1
|
Rodrigues WF, Miguel CB, de Abreu MCM, Neto JM, Oliveira CJF. Potential Associations between Vascular Biology and Hodgkin's Lymphoma: An Overview. Cancers (Basel) 2023; 15:5299. [PMID: 37958472 PMCID: PMC10649902 DOI: 10.3390/cancers15215299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/24/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023] Open
Abstract
Hodgkin's lymphoma (HL) is a lymphatic neoplasm typically found in the cervical lymph nodes. The disease is multifactorial, and in recent years, the relationships between various vascular molecules have been explored in the field of vascular biology. The connection between vascular biology and HL is intricate and the roles of several pathways remain unclear. This review summarizes the cellular and molecular relationships between vascular biology and HL. Proteins associated with various functions in vascular biology, including cytokines (TNF-α, IL-1, IL-13, and IL-21), chemokines (CXCL10, CXCL12, and CCL21), adhesion molecules (ELAM-1/VCAM-1), and growth factors (BDNF/NT-3, platelet-derived growth factor receptor-α), have been linked to tumor activity. Notable tumor activities include the induction of paracrine activation of NF-kB-dependent pathways, upregulation of adhesion molecule regulation, genome amplification, and effective loss of antigen presentation mediated by MHC-II. Preclinical study models, primarily those using cell culture, have been optimized for HL. Animal models, particularly mice, are also used as alternatives to complex biological systems, with studies primarily focusing on the physiopathogenic evaluation of the disease. These biomolecules warrant further study because they may shed light on obscure pathways and serve as targets for prevention and/or treatment interventions.
Collapse
Affiliation(s)
- Wellington Francisco Rodrigues
- Postgraduate Course in Tropical Medicine and Infectious Diseases, Federal University of Triangulo Mineiro, UFTM, Uberaba 38025-440, MG, Brazil; (C.B.M.); (C.J.F.O.)
- University Center of Mineiros, Unifimes, Mineiros 75833-130, GO, Brazil; (M.C.M.d.A.); (J.M.N.)
| | - Camila Botelho Miguel
- Postgraduate Course in Tropical Medicine and Infectious Diseases, Federal University of Triangulo Mineiro, UFTM, Uberaba 38025-440, MG, Brazil; (C.B.M.); (C.J.F.O.)
- University Center of Mineiros, Unifimes, Mineiros 75833-130, GO, Brazil; (M.C.M.d.A.); (J.M.N.)
| | | | - Jamil Miguel Neto
- University Center of Mineiros, Unifimes, Mineiros 75833-130, GO, Brazil; (M.C.M.d.A.); (J.M.N.)
| | - Carlo José Freire Oliveira
- Postgraduate Course in Tropical Medicine and Infectious Diseases, Federal University of Triangulo Mineiro, UFTM, Uberaba 38025-440, MG, Brazil; (C.B.M.); (C.J.F.O.)
| |
Collapse
|
2
|
Brassesco MS, Roberto GM, Delsin LE, Baldissera GC, Medeiros M, Umezawa K, Tone LG. A foretaste for pediatric glioblastoma therapy: targeting the NF-kB pathway with DHMEQ. Childs Nerv Syst 2023; 39:1519-1528. [PMID: 36807999 DOI: 10.1007/s00381-023-05878-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 02/09/2023] [Indexed: 02/20/2023]
Abstract
PURPOSE While pediatric glioblastomas are molecularly distinct from adult counterparts, the activation of NF-kB is partially shared by both subsets, playing key roles in tumor propagation and treatment response. RESULTS We show that, in vitro, dehydroxymethylepoxyquinomicin (DHMEQ) impairs growth and invasiveness. Xenograft response to the drug alone varied according to the model, being more effective in KNS42-derived tumors. In combination, SF188-derived tumors were more sensitive to temozolomide while KNS42-derived tumors responded better to the combination with radiotherapy, with continued tumor regression. CONCLUSION Taken together, our results strengthen the potential usefulness of NF-kB inhibition in future therapeutic strategies to overcome this incurable disease.
Collapse
Affiliation(s)
- María Sol Brassesco
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Av. Bandeirantes, 3900, Bairro Monte Alegre, CEP 14040-901, Ribeirão Preto, SP, Brazil.
| | - Gabriela Molinari Roberto
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Av. Bandeirantes, 3900, Bairro Monte Alegre, CEP 14040-901, Ribeirão Preto, SP, Brazil
| | - Lara Elis Delsin
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Av. Bandeirantes, 3900, Bairro Monte Alegre, CEP 14040-901, Ribeirão Preto, SP, Brazil
| | - Gabriel Carlos Baldissera
- Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Mariana Medeiros
- Department of Cell Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Kazuo Umezawa
- Department of Molecular Target Medicine, Aichi Medical University School of Medicine, Aichi, Japan
| | - Luiz Gonzaga Tone
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
3
|
Umezawa K, Breborowicz A, Gantsev S. Anticancer Activity of Novel NF-kappa B Inhibitor DHMEQ by Intraperitoneal Administration. Oncol Res 2020; 28:541-550. [PMID: 32576339 PMCID: PMC7751220 DOI: 10.3727/096504020x15929100013698] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
There have been great advances in the therapy of cancer and leukemia. However, there are still many neoplastic diseases that are difficult to treat. For example, it is often difficult to find effective therapies for aggressive cancer and leukemia. An NF-κB inhibitor named dehydroxymethylepoxyquinomicin (DHMEQ) was discovered in 2000. This compound was designed based on the structure of epoxyquinomicin isolated from a microorganism. It was shown to be a specific inhibitor that directly binds to and inactivates NF-κB components. Until now, DHMEQ has been used by many scientists in the world to suppress animal models of cancer and inflammation. Especially, it was shown to suppress difficult cancer models, such as hormone-insensitive breast cancer and prostate cancer, cholangiocarcinoma, and multiple myeloma. No toxicity has been reported so far. DHMEQ was administered via the intraperitoneal (IP) route in most of the animal experiments because of its simplicity. In the course of developmental studies, it was found that IP administration never increased the blood concentration of DHMEQ because of the instability of DHMEQ in the blood. It is suggested that inflammatory cells in the peritoneal cavity would be important for cancer progression, and that IP administration, itself, is important for the effectiveness and safety of DHMEQ. In the present review, we describe mechanism of action, its in vivo anticancer activity, and future clinical use of DHMEQ IP therapy.
Collapse
Affiliation(s)
- Kazuo Umezawa
- Department of Molecular Target Medicine, Aichi Medical UniversityNagakuteJapan
| | - Andrzej Breborowicz
- Department of Pathophysiology, Poznan University of Medical SciencesPoznanPoland
| | - Shamil Gantsev
- Scientific Research Institute of Oncology, Bashkortostan State Medical UniversityUfaRussia
| |
Collapse
|
4
|
Phạm TL, Yin Y, Kwon HH, Shin N, Kim SI, Park H, Shin J, Shin HJ, Hwang JA, Song HJ, Kim SR, Lee JH, Hwang PTJ, Jun HW, Kim DW. miRNA 146a-5p-loaded poly(d,l-lactic-co-glycolic acid) nanoparticles impair pain behaviors by inhibiting multiple inflammatory pathways in microglia. Nanomedicine (Lond) 2020; 15:1113-1126. [PMID: 32292108 DOI: 10.2217/nnm-2019-0462] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Aims: We investigated whether miRNA (miR) 146a-5p-loaded nanoparticles (NPs) can attenuate neuropathic pain behaviors in the rat spinal nerve ligation-induced neuropathic pain model by inhibiting activation of the NF-κB and p38 MAPK pathways in spinal microglia. Materials & methods: After NP preparation, miR NPs were assessed for their physical characteristics and then injected intrathecally into the spinal cords of rat spinal nerve ligation rats to test their analgesic effects. Results: miR NPs reduced pain behaviors for 11 days by negatively regulating the inflammatory response in spinal microglia. Conclusion: The anti-inflammatory effects of miR 146a-5p along with nanoparticle-based materials make miR NPs promising tools for treating neuropathic pain.
Collapse
Affiliation(s)
- Thuỳ Linh Phạm
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea.,Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Yuhua Yin
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea.,Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea.,Department of Anesthesia, Guangzhou Women and Children's Medical Center, Guangzhou, 510623, Guangdong Province, PR China
| | - Hyeok Hee Kwon
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea.,Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Nara Shin
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea.,Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Song I Kim
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea.,Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Hyewon Park
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea.,Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Juhee Shin
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea.,Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Hyo Jung Shin
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea.,Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Jeong-Ah Hwang
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea.,Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Hee-Jung Song
- Department of Neurology, Brain Research Institute, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Sang Ryong Kim
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Institute of Life Science & Biotechnology, Brain Science & Engineering Institute, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Joo Hyoung Lee
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Patrick T J Hwang
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ho-Wook Jun
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Dong Woon Kim
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea.,Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| |
Collapse
|
5
|
Watanabe M, Umezawa K, Higashihara M, Horie R. Combined inhibition of NF-κB and Bcl-2 triggers synergistic reduction of viability and induces apoptosis in melanoma cells. Oncol Res 2014; 21:173-80. [PMID: 24762223 DOI: 10.3727/096504014x13887748696707] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Constitutive activation of nuclear factor κB (NF-κB) characterizes melanoma cells. To explore the molecular mechanism of melanoma cell survival by constitutive NF-κB activation, we used the NF-κB inhibitor dehydroxymethylepoxyquinomicin (DHMEQ), which directly binds to NF-κB. DHMEQ abrogated constitutive NF-κB activity, which included RelA (p65)/p50 in melanoma cell lines G361 and HMV-II; however, the reduction of the viability was marginal. Expression of c-FLIP was not observed in the melanoma cell lines tested, and DHMEQ could not repress the expression of the Bcl-2 family proteins Bcl-2 and Bcl-xL. Concomitant treatment with DHMEQ and the inhibitor of antiapoptotic Bcl-2 family proteins, GX15-070, triggered synergistic reduction of the viability and induced apoptosis of G361 cells. These results indicate that abrogation of the NF-κB pathway alone is not sufficient to suppress the survival of melanoma cells. The NF-κB and the antiapoptotic Bcl-2 pathways cooperatively support the survival, and the dual targeting triggers synergistic reduction of the viability and induces apoptosis of melanoma cells.
Collapse
Affiliation(s)
- Mariko Watanabe
- Department of Hematology, School of Medicine, Kitasato University, Sagamihara, Kanagawa, Japan
| | | | | | | |
Collapse
|
6
|
Horie R. Molecularly-targeted Strategy and NF-κB in lymphoid malignancies. J Clin Exp Hematop 2014; 53:185-95. [PMID: 24369220 DOI: 10.3960/jslrt.53.185] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Molecularly-targeted therapy is a promising strategy for the treatment of cancer. Nuclear factor (NF)-κB is a transcription factor that is constitutively activated in various lymphoid malignancies and may therefore be a good therapeutic target. Lymphoid malignancies arise from different stages of normal lymphocyte differentiation and acquire distinct pathways for constitutive NF-κB activation. However, no NF-κB inhibitor has yet been successfully applied in clinical medicine. This review focuses on the concept of molecularly-targeted therapeutics with small molecule drugs, molecular mechanisms of constitutive NF-κB activation in lymphoid malignancies, and the development of NF-κB inhibitors. A future perspective regarding the development of NF-κB inhibitors is also included.
Collapse
Affiliation(s)
- Ryouichi Horie
- Department of Hematology, School of Medicine, Kitasato University
| |
Collapse
|
7
|
The NF-κB inhibitor DHMEQ decreases survival factors, overcomes the protective activity of microenvironment and synergizes with chemotherapy agents in classical Hodgkin lymphoma. Cancer Lett 2014; 349:26-34. [DOI: 10.1016/j.canlet.2014.03.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 03/19/2014] [Accepted: 03/23/2014] [Indexed: 12/28/2022]
|
8
|
Togano T, Nakashima M, Watanabe M, Umezawa K, Watanabe T, Higashihara M, Horie R. Synergistic effect of 5-azacytidine and NF-κB inhibitor DHMEQ on apoptosis induction in myeloid leukemia cells. Oncol Res 2013; 20:571-7. [PMID: 24139415 DOI: 10.3727/096504013x13775486749371] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Constitutive NF-κB activation characterizes a subset of myeloid leukemia (ML) cells. Recent reports have indicated that DNA methyltransferase (DNMT) inhibitors are alternative candidates for the treatment of ML. However, the optimal use of DNMT as a chemotherapeutic agent against ML has yet to be established. In this report, we examined the effect of the NF-κB inhibitor dehydroxymethylepoxyquinomicin (DHMEQ) and its combinational use with the DNMT inhibitor 5-azacytidine (AZA) in ML cell lines. DHMEQ alone induced cell death in ML cell lines with NF-κB activation, although the response varied among the cell lines. The addition of DHMEQ enhanced the effect of AZA on the viability and apoptosis induction of ML cell lines. The treatment of ML cell lines with AZA marginally induced NF-κB binding activity, although the treatment induced NF-κB protein. These results indicate the potential usefulness of DHMEQ and its combinational use with AZA in the treatment of ML, although the molecular effect by AZA on the NF-κB pathway awaits further study.
Collapse
Affiliation(s)
- Tomiteru Togano
- Department of Hematology, School of Medicine, Kitasato University, Minami-ku, Sagamihara, Kanagawa, Japan
| | | | | | | | | | | | | |
Collapse
|
9
|
Combined effect of dehydroxymethylepoxyquinomicin and gemcitabine in a mouse model of liver metastasis of pancreatic cancer. Clin Exp Metastasis 2012; 30:381-92. [PMID: 23111540 DOI: 10.1007/s10585-012-9544-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 10/18/2012] [Indexed: 12/31/2022]
Abstract
Activation of nuclear factor-κB (NF-κB) has been implicated in metastasis of pancreatic cancer. We investigated the effects of the novel NF-κB inhibitor dehydroxymethylepoxyquinomicin (DHMEQ) on the inhibition of liver metastasis of pancreatic cancer in a mouse model of clinical liver metastasis. Nude mice were xenografted by intra-portal-vein injection with the human pancreatic adenocarcinomas cell line AsPC-1 via small laparotomy. Mice were treated with DHMEQ and gemcitabine (GEM), alone or in combination. The combination of GEM + DHMEQ showed a stronger antitumor effect than either monotherapy. Apoptosis induction in the metastatic foci was greatest in the DHMEQ + GEM group. Significant reductions in the numbers of neovessels were also seen in the DHMEQ and/or GEM groups. Cell growth inhibition assays revealed no synergistic effect of combination therapy, although each monotherapy had an individual cytotoxic effect. Combination therapy produced the greatest inhibition of tumor cell invasiveness in chemoinvasion assay. In addition, combination therapy significantly down-regulated the expression level of matrix metalloproteinase (MMP)-9 mRNA in AsPC-1 cells. DHMEQ also markedly down-regulated interleukin-8 and MMP-9, while GEM caused moderate down-regulation of vascular endothelial growth factor in metastatic foci, demonstrated by quantitative reverse transcription-polymerase chain reaction. These results demonstrate that DHMEQ can exert anti-tumor effects by inhibiting angiogenesis and tumor cell invasion, and by inducing apoptosis. Combination therapy with DHMEQ and GEM also showed potential efficacy. DHMEQ is a promising drug for the treatment of advanced pancreatic cancer.
Collapse
|
10
|
Immunomodulatory Effect of Nuclear Factor-κB Inhibition by Dehydroxymethylepoxyquinomicin in Combination With Donor-Specific Blood Transfusion. Transplantation 2012; 93:777-86. [DOI: 10.1097/tp.0b013e318248ca5f] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
11
|
Watanabe M, Itoh K, Togano T, Kadin ME, Watanabe T, Higashihara M, Horie R. Ets-1 activates overexpression of JunB and CD30 in Hodgkin's lymphoma and anaplastic large-cell lymphoma. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 180:831-8. [PMID: 22107829 DOI: 10.1016/j.ajpath.2011.10.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 09/23/2011] [Accepted: 10/13/2011] [Indexed: 01/20/2023]
Abstract
Overexpression of CD30 and JunB is a hallmark of tumor cells in Hodgkin's lymphoma (HL) and anaplastic large-cell lymphoma (ALCL). We reported that CD30-extracellular signal-regulated kinase (ERK)1/2 mitogen-activated protein kinase (MAPK) signaling induces JunB, which maintains constitutive activation of the CD30 promoter. Herein, we localize a cis-acting enhancer in the JunB promoter that is regulated by Ets-1. We show that E26 transformation-specific-1 (Ets-1) (-146 to -137) enhances JunB promoter activation in a manner that is dependent on CD30 or the nucleophosmin-anaplastic lymphoma kinase (NPM-ALK)-ERK1/2 MAPK pathway. Ets-1 knockdown reduces the expression of both JunB and CD30, and CD30 knockdown significantly reduces JunB expression in HL and ALCL cell lines. NPM-ALK knockdown also reduces JunB expression in ALCL cell lines expressing NPM-ALK. Collectively, these results indicate that CD30 and NPM-ALK cooperate to activate the ERK1/2 MAPK-Ets-1 pathway. Ets-1, constitutively activated by ERK1/2-MAPK, plays a central role in the overexpression of JunB and CD30, which are both involved in the pathogenesis of HL and ALCL.
Collapse
Affiliation(s)
- Mariko Watanabe
- Department of Hematology, School of Medicine, Kitasato University, Kanagawa, Japan
| | | | | | | | | | | | | |
Collapse
|
12
|
Umezawa K. Possible role of peritoneal NF-κB in peripheral inflammation and cancer: Lessons from the inhibitor DHMEQ. Biomed Pharmacother 2011; 65:252-9. [DOI: 10.1016/j.biopha.2011.02.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Accepted: 02/08/2011] [Indexed: 01/12/2023] Open
|
13
|
Nakashima M, Ishii Y, Watanabe M, Togano T, Umezawa K, Higashihara M, Watanabe T, Horie R. The side population, as a precursor of Hodgkin and Reed-Sternberg cells and a target for nuclear factor-κB inhibitors in Hodgkin's lymphoma. Cancer Sci 2010; 101:2490-6. [PMID: 20735433 PMCID: PMC11159044 DOI: 10.1111/j.1349-7006.2010.01693.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Although disturbed cytokinesis of mononuclear Hodgkin (H) cells is thought to generate Reed-Sternberg (RS) cells, differentiation of Hodgkin's lymphoma (HL) cells is not fully understood. Recent studies indicate that cells found in a side population (SP) share characteristics of cancer stem cells. In this study we identified an SP in the HL cell lines, KMH2 and L428. This SP almost entirely consists of distinct small mononuclear cells, whereas the non-SP is a mixture of relatively large cells with H or RS cell-like morphology. Culture of the small mononuclear cells in the SP from KMH2 generated a non-SP. Single cell culture of the SP cells generated large cells with H or RS cell-like morphology. We found that CD30 overexpression and constitutive nuclear factor-κB (NF-κB) activity, both of which are characteristics of HL cells, are shared between the SP and non-SP cells for both KMH2 and L428. Inhibition of NF-κB induced apoptosis in both fractions, whereas the SP cells were resistant to a conventional chemotherapeutic agent doxorubicin. The results show that HL cell lines contain an SP, that is enriched for distinct small mononuclear cells and generates larger cells with H and RS cell-like morphology. The results also stress the significance of NF-κB inhibition for eradication of HL cells.
Collapse
Affiliation(s)
- Makoto Nakashima
- Department of Hematology, School of Medicine, Kitasato University, Minami-ku, Sagamihara, Japan
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Togano T, Sasaki M, Watanabe M, Nakashima M, Tsuruo T, Umezawa K, Higashihara M, Watanabe T, Horie R. Induction of oncogene addiction shift to NF-kappaB by camptothecin in solid tumor cells. Biochem Biophys Res Commun 2009; 390:60-4. [PMID: 19778522 DOI: 10.1016/j.bbrc.2009.09.066] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2009] [Accepted: 09/18/2009] [Indexed: 12/31/2022]
Abstract
The biological basis of the resistance of solid tumor cells to chemotherapy is not well understood. While addressing this problem, we found that gastric cancer cell line St-4/CPT, lung cancer cell line A549/CPT, and colon cancer cell line HT-29/CPT, all of which are resistant to camptothecin (CPT), showed strong and constitutive nuclear factor (NF)-kappaB activity driven by IkappaB kinase compared with their parental cell lines St-4, A549, and HT-29. A new NF-kappaB inhibitor, dehydroxymethylepoxyquinomicin (DHMEQ), reduced viability and induced apoptosis in St-4/CPT, A549/CPT, and HT-29/CPT cell lines, while their parental cell lines were resistant to DHMEQ. The results in this study present an example of the shift in signals that support the survival of solid tumor cells to NF-kappaB during the acquisition of resistance to CPT. The results also indicate that solid tumor cells that become resistant to chemotherapy may be more easily treated by NF-kappaB inhibitors.
Collapse
Affiliation(s)
- Tomiteru Togano
- Department of Hematology, School of Medicine, Kitasato University, Sagamihara, Kanagawa 228-8555, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Dabaghmanesh N, Matsubara A, Miyake A, Nakano K, Ishida T, Katano H, Horie R, Umezawa K, Watanabe T. Transient inhibition of NF-kappaB by DHMEQ induces cell death of primary effusion lymphoma without HHV-8 reactivation. Cancer Sci 2009; 100:737-46. [PMID: 19469019 PMCID: PMC11159611 DOI: 10.1111/j.1349-7006.2009.01083.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2008] [Revised: 11/07/2008] [Accepted: 12/03/2008] [Indexed: 11/28/2022] Open
Abstract
Primary effusion lymphoma (PEL) is a refractory malignancy caused by human herpes virus 8 (HHV-8) in immunocompromised individuals. The tumor cells of PEL are characterized by constitutive NF-kappaB activation. Dehydroxymethylepoxyquinomicin (DHMEQ) is a new NF-kappaB inhibitor and is effective on various tumor cells with constitutively activated NF-kappaB. Thus, in search for a new therapeutic modality of PEL, we examined the effect of DHMEQ on PEL cells. We confirmed constitutive activation of NF-kappaB with subcomponents of p50 and p65 in PEL cell lines. DHMEQ quickly and transiently abrogated NF-kappaB activation and reduced the cell viability in dose- and time-dependent manners, inducing apoptosis through activation of both mitochondrial and membrane pathways. Array analysis revealed that DHMEQ down-regulated expression levels of NF-kappaB target genes, such as interleukin-6 (IL6), Myc, chemokine (C-C motif) receptor 5 (CCR5) and NF-kappaB1, whereas it up-regulated expression levels of some genes involved in apoptosis, and cell cycle arrest. DHMEQ did not reactivate HHV-8 lytic genes, indicating that NF-kappaB inhibition by DHMEQ did not induce virus replication. DHEMQ rescued CB-17 SCID mice xenografted with PEL cells, reducing the gross appearance of effusion. Thus, DHMEQ transiently abrogated the NF-kappaB activation, irreversibly triggering the apoptosis cascade without HHV-8 reactivation. In addition, DHMEQ could rescue the PEL-xenograft mice. Therefore, we suggest DHMEQ as a promising candidate for molecular target therapy of the PEL.
Collapse
Affiliation(s)
- Nazanin Dabaghmanesh
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Yamamoto M, Horie R, Takeiri M, Kozawa I, Umezawa K. Inactivation of NF-kappaB components by covalent binding of (-)-dehydroxymethylepoxyquinomicin to specific cysteine residues. J Med Chem 2008; 51:5780-8. [PMID: 18729348 DOI: 10.1021/jm8006245] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Previously, we designed and synthesized a potent NF-kappaB inhibitor, DHMEQ. Although DHMEQ showed potent anti-inflammatory and anticancer activities in animals, its molecular target has not been elucidated. In the present study, its target protein was found to be p65 and other Rel homology proteins. We found that (-)-DHMEQ bound to p65 covalently with a 1:1 stoichiometry by conducting SPR and MALDI-TOF MS analyses. MS analysis of the chymotrypsin-digested peptide suggested the binding of (-)-DHMEQ to a Cys residue. Formation of Cys/(-)-DHMEQ adduct in the protein was supported by chemical synthesis of the adduct. Substitution of specific Cys in p65 and other Rel homology proteins resulted in the loss of (-)-DHMEQ binding. (-)-DHMEQ is the first NF-kappaB inhibitor that was proven to bind to the specific Cys by chemical methodology. These findings may explain the highly selective inhibition of NF-kappaB and the low toxic effect of (-)-DHMEQ in cells and animals.
Collapse
Affiliation(s)
- Mizuki Yamamoto
- Center for Chemical Biology, School of Fundamental Science and Technology, Keio University, Yokohama 223-0061, Japan
| | | | | | | | | |
Collapse
|
17
|
Abstract
Nuclear Factor kappaB (NF-kappaB) transcription factors are central regulators of lymphocyte proliferation, survival and development. Although normally subject to tight control, constitutive activation of NF-kappaB promotes inappropriate lymphocyte survival and proliferation, and is recognised as key pathological feature in various lymphoid malignancies. Inhibition of NF-kappaB may be an attractive therapeutic approach in these diseases. This review focuses on the mechanisms and functional consequences of NF-kappaB activation in lymphoid malignancies and potential therapeutic strategies for inhibition of NF-kappaB.
Collapse
Affiliation(s)
- Graham Packham
- Cancer Research UK Clinical Centre, Cancer Sciences Division, University of Southampton School of Medicine, Southampton General Hospital, Southampton, SO16 6YD, UK.
| |
Collapse
|
18
|
Makishi S, Okudaira T, Ishikawa C, Sawada S, Watanabe T, Hirashima M, Sunakawa H, Mori N. Retracted: A modified version of galectin-9 induces cell cycle arrest and apoptosis of Burkitt and Hodgkin lymphoma cells. Br J Haematol 2008; 142:583-94. [DOI: 10.1111/j.1365-2141.2008.07229.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|