role of miRNA in regulating the tumor immune microenvironment will help elucidate the specific mechanisms of interaction between immune cells and tumor cells, and may facilitate the use of miRNA as a predictor of immune disorders in tumor progression. This review summarizes the multifarious roles of miRNA in tumor progression through regulation of the tumor immune microenvironment, and provides guidance for the development of miRNA drugs to treat tumors and for the use of miRNA as an auxiliary means in tumor immunotherapy.
Collapse
Affiliation(s)
- Yingying Xing
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Guojing Ruan
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Haiwei Ni
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Hai Qin
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Simiao Chen
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Xinyue Gu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Jiamin Shang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yantong Zhou
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Xi Tao
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Lufeng Zheng
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
16
|
Cha S, Seo EH, Lee SH, Kim KS, Oh CS, Moon JS, Kim JK. MicroRNA Expression in Extracellular Vesicles from Nasal Lavage Fluid in Chronic Rhinosinusitis. Biomedicines 2021; 9:biomedicines9050471. [PMID: 33925835 PMCID: PMC8145239 DOI: 10.3390/biomedicines9050471] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) are nanovesicles of endocytic origin released by cells and found in human bodily fluids. EVs contain both mRNA and microRNA (miRNA), which can be shuttled between cells, indicating their role in cell communication. This study investigated whether nasal secretions contain EVs and whether these EVs contain RNA. EVs were isolated from nasal lavage fluid (NLF) using sequential centrifugation. EVs were characterized and EV sizes were identified by transmission electron microscopy (TEM). In addition, EV miRNA expression was different in the chronic rhinosinusitis without nasal polyp (CRSsNP) and chronic rhinosinusitis with nasal polyp (CRSwNP) groups. The Kyoto encyclopedia gene and genome database (KEGG) database was used to identify pathways associated with changed miRNAs in each analysis group. Twelve miRNAs were differentially expressed in NLF-EVs of CRS patients versus HCs. In addition, eight miRNAs were differentially expressed in NLF-EVs of CRSwNP versus CRSsNP patients. The mucin-type O-glycan biosynthesis was a high-ranked predicted pathway in CRS patients versus healthy controls (HCs), and the Transforming growth factor beta (TGF-β) signaling pathway was a high-ranked predicted pathway in CRSwNP versus CRSsNP patients. We demonstrated the presence of and differences in NLF-EV miRNAs between CRS patients and HCs. These findings open up a broad and novel area of research on CRS pathophysiology as driven by miRNA cell communication.
Collapse
Affiliation(s)
- Seungbin Cha
- Department of Infection and Immunology, Konkuk University School of Medicine, Seoul 05030, Korea; (S.C.); (S.H.L.)
| | - Eun-Hye Seo
- Research Institute of Medical Science, Konkuk University School of Medicine, Seoul 05030, Korea; (E.-H.S.); (C.-S.O.)
| | - Seung Hyun Lee
- Department of Infection and Immunology, Konkuk University School of Medicine, Seoul 05030, Korea; (S.C.); (S.H.L.)
- Research Institute of Medical Science, Konkuk University School of Medicine, Seoul 05030, Korea; (E.-H.S.); (C.-S.O.)
| | - Kyung Soo Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Chung-Ang University College of Medicine, Seoul 06973, Korea;
| | - Chung-Sik Oh
- Research Institute of Medical Science, Konkuk University School of Medicine, Seoul 05030, Korea; (E.-H.S.); (C.-S.O.)
- Department of Anesthesiology and Pain Medicine, Konkuk University School of Medicine, Konkuk University Medical Center, Seoul 05030, Korea
| | - Jong-Seok Moon
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si 31151, Korea;
| | - Jin Kook Kim
- Research Institute of Medical Science, Konkuk University School of Medicine, Seoul 05030, Korea; (E.-H.S.); (C.-S.O.)
- Departments of Otorhinolaryngology-Head & Neck Surgery, Konkuk University School of Medicine, Konkuk University Medical Center, Seoul 05030, Korea
- Correspondence: ; Tel.: +82-2-2030-7662
| |
Collapse
|
17
|
Aberrant Sialylation in Cancer: Biomarker and Potential Target for Therapeutic Intervention? Cancers (Basel) 2021; 13:cancers13092014. [PMID: 33921986 PMCID: PMC8122436 DOI: 10.3390/cancers13092014] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Sialylation is a post-translational modification that consists in the addition of sialic acid to growing glycan chains on glycoproteins and glycolipids. Aberrant sialylation is an established hallmark of several types of cancer, including breast, ovarian, pancreatic, prostate, colorectal and lung cancers, melanoma and hepatocellular carcinoma. Hypersialylation can be the effect of increased activity of sialyltransferases and results in an excess of negatively charged sialic acid on the surface of cancer cells. Sialic acid accumulation contributes to tumor progression by several paths, including stimulation of tumor invasion and migration, and enhancing immune evasion and tumor cell survival. In this review we explore the mechanisms by which sialyltransferases promote cancer progression. In addition, we provide insights into the possible use of sialyltransferases as biomarkers for cancer and summarize findings on the development of sialyltransferase inhibitors as potential anti-cancer treatments. Abstract Sialylation is an integral part of cellular function, governing many biological processes including cellular recognition, adhesion, molecular trafficking, signal transduction and endocytosis. Sialylation is controlled by the levels and the activities of sialyltransferases on glycoproteins and lipids. Altered gene expression of these enzymes in cancer yields to cancer-specific alterations of glycoprotein sialylation. Mounting evidence indicate that hypersialylation is closely associated with cancer progression and metastatic spread, and can be of prognostic significance in human cancer. Aberrant sialylation is not only a result of cancer, but also a driver of malignant phenotype, directly impacting key processes such as tumor cell dissociation and invasion, cell-cell and cell-matrix interactions, angiogenesis, resistance to apoptosis, and evasion of immune destruction. In this review we provide insights on the impact of sialylation in tumor progression, and outline the possible application of sialyltransferases as cancer biomarkers. We also summarize the most promising findings on the development of sialyltransferase inhibitors as potential anti-cancer treatments.
Collapse
|
18
|
Shimizu T, Nagane M, Suzuki M, Yamauchi A, Kato K, Kawashima N, Nemoto Y, Maruo T, Kawakami Y, Yamashita T. Tumor hypoxia regulates ganglioside GM3 synthase, which contributes to oxidative stress resistance in malignant melanoma. Biochim Biophys Acta Gen Subj 2020; 1864:129723. [PMID: 32861756 DOI: 10.1016/j.bbagen.2020.129723] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 11/16/2022]
Abstract
BACKGROUND Tumor hypoxia drastically changes cancer phenotypes, including angiogenesis, invasion, and cell death. Gangliosides are sialic acid-containing glycosphingolipids that are ubiquitously distributed on plasma membranes and are involved in many biological processes, such as the endoplasmic reticulum stress response and apoptosis. In this study, we investigated the regulation and function of glycosphingolipids, which associate with lipid raft on mammalian plasma membranes under hypoxic condition. METHODS B16F10 melanoma cells were subjected to chemical hypoxia and low pO2 condition, and the effect of hypoxia on expression of GM3 synthase were analyzed. Cellular resistance to oxidative stress was analyzed in GM3S-KO B16F10 cells. RESULTS Hypoxia treatment decreased the expression of ganglioside GM3 synthase (GM3S; ST3GAL5), which synthesizes the common substrate of ganglioside biosynthesis. RNA interference of hypoxia inducible factor 1 subunit alpha (HIF-1α) inhibited hypoxia-induced GM3S suppression. Additionally, GM3S deficiency increased cellular resistance to oxidative stress and radiation therapy via upregulation of ERK. CONCLUSIONS Altered synthesis of glycosphingolipids downstream of HIF-1α signaling increased the resistance of melanoma cells to oxidative stress. Furthermore, GM3 has important role on cellular adaptive response to hypoxia. GENERAL SIGNIFICANCE This study indicates that tumor hypoxia regulates therapy-resistance via modulation of ganglioside synthesis.
Collapse
Affiliation(s)
- Takuto Shimizu
- Laboratory of Biochemistry, School of Veterinary Medicine, Azabu University, Japan
| | - Masaki Nagane
- Laboratory of Biochemistry, School of Veterinary Medicine, Azabu University, Japan
| | - Mira Suzuki
- Laboratory of Biochemistry, School of Veterinary Medicine, Azabu University, Japan
| | - Akinori Yamauchi
- Laboratory of Biochemistry, School of Veterinary Medicine, Azabu University, Japan
| | - Kazuhiro Kato
- Laboratory of Biochemistry, School of Veterinary Medicine, Azabu University, Japan
| | - Nagako Kawashima
- Department of Nephrology, Kitasato University School of Medicine, Japan
| | - Yuki Nemoto
- Teaching Animal Hospital, Azabu University, Japan
| | - Takuya Maruo
- Teaching Animal Hospital, Azabu University, Japan
| | - Yasushi Kawakami
- Department of Life and Environmental Sciences, Azabu University, Japan
| | - Tadashi Yamashita
- Laboratory of Biochemistry, School of Veterinary Medicine, Azabu University, Japan.
| |
Collapse
|
19
|
Abstract
Glycosylation is a sophisticated informational system that controls specific biological functions at the cellular and organismal level. Dysregulation of glycosylation may underlie some of the most complex and common diseases of the modern era. In the past 5 years, microRNAs have come to the forefront as a critical regulator of the glycome. Herein, we review the current literature on miRNA regulation of glycosylation and how this work may point to a new way to identify the biological importance of glycosylation enzymes.
Collapse
Affiliation(s)
- Chu T Thu
- Biomedical Chemistry Institute, Department of Chemistry, New York University, New York, New York 10003, United States
| | - Lara K Mahal
- Biomedical Chemistry Institute, Department of Chemistry, New York University, New York, New York 10003, United States
| |
Collapse
|
20
|
Salah Z, Abd El Azeem EM, Youssef HF, Gamal-Eldeen AM, Farrag AR, El-Meliegy E, Soliman B, Elhefnawi M. Effect of Tumor Suppressor MiR-34a Loaded on ZSM-5 Nanozeolite in Hepatocellular Carcinoma: In Vitro and In Vivo Approach. Curr Gene Ther 2020; 19:342-354. [PMID: 31701846 DOI: 10.2174/1566523219666191108103739] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 10/16/2019] [Accepted: 11/01/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND MicroRNA modulation therapy has shown great promise to treat hepatocellular carcinoma (HCC), however Efficient tissue-specific and safe delivery remains a major challenge. OBJECTIVE We sought to develop an inorganic-organic hybrid vehicle for the systemic delivery of the tumor suppressor miR-34a, and to investigate the efficiency of the delivered miR-34a in the treatment of HCC in vitro and in vivo. METHODS In the present study, pEGP-miR cloning and expression vector, expressing miR-34a, was electrostatically bound to polyethyleneimine (PEI), and then loaded onto ZSM-5 zeolite nanoparticles (ZNP). Qualitative and quantitative assessment of the transfection efficiency of miR-34a construct in HepG2 cells was applied by GFP screening and qRT-PCR, respectively. The expression of miR-34a target genes was investigated by qRT-PCR in vitro and in vivo. RESULTS ZNP/PEI/miR-34a nano-formulation could efficiently deliver into HepG2 cells with low cytotoxicity, indicating good biocompatibility of generated nanozeolite. Furthermore, five injected doses of ZNP/PEI/miR-34a nano-formulation in HCC induced male Balb-c mice, significantly inhibited tumor growth, and demonstrated improved cell structure, in addition to a significant decrease in alphafetoprotein level and liver enzymes activities, as compared to the positive control group. Moreover, injected ZNP/PEI/miR-34a nano-formulation led to a noticeable decrease in the CD44 and c-Myc levels. Results also showed that ZNP/PEI/miR-34a nano-formulation inhibited several target oncogenes including AEG-1, and SOX-9, in vitro and in vivo. CONCLUSION Our results suggested that miR-34a is a powerful candidate in HCC treatment and that AEG-1 and SOX-9 are novel oncotargets of miR-34a in HCC. Results also demonstrated that our nano-formulation may serve as a candidate approach for miR-34a restoration for HCC therapy, and generally for safe gene delivery.
Collapse
Affiliation(s)
- Zeinab Salah
- Biomedical Informatics and Chemo-Informatics Group Leader, Centre of Excellence for Medical Research, Informatics and System Dept, National Research Centre (NRC), Cairo, Egypt
| | - Eman M Abd El Azeem
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Hanan F Youssef
- Refractories, Ceramics and Building Materials Department, National Research Centre (NRC), Dokki, Cairo 12622, Egypt
| | - Amira M Gamal-Eldeen
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, Taif University, Al Mutamarat Rd, Al Mathnah, At Taif 26521, Saudi Arabia
| | - Abdel R Farrag
- Pathology Department Medical Division Research, National Research Centre, Cairo, 12622, Dokki, Egypt
| | - Emad El-Meliegy
- Department of Biomaterials, National Research Centre, Cairo, Egypt
| | - Bangly Soliman
- Biomedical Informatics and Chemo-Informatics Group Leader, Centre of Excellence for Medical Research, Informatics and System Dept, National Research Centre (NRC), Cairo, Egypt
| | - Mahmoud Elhefnawi
- Biomedical Informatics and Chemo-Informatics Group Leader, Centre of Excellence for Medical Research, Informatics and System Dept, National Research Centre (NRC), Cairo, Egypt
| |
Collapse
|
21
|
Ouyang S, Liu JH, Ni Z, Ding GF, Wang QZ. Downregulation of ST3GAL5 is associated with muscle invasion, high grade and a poor prognosis in patients with bladder cancer. Oncol Lett 2020; 20:828-840. [PMID: 32566010 PMCID: PMC7285741 DOI: 10.3892/ol.2020.11597] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 04/07/2020] [Indexed: 02/07/2023] Open
Abstract
In patients with bladder cancer (BC), the association between ST3 β-galactoside α-2,3-sialyltransferase 5 (ST3GAL5) expression and clinical outcomes, particularly regarding muscle-invasive disease, high tumor grade and prognosis, remain unknown. In the present study, the expression of ST3GAL5 and its association with clinical outcomes in patients with BC was analyzed using various public bioinformatics databases. The difference in ST3GAL5 expression between BC and healthy bladder tissues was also evaluated using data from the Oncomine database, The Cancer Genome Atlas and Gene Expression Omnibus database. The differences in ST3GAL5 expression between muscle invasive BC (MIBC) and non-muscle invasive BC (NMIBC), and high- and low-grade BC were also analyzed. Furthermore, genes that were positively co-expressed with ST3GAL5 in patients with BC were identified from the intersection between the Oncomine, Gene Expression Profiling Interactive Analysis 2 and UALCAN databases. Enrichment analysis by Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, Reactome pathway enrichment analyses and a gene-concept network was performed using R package. Gene set enrichment analysis was also performed to assess the signaling pathways influenced by the high and low expression of ST3GAL5 in BC. The results indicated that ST3GAL5 expression was significantly lower in BC tissues compared with normal bladder tissues (P<0.05). Furthermore, ST3GAL5 expression in MIBC and high-grade BC was significantly lower compared with NMIBC and low-grade BC (P<0.05), respectively. The results from Kaplan-Meier survival analysis result demonstrated that ST3GAL5 downregulation was associated with poor survival in patients with BC (P<0.05). Taken together, these findings suggested that ST3GAL5 may be considered as an anti-oncogene in BC, could represent a potential predictive and prognostic biomarker for BC and may be a molecular target for tumor therapy.
Collapse
Affiliation(s)
- Song Ouyang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China.,Department of Urology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang 832008, P.R. China
| | - Ji-Hong Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Zhao Ni
- Department of Urology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang 832008, P.R. China
| | - Guo-Fu Ding
- Department of Urology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang 832008, P.R. China
| | - Qin-Zhang Wang
- Department of Urology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang 832008, P.R. China
| |
Collapse
|
22
|
Wang H, Rao B, Lou J, Li J, Liu Z, Li A, Cui G, Ren Z, Yu Z. The Function of the HGF/c-Met Axis in Hepatocellular Carcinoma. Front Cell Dev Biol 2020; 8:55. [PMID: 32117981 PMCID: PMC7018668 DOI: 10.3389/fcell.2020.00055] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 01/22/2020] [Indexed: 12/17/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide, leading to a large global cancer burden. Hepatocyte growth factor (HGF) and its high-affinity receptor, mesenchymal epithelial transition factor (c-Met), are closely related to the onset, progression, and metastasis of multiple tumors. The HGF/c-Met axis is involved in cell proliferation, movement, differentiation, invasion, angiogenesis, and apoptosis by activating multiple downstream signaling pathways. In this review, we focus on the function of the HGF/c-Met axis in HCC. The HGF/c-Met axis promotes the onset, proliferation, invasion, and metastasis of HCC. Moreover, it can serve as a biomarker for diagnosis and prognosis, as well as a therapeutic target for HCC. In addition, it is closely related to drug resistance during HCC treatment.
Collapse
Affiliation(s)
- Haiyu Wang
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Benchen Rao
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiamin Lou
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jianhao Li
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhenguo Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ang Li
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guangying Cui
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhigang Ren
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zujiang Yu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
23
|
A 5-Gene Signature Is Closely Related to Tumor Immune Microenvironment and Predicts the Prognosis of Patients with Non-Small Cell Lung Cancer. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2147397. [PMID: 31998783 PMCID: PMC6975218 DOI: 10.1155/2020/2147397] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/22/2019] [Accepted: 12/04/2019] [Indexed: 12/19/2022]
Abstract
Purpose Establishing prognostic gene signature to predict clinical outcomes and guide individualized adjuvant therapy is necessary. Here, we aim to establish the prognostic efficacy of a gene signature that is closely related to tumor immune microenvironment (TIME). Methods and Results There are 13,035 gene expression profiles from 130 tumor samples of the non-small cell lung cancer (NSCLC) in the data set GSE103584. A 5-gene signature was identified by using univariate survival analysis and Least Absolute Shrinkage and Selection Operator (LASSO) to build risk models. Then, we used the CIBERSORT method to quantify the relative levels of different immune cell types in complex gene expression mixtures. It was found that the ratio of dendritic cells (DCs) activated and mast cells (MCs) resting in the low-risk group was higher than that in the high-risk group, and the difference was statistically significant (P < 0.001 and P=0.03). Pathway enrichment results which were obtained by performing Gene Set Variation Analysis (GSVA) showed that the high-risk group identified by the 5-gene signature had metastatic-related gene expression, resulting in lower survival rates. Kaplan–Meier survival results showed that patients of the high-risk group had shorter disease-free survival (DFS) and overall survival (OS) than those of the low-risk group in the training set (P=0.0012 and P < 0.001). The sensitivity and specificity of the gene signature were better and more sensitive to prognosis than TNM (tumor/lymph node/metastasis) staging, in spite of being not statistically significant (P=0.154). Furthermore, Kaplan–Meier survival showed that patients of the high-risk group had shorter OS and PFS than those of the low-risk group (P=0.0035, P < 0.001, and P < 0.001) in the validating set (GSE31210, GSE41271, and TCGA). At last, univariate and multivariate Cox proportional hazard regression analyses were used to evaluate independent prognostic factors associated with survival, and the gene signature, lymphovascular invasion, pleural invasion, chemotherapy, and radiation were employed as covariates. The 5-gene signature was identified as an independent predictor of patient survival in the presence of clinical parameters in univariate and multivariate analyses (P < 0.001) (hazard ratio (HR): 3.93, 95% confidence interval CI (2.17–7.1), P=0.001, (HR) 5.18, 95% CI (2.6995–9.945), P < 0.001), respectively. Our 5-gene signature was also related to EGFR mutations (P=0.0111), and EGFR mutations were mainly enriched in low-risk group, indicating that EGFR mutations affect the survival rate of patients. Conclusion The 5-gene signature is a powerful and independent predictor that could predict the prognosis of NSCLC patients. In addition, our gene signature is correlated with TIME parameters, such as DCs activated and MCs resting. Our findings suggest that the 5-gene signature closely related to TIME could predict the prognosis of NSCLC patients and provide some reference for immunotherapy.
Collapse
|
24
|
MOSTAFA SHADYM, GAMAL-ELDEEN AMIRAM, MAKSOUD NABILAABDEL, FAHMI ABDELGAWADA. Epigallocatechin gallate-capped gold nanoparticles enhanced the tumor suppressors let-7a and miR-34a in hepatocellular carcinoma cells. ACTA ACUST UNITED AC 2020; 92:e20200574. [DOI: 10.1590/0001-3765202020200574] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/17/2020] [Indexed: 01/01/2023]
Affiliation(s)
- SHADY M. MOSTAFA
- National Research Centre, Egypt; National Research Centre, Egypt
| | - AMIRA M. GAMAL-ELDEEN
- National Research Centre, Egypt; National Research Centre, Egypt; Taif University, Saudi Arabia
| | | | | |
Collapse
|
25
|
Kalapanida D, Zagouri F, Gazouli M, Zografos E, Dimitrakakis C, Marinopoulos S, Giannos A, Sergentanis TN, Kastritis E, Terpos E, Dimopoulos MA. Evaluation of pre-mir-34a rs72631823 single nucleotide polymorphism in triple negative breast cancer: A case-control study. Oncotarget 2018; 9:36906-36913. [PMID: 30651924 PMCID: PMC6319339 DOI: 10.18632/oncotarget.26385] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 11/03/2018] [Indexed: 12/19/2022] Open
Abstract
Aim The purpose of this study is to evaluate the role of pre-miR34a rs72631823 as potential risk factor and/or prognostic marker in patients with triple negative breast cancer. Methods 114 samples of DNA from paraffin embedded breast normal tissues of patients with triple negative breast cancer and 124 samples of healthy controls were collected and analyzed for pre-miR34a rs72631823 polymorphism. Results Pre-miR34a rs72631823 A allele was associated with increased TNBC risk both in univariate and multivariate analysis. The number of pre-miR34a rs72631823 AA subjects was very small and the association did not reach significance (p = 0.176, Fisher’s exact test). The examined polymorphism was not associated with overall survival at the univariate or multivariate Cox regression analysis (adjusted HR = 1.60, 95%CI: 0.64–3.96 for miR34 rs72631823 GA/AA vs. GG). Conclusion Our case-control study suggests that pre-miR34a rs72631823 A allele is associated with increased triple negative breast cancer risk.
Collapse
Affiliation(s)
- Despoina Kalapanida
- Department of Clinical Therapeutics, Alexandra Hospital, Medical School, University of Athens, Athens, Greece
| | - Flora Zagouri
- Department of Clinical Therapeutics, Alexandra Hospital, Medical School, University of Athens, Athens, Greece
| | - Maria Gazouli
- Department of Basic Medical Sciences, Laboratory of Biology, University of Athens School of Medicine, Athens, Greece.,Laboratory of Cell and Gene Therapy, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Eleni Zografos
- Department of Basic Medical Sciences, Laboratory of Biology, University of Athens School of Medicine, Athens, Greece.,Laboratory of Cell and Gene Therapy, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Constantine Dimitrakakis
- Department of Obstetrics and Gynaecology, Alexandra Hospital, Medical school, University of Athens, Athens, Greece
| | - Spyridon Marinopoulos
- Department of Obstetrics and Gynaecology, Alexandra Hospital, Medical school, University of Athens, Athens, Greece
| | - Aris Giannos
- Department of Obstetrics and Gynaecology, Alexandra Hospital, Medical school, University of Athens, Athens, Greece
| | - Theodoros N Sergentanis
- Department of Clinical Therapeutics, Alexandra Hospital, Medical School, University of Athens, Athens, Greece
| | - Efstathios Kastritis
- Department of Clinical Therapeutics, Alexandra Hospital, Medical School, University of Athens, Athens, Greece
| | - Evangelos Terpos
- Department of Clinical Therapeutics, Alexandra Hospital, Medical School, University of Athens, Athens, Greece
| | | |
Collapse
|
26
|
Wang J, Zhao H, Yu J, Xu X, Liu W, Jing H, Li N, Tang Y, Li Y, Cai J, Jin J. MiR-92b targets p57kip2 to modulate the resistance of hepatocellular carcinoma (HCC) to ionizing radiation (IR) -based radiotherapy. Biomed Pharmacother 2018; 110:646-655. [PMID: 30544064 DOI: 10.1016/j.biopha.2018.11.080] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 11/16/2018] [Accepted: 11/19/2018] [Indexed: 01/05/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common digestive system malignant tumors. Due to the resistance to radiotherapy, the prognosis in patients with HCC is poor. Based on previous studies and online tools prediction, we hypothesized that miR-92b, which was reported to promote HCC cell proliferation, might bind to p57kip2, a well-known tumor suppressor, to modulate the radioresistance of HCC to ionizing radiation (IR) -based radiotherapy. In the present study, a higher miR-92b expression in HCC tissues and cell lines was observed; a high miR-92b expression was correlated with poorer prognosis in patients with HCC. The overexpression of miR-92b enhanced the radioresistance of HCC to IR treatment by promoting cancer cell proliferation, attenuating cell apoptosis and remove IR-induced cell cycle at G2/M phase. Through directly binding to the 3'-UTR of p57kip2, miR-92b negatively regulated the protein levels of p57kip2; miR-92b inhibition enhanced the cell effect of IR on HCC cells, which could be attenuated by the p57kip2 knockdown, in other words, miR-92b modulated the radioresistance of HCC to IR-based radiotherapy through p57kip2. Taken together, miR-92b inhibits p57kip2 expression in HCC tissues and cell lines, thus enhancing the radioresistance of HCC to IR-based radiotherapy; targeting miR-92b to rescue p57kip2 expression in HCC might help sensitive HCC cells to IR-based radiotherapy.
Collapse
Affiliation(s)
- Jianyang Wang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Hong Zhao
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Jing Yu
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Xin Xu
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Wenyang Liu
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Hao Jing
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Ning Li
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Yuan Tang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Yexiong Li
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Jianqiang Cai
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China.
| | - Jing Jin
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
27
|
RNA-binding protein AUF1 suppresses miR-122 biogenesis by down-regulating Dicer1 in hepatocellular carcinoma. Oncotarget 2018; 9:14815-14827. [PMID: 29599909 PMCID: PMC5871080 DOI: 10.18632/oncotarget.24079] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 01/03/2018] [Indexed: 12/21/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the common cancers worldwide, especially in developing countries. Although the chronic infections of hepatitis B and C viruses have been established as the etiological factors of HCC, the mechanism for the tumorigenesis and development of HCC is still unclear. The liver-specific microRNA-122 (miR-122), an established tumor-suppressor miRNA, is often down-regulated in HCC, while the underlying mechanism is not well understood. Here we report that the AU-rich element-binding factor AUF1 suppresses the expression of Dicer1, the type III RNase that is required for microRNA maturation, leading to the inhibited biogenesis of miR-122. Overexpression of AUF1 led to the decreased expression of Dicer1 and miR-122, while the level of the miR-122 precursor (pre-miR-122) was increased. On the other hand, siRNA of AUF1 (siAUF1) increased the levels of Dicer1 mRNA and miR-122, but it reduced the abundance of pre-miR-122. Consistent with the reported data, this study demonstrated that AUF1 and Dicer1 showed opposite expression pattern in both human HCC tissues and cell lines. In addition, AUF1 inhibited the expression of Dicer1 by interacting with the 3′ untranslated region (3′UTR) and coding region of DICER1 mRNA. Moreover, the knockdown of AUF1 by siRNA altered the expression of other miRNAs and promoted HCC cell death. In conclusion, AUF1 down-regulates the expression miR-122 by interacting with the 3′UTR and coding region of DICER1 mRNA and suppressing Dicer1 expression. The AUF1/Dicer1/miR-122 pathway might play a critical role in the development of HCC.
Collapse
|
28
|
Abstract
Tumor-associated gangliosides play important roles in regulation of signal transduction induced by growth-factor receptors including EGFR, FGFR, HGF and PDGFR in a specific microdomain called glycosynapse in the cancer cell membranes, and in interaction with glycan recognition molecules involved in cell adhesion and immune regulation including selectins and siglecs. As the genes involved in the synthesis and degradation of tumor-associated gangliosides were identified, biological functions became clearer from the experimental results employing forced overexpression and/or knockdown/knockout of the genes. Studies on the regulatory mechanisms for their expression also achieved great advancements. Epigenetic silencing of glycan-related genes is a dominant mechanism in glycan alteration at early stages of carcinogenesis. Development of hypoxia resistance involving activation of a transcription factor HIF, and acquisition of cancer stem cell-like characteristics through epithelial-mesenchymal transition are important mechanisms for glycan modulations in the later stages of cancer progression. In the initial stages of studies, the gangliosides which specifically appear in cancers attracted attention under the name of tumor-associated gangliosides. However, it became apparent that not only the cancer-associated gangliosides but also the normal gangliosides present in nonmalignant cells and tissues perform important biological functions, and some of them tend to disappear in cancer cells resulting in the loss of the physiological functions, and this sometimes facilitates progression of cancers.
Collapse
|
29
|
Chen L, Yang C, Feng J, Liu X, Tian Y, Zhao L, Xie R, Liu C, Zhao S, Sun H. Clinical significance of miR-34a expression in thyroid diseases - an 18F-FDG PET-CT study. Cancer Manag Res 2017; 9:903-913. [PMID: 29290693 PMCID: PMC5735987 DOI: 10.2147/cmar.s143110] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Purpose To evaluate the possible roles of miR-34a expression in thyroid lesions, to unravel the correlation between fluorodeoxyglucose (FDG) uptake and miR-34a expression and moreover, to discover the underlying mechanisms by which miR-34a regulates FDG avidity. Methods We retrospectively reviewed 75 patients with pathology-confirmed thyroid diseases who underwent 18F-FDG positron emission tomography/computed tomography (PET/CT) within 3 months before undergoing thyroid surgery and miR-34a analysis from June 2012 to July 2017. 18F-FDG uptake of thyroid lesions was also analyzed semiquantitatively using maximum standardized uptake value (SUVmax). The association between miR-34a expression and clinicopathological variables (age, sex, TNM stage, histopathology, lesion numbers, location and 18F-FDG avidity) was investigated. When there were multiple lesions in thyroid bed, only the one with the highest 18F-FDG uptake was analyzed. Next, we inhibited the miR-34a expression in TPC-1 cells and detected the expression of glucose transporter 1 (GLUT1) mRNA and protein. Results In the patients cohort, miR-34a was upregulated in those with malignant thyroid diseases compared with benign lesions. The expression of miR-34a was associated with tumor stages, histopathological types and SUVmax. There was an inverse relationship between miR-34a expression and SUVmax in patients with thyroid diseases (Spearman correlation coefficient = −0.553, P < 0.0001). With an SUVmax of 4.3 as the threshold, sensitivity and specificity of the prediction of miR-34a expression (low or high) were 70% and 94.3%, respectively. The area under the receiver operating characteristic curve was 0.843 (95% confidence interval: 0.749, 0.936; P = 0.001). Inhibiting miR-34a in TPC-1 cells significantly increased GLUT1 mRNA and protein expression. Conclusion miR-34a expression was upregulated in thyroid lesions, negatively correlated with SUVmax and can be predicted by FDG SUVmax. In addition, miR-34a may regulate FDG avidity via targeting GLUT1.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Chao Liu
- Department of Nuclear Medicine, Yunnan Tumor Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| | | | | |
Collapse
|
30
|
MicroRNA-34a: A Versatile Regulator of Myriads of Targets in Different Cancers. Int J Mol Sci 2017; 18:ijms18102089. [PMID: 29036883 PMCID: PMC5666771 DOI: 10.3390/ijms18102089] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 09/24/2017] [Accepted: 09/25/2017] [Indexed: 12/22/2022] Open
Abstract
MicroRNA-34a (miR-34a) is a tumor suppressor that has attracted considerable attention in recent years. It modulates cancer cell invasion, metastasis, and drug resistance, and has also been evaluated as a diagnostic and/or prognostic biomarker. A number of targets of miR-34a have been identified, including some other non-coding RNAs, and it is believed that the modulation of these myriads of targets underlines the versatile role of miR-34a in cancer progression and pathogenesis. Seemingly appealing results from preclinical studies have advocated the testing of miR-34a in clinical trials. However, the results obtained are not very encouraging and there is a need to re-interpret how miR-34a behaves in a context dependent manner in different cancers. In this review, we have attempted to summarize the most recent evidence related to the regulation of different genes and non-coding RNAs by miR-34a and the advances in the field of nanotechnology for the targeted delivery of miR-34a-based therapeutics and mimics. With the emergence of data that contradicts miR-34a’s tumor suppressive function, it is important to understand miR-34a’s precise functioning, with the aim to establish its role in personalized medicine and to apply this knowledge for the identification of individual patients that are likely to benefit from miR-34a-based therapy.
Collapse
|
31
|
Epigenetic Bases of Aberrant Glycosylation in Cancer. Int J Mol Sci 2017; 18:ijms18050998. [PMID: 28481247 PMCID: PMC5454911 DOI: 10.3390/ijms18050998] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 04/27/2017] [Accepted: 05/02/2017] [Indexed: 02/07/2023] Open
Abstract
In this review, the sugar portions of glycoproteins, glycolipids, and glycosaminoglycans constitute the glycome, and the genes involved in their biosynthesis, degradation, transport and recognition are referred to as “glycogenes“. The extreme complexity of the glycome requires the regulatory layer to be provided by the epigenetic mechanisms. Almost all types of cancers present glycosylation aberrations, giving rise to phenotypic changes and to the expression of tumor markers. In this review, we discuss how cancer-associated alterations of promoter methylation, histone methylation/acetylation, and miRNAs determine glycomic changes associated with the malignant phenotype. Usually, increased promoter methylation and miRNA expression induce glycogene silencing. However, treatment with demethylating agents sometimes results in silencing, rather than in a reactivation of glycogenes, suggesting the involvement of distant methylation-dependent regulatory elements. From a therapeutic perspective aimed at the normalization of the malignant glycome, it appears that miRNA targeting of cancer-deranged glycogenes can be a more specific and promising approach than the use of drugs, which broad target methylation/acetylation. A very specific type of glycosylation, the addition of GlcNAc to serine or threonine (O-GlcNAc), is not only regulated by epigenetic mechanisms, but is an epigenetic modifier of histones and transcription factors. Thus, glycosylation is both under the control of epigenetic mechanisms and is an integral part of the epigenetic code.
Collapse
|