1
|
Fey SK, Najumudeen AK, Watt DM, Millett LM, Ford CA, Gilroy K, Simpson RJ, McLay K, Upstill-Goddard R, Chang D, Clark W, Nixon C, Birch JL, Barry ST, Morton JP, Campbell AD, Sansom OJ. KRAS Loss of Heterozygosity Promotes MAPK-Dependent Pancreatic Ductal Adenocarcinoma Initiation and Induces Therapeutic Sensitivity to MEK Inhibition. Cancer Res 2025; 85:251-262. [PMID: 39412982 PMCID: PMC11733531 DOI: 10.1158/0008-5472.can-23-2709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 07/11/2024] [Accepted: 10/07/2024] [Indexed: 10/18/2024]
Abstract
Pancreatic cancer is characterized by the prevalence of oncogenic mutations in KRAS. Previous studies have reported that altered KRAS gene dosage drives progression and metastasis in pancreatic cancer. Whereas the role of oncogenic KRAS mutations is well characterized, the relevance of the partnering wild-type (WT) KRAS allele in pancreatic cancer is less well understood and controversial. Using in vivo mouse modeling of pancreatic cancer, we demonstrated that WT KRAS restrains the oncogenic impact of mutant KRAS and dramatically impacts both KRAS-mediated tumorigenesis and therapeutic response. Mechanistically, deletion of WT Kras increased oncogenic KRAS signaling through the downstream MAPK effector pathway, driving pancreatic intraepithelial neoplasia initiation. In addition, in the KPC mouse model, a more aggressive model of pancreatic cancer, lack of WT KRAS led to accelerated initiation but delayed tumor progression. These tumors had altered stroma and an enrichment of immunogenic gene signatures. Importantly, loss of WT Kras sensitized Kras mutant tumors to MEK1/2 inhibition though tumors eventually became resistant and then rapidly progressed. This study demonstrates the repressive role of WT KRAS during pancreatic tumorigenesis and highlights the critical impact of the presence of WT KRAS in both tumor progression and therapeutic response in pancreatic cancer. Significance: KRAS allelic status impacts pancreatic cancer progression and has the potential to guide effective treatment in a substantial subset of patients.
Collapse
Affiliation(s)
- Sigrid K. Fey
- Cancer Research UK Scotland Institute, Glasgow, United Kingdom
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | | | - Dale M. Watt
- Cancer Research UK Scotland Institute, Glasgow, United Kingdom
| | - Laura M. Millett
- Cancer Research UK Scotland Institute, Glasgow, United Kingdom
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | | | - Kathryn Gilroy
- Cancer Research UK Scotland Institute, Glasgow, United Kingdom
| | | | - Kathy McLay
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Rosanna Upstill-Goddard
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
- Wolfson Wohl Cancer Research Centre, Glasgow, United Kingdom
| | - David Chang
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
- Wolfson Wohl Cancer Research Centre, Glasgow, United Kingdom
| | - William Clark
- Cancer Research UK Scotland Institute, Glasgow, United Kingdom
| | - Colin Nixon
- Cancer Research UK Scotland Institute, Glasgow, United Kingdom
| | - Joanna L. Birch
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Simon T. Barry
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Jennifer P. Morton
- Cancer Research UK Scotland Institute, Glasgow, United Kingdom
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | | | - Owen J. Sansom
- Cancer Research UK Scotland Institute, Glasgow, United Kingdom
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
2
|
TWEAK/Fn14 Signalling Regulates the Tissue Microenvironment in Chronic Pancreatitis. Cancers (Basel) 2023; 15:cancers15061807. [PMID: 36980694 PMCID: PMC10046490 DOI: 10.3390/cancers15061807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
Chronic pancreatitis increases the risk of developing pancreatic cancer through the upregulation of pathways favouring proliferation, fibrosis, and sustained inflammation. We established in previous studies that the ligand tumour necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK) signals through its cognate receptor fibroblast growth factor-inducible 14 (Fn14) to regulate these underlying cellular processes in the chronic liver injury niche. However, the role of the TWEAK/Fn14 signalling pathway in pancreatic disease is entirely unknown. An analysis of publicly available datasets demonstrated that the TWEAK receptor Fn14 is upregulated in pancreatitis and pancreatic adenocarcinoma, with single cell RNA sequencing revealing pancreatic ductal cells as the main Fn14 producers. We then used choline-deficient, ethionine-supplemented (CDE) diet feeding of wildtype C57BL/6J and Fn14 knockout littermates to (a) confirm CDE treatment as a suitable model of chronic pancreatitis and (b) to investigate the role of the TWEAK/Fn14 signalling pathway in pancreatic ductal proliferation, as well as fibrotic and inflammatory cell dynamics. Our time course data obtained at three days, three months, and six months of CDE treatment reveal that a lack of TWEAK/Fn14 signalling significantly inhibits the establishment and progression of the tissue microenvironment in CDE-induced chronic pancreatitis, thus proposing the TWEAK/Fn14 pathway as a novel therapeutic target.
Collapse
|
3
|
Peng C, Tu G, Yu L, Wu P, Zhang X, Li Z, Li Z, Yu X. Murine Chronic Pancreatitis Model Induced by Partial Ligation of the Pancreatic Duct Encapsulates the Profile of Macrophage in Human Chronic Pancreatitis. Front Immunol 2022; 13:840887. [PMID: 35432336 PMCID: PMC9011002 DOI: 10.3389/fimmu.2022.840887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Immune responses are an integral part of the pathogenesis of pancreatitis. Studies applying the mouse model of pancreatitis induced by partial ligation of the pancreatic duct to explore the pancreatic immune microenvironment are still lacking. The aim of the present study is to explore the macrophage profile and associated regulatory mechanisms in mouse pancreatitis, as well as the correlation with human chronic pancreatitis (CP). In the present study, the mouse model of pancreatitis was induced by partial ligation of the pancreatic duct. Mice in the acute phase were sacrificed at 0, 4, 8, 16, 32, 72 h after ligation, while mice in the chronic phase were sacrificed at 7, 14, 21, 28 days after ligation. We found that the pancreatic pathological score, expression of TNF-α and IL-6 were elevated over time and peaked at 72h in the acute phase, while in the chronic phase, the degree of pancreatic fibrosis peaked at day 21 after ligation. Pancreatic M1 macrophages and pyroptotic macrophages showed a decreasing trend over time, whereas M2 macrophages gradually rose and peaked at day 21. IL-4 is involved in the development of CP and is mainly derived from pancreatic stellate cells (PSCs). The murine pancreatitis model constructed by partial ligation of the pancreatic duct, especially the CP model, can ideally simulate human CP caused by obstructive etiologies in terms of morphological alterations and immune microenvironment characteristics.
Collapse
Affiliation(s)
- Cheng Peng
- Department of Hepatopancreatobiliary Surgery, Third Xiangya Hospital, Central South University, Changsha, China
| | - Guangping Tu
- Department of Hepatopancreatobiliary Surgery, Third Xiangya Hospital, Central South University, Changsha, China
| | - Li Yu
- Department of Radiology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Peng Wu
- Department of Hepatopancreatobiliary Surgery, Third Xiangya Hospital, Central South University, Changsha, China
| | - Xianlin Zhang
- Department of General Surgery, Renhe Hospital, Three Gorges University, Yichang, China
| | - Zheng Li
- Department of General Surgery, Renhe Hospital, Three Gorges University, Yichang, China
| | - Zhiqiang Li
- Department of Hepatopancreatobiliary Surgery, Third Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Xiao Yu, ; Zhiqiang Li,
| | - Xiao Yu
- Department of Hepatopancreatobiliary Surgery, Third Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Xiao Yu, ; Zhiqiang Li,
| |
Collapse
|
4
|
Hessmann E, Buchholz SM, Demir IE, Singh SK, Gress TM, Ellenrieder V, Neesse A. Microenvironmental Determinants of Pancreatic Cancer. Physiol Rev 2020; 100:1707-1751. [DOI: 10.1152/physrev.00042.2019] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) belongs to the most lethal solid tumors in humans. A histological hallmark feature of PDAC is the pronounced tumor microenvironment (TME) that dynamically evolves during tumor progression. The TME consists of different non-neoplastic cells such as cancer-associated fibroblasts, immune cells, endothelial cells, and neurons. Furthermore, abundant extracellular matrix components such as collagen and hyaluronic acid as well as matricellular proteins create a highly dynamic and hypovascular TME with multiple biochemical and physical interactions among the various cellular and acellular components that promote tumor progression and therapeutic resistance. In recent years, intensive research efforts have resulted in a significantly improved understanding of the biology and pathophysiology of the TME in PDAC, and novel stroma-targeted approaches are emerging that may help to improve the devastating prognosis of PDAC patients. However, none of anti-stromal therapies has been approved in patients so far, and there is still a large discrepancy between multiple successful preclinical results and subsequent failure in clinical trials. Furthermore, recent findings suggest that parts of the TME may also possess tumor-restraining properties rendering tailored therapies even more challenging.
Collapse
Affiliation(s)
- Elisabeth Hessmann
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| | - Soeren M. Buchholz
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| | - Ihsan Ekin Demir
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| | - Shiv K. Singh
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| | - Thomas M. Gress
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| | - Volker Ellenrieder
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| | - Albrecht Neesse
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| |
Collapse
|
5
|
Ji T, Feng W, Zhang X, Zang K, Zhu X, Shang F. HDAC inhibitors promote pancreatic stellate cell apoptosis and relieve pancreatic fibrosis by upregulating miR-15/16 in chronic pancreatitis. Hum Cell 2020; 33:1006-1016. [PMID: 32524326 PMCID: PMC7505886 DOI: 10.1007/s13577-020-00387-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 06/04/2020] [Indexed: 12/21/2022]
Abstract
In chronic pancreatitis, PSCs are activated by proinflammatory cytokines to induce pancreatic fibrogenesis. HDAC inhibition protected against the pancreatic fibrosis and the apoptosis of PSCs through induced apoptosis and depressed inflammation. In our study, we found that miR-15 and miR-16 decreased significantly in chronic pancreatitis and HDAC inhibition could recover the levels of these two miRNAs. HDAC regulated the transcription of miR-15 and miR-16, which then modulate the apoptosis and fibrosis of PSCs. And we proved that Bcl-2 and Smad5 were the target genes of miR-15 and miR-16, which illustrated how HDAC inhibition alleviated the apoptosis and fibrogenesis of PSCs in chronic pancreatitis. These results suggested that HDAC inhibition protects against CP by promoting apoptosis and TGF-β/Smads signaling pathways, and indicated that HDAC inhibition is a potential therapy to alleviate CP patients in clinic, and these need to be explored further.
Collapse
Affiliation(s)
- Ting Ji
- Intensive Care Unit, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Beijing West Road, Huaiyin District, Huai'an, 223300, Jiangsu, China
| | - Weiguang Feng
- Intensive Care Unit, Huai'an No 4 People's Hospital, 128 Yan'an East Road, Qingjiangpu District, Huai'an, 223002, Jiangsu, China
| | - Xiangcheng Zhang
- Intensive Care Unit, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Beijing West Road, Huaiyin District, Huai'an, 223300, Jiangsu, China
| | - Kui Zang
- Intensive Care Unit, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Beijing West Road, Huaiyin District, Huai'an, 223300, Jiangsu, China
| | - Xingxing Zhu
- Intensive Care Unit, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Beijing West Road, Huaiyin District, Huai'an, 223300, Jiangsu, China
| | - Futai Shang
- Intensive Care Unit, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Beijing West Road, Huaiyin District, Huai'an, 223300, Jiangsu, China.
| |
Collapse
|
6
|
Serotonin-RhoA/ROCK axis promotes acinar-to-ductal metaplasia in caerulein-induced chronic pancreatitis. Biomed Pharmacother 2020; 125:109999. [PMID: 32070876 DOI: 10.1016/j.biopha.2020.109999] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/02/2020] [Accepted: 02/06/2020] [Indexed: 12/15/2022] Open
Abstract
The underlying molecular mechanisms of chronic pancreatitis (CP) developing into pancreatic ductal adenocarcinoma (PDAC) remain largely unknown. Here we show that the level of serotonin in mouse pancreatic tissues is upregulated in caerulein-induced CP mice. In vitro study demonstrates that serotonin promotes the formation of acinar-to-ductal metaplasia (ADM) and the activation of pancreatic stellate cells (PSCs), which results from the activation of RhoA/ROCK signaling cascade. Activation of this signaling cascade increases NF-κB nuclear translocation and α-SMA expression, which further enhance the inflammatory responses and fibrosis in pancreatic tissues. Intriguingly, quercetin inhibits both ADM lesion and PSCs activation in vitro and in vivo via its inhibitory effect on serotonin release. Our findings underscore the instrumental role of serotonin-mediated activation of RhoA/ROCK signaling pathway in development of PDAC from CP and highlight a potential to impede PDAC development by disrupting tumor-promoting functions of serotonin.
Collapse
|
7
|
Yildirim M, Kaplan M, Duzenli T, Tanoglu A, Kucukodaci Z, Onal Tastan Y, Cakir Guney B, Serindag Z. Pentoxifylline has favorable preventive effects on experimental chronic pancreatitis model. Scand J Gastroenterol 2020; 55:236-241. [PMID: 31942828 DOI: 10.1080/00365521.2020.1712471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Background: To investigate the protective efficacy of pentoxifylline through biochemical parameters and histopathological scores in a caerulein- and alcohol-induced experimental model of chronic pancreatitis in rats.Methods: A model of chronic pancreatitis with caerulein and alcohol was created in female rats of the genus Sprague Dawley. Pentoxifylline was administered in doses of 25 mg/kg (low dose) and 50 mg/kg (high dose) as a protective agent. Each group contained 8 animals. The groups were: group 1 (control group); caerulein + alcohol, group 2 (low-dose pentoxifylline group); caerulein + alcohol + pentoxifylline 25 mg/kg, group 3 (high-dose pentoxifylline group); caerulein + alcohol + pentoxifylline 50 mg/kg, group 4 (placebo); caerulein + alcohol + saline, group 5 (sham group); only saline injection.Rats were sacrificed 12 h after the last injection, and TNF-α, TGF-β, MDA, and GPx concentrations were measured in blood samples. The histopathologic examination was conducted by a pathologist who was unaware of the groups.Results: The biochemical results of the treatment groups (group 2 and group 3) were statistically significantly lower compared with the control group (group 1) (p < .05). The difference between the low-dose treatment group (group 2) and high-dose treatment group (group 3) was significant in terms of biochemical parameters (p < .05). The difference between group 2 and the control group was not significant in terms of histopathologic scores (p > .05), whereas the difference between the group 3 and the control group was statistically significant (p < .05).Conclusions: As a result, pentoxifylline, which has anti-inflammatory and antioxidant properties, was shown to have protective efficacy in an experimentally generated model of chronic pancreatitis.
Collapse
Affiliation(s)
- Muhammed Yildirim
- Department of Internal Medicine, Sultan Abdulhamid Han Training and Research Hospital, Istanbul, Turkey
| | - Mustafa Kaplan
- Department of Internal Medicine, Sultan Abdulhamid Han Training and Research Hospital, Istanbul, Turkey
| | - Tolga Duzenli
- Department of Gastroenterology, Sultan Abdulhamid Han Training and Research Hospital, Istanbul, Turkey
| | - Alpaslan Tanoglu
- Department of Gastroenterology, Sultan Abdulhamid Han Training and Research Hospital, Istanbul, Turkey
| | - Zafer Kucukodaci
- Department of Pathology, Sultan Abdulhamid Han Training and Research Hospital, Istanbul, Turkey
| | - Yesim Onal Tastan
- Department of Internal Medicine, Sultan Abdulhamid Han Training and Research Hospital, Istanbul, Turkey
| | - Basak Cakir Guney
- Department of Internal Medicine, Sultan Abdulhamid Han Training and Research Hospital, Istanbul, Turkey
| | - Zeliha Serindag
- Department of Internal Medicine, Sultan Abdulhamid Han Training and Research Hospital, Istanbul, Turkey
| |
Collapse
|
8
|
Reducing Pancreatic Fibrosis Using Antioxidant Therapy Targeting Nrf2 Antioxidant Pathway: A Possible Treatment for Chronic Pancreatitis. Pancreas 2019; 48:1259-1262. [PMID: 31688588 DOI: 10.1097/mpa.0000000000001433] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chronic pancreatitis is the progressive inflammation of the pancreas resulting in the irreversible damage of pancreatic structure and function by means of fibrosis. Chronic pancreatitis is most commonly caused by alcohol consumption, although the direct molecular etiology is unknown. Recent studies suggest oxidative stress as a catalyst for pancreatic stellate cell activation leading to the deposition of collagenous extracellular matrix causing pancreatic fibrosis. We review the effect of oxidative stress on pancreatic fibrogenesis and indicate the molecular pathways involved in preventing oxidant-related cell damage. Likewise, we summarize existing antioxidative therapies for chronic pancreatitis and discuss a novel nuclear factor erythroid 2-related factor 2 activator, dimethyl fumarate, and its potential to reduce fibrogenesis by downregulating pancreatic stellate cell activation.
Collapse
|
9
|
Resovi A, Bani MR, Porcu L, Anastasia A, Minoli L, Allavena P, Cappello P, Novelli F, Scarpa A, Morandi E, Falanga A, Torri V, Taraboletti G, Belotti D, Giavazzi R. Soluble stroma-related biomarkers of pancreatic cancer. EMBO Mol Med 2019; 10:emmm.201708741. [PMID: 29941541 PMCID: PMC6079536 DOI: 10.15252/emmm.201708741] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The clinical management of pancreatic ductal adenocarcinoma (PDAC) is hampered by the lack of reliable biomarkers. This study investigated the value of soluble stroma‐related molecules as PDAC biomarkers. In the first exploratory phase, 12 out of 38 molecules were associated with PDAC in a cohort of 25 PDAC patients and 16 healthy subjects. A second confirmatory phase on an independent cohort of 131 PDAC patients, 30 chronic pancreatitis patients, and 131 healthy subjects confirmed the PDAC association for MMP7, CCN2, IGFBP2, TSP2, sICAM1, TIMP1, and PLG. Multivariable logistic regression model identified biomarker panels discriminating respectively PDAC versus healthy subjects (MMP7 + CA19.9, AUC = 0.99, 99% CI = 0.98–1.00) (CCN2 + CA19.9, AUC = 0.96, 99% CI = 0.92–0.99) and PDAC versus chronic pancreatitis (CCN2 + PLG+FN+Col4 + CA19.9, AUC = 0.94, 99% CI = 0.88–0.99). Five molecules were associated with PanIN development in two GEM models of PDAC (PdxCre/LSL‐KrasG12D and PdxCre/LSL‐KrasG12D/+/LSL‐Trp53R172H/+), suggesting their potential for detecting early disease. These markers were also elevated in patient‐derived orthotopic PDAC xenografts and associated with response to chemotherapy. The identified stroma‐related soluble biomarkers represent potential tools for PDAC diagnosis and for monitoring treatment response of PDAC patients.
Collapse
Affiliation(s)
- Andrea Resovi
- Laboratory of Biology and Treatment of Metastasis, Department of Oncology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Bergamo and Milan, Italy
| | - Maria Rosa Bani
- Laboratory of Biology and Treatment of Metastasis, Department of Oncology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Bergamo and Milan, Italy
| | - Luca Porcu
- Laboratory of Methodology for Clinical Research, Department of Oncology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Alessia Anastasia
- Laboratory of Biology and Treatment of Metastasis, Department of Oncology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Bergamo and Milan, Italy
| | - Lucia Minoli
- Mouse and Animal Pathology Lab, Fondazione Filarete and Department of Veterinary Pathology, University of Milan, Milan, Italy
| | - Paola Allavena
- Department of Immunology and Inflammation, IRCCS-Humanitas Clinical and Research Center, Rozzano, Italy
| | - Paola Cappello
- CERMS, AOU Città della Salute e della Scienza, Turin, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy.,Molecular Biotechnology Center, Turin, Italy
| | - Francesco Novelli
- CERMS, AOU Città della Salute e della Scienza, Turin, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy.,Molecular Biotechnology Center, Turin, Italy
| | - Aldo Scarpa
- Department of Pathology and Diagnostic, University and Hospital Trust of Verona, Verona, Italy
| | - Eugenio Morandi
- Chirurgia IV, Presidio Ospedaliero di Rho, ASST Rhodense, Milano, Italy
| | - Anna Falanga
- Department of Immunohematology and Transfusion Medicine, Thrombosis and Hemostasis Center, Hospital Papa Giovanni XXIII, Bergamo, Italy
| | - Valter Torri
- Laboratory of Methodology for Clinical Research, Department of Oncology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Giulia Taraboletti
- Laboratory of Biology and Treatment of Metastasis, Department of Oncology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Bergamo and Milan, Italy
| | - Dorina Belotti
- Laboratory of Biology and Treatment of Metastasis, Department of Oncology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Bergamo and Milan, Italy
| | - Raffaella Giavazzi
- Laboratory of Biology and Treatment of Metastasis, Department of Oncology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Bergamo and Milan, Italy
| |
Collapse
|
10
|
Cerulein-induced chronic pancreatitis in Swiss albino mice: An improved short-term model for pharmacological screening. J Pharmacol Toxicol Methods 2019; 96:46-55. [PMID: 30684670 DOI: 10.1016/j.vascn.2019.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 12/13/2018] [Accepted: 01/21/2019] [Indexed: 12/20/2022]
Abstract
There is a need for short-term, reliable and reproducible animal model of chronic pancreatitis (CP) in small animals like mice. This study was aimed to establish the 9 exposures of cerulein-induced CP in mice. Repeated intraperitoneal cerulein injections were performed at 6 consecutive doses (50 μg/kg)/day, 3 days a week for 3 weeks to induce chronic pancreatitis in Swiss albino mice. The severity of damage was assessed by biochemical assays and histopathology. The expression of pro-inflammatory cytokine and fibrotic proteins was assessed by IHC and western blotting. The cerulein treated mice showed significantly elevated plasma amylase (p < .0285) and lipase levels (p < .0022) and resulted in significantly increased pancreatic oxidative (p < .0022) and nitrosative (p < .0022) stress. The hydroxyproline levels were 3.06 fold increased in the cerulein treated mice. The expressions of fibrotic cytokine TGF-β1 by 1.8 folds and pro-inflammatory cytokines TNF-α by 2.3 fold, IL-6 by 2.2 fold and IL-1β by 3.7 fold were markedly increased in cerulein treated mice. The histological evaluations indicated increased inflammatory cells infiltration and deposition of collagen. Moreover, the expression of fibrotic markers such as α-SMA increased by 2.5 folds (p < .00014), collagen1a by 1.3 folds (p < .0258) and fibronectin by 3.5 folds (p < .00014) were significantly increased. Our study demonstrates the superiority of 9 exposures of cerulein-induced CP model in mice with the reduction of duration, cerulein exposure, more economical and mortality rate of mice over the available models. Therefore, our model may be suitable to evaluate the pharmacological effects of new drugs in chronic pancreatitis.
Collapse
|
11
|
Malla RR, Kumari S, Amajala KC, Deepak KGK, Gugalavath S, Rokkam P. Methods and Models in Exploring Pancreatic Functions. EXPLORING PANCREATIC METABOLISM AND MALIGNANCY 2019:253-268. [DOI: 10.1007/978-981-32-9393-9_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
12
|
Whitcomb DC, Shimosegawa T, Chari ST, Forsmark CE, Frulloni L, Pramod G, Hegyi P, Hirooka Y, Irisawa A, Ishikawa T, Isaji S, Lerch MM, Levy P, Masamune A, Wilcox CM, Windsor J, Yadav D, Sheel A, Neoptolemos JP. International consensus statements on early chronic Pancreatitis. Recommendations from the working group for the international consensus guidelines for chronic pancreatitis in collaboration with The International Association of Pancreatology, American Pancreatic Association, Japan Pancreas Society, PancreasFest Working Group and European Pancreatic Club. Pancreatology 2018; 18:516-527. [PMID: 29793839 PMCID: PMC6748871 DOI: 10.1016/j.pan.2018.05.008] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 05/14/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Chronic pancreatitis (CP) is a progressive inflammatory disorder currently diagnosed by morphologic features. In contrast, an accurate diagnosis of Early CP is not possible using imaging criteria alone. If this were possible and early treatment instituted, the later, irreversible features and complications of CP could possibly be prevented. METHOD An international working group supported by four major pancreas societies (IAP, APA, JPS, and EPC) and a PancreasFest working group sought to develop a consensus definition and diagnostic criteria for Early CP. Ten statements (S1-10) concerning Early CP were used to gauge consensus on the Early CP concept using anonymous voting with a 9 point Likert scale. Consensus required an alpha ≥0.80. RESULTS No consensus statement could be developed for a definition of Early-CP or diagnostic criteria. There was consensus on 5 statements: (S2) The word "Early" in early chronic pancreatitis is used to describe disease state, not disease duration. (S4) Early CP defines a stage of CP with preserved pancreatic function and potentially reversible features. (S8) Genetic variants are important risk factors for Early CP and can add specificity to the likely etiology, but they are neither necessary nor sufficient to make a diagnosis. (S9) Environmental risk factors can provide evidence to support the diagnosis of Early CP, but are neither necessary nor sufficient to make a diagnosis. (S10) The differential diagnosis for Early CP includes other disorders with morphological and functional features that overlap with CP. CONCLUSIONS Morphology based diagnosis of Early CP is not possible without additional information. New approaches to the accurate diagnosis of Early CP will require a mechanistic definition that considers risk factors, biomarkers, clinical context and new models of disease. Such a definition will require prospective validation.
Collapse
Affiliation(s)
- David C Whitcomb
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA. USA,Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA,Corresponding Author: David C Whitcomb MD PhD, University of Pittsburgh, Gastroenterology, Room 401.4, 3708 Fifth Ave, Pittsburgh PA 15213 412 578 9515; Fax 412 578-9537,
| | | | - Suresh T Chari
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN. USA
| | - Christopher E. Forsmark
- Division of Gastroenterology, Hepatology, and Nutrition, University of Florida, Gainsville, FL USA
| | - Luca Frulloni
- Gastroenterology Unit, Department of Medicine and the Pancreas Institute, University of Verona, Verona, Italy
| | - Garg Pramod
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| | - Peter Hegyi
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary and MTA-SZTE Translational Gastroenterology Research Group, Szeged, Hungary
| | - Yoshiki Hirooka
- Department of Endoscopy, Nagoya University Hospital, Nagoya, Japan
| | - Atsushi Irisawa
- Department of Gastroenterology, Dokkyo Medical University, Mibu, Tochigi, JAPAN
| | - Takuya Ishikawa
- Department of Gastroenterology, Nagoya University Hospital, Nagoya, Japan
| | - Shuiji Isaji
- Department of Hepatobiliary Pancreatic and Transplant Surgery, Mie University, Tsu, Japan
| | - Markus M. Lerch
- Division of Gastroenterology and Endocrinology, Ernst-Moritz-Arndt Universität Greifswald, Greifswald, Germany
| | - Philippe Levy
- Service de pancréatologie, Pôle des Maladies de l’Appareil Digestif, DHU UNITY, Centre de référence des maladies rares du pancréas (PAncreatic RAre DISeases), Centre de référence européen des tumeurs neuroendocrines digestives et pancréatiques, Hôpital Beaujon, Faculté Denis Diderot, APHP, Clichy, France
| | - Atsushi Masamune
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Charles M. Wilcox
- Division of Gastroenterology & Hepatology, University of Alabama Birmingham, Birmingham, AL, USA
| | - John Windsor
- Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Dhiraj Yadav
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA. USA
| | - Andrea Sheel
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3GE, UK
| | - John P Neoptolemos
- Department of General, Visceral and Transplantaion Surgery University of Heidelberg, Heidelberg, Germany
| | | |
Collapse
|
13
|
Zhang Y, Yue D, Cheng L, Huang A, Tong N, Cheng P. Vitamin A-coupled liposomes carrying TLR4-silencing shRNA induce apoptosis of pancreatic stellate cells and resolution of pancreatic fibrosis. J Mol Med (Berl) 2018; 96:445-458. [PMID: 29589070 DOI: 10.1007/s00109-018-1629-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 02/05/2018] [Accepted: 02/12/2018] [Indexed: 02/05/2023]
Abstract
UNLABELLED Chronic pancreatitis leads to irreversible damage in pancreatic endocrine and exocrine functions. However, there is no clinically available antifibrotic drug. Pancreatic stellate cells (PSCs) can be activated by Toll-like receptor 4 (TLR4) responses to its ligands and they contribute to the formation of pancreatic fibrosis. Silencing the expression of TLR4 in PSCs by RNAi may be a novel therapeutic strategy for the treatment of pancreatic fibrosis. In addition, PSCs have a remarkable capacity for vitamin A uptake most likely through cellular retinol binding protein (CRBP). In our study, to ensure the efficient delivery of RNAi therapeutic agents to PSCs, VitA-coupled liposomes (VA-lips) were used as drug carriers to deliver plasmids expressing TLR4-specific short hairpin RNA (shRNA) to treat pancreatic fibrosis. Our study demonstrated that silencing the expression of TLR4 could induce mitochondrial apoptosis in aPSCs and might be an effective therapeutic strategy for the treatment of pancreatic fibrosis. KEY MESSAGES VA-lip-shRNA-TLR4 recovers pancreatic tissue damage. VA-lip-shRNA-TLR4 resolution of pancreatic fibrosis. VA-lip-shRNA-TLR4 accelerates ECM degradation and inhibits ECM synthesis. Silencing TLR4 induces aPSCs mitochondrial apoptosis. Silencing TLR4 inhibits the activation of NF-κB.
Collapse
Affiliation(s)
- Yuwei Zhang
- Department of Endocrinology and Metabolism, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, No.37 Guo Xue Xiang, Chengdu, 610041, China
| | - Dan Yue
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, No.17 Section 3 People's South Road, Chengdu, 610041, China
| | - Liuliu Cheng
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, No.17 Section 3 People's South Road, Chengdu, 610041, China
| | - Anliang Huang
- Department of Pathology, West China Second Hospital, Sichuan University, No.20 Section 3 People's South Road, Chengdu, 610041, China
| | - Nanwei Tong
- Department of Endocrinology and Metabolism, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, No.37 Guo Xue Xiang, Chengdu, 610041, China
| | - Ping Cheng
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, No.17 Section 3 People's South Road, Chengdu, 610041, China.
| |
Collapse
|
14
|
Phytoceuticals in Acute Pancreatitis: Targeting the Balance between Apoptosis and Necrosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:5264592. [PMID: 29686719 PMCID: PMC5857302 DOI: 10.1155/2018/5264592] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/29/2017] [Accepted: 12/20/2017] [Indexed: 12/11/2022]
Abstract
Despite recent advances in understanding the complex pathogenesis of pancreatitis, the management of the disease remains suboptimal. The use of phytoceuticals (plant-derived pleiotropic multitarget molecules) represents a new research trend in pancreatology. The purpose of this review is to discuss the phytoceuticals with pancreatoprotective potential in acute pancreatitis and whose efficacy is based, at least in part, on their capacity to modulate the acinar cell death. The phytochemicals selected, belonging to such diverse classes as polyphenols, flavonoids, lignans, anthraquinones, sesquiterpene lactones, nitriles, and alkaloids, target the balance between apoptosis and necrosis. Activation of apoptosis via various mechanisms (e.g., inhibition of X-linked inhibitor of apoptosis proteins by embelin, upregulation of FasL gene expression by resveratrol) and/or inhibition of necrosis seem to represent the essential key for decreasing the severity of the disease. Apart from targeting the apoptosis/necrosis balance, the phytochemicals displayed other specific protective activities: inhibition of inflammasome (e.g., rutin), suppression of neutrophil infiltration (e.g., ligustrazine, resveratrol), and antioxidant activity. Even though many of the selected phytoceuticals represent a promising therapeutic alternative, there is a shortage of human evidence, and further studies are required to provide solid basis to justify their use in the treatment of pancreatitis.
Collapse
|
15
|
Peng W, Furuuchi N, Aslanukova L, Huang YH, Brown SZ, Jiang W, Addya S, Vishwakarma V, Peters E, Brody JR, Dixon DA, Sawicki JA. Elevated HuR in Pancreas Promotes a Pancreatitis-Like Inflammatory Microenvironment That Facilitates Tumor Development. Mol Cell Biol 2018; 38:e00427-17. [PMID: 29133460 PMCID: PMC5770537 DOI: 10.1128/mcb.00427-17] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 09/07/2017] [Accepted: 11/07/2017] [Indexed: 12/30/2022] Open
Abstract
Human antigen R (ELAVL1; HuR) is perhaps the best-characterized RNA-binding protein. Through its overexpression in various tumor types, HuR promotes posttranscriptional regulation of target genes in multiple core signaling pathways associated with tumor progression. The role of HuR overexpression in pancreatic tumorigenesis is unknown and led us to explore the consequences of HuR overexpression using a novel transgenic mouse model that has a >2-fold elevation of pancreatic HuR expression. Histologically, HuR-overexpressing pancreas displays a fibroinflammatory response and other pathological features characteristic of chronic pancreatitis. This pathology is reflected in changes in the pancreatic gene expression profile due, in part, to genes whose expression changes as a consequence of direct binding of their respective mRNAs to HuR. Older mice develop pancreatic steatosis and severe glucose intolerance. Elevated HuR cooperated with mutant K-rasG12D to result in a 3.4-fold increase in pancreatic ductal adenocarcinoma (PDAC) incidence compared to PDAC presence in K-rasG12D alone. These findings implicate HuR as a facilitator of pancreatic tumorigenesis, especially in the setting of inflammation, and a novel therapeutic target for pancreatitis treatment.
Collapse
Affiliation(s)
- Weidan Peng
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania, USA
| | - Narumi Furuuchi
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania, USA
| | | | - Yu-Hung Huang
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania, USA
| | - Samantha Z Brown
- Sidney Kimmel Cancer Center at the Jefferson Pancreatic, Biliary, and Related Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Wei Jiang
- Sidney Kimmel Cancer Center at the Jefferson Pancreatic, Biliary, and Related Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Sankar Addya
- Sidney Kimmel Cancer Center at the Jefferson Pancreatic, Biliary, and Related Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | - Erika Peters
- University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Jonathan R Brody
- Sidney Kimmel Cancer Center at the Jefferson Pancreatic, Biliary, and Related Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Dan A Dixon
- University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Janet A Sawicki
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania, USA
- Sidney Kimmel Cancer Center at the Jefferson Pancreatic, Biliary, and Related Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
16
|
Martinelli P, Real FX. Animal Modeling of Pancreatitis-to-Cancer Progression. PANCREATIC CANCER 2018:313-347. [DOI: 10.1007/978-1-4939-7193-0_66] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
17
|
Pancreatic Stellate Cells Have Distinct Characteristics From Hepatic Stellate Cells and Are Not the Unique Origin of Collagen-Producing Cells in the Pancreas. Pancreas 2017; 46:1141-1151. [PMID: 28902784 DOI: 10.1097/mpa.0000000000000901] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
OBJECTIVES The origin of collagen-producing myofibroblasts in pancreatic fibrosis is still controversial. Pancreatic stellate cells (PSCs), which have been recognized as the pancreatic counterparts of hepatic stellate cells (HSCs), are thought to play an important role in the development of pancreatic fibrosis. However, sources of myofibroblasts other than PSCs may exist because extensive studies of liver fibrosis have uncovered myofibroblasts that did not originate from HSCs. This study aimed to characterize myofibroblasts in an experimental pancreatic fibrosis model in mice. METHODS We used transgenic mice expressing green fluorescent protein via the collagen type I α1 promoter and induced pancreatic fibrosis with repetitive injections of cerulein. RESULTS Collagen-producing cells that are negative for glial fibrillary acidic protein (ie, not derived from PSCs) exist in the pancreas. Pancreatic stellate cells had different characteristics from those of HSCs in a very small possession of vitamin A using mass spectrometry and a low expression of lecithin retinol acyltransferase. The microstructure of PSCs was entirely different from that of HSCs using flow cytometry and electron microscopy. CONCLUSIONS Our study showed that characteristics of PSCs are different from those of HSCs, and myofibroblasts in the pancreas might be derived not only from PSCs but also from other fibrogenic cells.
Collapse
|
18
|
Ferdek PE, Jakubowska MA. Biology of pancreatic stellate cells-more than just pancreatic cancer. Pflugers Arch 2017; 469:1039-1050. [PMID: 28382480 PMCID: PMC5554282 DOI: 10.1007/s00424-017-1968-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 03/13/2017] [Accepted: 03/16/2017] [Indexed: 01/18/2023]
Abstract
Pancreatic stellate cells, normally quiescent, are capable of remarkable transition into their activated myofibroblast-like phenotype. It is now commonly accepted that these cells play a pivotal role in the desmoplastic reaction present in severe pancreatic disorders. In recent years, enormous scientific effort has been devoted to understanding their roles in pancreatic cancer, which continues to remain one of the most deadly diseases. Therefore, it is not surprising that considerably less attention has been given to studying physiological functions of pancreatic stellate cells. Here, we review recent advances not only in the field of pancreatic stellate cell pathophysiology but also emphasise their roles in physiological processes.
Collapse
Affiliation(s)
- Pawel E Ferdek
- Medical Research Council Group, Cardiff School of Biosciences, Cardiff University, Cardiff, Wales, CF10 3AX, UK.
| | - Monika A Jakubowska
- Medical Research Council Group, Cardiff School of Biosciences, Cardiff University, Cardiff, Wales, CF10 3AX, UK
| |
Collapse
|
19
|
Poulsen JL, Olesen SS, Drewes AM, Ye B, Li WQ, Aghdassi AA, Sendler M, Mayerle J, Lerch MM. The Pathogenesis of Chronic Pancreatitis. CHRONIC PANCREATITIS 2017:29-62. [DOI: 10.1007/978-981-10-4515-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
20
|
Zhan X, Wang F, Bi Y, Ji B. Animal models of gastrointestinal and liver diseases. Animal models of acute and chronic pancreatitis. Am J Physiol Gastrointest Liver Physiol 2016; 311:G343-55. [PMID: 27418683 PMCID: PMC5076005 DOI: 10.1152/ajpgi.00372.2015] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 07/06/2016] [Indexed: 01/31/2023]
Abstract
Animal models of pancreatitis are useful for elucidating the pathogenesis of pancreatitis and developing and testing novel interventions. In this review, we aim to summarize the most commonly used animal models, overview their pathophysiology, and discuss their strengths and limitations. We will also briefly describe common animal study procedures and refer readers to more detailed protocols in the literature. Although animal models include pigs, dogs, opossums, and other animals, we will mainly focus on rodent models because of their popularity. Autoimmune pancreatitis and genetically engineered animal models will be reviewed elsewhere.
Collapse
Affiliation(s)
- Xianbao Zhan
- 1Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida and
| | - Fan Wang
- 1Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida and
| | - Yan Bi
- 2Department of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, Florida
| | - Baoan Ji
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida and
| |
Collapse
|
21
|
Ulmasov B, Neuschwander-Tetri BA, Lai J, Monastyrskiy V, Bhat T, Yates MP, Oliva J, Prinsen MJ, Ruminski PG, Griggs DW. Inhibitors of Arg-Gly-Asp-Binding Integrins Reduce Development of Pancreatic Fibrosis in Mice. Cell Mol Gastroenterol Hepatol 2016; 2:499-518. [PMID: 28174730 PMCID: PMC5042566 DOI: 10.1016/j.jcmgh.2016.03.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 03/04/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Pancreatic stellate cells (PSCs) regulate the development of chronic pancreatitis (CP) and are activated by the cytokine transforming growth factor β (TGFB). Integrins of the αv family promote TGFB signaling in mice, probably by interacting with the Arg-Gly-Asp (RGD) sequence of the TGFB latency-associated peptide, which frees TGFB to bind its cellular receptors. However, little is known about the role of integrins in the development of CP. We investigated the effects of small-molecule integrin inhibitors in a mouse model of CP. METHODS We induced CP in C57BL/6 female mice by repeated cerulein administration. An active RGD peptidomimetic compound (Center for World Health and Medicine [CWHM]-12) was delivered by continuous infusion, starting 3 days before or 5 days after cerulein administration began. Pancreata were collected and parenchymal atrophy, fibrosis, and activation of PSCs were assessed by histologic, gene, and protein expression analyses. We measured CWHM-12 effects on activation of TGFB in co-culture assays in which rat PSC cells (large T immortalized cells [LTC-14]) activate expression of a TGFB-sensitive promoter in reporter cells. RESULTS Pancreatic tissues of mice expressed messenger RNAs encoding subunits of RGD-binding integrins. Cerulein administration increased expression of these integrins, altered pancreatic cell morphology, and induced fibrosis. The integrin inhibitor CWHM-12 decreased acinar cell atrophy and loss, and substantially reduced fibrosis, activation of PSCs, and expression of genes regulated by TGFB. CWHM-12 also reduced established fibrosis in mice and blocked activation of TGFB in cultured cells. CONCLUSIONS Based on studies of a mouse model of CP and cultured PSCs, integrins that bind RGD sequences activate PSCs and promote the development of pancreatic fibrogenesis in mice. Small-molecule antagonists of this interaction might be developed for treatment of pancreatic fibrotic diseases.
Collapse
Key Words
- CP, chronic pancreatitis
- CTGF, connective tissue growth factor
- CWHM, Center for World Health and Medicine
- Col1a1, collagen type I α1
- DMEM, Dulbecco's modified Eagle medium
- DMSO, dimethyl sulfoxide
- ECM, extracellular matrix
- FBS, fetal bovine serum
- IC50, median inhibitory concentration
- Inflammation
- LAP, latency-associated peptide
- LTC-14, large T immortalized cells
- MLEC, mink lung epithelial cell
- MMP, matrix metallopeptidase
- PBS, phosphate-buffered saline
- PCR, polymerase chain reaction
- PSC, pancreatic stellate cell
- Pancreas
- Peptidomimetic
- RGD, arginine-glycine-aspartic acid
- Signal Transduction
- TGFB, transforming growth factor β
- mPSC, mouse pancreatic stellate cell
- mRNA, messenger RNA
- p-SMAD, phosphorylated SMAD
- α-SMA, α-smooth muscle actin
Collapse
Affiliation(s)
- Barbara Ulmasov
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Saint Louis University, Saint Louis, Missouri
| | - Brent A. Neuschwander-Tetri
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Saint Louis University, Saint Louis, Missouri
| | - Jinping Lai
- Department of Pathology, Saint Louis University, Saint Louis, Missouri
| | - Vladimir Monastyrskiy
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Saint Louis University, Saint Louis, Missouri
| | - Trisha Bhat
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Saint Louis University, Saint Louis, Missouri
| | - Matthew P. Yates
- Center for World Health and Medicine, Saint Louis University, Saint Louis, Missouri
| | - Jonathan Oliva
- Center for World Health and Medicine, Saint Louis University, Saint Louis, Missouri
| | - Michael J. Prinsen
- Center for World Health and Medicine, Saint Louis University, Saint Louis, Missouri
| | - Peter G. Ruminski
- Center for World Health and Medicine, Saint Louis University, Saint Louis, Missouri
| | - David W. Griggs
- Center for World Health and Medicine, Saint Louis University, Saint Louis, Missouri
| |
Collapse
|
22
|
Xiao W, Jiang W, Shen J, Yin G, Fan Y, Wu D, Qiu L, Yu G, Xing M, Hu G, Wang X, Wan R. Retinoic Acid Ameliorates Pancreatic Fibrosis and Inhibits the Activation of Pancreatic Stellate Cells in Mice with Experimental Chronic Pancreatitis via Suppressing the Wnt/β-Catenin Signaling Pathway. PLoS One 2015; 10:e0141462. [PMID: 26556479 PMCID: PMC4640570 DOI: 10.1371/journal.pone.0141462] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 10/08/2015] [Indexed: 01/11/2023] Open
Abstract
Pancreatic fibrosis, a prominent feature of chronic pancreatitis (CP), induces persistent and permanent damage in the pancreas. Pancreatic stellate cells (PSCs) provide a major source of extracellular matrix (ECM) deposition during pancreatic injury, and persistent activation of PSCs plays a vital role in the progression of pancreatic fibrosis. Retinoic acid (RA), a retinoid, has a broad range of biological functions, including regulation of cell differentiation and proliferation, attenuating progressive fibrosis of multiple organs. In the present study, we investigated the effects of RA on fibrosis in experimental CP and cultured PSCs. CP was induced in mice by repetitive cerulein injection in vivo, and mouse PSCs were isolated and activated in vitro. Suppression of pancreatic fibrosis upon administration of RA was confirmed based on reduction of histological damage, α-smooth muscle actin (α-SMA) expression and mRNA levels of β-catenin, platelet-derived growth factor (PDGF)-Rβ transforming growth factor (TGF)-βRII and collagen 1α1 in vivo. Wnt 2 and β-catenin protein levels were markedly down-regulated, while Axin 2 expression level was up-regulated in the presence of RA, both in vivo and in vitro. Nuclear translation of β-catenin was significantly decreased following RA treatment, compared with cerulein-induced CP in mice and activated PSCs. Furthermore, RA induced significant PSC apoptosis, inhibited proliferation, suppressed TCF/LEF-dependent transcriptional activity and ECM production of PSC via down-regulation of TGFβRII, PDGFRβ and collagen 1α1 in vitro. These results indicate a critical role of the Wnt/β-catenin signaling pathway in RA-induced effects on CP and PSC regulation and support the potential of RA as a suppressor of pancreatic fibrosis in mice.
Collapse
MESH Headings
- Actins/biosynthesis
- Actins/genetics
- Active Transport, Cell Nucleus/drug effects
- Animals
- Apoptosis/drug effects
- Axin Protein/biosynthesis
- Axin Protein/genetics
- Cells, Cultured
- Ceruletide/toxicity
- Collagen Type I/biosynthesis
- Collagen Type I/genetics
- Disease Progression
- Drug Evaluation, Preclinical
- Fibrosis/prevention & control
- Gene Expression Regulation/drug effects
- Lipase/blood
- Male
- Mice
- Mice, Inbred BALB C
- Organ Size/drug effects
- Pancreas/drug effects
- Pancreas/pathology
- Pancreatic Stellate Cells/drug effects
- Pancreatic Stellate Cells/metabolism
- Pancreatic alpha-Amylases/blood
- Pancreatitis, Chronic/chemically induced
- Pancreatitis, Chronic/drug therapy
- Pancreatitis, Chronic/metabolism
- Pancreatitis, Chronic/pathology
- Proteoglycans/biosynthesis
- Proteoglycans/genetics
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Random Allocation
- Receptor, Platelet-Derived Growth Factor beta/biosynthesis
- Receptor, Platelet-Derived Growth Factor beta/genetics
- Receptors, Transforming Growth Factor beta/biosynthesis
- Receptors, Transforming Growth Factor beta/genetics
- Tretinoin/pharmacology
- Tretinoin/therapeutic use
- Wnt Signaling Pathway/drug effects
Collapse
Affiliation(s)
- Wenqin Xiao
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Weiliang Jiang
- Department of Gastroenterology, Shanghai First People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jie Shen
- Department of Gastroenterology, Shanghai Changzheng Hospital, Shanghai Second Military Medical University, Shanghai, China
| | - Guojian Yin
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuting Fan
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Deqing Wu
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lei Qiu
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ge Yu
- Department of Gastroenterology, Shanghai First People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Miao Xing
- Department of Gastroenterology, Shanghai First People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Guoyong Hu
- Department of Gastroenterology, Shanghai First People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xingpeng Wang
- Department of Gastroenterology, Shanghai First People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Rong Wan
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Gastroenterology, Shanghai First People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- * E-mail:
| |
Collapse
|
23
|
Rastellini C, Han S, Bhatia V, Cao Y, Liu K, Gao X, Ko TC, Greeley GH, Falzon M. Induction of chronic pancreatitis by pancreatic duct ligation activates BMP2, apelin, and PTHrP expression in mice. Am J Physiol Gastrointest Liver Physiol 2015; 309:G554-65. [PMID: 26229008 DOI: 10.1152/ajpgi.00076.2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 07/15/2015] [Indexed: 01/31/2023]
Abstract
Chronic pancreatitis (CP) is a devastating disease with no treatments. Experimental models have been developed to reproduce the parenchyma and inflammatory responses typical of human CP. For the present study, one objective was to assess and compare the effects of pancreatic duct ligation (PDL) to those of repetitive cerulein (Cer)-induced CP in mice on pancreatic production of bone morphogenetic protein-2 (BMP2), apelin, and parathyroid hormone-related protein (PTHrP). A second objective was to determine the extent of cross talk among pancreatic BMP2, apelin, and PTHrP signaling systems. We focused on BMP2, apelin, and PTHrP since these factors regulate the inflammation-fibrosis cascade during pancreatitis. Findings showed that PDL- and Cer-induced CP resulted in significant elevations in expression and peptide/protein levels of pancreatic BMP2, apelin, and PTHrP. In vivo mouse and in vitro pancreatic cell culture experiments demonstrated that BMP2 stimulated pancreatic apelin expression whereas apelin expression was inhibited by PTHrP exposure. Apelin or BMP2 exposure inhibited PTHrP expression, and PTHrP stimulated upregulation of gremlin, an endogenous inhibitor of BMP2 activity. Transforming growth factor-β (TGF-β) stimulated PTHrP expression. Together, findings demonstrated that PDL- and Cer-induced CP resulted in increased production of the pancreatic BMP2, apelin, and PTHrP signaling systems and that significant cross talk occurred among pancreatic BMP2, apelin, and PTHrP. These results together with previous findings imply that these factors interact via a pancreatic network to regulate the inflammation-fibrosis cascade during CP. More importantly, this network communicated with TGF-β, a key effector of pancreatic pathophysiology. This novel network may be amenable to pharmacologic manipulations during CP in humans.
Collapse
Affiliation(s)
- Cristiana Rastellini
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas; and
| | - Song Han
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas; and
| | - Vandanajay Bhatia
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas; and
| | - Yanna Cao
- Department of Surgery, University of Texas Health Science Center at Houston, Houston, Texas
| | - Ka Liu
- Department of Surgery, University of Texas Health Science Center at Houston, Houston, Texas
| | - Xuxia Gao
- Department of Surgery, University of Texas Health Science Center at Houston, Houston, Texas
| | - Tien C Ko
- Department of Surgery, University of Texas Health Science Center at Houston, Houston, Texas
| | - George H Greeley
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas; and
| | - Miriam Falzon
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas; and
| |
Collapse
|
24
|
Krah NM, De La O JP, Swift GH, Hoang CQ, Willet SG, Chen Pan F, Cash GM, Bronner MP, Wright CV, MacDonald RJ, Murtaugh LC. The acinar differentiation determinant PTF1A inhibits initiation of pancreatic ductal adenocarcinoma. eLife 2015; 4. [PMID: 26151762 PMCID: PMC4536747 DOI: 10.7554/elife.07125] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Accepted: 07/07/2015] [Indexed: 12/12/2022] Open
Abstract
Understanding the initiation and progression of pancreatic ductal adenocarcinoma (PDAC) may provide therapeutic strategies for this deadly disease. Recently, we and others made the surprising finding that PDAC and its preinvasive precursors, pancreatic intraepithelial neoplasia (PanIN), arise via reprogramming of mature acinar cells. We therefore hypothesized that the master regulator of acinar differentiation, PTF1A, could play a central role in suppressing PDAC initiation. In this study, we demonstrate that PTF1A expression is lost in both mouse and human PanINs, and that this downregulation is functionally imperative in mice for acinar reprogramming by oncogenic KRAS. Loss of Ptf1a alone is sufficient to induce acinar-to-ductal metaplasia, potentiate inflammation, and induce a KRAS-permissive, PDAC-like gene expression profile. As a result, Ptf1a-deficient acinar cells are dramatically sensitized to KRAS transformation, and reduced Ptf1a greatly accelerates development of invasive PDAC. Together, these data indicate that cell differentiation regulators constitute a new tumor suppressive mechanism in the pancreas.
Collapse
Affiliation(s)
- Nathan M Krah
- Department of Human Genetics, University of Utah, Salt Lake City, United States
| | - Jean-Paul De La O
- Department of Human Genetics, University of Utah, Salt Lake City, United States
| | - Galvin H Swift
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Chinh Q Hoang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Spencer G Willet
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, United States
| | - Fong Chen Pan
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, United States
| | - Gabriela M Cash
- Department of Human Genetics, University of Utah, Salt Lake City, United States
| | - Mary P Bronner
- Department of Pathology, Huntsman Cancer Hospital, University of Utah, Salt Lake City, United States
| | - Christopher Ve Wright
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, United States
| | - Raymond J MacDonald
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, United States
| | - L Charles Murtaugh
- Department of Human Genetics, University of Utah, Salt Lake City, United States
| |
Collapse
|
25
|
Abstract
Pancreatitis is caused by inflammatory injury to the exocrine pancreas, from which both humans and animal models appear to recover via regeneration of digestive enzyme-producing acinar cells. This regenerative process involves transient phases of inflammation, metaplasia, and redifferentiation, driven by cell-cell interactions between acinar cells, leukocytes, and resident fibroblasts. The NFκB signaling pathway is a critical determinant of pancreatic inflammation and metaplasia, whereas a number of developmental signals and transcription factors are devoted to promoting acinar redifferentiation after injury. Imbalances between these proinflammatory and prodifferentiation pathways contribute to chronic pancreatitis, characterized by persistent inflammation, fibrosis, and acinar dedifferentiation. Loss of acinar cell differentiation also drives pancreatic cancer initiation, providing a mechanistic link between pancreatitis and cancer risk. Unraveling the molecular bases of exocrine regeneration may identify new therapeutic targets for treatment and prevention of both of these deadly diseases.
Collapse
Affiliation(s)
- L Charles Murtaugh
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah 84112;
| | | |
Collapse
|
26
|
Bhatia V, Rastellini C, Han S, Aronson JF, Greeley GH, Falzon M. Acinar cell-specific knockout of the PTHrP gene decreases the proinflammatory and profibrotic responses in pancreatitis. Am J Physiol Gastrointest Liver Physiol 2014; 307:G533-49. [PMID: 25035110 PMCID: PMC4154118 DOI: 10.1152/ajpgi.00428.2013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Pancreatitis is a necroinflammatory disease with acute and chronic manifestations. Accumulated damage incurred during repeated bouts of acute pancreatitis (AP) can lead to chronic pancreatitis (CP). Pancreatic parathyroid hormone-related protein (PTHrP) levels are elevated in a mouse model of cerulein-induced AP. Here, we show elevated PTHrP levels in mouse models of pancreatitis induced by chronic cerulein administration and pancreatic duct ligation. Because acinar cells play a major role in the pathophysiology of pancreatitis, mice with acinar cell-specific targeted disruption of the Pthrp gene (PTHrP(Δacinar)) were generated to assess the role of acinar cell-secreted PTHrP in pancreatitis. These mice were generated using Cre-LoxP technology and the acinar cell-specific elastase promoter. PTHrP(Δacinar) exerted protective effects in cerulein and pancreatic duct ligation models, evident as decreased edema, histological damage, amylase secretion, pancreatic stellate cell (PSC) activation, and extracellular matrix deposition. Treating acinar cells in vitro with cerulein increased IL-6 expression and NF-κB activity; these effects were attenuated in PTHrP(Δacinar) cells, as were the cerulein- and carbachol-induced elevations in amylase secretion. The cerulein-induced upregulation of procollagen I expression was lost in PSCs from PTHrP(Δacinar) mice. PTHrP immunostaining was elevated in human CP sections. The cerulein-induced upregulation of IL-6 and ICAM-1 (human acinar cells) and procollagen I (human PSCs) was suppressed by pretreatment with the PTH1R antagonist, PTHrP (7-34). These findings establish PTHrP as a novel mediator of inflammation and fibrosis associated with CP. Acinar cell-secreted PTHrP modulates acinar cell function via its effects on proinflammatory cytokine release and functions via a paracrine pathway to activate PSCs.
Collapse
Affiliation(s)
- Vandanajay Bhatia
- 1Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas;
| | | | - Song Han
- 2Department of Surgery, University of Texas Medical Branch, Galveston, Texas;
| | - Judith F. Aronson
- 3Department of Pathology, University of Texas Medical Branch, Galveston, Texas; and
| | - George H. Greeley
- 2Department of Surgery, University of Texas Medical Branch, Galveston, Texas;
| | - Miriam Falzon
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas; Sealy Center for Cancer Cell Biology, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
27
|
Pancreatic stellate cells and CX3CR1: occurrence in normal pancreas and acute and chronic pancreatitis and effect of their activation by a CX3CR1 agonist. Pancreas 2014; 43:708-19. [PMID: 24681877 PMCID: PMC4315317 DOI: 10.1097/mpa.0000000000000109] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Numerous studies suggest important roles of the chemokine, fractalkine (CX3CL1), in acute/chronic pancreatitis; however, the possible mechanisms of the effects are unclear. Pancreatic stellate cells (PSCs) can play important roles in pancreatitis, secreting inflammatory cytokines/chemokines, as well as proliferation. Therefore, we investigated CX3CL1 receptor (CX3CR1) occurrence in normal pancreas and pancreatitis (acute/chronic) tissues and the effects of CX3CL1 on activated PSCs. METHODS CX3CR1 expression/localization in normal pancreas and pancreatitis (acute/chronic) tissues was evaluated with immunohistochemical analysis. CX3CR1 expression and effects of CX3CL1 on activated PSCs were examined with real-time polymerase chain reaction, BrdU (5-bromo-2-deoxyuridine) assays, and Western blotting. RESULTS In normal pancreas, acinar cells expressed CX3CR1 within granule-like formations in the cytoplasm, whereas in acute/chronic pancreatitis, acinar, ductal, and activated PSCs expressed CX3CR1 on cell membranes. With activation of normal PSCs, CX3CR1 is increased. CX3CL1 activated multiple signaling cascades in PSCs. CX3CL1 did not induce inflammatory genes expression in activated PSCs, but induced proliferation. CONCLUSIONS CX3CR1s are expressed in normal pancreas. Expression is increased in acute/chronic pancreatitis, and the CX3CR1s are activated. CX3CL1 induces proliferation of activated PSCs without increasing release of inflammatory mediators. These results suggest that CX3CR1 activation of PSCs could be important in their effects in pancreatitis, especially to PSC proliferation in pancreatitis where CX3CL1 levels are elevated.
Collapse
|
28
|
Hyun JJ, Lee HS. Experimental models of pancreatitis. Clin Endosc 2014. [PMID: 24944983 DOI: 10.5946/ce.201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Acute pancreatitis is an inflammatory disease characterized by interstitial edema, inflammatory cell infiltration, and acinar cell necrosis, depending on its severity. Regardless of the extent of tissue injury, acute pancreatitis is a completely reversible process with evident normal tissue architecture after recovery. Its pathogenic mechanism has been known to be closely related to intracellular digestive enzyme activation. In contrast to acute pancreatitis, chronic pancreatitis is characterized by irreversible tissue damage such as acinar cell atrophy and pancreatic fibrosis that results in exocrine and endocrine insufficiency. Recently, many studies of chronic pancreatitis have been prompted by the discovery of the pancreatic stellate cell, which has been identified and distinguished as the key effector cell of pancreatic fibrosis. However, investigations into the pathogenesis and treatment of pancreatitis face many obstacles because of its anatomical location and disparate clinical course. Due to these difficulties, most of our knowledge on pancreatitis is based on research conducted using experimental models of pancreatitis. In this review, several experimental models of pancreatitis will be discussed in terms of technique, advantages, and limitations.
Collapse
Affiliation(s)
- Jong Jin Hyun
- Division of Gastroenterology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Hong Sik Lee
- Division of Gastroenterology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| |
Collapse
|
29
|
Hyun JJ, Lee HS. Experimental models of pancreatitis. Clin Endosc 2014; 47:212-6. [PMID: 24944983 PMCID: PMC4058537 DOI: 10.5946/ce.2014.47.3.212] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Revised: 04/15/2014] [Accepted: 04/16/2014] [Indexed: 02/06/2023] Open
Abstract
Acute pancreatitis is an inflammatory disease characterized by interstitial edema, inflammatory cell infiltration, and acinar cell necrosis, depending on its severity. Regardless of the extent of tissue injury, acute pancreatitis is a completely reversible process with evident normal tissue architecture after recovery. Its pathogenic mechanism has been known to be closely related to intracellular digestive enzyme activation. In contrast to acute pancreatitis, chronic pancreatitis is characterized by irreversible tissue damage such as acinar cell atrophy and pancreatic fibrosis that results in exocrine and endocrine insufficiency. Recently, many studies of chronic pancreatitis have been prompted by the discovery of the pancreatic stellate cell, which has been identified and distinguished as the key effector cell of pancreatic fibrosis. However, investigations into the pathogenesis and treatment of pancreatitis face many obstacles because of its anatomical location and disparate clinical course. Due to these difficulties, most of our knowledge on pancreatitis is based on research conducted using experimental models of pancreatitis. In this review, several experimental models of pancreatitis will be discussed in terms of technique, advantages, and limitations.
Collapse
Affiliation(s)
- Jong Jin Hyun
- Division of Gastroenterology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Hong Sik Lee
- Division of Gastroenterology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| |
Collapse
|
30
|
Abstract
Acute pancreatitis is an inflammatory disease characterized by interstitial edema, inflammatory cell infiltration, and acinar cell necrosis, depending on its severity. Regardless of the extent of tissue injury, acute pancreatitis is a completely reversible process with evident normal tissue architecture after recovery. Its pathogenic mechanism has been known to be closely related to intracellular digestive enzyme activation. In contrast to acute pancreatitis, chronic pancreatitis is characterized by irreversible tissue damage such as acinar cell atrophy and pancreatic fibrosis that results in exocrine and endocrine insufficiency. Recently, many studies of chronic pancreatitis have been prompted by the discovery of the pancreatic stellate cell, which has been identified and distinguished as the key effector cell of pancreatic fibrosis. However, investigations into the pathogenesis and treatment of pancreatitis face many obstacles because of its anatomical location and disparate clinical course. Due to these difficulties, most of our knowledge on pancreatitis is based on research conducted using experimental models of pancreatitis. In this review, several experimental models of pancreatitis will be discussed in terms of technique, advantages, and limitations.
Collapse
|
31
|
Nakamura T, Ito T, Uchida M, Hijioka M, Igarashi H, Oono T, Kato M, Nakamura K, Suzuki K, Jensen RT, Takayanagi R. PSCs and GLP-1R: occurrence in normal pancreas, acute/chronic pancreatitis and effect of their activation by a GLP-1R agonist. J Transl Med 2014; 94:63-78. [PMID: 24217090 PMCID: PMC3879597 DOI: 10.1038/labinvest.2013.133] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 10/02/2013] [Accepted: 10/21/2013] [Indexed: 12/20/2022] Open
Abstract
There is increasing concern about the development of pancreatitis in patients with diabetes mellitus who received long-term glucagon-like peptide-1 (GLP-1) analog treatment. Its pathogenesis is unknown. The effects of GLP-1 agonists on pancreatic endocrine cells are well studied; however, there is little information on effects on other pancreatic tissues that might be involved in inflammatory processes. Pancreatic stellate cells (PSCs) can have an important role in pancreatitis, secreting various inflammatory cytokines/chemokines, as well as collagen. In this study, we investigated GLP-1R occurrence in normal pancreas, acute pancreatitis (AP)/chronic pancreatitis (CP), and the effects of GLP-1 analog on normal PSCs, their ability to stimulate inflammatory mediator secretion or proliferation. GLP-1 receptor (GLP-1R) expression/localization in normal pancreas and pancreatitis (AP/CP) tissues were evaluated with histological/immunohistochemical analysis. PSCs were isolated from male Wistar rats. GLP-1R expression and effects of GLP-1 analog on activated PSCs was examined with real-time PCR, MTS assays and western blotting. In normal pancreas, pancreatic β cells expressed GLP-1R, with only low expression in acinar cells, whereas in AP or CP, acinar cells, ductal cells and activated PSCs expressed GLP-1R. With activation of normal PSCs, GLP-1R is markedly increased, as is multiple other incretin-related receptors. The GLP-1 analog, liraglutide, did not induce inflammatory genes expression in activated PSCs, but induced proliferation. Liraglutide activated multiple signaling cascades in PSCs, and the extracellular signal-regulated kinase pathway mediated the PSCs proliferation. GLP-1Rs are expressed in normal pancreas and there is marked enhanced expression in AP/CP. GLP-1-agonist induced cell proliferation of activated PSCs without increasing release of inflammatory mediators. These results suggest chronic treatment with GLP-1R agonists could lead to proliferation/chronic activation of PSCs, which may lead to important effects in the pancreas.
Collapse
Affiliation(s)
- Taichi Nakamura
- Department of Medicine and Bioregulatory Science, Kyushu University, Fukuoka, Japan
- Department of Cell Biology Section, NIDDK, National Institutes of Health, Bethesda, Maryland, United States
| | - Tetsuhide Ito
- Department of Medicine and Bioregulatory Science, Kyushu University, Fukuoka, Japan
| | - Masahiko Uchida
- Department of Medicine and Bioregulatory Science, Kyushu University, Fukuoka, Japan
| | - Masayuki Hijioka
- Department of Medicine and Bioregulatory Science, Kyushu University, Fukuoka, Japan
| | - Hisato Igarashi
- Department of Medicine and Bioregulatory Science, Kyushu University, Fukuoka, Japan
| | - Takamasa Oono
- Department of Medicine and Bioregulatory Science, Kyushu University, Fukuoka, Japan
| | - Masaki Kato
- Department of Medicine and Bioregulatory Science, Kyushu University, Fukuoka, Japan
| | - Kazuhiko Nakamura
- Department of Medicine and Bioregulatory Science, Kyushu University, Fukuoka, Japan
| | - Koichi Suzuki
- Department of Leprosy Research Center, National Institute of Infectious Diseases, Tokyo Japan
| | - Robert T. Jensen
- Department of Cell Biology Section, NIDDK, National Institutes of Health, Bethesda, Maryland, United States
| | - Ryoichi Takayanagi
- Department of Medicine and Bioregulatory Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
32
|
Han S, Englander EW, Gomez GA, Aronson JF, Rastellini C, Garofalo RP, Kolli D, Quertermous T, Kundu R, Greeley GH. Pancreatitis activates pancreatic apelin-APJ axis in mice. Am J Physiol Gastrointest Liver Physiol 2013; 305:G139-50. [PMID: 23681476 PMCID: PMC3725680 DOI: 10.1152/ajpgi.00370.2012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pancreatitis is classified into acute pancreatitis (AP) and chronic pancreatitis (CP). Apelin, a small regulatory peptide, is the endogenous ligand for the APJ receptor. Apelin and APJ are expressed in the pancreas. The aims of this study were to examine whether apelin influences the inflammatory and fibrosis responses to pancreatitis in mice and to identify mechanisms behind apelin's activities. Supramaximal cerulein induction of AP or CP caused significant (P < 0.05) elevations in pancreatic apelin and APJ expression. Levels declined during the recovery phases. In apelin gene-knockout mice with pancreatitis, pancreatic neutrophil invasion and myeloperoxidase activity were enhanced significantly, and apelin treatment suppressed both. Apelin exposure reduced CP-induced elevations of extracellular matrix-associated proteins. Apelin inhibited PDGF-simulated connective tissue growth factor production and proliferation of pancreatic stellate cells (PSCs). Serum granulocyte colony-stimulating factor and keratinocyte cytokine levels were higher in apelin gene-knockout than wild-type mice with pancreatitis. Apelin reduced AP- and CP-induced elevations in pancreatic NF-κB activation. Together, these findings imply that the pancreatic apelin-APJ system functions to curb the inflammatory and fibrosis responses during pancreatitis. Furthermore, findings suggest that apelin reduces inflammation and fibrosis by reducing neutrophil recruitment and PSC activity. Inhibition of neutrophil invasion may be mediated by reduced keratinocyte cytokine and granulocyte colony-stimulating factor secretion. Apelin-induced reductions in PSC proliferation and connective tissue growth factor production are putative mechanisms underlying apelin's inhibition of extracellular matrix production. The apelin-associated changes in NF-κB binding may be linked to apelin's regulation of pancreatic inflammatory and fibrosis responses during pancreatitis.
Collapse
Affiliation(s)
- Song Han
- 1Department of Surgery, University of Texas Medical Branch, Galveston, Texas;
| | - Ella W. Englander
- 1Department of Surgery, University of Texas Medical Branch, Galveston, Texas;
| | - Guillermo A. Gomez
- 1Department of Surgery, University of Texas Medical Branch, Galveston, Texas;
| | - Judith F. Aronson
- 4Department of Pathology, University of Texas Medical Branch, Galveston, Texas; and
| | | | - R. P. Garofalo
- 2Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas; ,3Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, Texas;
| | - Deepthi Kolli
- 2Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas;
| | | | | | - George H. Greeley
- 1Department of Surgery, University of Texas Medical Branch, Galveston, Texas;
| |
Collapse
|
33
|
Ulmasov B, Oshima K, Rodriguez MG, Cox RD, Neuschwander-Tetri BA. Differences in the degree of cerulein-induced chronic pancreatitis in C57BL/6 mouse substrains lead to new insights in identification of potential risk factors in the development of chronic pancreatitis. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:692-708. [PMID: 23845568 DOI: 10.1016/j.ajpath.2013.05.020] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 03/25/2013] [Accepted: 05/11/2013] [Indexed: 12/26/2022]
Abstract
A frequently used experimental model of chronic pancreatitis (CP) recapitulating human disease is repeated injection of cerulein into mice. C57BL/6 is the most commonly used inbred mouse strain for biomedical research, but widespread demand has led to generation of several substrains with subtly different phenotypes. In this study, two common substrains, C57BL/6J and C57BL/6NHsd, exhibited different degrees of CP, with C57BL/6J being more susceptible to repetitive cerulein-induced CP as assessed by pancreatic atrophy, pancreatic morphological changes, and fibrosis. We hypothesized that the deficiency of nicotinamide nucleotide transhydrogenase (NNT) protein in C57BL/6J is responsible for the more severe C57BL/6J phenotype but the parameters of CP in NNT-expressing transgenic mice generated on a C57BL6/J background do not differ with those of wild-type C57BL/6J. The highly similar genetic backgrounds but different CP phenotypes of these two substrains presents a unique opportunity to discover genes important in pathogenesis of CP. We therefore performed whole mouse genome Affymetrix microarray analysis of pancreatic gene expression of C57BL/6J and C57BL/6NHsd before and after induction of CP. Genes with differentially regulated expression between the two substrains that might be candidates in CP progression included Mmp7, Pcolce2, Itih4, Wdfy1, and Vtn. We also identified several genes associated with development of CP in both substrains, including RIKEN cDNA 1810009J06 gene (trypsinogen 5), Ccl8, and Ccl6.
Collapse
Affiliation(s)
- Barbara Ulmasov
- Department of Internal Medicine, Saint Louis University, Saint Louis, Missouri, USA.
| | | | | | | | | |
Collapse
|
34
|
Lerch MM, Gorelick FS. Models of acute and chronic pancreatitis. Gastroenterology 2013; 144:1180-93. [PMID: 23622127 DOI: 10.1053/j.gastro.2012.12.043] [Citation(s) in RCA: 294] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 12/06/2012] [Accepted: 12/13/2012] [Indexed: 12/16/2022]
Abstract
Animal models of acute and chronic pancreatitis have been created to examine mechanisms of pathogenesis, test therapeutic interventions, and study the influence of inflammation on the development of pancreatic cancer. In vitro models can be used to study early stage, short-term processes that involve acinar cell responses. Rodent models reproducibly develop mild or severe disease. One of the most commonly used pancreatitis models is created by administration of supraphysiologic concentrations of caerulein, an ortholog of cholecystokinin. Induction of chronic pancreatitis with factors thought to have a role in human disease, such as combinations of lipopolysaccharide and chronic ethanol feeding, might be relevant to human disease. Models of autoimmune chronic pancreatitis have also been developed. Most models, particularly of chronic pancreatitis, require further characterization to determine which features of human disease they include.
Collapse
Affiliation(s)
- Markus M Lerch
- Department of Medicine A, University Medicine Greifswald, Ferdinand-Sauerbruch-Strasse, Greifswald, Germany.
| | | |
Collapse
|
35
|
Effect of antioxidant supplementation on surrogate markers of fibrosis in chronic pancreatitis: a randomized, placebo-controlled trial. Pancreas 2013; 42:589-95. [PMID: 23531998 DOI: 10.1097/mpa.0b013e31826dc2d7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVES This study aimed to determine the effect of antioxidant (AO) supplementation on surrogate markers of fibrosis in patients with chronic pancreatitis (CP). METHODS In a randomized, placebo (PL)-controlled trial, patients with CP were randomized to groups that were given PL or AO for 3 months. Outcome measures were change in serum levels of transforming growth factor β1 and platelet-derived growth factor AA (PDGF-AA) (primary outcome) as well as blood markers of oxidative stress (thiobarbituric acid-reactive substances) and AO status (ferric-reducing ability of plasma) (secondary outcome). Pain relief and analgesic requirement was also recorded. RESULTS Patients (n = 61; mean [SD] age, 35.2 [10.0]; male patients, 43) were assigned to AO (n = 31) and PL (n = 30) groups. The median (range) percent reduction from baseline to 3 months in levels of PDGF-AA (17.1% [-25.3% to 88.7%] vs 2.8% [-243.1% to 30.2%]; P = 0.001), transforming growth factor β1 (P = 0.573), and thiobarbituric acid-reactive substances (P = 0.207) as well as percent increment from baseline to 3 months in ferric-reducing ability of plasma (P = 0.003) were higher in the AO group compared with the PL group. Proportion of patients who had both reduced PDGF-AA and reduced pain was greater in AO as compared with PL group (17/31 vs 9/30, P = 0.05) CONCLUSIONS Reduction in markers of fibrosis (PDGF-AA) translated into clinical outcome (reduction in pain and analgesic requirements) in those supplemented with AOs in CP (trial registration, CTRI/2011/05/001747).
Collapse
|
36
|
Gao X, Cao Y, Yang W, Duan C, Aronson JF, Rastellini C, Chao C, Hellmich MR, Ko TC. BMP2 inhibits TGF-β-induced pancreatic stellate cell activation and extracellular matrix formation. Am J Physiol Gastrointest Liver Physiol 2013; 304:G804-13. [PMID: 23429583 PMCID: PMC3652003 DOI: 10.1152/ajpgi.00306.2012] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Activation of pancreatic stellate cells (PSCs) by transforming growth factor (TGF)-β is the key step in the development of pancreatic fibrosis, a common pathological feature of chronic pancreatitis (CP). Bone morphogenetic proteins (BMPs), members of the TGF-β superfamily, have anti-fibrogenic functions, in contrast to TGF-β, in the kidney, lung, and liver. However, it is not known whether BMPs have an anti-fibrogenic role in the pancreas. The current study was designed to investigate the potential anti-fibrogenic role of BMPs in the pancreas using an in vivo CP model and an in vitro PSC model. CP was induced by repetitive intraperitoneal injections of cerulein in adult Swiss Webster mice. The control mice received saline injections. Compared with the control, cerulein injections induced a time-dependent increase in acinar injury and progression of fibrosis and a steady increase in inflammation. Cerulein injections also induced increases of the extracellular matrix (ECM) protein fibronectin and of α-smooth muscle actin (α-SMA)-positive stellate cells (PSCs). The mice receiving cerulein injections showed increased BMP2 protein levels and phosphorylated Smad1 levels up to 4 wk and then declined at 8 wk to similar levels as the control. In vitro, the isolated mouse and human PSCs were cultured and pretreated with BMP2 followed by TGF-β treatment. BMP2 pretreatment inhibited TGF-β-induced α-SMA, fibronectin, and collagen type Ia expression. Knocking down Smad1 with small-interfering RNA reversed the inhibitory effect of BMP2 on TGF-β-induced α-SMA and fibronectin expression. Thus, BMP2 opposes the fibrogenic function of TGF-β in PSCs through the Smad1 signaling pathway.
Collapse
Affiliation(s)
- Xuxia Gao
- 1Department of Surgery, University of Texas Health Science Center-Houston, Houston, Texas;
| | - Yanna Cao
- 1Department of Surgery, University of Texas Health Science Center-Houston, Houston, Texas; ,3Department of Surgery, University of Texas Medical Branch, Galveston, Texas
| | - Wenli Yang
- 1Department of Surgery, University of Texas Health Science Center-Houston, Houston, Texas;
| | - Chaojun Duan
- 1Department of Surgery, University of Texas Health Science Center-Houston, Houston, Texas;
| | - Judith F. Aronson
- 2Department of Pathology, University of Texas Medical Branch, Galveston, Texas; and
| | | | - Celia Chao
- 3Department of Surgery, University of Texas Medical Branch, Galveston, Texas
| | - Mark R. Hellmich
- 3Department of Surgery, University of Texas Medical Branch, Galveston, Texas
| | - Tien C. Ko
- 1Department of Surgery, University of Texas Health Science Center-Houston, Houston, Texas; ,3Department of Surgery, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
37
|
Yang L, Shen J, He S, Hu G, Shen J, Wang F, Xu L, Dai W, Xiong J, Ni J, Guo C, Wan R, Wang X. L-cysteine administration attenuates pancreatic fibrosis induced by TNBS in rats by inhibiting the activation of pancreatic stellate cell. PLoS One 2012; 7:e31807. [PMID: 22359633 PMCID: PMC3281011 DOI: 10.1371/journal.pone.0031807] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 01/16/2012] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND AIMS Recent studies have shown that activated pancreatic stellate cells (PSCs) play a major role in pancreatic fibrogenesis. We aimed to study the effect of L-cysteine administration on fibrosis in chronic pancreatitis (CP) induced by trinitrobenzene sulfonic acid (TNBS) in rats and on the function of cultured PSCs. METHODS CP was induced by TNBS infusion into rat pancreatic ducts. L-cysteine was administrated for the duration of the experiment. Histological analysis and the contents of hydroxyproline were used to evaluate pancreatic damage and fibrosis. Immunohistochemical analysis of α-SMA in the pancreas was performed to detect the activation of PSCs in vivo. The collagen deposition related proteins and cytokines were determined by western blot analysis. DNA synthesis of cultured PSCs was evaluated by BrdU incorporation. We also evaluated the effect of L-cysteine on the cell cycle and cell activation by flow cytometry and immunocytochemistry. The expression of PDGFRβ, TGFβRII, collagen 1α1 and α-SMA of PSCs treated with different concentrations of L-cysteine was determined by western blot. Parameters of oxidant stress were evaluated in vitro and in vivo. Nrf2, NQO1, HO-1, IL-1β expression were evaluated in pancreas tissues by qRT-PCR. RESULTS The inhibition of pancreatic fibrosis by L-cysteine was confirmed by histological observation and hydroxyproline assay. α-SMA, TIMP1, IL-1β and TGF-β1 production decreased compared with the untreated group along with an increase in MMP2 production. L-cysteine suppressed the proliferation and extracellular matrix production of PSCs through down-regulating of PDGFRβ and TGFβRII. Concentrations of MDA+4-HNE were decreased by L-cysteine administration along with an increase in GSH levels both in tissues and cells. In addition, L-cysteine increased the mRNA expression of Nrf2, NQO1 and HO-1 and reduced the expression of IL-1β in L-cysteine treated group when compared with control group. CONCLUSION L-cysteine treatment attenuated pancreatic fibrosis in chronic pancreatitis in rats.
Collapse
Affiliation(s)
- LiJuan Yang
- Department of Gastroenterology, The First People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - JiaQing Shen
- Department of Gastroenterology, The First People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - ShanShan He
- Department of Gastroenterology, The Tenth People's Hospital of Shanghai, Tongji University, Shanghai, People's Republic of China
| | - GuoYong Hu
- Department of Gastroenterology, The Tenth People's Hospital of Shanghai, Tongji University, Shanghai, People's Republic of China
| | - Jie Shen
- Department of Gastroenterology, The Tenth People's Hospital of Shanghai, Tongji University, Shanghai, People's Republic of China
| | - Feng Wang
- Department of Gastroenterology, The Tenth People's Hospital of Shanghai, Tongji University, Shanghai, People's Republic of China
| | - Ling Xu
- Department of Gastroenterology, The Tenth People's Hospital of Shanghai, Tongji University, Shanghai, People's Republic of China
| | - WeiQi Dai
- Department of Gastroenterology, The Tenth People's Hospital of Shanghai, Tongji University, Shanghai, People's Republic of China
| | - Jie Xiong
- Department of Gastroenterology, The Tenth People's Hospital of Shanghai, Tongji University, Shanghai, People's Republic of China
| | - JianBo Ni
- Department of Gastroenterology, The Tenth People's Hospital of Shanghai, Tongji University, Shanghai, People's Republic of China
| | - ChuanYong Guo
- Department of Gastroenterology, The Tenth People's Hospital of Shanghai, Tongji University, Shanghai, People's Republic of China
| | - Rong Wan
- Department of Gastroenterology, The Tenth People's Hospital of Shanghai, Tongji University, Shanghai, People's Republic of China
| | - XingPeng Wang
- Department of Gastroenterology, The First People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Department of Gastroenterology, The Tenth People's Hospital of Shanghai, Tongji University, Shanghai, People's Republic of China
| |
Collapse
|
38
|
Treiber M, Neuhöfer P, Anetsberger E, Einwächter H, Lesina M, Rickmann M, Liang S, Kehl T, Nakhai H, Schmid RM, Algül H. Myeloid, but not pancreatic, RelA/p65 is required for fibrosis in a mouse model of chronic pancreatitis. Gastroenterology 2011; 141:1473-85, 1485.e1-7. [PMID: 21763242 DOI: 10.1053/j.gastro.2011.06.087] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2011] [Accepted: 06/29/2011] [Indexed: 12/18/2022]
Abstract
BACKGROUND & AIMS Little is known about how transcription factors might regulate pathogenesis of chronic pancreatitis (CP). We analyzed the in vivo role of RelA/p65, a component of the transcription factor nuclear factor (NF)-κB, in different cell types during development of CP in mice. METHODS RelA/p65 was functionally inactivated in the pancreas (relaΔpanc), in myeloid cells (relaΔmye), or both (relaΔpanc,Δmye) compartments using the Cre-loxP strategy. Experimental CP was induced with repetitive injections of cerulein over 6 weeks. Pancreata were investigated histologically and biochemically. We created an in vitro coculture assay of pancreatic stellate cells (PSC) and macrophages and performed gene arrays from pancreata and macrophages with functionally inactivated RelA/p65. Tissue samples from patients with CP were analyzed for matrix metalloproteinase (MMP) 10 expression. RESULTS In contrast to their relaF/F littermates, relaΔpanc displayed typical signs of CP after long-term stimulation with cerulein. Numerous macrophages and activated α-smooth muscle actin (SMA)-positive PSCs were detected. Additional inactivation of RelA/p65 in myeloid cells (relaΔpanc,Δmye) attenuated fibrosis. In vitro, RelA/p65-deficient, lipopolysaccharide (LPS)-stimulated macrophages degraded fibronectin in cocultured PSCs. Using gene expression analysis, MMP-10 was identified as a candidate for this process. Recombinant MMP-10 degraded fibronectin in LPS-stimulated PSCs. In tissue samples from patients with CP, MMP-10 was up-regulated in myeloid cells. CONCLUSIONS RelA/p65 functions in myeloid cells to promote pathogenesis of CP. In acinar cells, RelA/p65 protects against chronic inflammation, whereas myeloid RelA/p65 promotes fibrogenesis. In macrophage, MMP-10 functions as a RelA/p65-dependent, potentially antifibrogenic factor during progression of CP.
Collapse
Affiliation(s)
- Matthias Treiber
- II. Medizinische Klinik, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Silva A, Weber A, Bain M, Reding T, Heikenwalder M, Sonda S, Graf R. COX-2 is not required for the development of murine chronic pancreatitis. Am J Physiol Gastrointest Liver Physiol 2011; 300:G968-75. [PMID: 21372163 DOI: 10.1152/ajpgi.00497.2010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Chronic pancreatitis is a severe inflammation of the pancreas associated with destruction of the parenchyma, fibrosis, and persistent abdominal pain. Cyclooxygenase-2 (COX-2) and COX-2-derived prostaglandins, key mediators of the inflammatory response, are elevated in patients with chronic pancreatitis. Previous studies investigated COX-2 as a therapeutic target. These reports showed a reduced pathology in COX-2-deficient mice with a better outcome. Here we compared the role of COX-2 in acute and chronic pancreatic inflammation using the same COX-2(-/-) mouse model of cerulein-induced pancreatitis. In a setting of acute pancreatitis, juvenile COX-2(-/-) mice exhibited a reduced histopathological score compared with wild-type littermates; on the contrary, adult mice did not show any difference in the development of the disease. Similarly, in a setting of chronic pancreatitis induced over a period of 4 wk, adult mice of the two strains showed comparable histological score and collagen deposition. However, the abundance of mRNAs coding for profibrotic genes, such as collagen, α-smooth muscle actin, and transforming growth factor-β was consistently lower in COX-2(-/-) mice. In addition, comparable histological scores and collagen deposition were observed in wild-type mice treated with a COX-2 inhibitor. We conclude that, in contrast to what was observed in the rat pancreatitis models, COX-2 has a limited and age-dependent effect on inflammatory processes in the mouse pancreas. These results suggest that COX-2 modulates the inflammatory process during the development of pancreatitis in a species-specific manner. Thus the pathophysiological roles of COX-2 and its therapeutic implications in patients with pancreatitis should be reexamined.
Collapse
Affiliation(s)
- Alberto Silva
- Swiss HPB Center, Pancreatitis Research Laboratory, Department of Visceral and Transplantation Surgery, University Hospital, Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
40
|
Sakurai T, Kudo M, Fukuta N, Nakatani T, Kimura M, Park AM, Munakata H. Involvement of angiotensin II and reactive oxygen species in pancreatic fibrosis. Pancreatology 2011; 11 Suppl 2:7-13. [PMID: 21464581 DOI: 10.1159/000323478] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Pancreatic cancers often develop in the context of pancreatic fibrosis caused by chronic pancreas inflammation, which also results in the accumulation of reactive oxygen species (ROS), pancreatic parenchymal cell death, and stellate cell activation. Angiotensin II, which is converted from angiotensin I by the angiotensin-converting enzyme (ACE), stimulates ROS production via NADPH oxidase. In stellate cells, angiotensin II activates the stress-activated protein kinase p38. However, the molecular mechanism by which angiotensin II regulates pancreatic inflammation and fibrosis remains to be determined. METHODS Wistar Bonn/Kobori (WBN/Kob) rats spontaneously develop chronic pancreatic inflammation. To examine whether blockade of the renin-angiotensin system affects the development of pancreatic fibrosis, WBN/Kob rats were given angiotensin II type 1 receptor (AT1R) blocker or ACE inhibitor (ACEI). Next, we assessed the role of angiotensin II and its possible downstream target p38α in stellate cell activation using primary stellate cells. RESULTS Treatment with AT1R blocker and ACEI prevented the development of chronic pancreatitis and fibrosis. In stellate cells, angiotensin II upregulated the expression of angiotensin II receptors, α-smooth muscle actin (SMA) and transforming growth factor-β. In addition, p38α was found to be essential to collagen type I production and α-SMA expression. ROS accumulation is enhanced in chronic pancreatic inflammation, which increases the risk of pancreatic cancer. CONCLUSIONS Inhibition of the angiotensin II signaling pathway might be a promising strategy to prevent pancreatic fibrogenesis and subsequent carcinogenesis.
Collapse
Affiliation(s)
- Toshiharu Sakurai
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Kinki University, Osakasayama, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
41
|
Identification and validation of SRC and phospho-SRC family proteins in circulating mononuclear cells as novel biomarkers for pancreatic cancer. Transl Oncol 2011; 4:83-91. [PMID: 21461171 DOI: 10.1593/tlo.10202] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 12/16/2010] [Accepted: 12/30/2010] [Indexed: 01/21/2023] Open
Abstract
There is an urgent need to develop novel markers of pancreatic cancer to facilitate early diagnosis. Pancreatic carcinoma is characterized by marked stroma formation with a high number of infiltrating tumor-associated macrophages (TAMs) that originate from circulating mononuclear cells (MNCs). We hypothesized that differential analysis of protein expression and phosphorylation in circulating MNCs from healthy nude mice and nude mice bearing orthotopic human pancreatic cancer would identify a surrogate marker of pancreatic cancer. These differences were analyzed by two-dimensional gel electrophoresis followed by Western blot analysis using antibody against phosphorylated tyrosine proteins (pY). Protein and phosphorylated protein spots of interest were identified by mass spectrometry and validated by Western blot analysis as candidate markers for pancreatic cancer. We found that the expression and phosphorylation of Src family proteins were significantly higher in circulating MNCs from mice bearing pancreatic cancer than in circulating MNCs from healthy mice. TAMs in mice with pancreatic tumors also had higher Src family protein expression and phosphorylation than resident macrophages in the pancreas of healthy mice. The expression and phosphorylation of Src family proteins were correlated with tumor weight; however, increased Src expression and phosphorylation also occurred in MNCs from mice with chronic pancreatitis. This is the first report to explore novel pancreatic tumor markers in circulating MNCs. Although the specificity of the marker for pancreatic cancer was low, it could be used to monitor the disease or to select high-risk patients with chronic pancreatitis.
Collapse
|
42
|
Li XC, Lu XL, Chen HH. α-Tocopherol treatment ameliorates chronic pancreatitis in an experimental rat model induced by trinitrobenzene sulfonic acid. Pancreatology 2011; 11:5-11. [PMID: 21311207 DOI: 10.1159/000309252] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Accepted: 03/13/2010] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To investigate the effects of α-tocopherol on pancreatic fibrosis and survival in rats with experimental chronic pancreatitis induced by trinitrobenzene sulfonic acid (TNBS). METHODS Chronic pancreatitis was induced in male Sprague-Dawley rats by infusion of TNBS into the pancreatic duct. α-Tocopherol (300, 600 or 900 mg/kg) was orally administered to rats with experimental pancreatitis (treatment group) daily for 4 weeks. The relative pancreatic weight, pancreatic pseudocyst and death rate were observed. Paraffin-embedded tissue samples were sliced, stained by hematoxylin-eosin and histopathologically examined. RESULTS α-Tocopherol administration significantly ameliorated the pancreatic weight loss induced by TNBS in chronic pancreatitis rats compared to the control group. There were pancreatic pseudocysts in 69% of the α-tocopherol group, and in 100% of the control group. α-Tocopherol administration led to a significant increase of the survival rate. The histopathologic scores were higher in the control group than in the α-tocopherol group. Subgroup analysis of histopathologic scores revealed that a high dose of α-tocopherol results in less pancreatic injuries. CONCLUSION α-Tocopherol treatment elevates survival rate, extenuates fibrosis and increases relative pancreatic weight in the chronic pancreatitis model. α-Tocopherol therapy in chronic pancreatitis is now required to confirm these findings and establish the role of this treatment in the management of this disabling condition. and IAP.
Collapse
Affiliation(s)
- X C Li
- Department of Geratology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | | | | |
Collapse
|
43
|
Yamada T, Araki H, Watabe K, Kamada Y, Kiso S, Ogiyama H, Nishihara T, Kihara S, Funahashi T, Shimomura I, Tsutsui S, Hayashi N. Adiponectin deficiency enhanced the severity of cerulein-induced chronic pancreatitis in mice. J Gastroenterol 2010; 45:742-9. [PMID: 20155376 DOI: 10.1007/s00535-010-0205-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Accepted: 12/28/2009] [Indexed: 02/04/2023]
Abstract
BACKGROUND Adiponectin is recognized as an antiinflammatory and antifibrotic protein derived from adipocytes, and low serum adiponectin levels are present in obesity. Recent studies have highlighted the relationship between obesity and pancreatic diseases. However, the role of adiponectin in chronic pancreatitis remains uncertain. The aim of this study was to determine the effects of adiponectin in chronic pancreatitis. METHODS We investigated the effects of adiponectin in experimental chronic pancreatitis by using adiponectin-knockout (APN-KO) mice. Chronic pancreatitis was induced by repeated hourly (6 times) intraperitoneal injections of 50 microg/kg cerulein three times per week for 4 weeks in wild-type (WT) and APN-KO mice. We evaluated the severity of chronic pancreatitis biochemically and morphologically. RESULTS In cerulein-treated mice, macroscopically and histologically, severe pancreatic damage was observed in APN-KO mice compared with findings in WT mice. The histological scores for chronic pancreatitis, including glandular atrophy, pseudotubular complex, fibrosis, and total scores, were significantly higher in APN-KO mice than in WT mice. Activated pancreatic stellate cells and F4/80-positive pancreatic macrophages accumulated in the pancreas of APN-KO mice but not in WT mice. Overexpression of the mRNAs of transforming growth factor-beta1, CD68, and monocyte chemoattractant protein-1 was noted in APN-KO mice but not in WT mice. The gene expression level of collagen1 (alpha1) tended to be higher in APN-KO mice than in WT mice, albeit insignificantly. CONCLUSIONS Adiponectin deficiency enhanced the severity of cerulein-induced chronic pancreatitis in mice. Hypoadiponectinemia could enhance the severity of chronic pancreatitis.
Collapse
Affiliation(s)
- Takuya Yamada
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Osaka University, 2-2, K1, Yamada-oka, Suita, Osaka, 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Wang YL, Zheng YQ, Xia SH, Wang HY, Su LT, Wu S. Oxymatrine enhances the expression of collagen I and α-SMA in rat chronic pancreatitis. Shijie Huaren Xiaohua Zazhi 2010; 18:1331-1336. [DOI: 10.11569/wcjd.v18.i13.1331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the treatment effects of oxymatrine (OM) against chronic pancreatitis in rats and to explore the potential mechanisms involved.
METHODS: Forty healthy Wistar rats were randomly and equally divided into four groups: negative control group (NC group), CP model group (CP group), OM treatment group (OT group), and OM pretreatment group (OP group), which received saline qod, diethyldithiocarbamate (DDC) at 700 mg/kg qod, diethyldithiocarbamate (DDC) at 700 mg/kg qod and OM at 100 mg/kg a week later, and diethyldithiocarbamate (DDC) at 700 mg/kg qod and OM at 100 mg/kg simultaneously, respectively. Thirty days later, DDC injection was discontinued, while OM treatment continued. Rats were executed on days 20 and 40 (n = 5 at each time point). Collagen fibers were stained by Masson's trichrome. The localization and expression of collagen I and α-SMA in chronic pancreatitis were examined by immunohistochemistry.
RESULTS: Collage I was localized in the periphery of the pancreas in the NC group. In the CP group, collagen I could also be seen in periacinar and perilobular areas. The immunoreactivity of α-SMA was detected in the blood vessel wall in the NC group, and in the blood vessel wall and periacinar area in the CP group. The expression of collagen I and α-SMA in periacinar area was significantly lower in the OP and OT groups than in the CP group. The percentages of collagen area on days 20 and 40 were significantly lower in the NC group (3.0% ± 0.32% and 2.45% ± 0.24%) than in the other groups (all P < 0.05), but significantly higher in the CP group (22.54% ± 4.45% and 35.14% ± 3.27%) than in the OP group (13.16% ± 1.84% and 25.14% ± 3.67%) and the OT group (19.58% ± 2.78% and 28.68% ± 2.55%). The percentages of collagen areas on day 40 in the CP and OT groups were significantly higher than those on day 20 (both P < 0.05). The relative expression levels of α-SMA on days 20 and 40 were significantly higher in the CP group (1.06 ± 0.04 and 1.16 ± 0.03) than in other groups (all P < 0.05). The NC group had the lowest relative expression level of α-SMA (0.73 ± 0.06 and 0.78 ± 0.06). No significant difference was noted in the relative expression level of α-SMA between the OT and OP groups.
CONCLUSION: The expression of collagen I and α-SMA is enhanced in rat CP, predominantly localized in perivascular, periacinar and perilobular areas. OM can decrease collagen production and pancreatic stellate cell activation and thereby inhibit the development of pancreatic fibrosis.
Collapse
|
45
|
Overexpression of Smad6 exacerbates pancreatic fibrosis in murine caerulein-induced chronic pancreatic injuries. Pancreas 2010; 39:385-91. [PMID: 19823096 DOI: 10.1097/mpa.0b013e3181bb9603] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVES We examined the effect of the overexpression of Smad6 on pancreatic fibrosis after chronic pancreatic injury. METHODS Chronic pancreatic injury was induced in transgenic mice overexpressing Smad6 (Tg mice) in acini and wild-type (Wt) mice by 3 episodes of acute pancreatitis per week for 1 to 4 consecutive weeks. Acute pancreatitis was elicited by 6 intraperitoneal injections of caerulein (Cn) at 50 microg/kg of body weight at hourly intervals. Pancreatic fibrosis was evaluated by histological examination and hydroxyproline content before and 1, 2, 3, and 4 weeks of repetitive episodes of Cn-induced acute pancreatitis. We further determined transforming growth factor beta1 (TGF-beta1) messenger RNA expression and trypsin activity in the pancreas. RESULTS After repetitive episodes of acute pancreatitis, pancreatic fibrosis in Tg mice was significantly severer than that in Wt mice at all time points (weeks 1-4). The expression of TGF-beta1 messenger RNA and the activity of trypsin in the pancreas in the Tg mice were significantly high compared with those in the Wt mice at all corresponding time points after repetitive episodes of acute pancreatitis. CONCLUSIONS These results demonstrated that overexpression of Smad6 in acini enhanced the development of pancreatic fibrosis after chronic pancreatic injury.
Collapse
|
46
|
Watanabe T, Masamune A, Kikuta K, Hirota M, Kume K, Satoh K, Shimosegawa T. Bone marrow contributes to the population of pancreatic stellate cells in mice. Am J Physiol Gastrointest Liver Physiol 2009; 297:G1138-46. [PMID: 19808658 DOI: 10.1152/ajpgi.00123.2009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Activated pancreatic stellate cells (PSCs) play a pivotal role in the development of pancreatic fibrosis. The origin of activated PSCs has been thought to be transformation of quiescent PSCs residing locally in the pancreas. Recent studies have suggested that bone marrow (BM)-derived cells participate in regeneration processes in various organs. This study aimed to clarify the contribution of BM-derived cells to the population of PSCs in mice. We transplanted BM cells from male enhanced green fluorescent protein transgenic mice into female C57BL/6 mice after lethal irradiation. Eight weeks after BM transplantation, chronic pancreatitis was induced by administration of six intra-abdominal injections of cerulein (50 microg/kg body wt) at 1-h intervals, 3 days per week, for the total of 6 wk. BM-derived cells were tracked by green fluorescent protein expression and in situ hybridization for the Y-chromosome. Eight weeks after BM transplantation, BM-derived cells accounted for 8.7% of the desmin (a marker of PSCs)-positive cells in the pancreas. We could isolate BM-derived cells, which contained lipid droplets and expressed desmin. They could be transformed to myofibroblast-like cells by culture in vitro, further supporting that BM contributed to the population of quiescent PSCs. After induction of pancreatic fibrosis, BM-derived cells accounted for 20.2% of alpha-smooth muscle actin-positive activated PSCs. The contribution of BM-derived cells to pancreatic ductal cells (positive for cytokeratin-19) was rare and less than 1%. In conclusion, our results suggested that BM-derived cells contributed to the population of PSCs in mice.
Collapse
|
47
|
Ulmasov B, Xu Z, Tetri LH, Inagami T, Neuschwander-Tetri BA. Protective role of angiotensin II type 2 receptor signaling in a mouse model of pancreatic fibrosis. Am J Physiol Gastrointest Liver Physiol 2009; 296:G284-94. [PMID: 19033539 PMCID: PMC2643909 DOI: 10.1152/ajpgi.90409.2008] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The renin-angiotensin system contributes to pathological processes in a variety of organs. In the pancreas, blocking the angiotensin II (AII) type 1 receptor (AT1) attenuates pancreatic fibrogenesis in animal models of pancreatitis. Because the role of the AII type 2 receptor (AT2) in modulating pancreatic injury is unknown we investigated the role of AT2 in pancreatic injury and fibrosis. Pancreatic fibrosis was induced by repetitive cerulein administration in C57BL/6 wild-type (WT) or AT2-deficient (AT2-/-) mice and assessed by morphology and gene expression at 10 days. There was no difference between WT and AT2-/- mice in the degree of acute pancreatic injury as assessed by amylase release at 9 and 12 h and by histological examination of the pancreas at 12 h. In contrast, parenchymal atrophy and fibrosis were more pronounced in AT2-/- mice compared with WT mice at 10 days. Fibrosis was accompanied by activation of pancreatic stellate cells (PSC) evaluated by Western blot analysis for alpha-smooth muscle actin and by immunocytochemistry; PSC activation was further increased in AT2-/- mice compared with WT mice. The level of pancreatic transforming growth factor-beta1 mRNA and protein after repetitive cerulein treatment was higher in AT2-/- mice than in WT mice. Our results demonstrate that, in contrast to AT1 receptor signaling, AT2 receptor signaling modulates protective antifibrogenic effects in a mouse model of cerulein-induced pancreatic fibrogenesis. We propose that the effects of AII on injury-induced pancreatic fibrosis may be determined by the balance between AT1 and AT2 receptor signaling.
Collapse
Affiliation(s)
- Barbara Ulmasov
- Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, Missouri; Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Zekuan Xu
- Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, Missouri; Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Laura H. Tetri
- Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, Missouri; Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Tadashi Inagami
- Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, Missouri; Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Brent A. Neuschwander-Tetri
- Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, Missouri; Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
48
|
Erkan M, Michalski CW, Rieder S, Reiser-Erkan C, Abiatari I, Kolb A, Giese NA, Esposito I, Friess H, Kleeff J. The activated stroma index is a novel and independent prognostic marker in pancreatic ductal adenocarcinoma. Clin Gastroenterol Hepatol 2008; 6:1155-61. [PMID: 18639493 DOI: 10.1016/j.cgh.2008.05.006] [Citation(s) in RCA: 346] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2007] [Revised: 04/12/2008] [Accepted: 05/02/2008] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS Pancreatic ductal adenocarcinoma (PDAC) is a highly desmoplastic tumor with an innate resistance to therapy. Pancreatic stellate cells (PSCs) produce this excessively desmoplastic microenvironment. The impact of PSC activity on PDAC behavior in vivo is analyzed. METHODS 233 patients who underwent surgery for PDAC were evaluated by immunohistochemistry using antibodies against alpha-smooth muscle actin as a marker of PSC activity. Aniline was used to stain collagen deposition. The ratio of alpha-smooth muscle actin-stained area to collagen-stained area was defined as the activated stroma index (ASI). Survival analysis was performed using the Kaplan-Meier method. Prognostic factors were determined in a multivariable analysis using a Cox proportional hazards model. RESULTS Four major patterns of collagen deposition were defined with regard to PSC activity. The combination of high stromal activity and low collagen deposition was associated with a worse prognosis, whereas the combination of high collagen deposition and low stromal activity indicated a better prognosis. Patients with the lowest ASI had the best median survival rate (25.7 mo). The highest ASI was found in patients with the worst median survival rate (16.1 mo; P = .007; lowest vs highest ASI: hazard ratio, 1.61; 95% confidence interval, 1.014-2.562). ASI was an independent prognostic marker in multivariable survival analysis comparable with the nodal status of cancer. CONCLUSIONS The activated stroma index is a novel independent prognostic marker in PDAC in cases undergoing surgery. This finding highlights the impact of the microenvironment in cancer progression and on patient survival.
Collapse
Affiliation(s)
- Mert Erkan
- Department of General Surgery, Technische Universität München, Munich, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Chronic pancreatitis and pancreatic cancer are characterised by a progressive fibrosis. Accumulation of extracellular matrix not only accompanies both diseases but is directly involved in their progression, suggesting inhibition of fibrogenesis as a potential therapeutic strategy. Pancreatic stellate cells (PSC) are the main extracellular matrix-producing cell type in the diseased pancreas. In response to pro-fibrogenic mediators including cytokines and ethanol metabolites, PSC undergo phenotypic changes termed activation, resulting in the exhibition of a myofibroblast-like phenotype. In the perpetuation of PSC activation, autocrine loops of mediators such as transforming growth factor beta play an important role. Most recently signal transduction pathways in PSC that are associated with the process of activation were characterised, facilitating identification of potential intracellular targets for an anti-fibrotic therapy. While some putative inhibitors of fibrogenesis have been tested in animal models of pancreatic fibrosis for their in vivo efficiency, clinical studies still remain to be performed.
Collapse
Affiliation(s)
- Robert Jaster
- Department of Medicine, Division of Gastroenterology, Medical Faculty, University of Rostock, E.-Heydemann-Strasse 6, 18057 Rostock, Germany.
| | | |
Collapse
|
50
|
Omary MB, Lugea A, Lowe AW, Pandol SJ. The pancreatic stellate cell: a star on the rise in pancreatic diseases. J Clin Invest 2007; 117:50-9. [PMID: 17200706 PMCID: PMC1716214 DOI: 10.1172/jci30082] [Citation(s) in RCA: 529] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pancreatic stellate cells (PaSCs) are myofibroblast-like cells found in the areas of the pancreas that have exocrine function. PaSCs are regulated by autocrine and paracrine stimuli and share many features with their hepatic counterparts, studies of which have helped further our understanding of PaSC biology. Activation of PaSCs induces them to proliferate, to migrate to sites of tissue damage, to contract and possibly phagocytose, and to synthesize ECM components to promote tissue repair. Sustained activation of PaSCs has an increasingly appreciated role in the fibrosis that is associated with chronic pancreatitis and with pancreatic cancer. Therefore, understanding the biology of PaSCs offers potential therapeutic targets for the treatment and prevention of these diseases.
Collapse
Affiliation(s)
- M. Bishr Omary
- Department of Medicine, VA Palo Alto Health Care System, Palo Alto, California, USA.
Stanford University School of Medicine, Stanford, California, USA.
USC-UCLA Research Center for Alcoholic Liver and Pancreatic Diseases and Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Aurelia Lugea
- Department of Medicine, VA Palo Alto Health Care System, Palo Alto, California, USA.
Stanford University School of Medicine, Stanford, California, USA.
USC-UCLA Research Center for Alcoholic Liver and Pancreatic Diseases and Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Anson W. Lowe
- Department of Medicine, VA Palo Alto Health Care System, Palo Alto, California, USA.
Stanford University School of Medicine, Stanford, California, USA.
USC-UCLA Research Center for Alcoholic Liver and Pancreatic Diseases and Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Stephen J. Pandol
- Department of Medicine, VA Palo Alto Health Care System, Palo Alto, California, USA.
Stanford University School of Medicine, Stanford, California, USA.
USC-UCLA Research Center for Alcoholic Liver and Pancreatic Diseases and Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA
| |
Collapse
|