1
|
Martinez-Rivas G, Ayala MV, Bender S, Codo GR, Swiderska WK, Lampis A, Pedroza L, Merdanovic M, Sicard P, Pinault E, Richard L, Lavatelli F, Giorgetti S, Canetti D, Rinsant A, Kaaki S, Ory C, Oblet C, Pollet J, Naser E, Carpinteiro A, Roussel M, Javaugue V, Jaccard A, Bonaud A, Delpy L, Ehrmann M, Bridoux F, Sirac C. A mouse model of cardiac immunoglobulin light chain amyloidosis reveals insights into tissue accumulation and toxicity of amyloid fibrils. Nat Commun 2025; 16:2992. [PMID: 40148271 PMCID: PMC11950232 DOI: 10.1038/s41467-025-58307-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 03/18/2025] [Indexed: 03/29/2025] Open
Abstract
Immunoglobulin light chain (LC) amyloidosis (AL) is one of the most common types of systemic amyloidosis but there is no reliable in vivo model for better understanding this disease. Here, we develop a transgenic mouse model producing a human AL LC. We show that the soluble full length LC is not toxic but a single injection of pre-formed amyloid fibrils or an unstable fragment of the LC leads to systemic amyloid deposits associated with early cardiac dysfunction. AL fibrils in mice are highly similar to that of human, arguing for a conserved mechanism of amyloid fibrils formation. Overall, this transgenic mice closely reproduces human cardiac AL amyloidosis and shows that a partial degradation of the LC is likely to initiate the formation of amyloid fibrils in vivo, which in turn leads to cardiac dysfunction. This is a valuable model for research on AL amyloidosis and preclinical evaluation of new therapies.
Collapse
Affiliation(s)
- Gemma Martinez-Rivas
- CNRS UMR7276/INSERM U1262, University of Limoges, CRIBL lab, team 3 BioPIC, Limoges, France
- French National Reference Centre for AL Amyloidosis and Other Monoclonal IG Deposition Diseases, University Hospital, Limoges, France
| | - Maria Victoria Ayala
- CNRS UMR7276/INSERM U1262, University of Limoges, CRIBL lab, team 3 BioPIC, Limoges, France
- French National Reference Centre for AL Amyloidosis and Other Monoclonal IG Deposition Diseases, University Hospital, Limoges, France
| | - Sebastien Bender
- CNRS UMR7276/INSERM U1262, University of Limoges, CRIBL lab, team 3 BioPIC, Limoges, France
- French National Reference Centre for AL Amyloidosis and Other Monoclonal IG Deposition Diseases, University Hospital, Limoges, France
| | - Gilles Roussine Codo
- CNRS UMR7276/INSERM U1262, University of Limoges, CRIBL lab, team 3 BioPIC, Limoges, France
- French National Reference Centre for AL Amyloidosis and Other Monoclonal IG Deposition Diseases, University Hospital, Limoges, France
| | - Weronika Karolina Swiderska
- CNRS UMR7276/INSERM U1262, University of Limoges, CRIBL lab, team 3 BioPIC, Limoges, France
- French National Reference Centre for AL Amyloidosis and Other Monoclonal IG Deposition Diseases, University Hospital, Limoges, France
| | - Alessio Lampis
- CNRS UMR7276/INSERM U1262, University of Limoges, CRIBL lab, team 3 BioPIC, Limoges, France
- French National Reference Centre for AL Amyloidosis and Other Monoclonal IG Deposition Diseases, University Hospital, Limoges, France
| | - Laura Pedroza
- University Duisburg-Essen, Centre for Medical Biotechnology, Essen, Germany
| | - Melisa Merdanovic
- University Duisburg-Essen, Centre for Medical Biotechnology, Essen, Germany
| | - Pierre Sicard
- PhyMedExp, IPAM/Biocampus (IBiSa/France Life Imaging), UMR INSERM 1046-CNRS 9214, universityof Montpellier, Montpellier, France
| | - Emilie Pinault
- BISCEm (Biologie Intégrative Santé Chimie Environnement) Platform, US 42 INSERM/UAR 2015 CNRS, University of Limoges, Limoges, France
| | | | - Francesca Lavatelli
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, Pavia, Italy
- Research Area, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Sofia Giorgetti
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, Pavia, Italy
- Research Area, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Diana Canetti
- Centre for Amyloidosis, Division of Medicine, University College London, London, UK
| | - Alexa Rinsant
- Department of Pathology, University Hospital, Poitiers, France
| | - Sihem Kaaki
- Department of Pathology, University Hospital, Poitiers, France
| | - Cécile Ory
- Department of Pathology, University Hospital, Poitiers, France
| | - Christelle Oblet
- CNRS UMR7276/INSERM U1262, University of Limoges, CRIBL lab, team 3 BioPIC, Limoges, France
| | - Justine Pollet
- CNRS UMR7276/INSERM U1262, University of Limoges, CRIBL lab, team 3 BioPIC, Limoges, France
| | - Eyad Naser
- Department of Hematology and Stem Cell Transplantation, West German Cancer Center, University Hospital Essen, Essen, Germany
| | - Alexander Carpinteiro
- Department of Hematology and Stem Cell Transplantation, West German Cancer Center, University Hospital Essen, Essen, Germany
| | - Muriel Roussel
- CNRS UMR7276/INSERM U1262, University of Limoges, CRIBL lab, team 3 BioPIC, Limoges, France
- French National Reference Centre for AL Amyloidosis and Other Monoclonal IG Deposition Diseases, University Hospital, Limoges, France
| | - Vincent Javaugue
- CNRS UMR7276/INSERM U1262, University of Limoges, CRIBL lab, team 3 BioPIC, Limoges, France
- French National Reference Centre for AL Amyloidosis and Other Monoclonal IG Deposition Diseases, University Hospital, Limoges, France
- Department of Nephrology, University Hospital, Poitiers, France
| | - Arnaud Jaccard
- CNRS UMR7276/INSERM U1262, University of Limoges, CRIBL lab, team 3 BioPIC, Limoges, France
- French National Reference Centre for AL Amyloidosis and Other Monoclonal IG Deposition Diseases, University Hospital, Limoges, France
| | - Amélie Bonaud
- CNRS UMR7276/INSERM U1262, University of Limoges, CRIBL lab, team 3 BioPIC, Limoges, France
- French National Reference Centre for AL Amyloidosis and Other Monoclonal IG Deposition Diseases, University Hospital, Limoges, France
| | - Laurent Delpy
- CNRS UMR7276/INSERM U1262, University of Limoges, CRIBL lab, team 3 BioPIC, Limoges, France
- French National Reference Centre for AL Amyloidosis and Other Monoclonal IG Deposition Diseases, University Hospital, Limoges, France
| | - Michael Ehrmann
- University Duisburg-Essen, Centre for Medical Biotechnology, Essen, Germany
| | - Frank Bridoux
- CNRS UMR7276/INSERM U1262, University of Limoges, CRIBL lab, team 3 BioPIC, Limoges, France
- French National Reference Centre for AL Amyloidosis and Other Monoclonal IG Deposition Diseases, University Hospital, Limoges, France
- Department of Nephrology, University Hospital, Poitiers, France
| | - Christophe Sirac
- CNRS UMR7276/INSERM U1262, University of Limoges, CRIBL lab, team 3 BioPIC, Limoges, France.
- French National Reference Centre for AL Amyloidosis and Other Monoclonal IG Deposition Diseases, University Hospital, Limoges, France.
| |
Collapse
|
2
|
Rashid MH, Sen P. Recent Advancements in Biosensors for the Detection and Characterization of Amyloids: A Review. Protein J 2024; 43:656-674. [PMID: 38824466 DOI: 10.1007/s10930-024-10205-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2024] [Indexed: 06/03/2024]
Abstract
Modern medicine has increased the human lifespan. However, with an increase in average lifespan risk of amyloidosis increases. Amyloidosis is a condition characterized by protein misfolding and aggregation. Early detection of amyloidosis is crucial, yet conventional diagnostic methods are costly and lack precision, necessitating innovative tools. This review explores recent advancements in diverse amyloid detection methodologies, highlighting the need for interdisciplinary research to develop a miniaturized electrochemical biosensor leveraging nanotechnology. However, the diagnostics industry faces obstacles such as skilled labor shortages, standardized selection processes, and concurrent multi-analyte identification challenges. Research efforts are focused on integrating electrochemical techniques into clinical applications and diagnostics, with the successful transition of miniaturized technologies from development to testing posing a significant hurdle. Label-free transduction techniques like voltammetry and electrochemical impedance spectroscopy (EIS) have gained traction due to their rapid, cost-effective, and user-friendly nature.
Collapse
Affiliation(s)
- Md Harun Rashid
- Centre for Bio Separation Technology (CBST), Technology Tower, Vellore Institute of Technology, VIT University, Vellore, 632014, Tamil Nadu, India
| | - Priyankar Sen
- Centre for Bio Separation Technology (CBST), Technology Tower, Vellore Institute of Technology, VIT University, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
3
|
Adams D, Sekijima Y, Conceição I, Waddington-Cruz M, Polydefkis M, Echaniz-Laguna A, Reilly MM. Hereditary transthyretin amyloid neuropathies: advances in pathophysiology, biomarkers, and treatment. Lancet Neurol 2023; 22:1061-1074. [PMID: 37863593 DOI: 10.1016/s1474-4422(23)00334-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 08/08/2023] [Accepted: 08/31/2023] [Indexed: 10/22/2023]
Abstract
Hereditary transthyretin (TTR) amyloid polyneuropathy is an autosomal dominant life-threatening disorder. TTR is produced mainly by the liver but also by the choroid plexus and retinal pigment epithelium. Detailed clinical characterisation, identification of clinical red flags for misdiagnosis, and use of biomarkers enable early diagnosis and treatment. In addition to liver transplantation and TTR stabilisers, three other disease-modifying therapies have regulatory approval: one antisense oligonucleotide (inotersen) and two small interfering RNAs (siRNAs; patisiran and vutrisiran). The siRNAs have been shown to stop progression of neuropathy and improve patients' quality of life. As none of the disease-modifying therapies can cross the blood-brain barrier, TTR deposition in the CNS, which can cause stroke and cognitive impairment, remains an important unaddressed issue. CRISPR-Cas9-based one-time TTR editing therapy is being investigated in a phase 1 clinical study. Identification of the earliest stages of pathogenesis in TTR variant carriers is a major challenge that needs addressing for optimal management.
Collapse
Affiliation(s)
- David Adams
- Department of Neurology, Bicêtre Centre Hospitalo Universitaire, AP-HP, INSERM U 1195, University Paris Saclay, Le Kremlin Bicetre, France.
| | - Yoshiki Sekijima
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, Matsumoto, Japan
| | - Isabel Conceição
- Department of Neurosciences and Mental Health, Centro Hospitalar Universitario Lisboas Norte-Hospital de Santa Maria and Centro de Estudos Egas Moniz, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Marcia Waddington-Cruz
- Centro de Estudos em Paramiloidose Antonio Rodrigues de Mello, National Amyloidosis Referral Center, University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Michael Polydefkis
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andoni Echaniz-Laguna
- Department of Neurology, Centre Hospitalo Universitaire, AP-HP, INSERM U 1195, University Paris Saclay, Le Kremlin Bicetre Cedex, France
| | - Mary M Reilly
- Department of Neuromuscular Disease, University College London Institute of Neurology and the National Hospital of Neurology and Neurosurgery, London, UK
| |
Collapse
|
4
|
Cheng S, Huang Z, Nakashima A, Sharma S. Gestational Age-Dependent Regulation of Transthyretin in Mice during Pregnancy. BIOLOGY 2023; 12:1048. [PMID: 37626934 PMCID: PMC10451295 DOI: 10.3390/biology12081048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023]
Abstract
Our prior studies have shown that protein misfolding and aggregation in the placenta are linked to the development of preeclampsia, a severe pregnancy complication. We identified transthyretin (TTR) as a key component of the aggregated protein complex. However, the regulation of native TTR in normal pregnancy remains unclear. In this study, we found that pregnant mice exhibited a remarkable and progressive decline in serum TTR levels through gestational day (gd) 12-14, followed by an increase in late pregnancy and postpartum. Meanwhile, serum albumin levels showed a modest but statistically significant increase throughout gestation. TTR protein and mRNA levels in the liver, a primary source of circulating TTR, mirrored the changes observed in serum TTR levels during gestation. Intriguingly, a similar pattern of TTR alteration was also observed in the serum of pregnant women and pregnant interleukin-10-knockout (IL-10-/-) mice with high inflammation background. In non-pregnant IL-10-/- mice, serum TTR levels were significantly lower than those in age-matched wild-type mice. Administration of IL-10 to non-pregnant IL-10-/- mice restored their serum TTR levels. Notably, dysregulation of TTR resulted in fewer implantation units, lower fetal weight, and smaller litter sizes in human TTR-overexpressing transgenic mice. Thus, TTR may play a pivotal role as a crucial regulator in normal pregnancy, and inflammation during pregnancy may contribute to the downregulation of serum TTR presence.
Collapse
Affiliation(s)
- Shibin Cheng
- Department of Pediatrics, Women & Infants Hospital, Rhode Island and Brown University, Providence, RI 02905, USA;
| | - Zheping Huang
- Department of Pediatrics, Women & Infants Hospital, Rhode Island and Brown University, Providence, RI 02905, USA;
| | - Akitoshi Nakashima
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Toyama, Toyama 930-8555, Japan;
| | - Surendra Sharma
- Department of Pediatrics, Women & Infants Hospital, Rhode Island and Brown University, Providence, RI 02905, USA;
| |
Collapse
|
5
|
Cheng S, Huang Z, Banerjee S, Jash S, Buxbaum JN, Sharma S. Evidence From Human Placenta, Endoplasmic Reticulum-Stressed Trophoblasts, and Transgenic Mice Links Transthyretin Proteinopathy to Preeclampsia. Hypertension 2022; 79:1738-1754. [PMID: 35607996 PMCID: PMC9308752 DOI: 10.1161/hypertensionaha.121.18916] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND We have demonstrated that protein aggregation plays a pivotal role in the pathophysiology of preeclampsia and identified several aggregated proteins in the circulation of preeclampsia patients, the most prominent of which is the serum protein TTR (transthyretin). However, the mechanisms that underlie protein aggregation remain poorly addressed. METHODS We examined TTR aggregates in hypoxia/reoxygenation-exposed primary human trophoblasts (PHTs) and the preeclampsia placenta using complementary approaches, including a novel protein aggregate detection assay. Mechanistic analysis was performed in hypoxia/reoxygenation-exposed PHTs and Ttr transgenic mice overexpressing transgene-encoded wild-type human TTR or Ttr-/- mice. High-resolution ultrasound analysis was used to measure placental blood flow in pregnant mice. RESULTS TTR aggregation was inducible in PHTs and the TCL-1 trophoblast cell line by endoplasmic reticulum stress inducers or autophagy-lysosomal disruptors. PHTs exposed to hypoxia/reoxygenation showed increased intracellular BiP (binding immunoglobulin protein), phosphorylated IRE1α (inositol-requiring enzyme-1α), PDI (protein disulfide isomerase), and Ero-1, all markers of the unfolded protein response, and the apoptosis mediator caspase-3. Blockade of IRE1α inhibited hypoxia/reoxygenation-induced upregulation of Ero-1 in PHTs. Excessive unfolded protein response activation was observed in the early-onset preeclampsia placenta. Importantly, pregnant human TTR mice displayed aggregated TTR in the junctional zone of the placenta and severe preeclampsia-like features. High-resolution ultrasound analysis revealed low blood flow in uterine and umbilical arteries in human TTR mice compared with control mice. However, Ttr-/- mice did not show any pregnancy-associated abnormalities. CONCLUSIONS These observations in the preeclampsia placenta, cultured trophoblasts, and Ttr transgenic mice indicate that TTR aggregation is an important causal contributor to preeclampsia pathophysiology.
Collapse
Affiliation(s)
- Shibin Cheng
- Department of Pediatrics, Women & Infants Hospital, Warren Alpert Medical School of Brown University, Providence, RI (S.C., Z.H., S.B., S.J., S.S.)
| | - Zheping Huang
- Department of Pediatrics, Women & Infants Hospital, Warren Alpert Medical School of Brown University, Providence, RI (S.C., Z.H., S.B., S.J., S.S.)
| | - Sayani Banerjee
- Department of Pediatrics, Women & Infants Hospital, Warren Alpert Medical School of Brown University, Providence, RI (S.C., Z.H., S.B., S.J., S.S.)
| | - Sukanta Jash
- Department of Pediatrics, Women & Infants Hospital, Warren Alpert Medical School of Brown University, Providence, RI (S.C., Z.H., S.B., S.J., S.S.)
| | - Joel N Buxbaum
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA (J.N.B.).,Protego Biopharma, Inc, San Diego, CA (J.N.B.)
| | - Surendra Sharma
- Department of Pediatrics, Women & Infants Hospital, Warren Alpert Medical School of Brown University, Providence, RI (S.C., Z.H., S.B., S.J., S.S.)
| |
Collapse
|
6
|
Gao L, Xie X, Liu P, Jin J. High-avidity binding drives nucleation of amyloidogenic transthyretin monomer. JCI Insight 2022; 7:150131. [PMID: 35393947 PMCID: PMC9057628 DOI: 10.1172/jci.insight.150131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 02/23/2022] [Indexed: 11/17/2022] Open
Abstract
Amyloidosis involves stepwise growth of fibrils assembled from soluble precursors. Transthyretin (TTR) naturally folds into a stable tetramer, whereas conditions and mutations that foster aberrant monomer formations facilitate TTR oligomeric aggregation and subsequent fibril extension. We investigated the early assembly of oligomers by WT TTR compared with its V30M and V122I variants. We monitored time-dependent redistribution among monomer, dimer, tetramer, and oligomer contents in the presence and absence of multimeric TTR seeds. The seeds were artificially constructed recombinant multimers that contained 20–40 TTR subunits via engineered biotin-streptavidin (SA) interactions. As expected, these multimer seeds rapidly nucleated TTR monomers into larger complexes, while having less effect on dimers and tetramers. In vivo, SA-induced multimers formed TTR-like deposits in the heart and the kidney following i.v. injection in mice. While all 3 variants prominently deposited glomerulus in the kidney, only V30M resulted in extensive deposition in the heart. The cardiac TTR deposits varied in size and shape and were localized in the intermyofibrillar space along the capillaries. These results are consistent with the notion of monomeric TTR engaging in high-avidity interactions with tissue amyloids. Our multimeric induction approach provides a model for studying the initiation of TTR deposition in the heart.
Collapse
Affiliation(s)
- Li Gao
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA.,Department of Cardiology, and
| | - Xinfang Xie
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA.,Department of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Pan Liu
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Jing Jin
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
7
|
Plasmin activity promotes amyloid deposition in a transgenic model of human transthyretin amyloidosis. Nat Commun 2021; 12:7112. [PMID: 34876572 PMCID: PMC8651690 DOI: 10.1038/s41467-021-27416-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 11/19/2021] [Indexed: 02/07/2023] Open
Abstract
Cardiac ATTR amyloidosis, a serious but much under-diagnosed form of cardiomyopathy, is caused by deposition of amyloid fibrils derived from the plasma protein transthyretin (TTR), but its pathogenesis is poorly understood and informative in vivo models have proved elusive. Here we report the generation of a mouse model of cardiac ATTR amyloidosis with transgenic expression of human TTRS52P. The model is characterised by substantial ATTR amyloid deposits in the heart and tongue. The amyloid fibrils contain both full-length human TTR protomers and the residue 49-127 cleavage fragment which are present in ATTR amyloidosis patients. Urokinase-type plasminogen activator (uPA) and plasmin are abundant within the cardiac and lingual amyloid deposits, which contain marked serine protease activity; knockout of α2-antiplasmin, the physiological inhibitor of plasmin, enhances amyloid formation. Together, these findings indicate that cardiac ATTR amyloid deposition involves local uPA-mediated generation of plasmin and cleavage of TTR, consistent with the previously described mechano-enzymatic hypothesis for cardiac ATTR amyloid formation. This experimental model of ATTR cardiomyopathy has potential to allow further investigations of the factors that influence human ATTR amyloid deposition and the development of new treatments. ATTR amyloidosis causes heart failure through the accumulation of misfolded transthyretin in cardiac muscle. Here the authors report a mouse model of ATTR amyloidosis and demonstrate the involvement of protease activity in ATTR amyloid deposition.
Collapse
|
8
|
Abstract
For many years amyloidosis was considered an extremely rare, somewhat mysterious disease. However, in the last 2-3 decades its pathogenesis, particularly that of renal amyloidosis has been carefully dissected in the research laboratory using in-vitro and, to a lesser extent, in-vivo models. These have provided a molecular understanding of sequential events that take place in the renal mesangium leading to the formation of amyloid fibrils and eventual extrusion into the mesangial matrix, which itself becomes seriously damaged and, in due time, replaced by the fibrillary material. Amyloid, once considered to be an "inert" substance, has been proven to be involved in crucial biological processes that result in the destruction and eventual replacement of normal renal constituents. This review centers on mechanisms involved in the renal glomerular amyloidosis to understand its pathogenesis.
Collapse
|
9
|
Hamasaki H, Shijo M, Nakamura A, Honda H, Yamada Y, Oda M, Ohara T, Ninomiya T, Iwaki T. Concurrent cardiac transthyretin and brain β amyloid accumulation among the older adults: The Hisayama study. Brain Pathol 2021; 32:e13014. [PMID: 34390072 PMCID: PMC8713523 DOI: 10.1111/bpa.13014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/29/2021] [Accepted: 07/29/2021] [Indexed: 11/28/2022] Open
Abstract
Previous studies have revealed risk for cognitive impairment in cardiovascular diseases. We investigated the relationship between degenerative changes of the brain and heart, with reference to Alzheimer's disease (AD) pathologies, cardiac transthyretin amyloid (ATTR) deposition, and cardiac fibrosis. A total of 240 consecutive autopsy cases of a Japanese population‐based study were examined. β amyloid (Aβ) of senile plaques, phosphorylated tau protein of neurofibrillary tangles, and ATTR in the hearts were immunohistochemically detected and graded according to the NIH‐AA guideline for AD pathology and as Tanskanen reported, respectively. Cerebral amyloid angiopathy (CAA) was graded according to the Vonsattel scale. Cardiac fibrosis was detected by picrosirius red staining, followed by image analysis. Cardiac ATTR deposition occurred after age 75 years and increased in an age‐dependent manner. ATTR deposition was more common, and of higher grades, in the dementia cases. We subdivided the cases into two age groups: ≤90 years old (n = 173) and >90 years old (n = 67), which was the mean and median age at death of the AD cases. When adjusted for age and sex, TTR deposition grades correlated with Aβ phase score (A2–3), the Consortium to Establish a Registry for AD score (sparse to frequent), and high Braak stage (V–VI) only in those aged ≤90 years at death. No significant correlation was observed between the cardiac ATTR deposition and CAA stages, or between cardiac fibrosis and AD pathologies. Collectively, AD brain pathology correlated with cardiac TTR deposition among the older adults ≤90 years.
Collapse
Affiliation(s)
- Hideomi Hamasaki
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masahiro Shijo
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Internal Medicine, Fukuoka Dental College Medical and Dental Hospital, Fukuoka, Japan
| | - Ayaka Nakamura
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroyuki Honda
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuichi Yamada
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masanao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomoyuki Ohara
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toshiharu Ninomiya
- Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Center for Cohort Studies, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toru Iwaki
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
10
|
Diteepeng T, Del Monte F, Luciani M. The long and winding road to target protein misfolding in cardiovascular diseases. Eur J Clin Invest 2021; 51:e13504. [PMID: 33527342 DOI: 10.1111/eci.13504] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/18/2021] [Accepted: 01/26/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND In the last decades, cardiovascular diseases (CVD) have remained the first leading cause of mortality and morbidity in the world. Although several therapeutic approaches have been introduced in the past, the development of novel treatments remains an important research goal, which is hampered by the lack of understanding of key mechanisms and targets. Emerging evidences in recent years indicate the involvement of misfolded proteins aggregation and the derailment of protein quality control in the pathogenesis of cardiovascular diseases. Several potential interventions targeting protein quality control have been translated from the bench to the bedside to effectively employ the misfolded proteins as promising therapeutic targets for cardiac diseases, but with trivial results. DESIGN In this review, we describe the recent progresses in preclinical and clinical studies of protein misfolding and compromised protein quality control by selecting and reporting studies focusing on cardiovascular diseases including cardiomyopathies, cardiac amyloidosis, atherosclerosis, atrial fibrillation and thrombosis. RESULTS In preclinical models, modulators of several molecular targets (eg heat shock proteins, unfolded protein response, ubiquitin protein system, autophagy and histone deacetylases) have been tested in various conditions with promising results although lacking an adequate transition towards clinical setting. CONCLUSIONS At present, no therapeutic strategies have been reported to attenuate proteotoxicity in patients with CVD due to a lack of specific biomarkers for pinpointing upstream events in protein folding defects at a subclinical stage of the diseases requiring an intensive collaboration between basic scientists and clinicians.
Collapse
Affiliation(s)
- Thamonwan Diteepeng
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - Federica Del Monte
- Department of Medicine, Division of Cardiology, Medical University of South Carolina, Charleston, SC, USA.,Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna Alma Mater, Bologna, Italy
| | - Marco Luciani
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland.,Department of Internal Medicine, Cantonal Hospital of Baden, Baden, Switzerland
| |
Collapse
|
11
|
Monu, Kharb R, Sharma A, Chaddar MK, Yadav R, Agnihotri P, Kar A, Biswas S. Plasma Proteome Profiling of Coronary Artery Disease Patients: Downregulation of Transthyretin-An Important Event. Mediators Inflamm 2020; 2020:3429541. [PMID: 33299376 PMCID: PMC7707994 DOI: 10.1155/2020/3429541] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/24/2020] [Indexed: 02/07/2023] Open
Abstract
Coronary artery disease (CAD) is a prevalent chronic inflammatory cardiac disorder. An early diagnosis is likely to help in the prevention and proper management of this disease. As the study of proteomics provides the potential markers for detection of a disease, in the present investigation, attempt has been made to identify disease-associated differential proteins involved in CAD pathogenesis. For this study, a total of 200 selected CAD patients were considered, who were recruited for percutaneous coronary intervention (PCI) treatment. The proteomic analysis was performed using two-dimensional gel electrophoresis (2-DE) and MALDI-TOF MS/MS. Samples were also subjected to Western blot analysis, enzyme-linked immunosorbent assay (ELISA), peripheral blood mononuclear cells isolation immunofluorescence (IF) analysis, analytical screening by fluorescence-activated cell sorting (FACS), and in silico analysis. The representative data were shown as mean ± SD of at least three experiments. A total of 19 proteins were identified. Among them, the most abundant five proteins (serotransferrin, talin-1, alpha-2HS glycoprotein, transthyretin (TTR), fibrinogen-α chain) were found to have altered level in CAD. Serotransferrin, talin-1, alpha-2HS glycoprotein, and transthyretin (TTR) were found to have lower level, whereas fibrinogen-α chain was found to have higher level in CAD plasma compared to healthy, confirmed by Western blot analysis. TTR, an important acute phase transport protein, was validated low level in 200 CAD patients who confirmed to undergo PCI treatment. Further, in silico and in vitro studies of TTR indicated a downexpression of CAD in plasma as compared to the plasma of healthy individuals. Lower level of plasma TTR was determined to be an important risk marker in the atherosclerotic-approved CAD patients. We suggest that the TTR lower level predicts disease severity and hence may serve as an important marker tool for CAD screening. However, further large-scale studies are required to determine the clinical significance of TTR.
Collapse
Affiliation(s)
- Monu
- Council of Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, Mall Road, Delhi University Campus, 110007, Delhi, India
| | - Rupsi Kharb
- Council of Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, Mall Road, Delhi University Campus, 110007, Delhi, India
- Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), University of Delhi, Pushpvihar, New Delhi 110017, India
| | - Ankita Sharma
- Council of Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, Mall Road, Delhi University Campus, 110007, Delhi, India
| | - Monu Kumar Chaddar
- Council of Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, Mall Road, Delhi University Campus, 110007, Delhi, India
| | - Rakesh Yadav
- All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Prachi Agnihotri
- Council of Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, Mall Road, Delhi University Campus, 110007, Delhi, India
| | - Anand Kar
- School of Life Sciences, Takshashila Campus, Devi Ahilya University, 452017, Indore, India
| | - Sagarika Biswas
- Council of Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, Mall Road, Delhi University Campus, 110007, Delhi, India
| |
Collapse
|
12
|
Aubrey LD, Blakeman BJF, Lutter L, Serpell CJ, Tuite MF, Serpell LC, Xue WF. Quantification of amyloid fibril polymorphism by nano-morphometry reveals the individuality of filament assembly. Commun Chem 2020; 3:125. [PMID: 36703355 PMCID: PMC9814634 DOI: 10.1038/s42004-020-00372-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 08/12/2020] [Indexed: 01/29/2023] Open
Abstract
Amyloid fibrils are highly polymorphic structures formed by many different proteins. They provide biological function but also abnormally accumulate in numerous human diseases. The physicochemical principles of amyloid polymorphism are not understood due to lack of structural insights at the single-fibril level. To identify and classify different fibril polymorphs and to quantify the level of heterogeneity is essential to decipher the precise links between amyloid structures and their functional and disease associated properties such as toxicity, strains, propagation and spreading. Employing gentle, force-distance curve-based AFM, we produce detailed images, from which the 3D reconstruction of individual filaments in heterogeneous amyloid samples is achieved. Distinctive fibril polymorphs are then classified by hierarchical clustering, and sample heterogeneity is objectively quantified. These data demonstrate the polymorphic nature of fibril populations, provide important information regarding the energy landscape of amyloid self-assembly, and offer quantitative insights into the structural basis of polymorphism in amyloid populations.
Collapse
Affiliation(s)
- Liam D. Aubrey
- grid.9759.20000 0001 2232 2818Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, CT2 7NJ UK
| | - Ben J. F. Blakeman
- grid.9759.20000 0001 2232 2818Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, CT2 7NJ UK
| | - Liisa Lutter
- grid.9759.20000 0001 2232 2818Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, CT2 7NJ UK
| | - Christopher J. Serpell
- grid.9759.20000 0001 2232 2818School of Physical Sciences, University of Kent, Canterbury, CT2 7NH UK
| | - Mick F. Tuite
- grid.9759.20000 0001 2232 2818Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, CT2 7NJ UK
| | - Louise C. Serpell
- grid.12082.390000 0004 1936 7590Sussex Neuroscience, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG UK
| | - Wei-Feng Xue
- grid.9759.20000 0001 2232 2818Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, CT2 7NJ UK
| |
Collapse
|
13
|
Buxbaum J, Tagoe C, Gallo G, Reixach N, French D. The pathogenesis of transthyretin tissue deposition: lessons from transgenic mice. Amyloid 2020. [DOI: 10.1080/13506129.2003.12088560] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Joel Buxbaum
- The Scripps Research Institute, La Jolla, California, USA
| | - Clement Tagoe
- New York University School of Medicine, New York City, New York, USA
| | - Gloria Gallo
- New York University School of Medicine, New York City, New York, USA
| | | | - David French
- The Scripps Research Institute, La Jolla, California, USA
| |
Collapse
|
14
|
Abstract
Objectives: Previous clinical studies have shown frequent cardiac symptoms in patients with hereditary gelsolin (AGel) amyloidosis, possibly related to amyloid deposition in the heart and other internal organs. Previous studies on internal organ amyloid deposition in AGel amyloidosis have been based on small patient series. Methods: Paraffin-embedded tissue sections from 25 autopsied individuals (age at death 44.4-88.6 years) with AGel amyloidosis were stained with HE, Congo red and Herovici stains and immunohistochemistry against the low molecular weight gelsolin fraction was performed. The amount of amyloid was estimated semi-quantitatively. Results: AGel-based amyloid deposits were found in the myocardium and cardiac blood vessels in every patient. The deposits were mainly small and co-localized with regions with excess fibrosis in the myocardium. The lungs were positive for amyloid in 79%, renal parenchyma in 54% and renal blood vessels in 71% of the cases. The amount of myocardial, renal and hepatic amyloid correlated with age at death of the patients. Conclusions: We show the constant presence of AGel amyloid in the hearts of patients with AGel amyloidosis. Although the deposits were mainly small, the co-localization of amyloid with fibrosis may amplify the effect of pure amyloid deposition, possibly leading to clinical signs and symptoms.
Collapse
Affiliation(s)
- Eeva-Kaisa Schmidt
- a Department of Neurosciences, Faculty of Medicine, University of Helsinki , Helsinki , Finland
| | - Sari Kiuru-Enari
- a Department of Neurosciences, Faculty of Medicine, University of Helsinki , Helsinki , Finland
| | - Sari Atula
- a Department of Neurosciences, Faculty of Medicine, University of Helsinki , Helsinki , Finland.,b Department of Neurology, Helsinki University Hospital , Helsinki , Finland
| | - Maarit Tanskanen
- c Department of Pathology, HUSLAB, Helsinki University Hospital , Helsinki , Finland.,d Department of Pathology, Faculty of Medicine, University of Helsinki , Helsinki , Finland
| |
Collapse
|
15
|
Kameyama H, Uchimura K, Yamashita T, Kuwabara K, Mizuguchi M, Hung SC, Okuhira K, Masuda T, Kosugi T, Ohgita T, Saito H, Ando Y, Nishitsuji K. The Accumulation of Heparan Sulfate S-Domains in Kidney Transthyretin Deposits Accelerates Fibril Formation and Promotes Cytotoxicity. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 189:308-319. [PMID: 30414409 DOI: 10.1016/j.ajpath.2018.09.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 09/18/2018] [Accepted: 09/26/2018] [Indexed: 10/27/2022]
Abstract
The highly sulfated domains of heparan sulfate (HS), alias HS S-domains, are made up of repeated trisulfated disaccharide units [iduronic acid (2S)-glucosamine (NS, 6S)] and are selectively remodeled by extracellular endoglucosamine 6-sulfatases (Sulfs). Although HS S-domains are critical for signal transduction of several growth factors, their roles in amyloidoses are not yet fully understood. Herein, we found HS S-domains in the kidney of a patient with transthyretin amyloidosis. In in vitro assays with cells stably expressing human Sulfs, heparin, a structural analog of HS S-domains, promoted aggregation of transthyretin in an HS S-domain-dependent manner. Interactions of cells with transthyretin fibrils and cytotoxicity of these fibrils also depended on HS S-domains at the cell surface. Furthermore, glypican-5, encoded by the susceptibility gene for nephrotic syndrome GPC5, was found to be accumulated in the transthyretin amyloidosis kidney. Our study, thus, provides a novel insight into the pathologic roles of HS S-domains in amyloidoses, and we propose that enzymatic remodeling of HS chains by Sulfs may offer an effective approach to inhibiting formation and cytotoxicity of amyloid fibrils.
Collapse
Affiliation(s)
- Hirokazu Kameyama
- Department of Molecular Physical Pharmaceutics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Kenji Uchimura
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan; Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS, Université de Lille 1, Villeneuve d'Ascq, France
| | - Taro Yamashita
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kaori Kuwabara
- Department of Molecular Physical Pharmaceutics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | | | | | - Keiichiro Okuhira
- Department of Molecular Physical Pharmaceutics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Tomohiro Masuda
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomoki Kosugi
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takashi Ohgita
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Hiroyuki Saito
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Yukio Ando
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kazuchika Nishitsuji
- Department of Biochemistry, Wakayama Medical University, Wakayama, Japan; Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan.
| |
Collapse
|
16
|
Reglodi D, Jungling A, Longuespée R, Kriegsmann J, Casadonte R, Kriegsmann M, Juhasz T, Bardosi S, Tamas A, Fulop BD, Kovacs K, Nagy Z, Sparks J, Miseta A, Mazzucchelli G, Hashimoto H, Bardosi A. Accelerated pre-senile systemic amyloidosis in PACAP knockout mice - a protective role of PACAP in age-related degenerative processes. J Pathol 2018; 245:478-490. [PMID: 29774542 PMCID: PMC6055756 DOI: 10.1002/path.5100] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 04/10/2018] [Accepted: 05/12/2018] [Indexed: 12/14/2022]
Abstract
Dysregulation of neuropeptides may play an important role in aging‐induced impairments. Among them, pituitary adenylate cyclase‐activating polypeptide (PACAP) is a potent cytoprotective peptide that provides an endogenous control against a variety of tissue‐damaging stimuli. We hypothesized that the progressive decline of PACAP throughout life and the well‐known general cytoprotective effects of PACAP lead to age‐related pathophysiological changes in PACAP deficiency, supported by the increased vulnerability to various stressors of animals partially or totally lacking PACAP. Using young and aging CD1 PACAP knockout (KO) and wild type (WT) mice, we demonstrated pre‐senile amyloidosis in young PACAP KO animals and showed that senile amyloidosis appeared accelerated, more generalized, more severe, and affected more individuals. Histopathology showed age‐related systemic amyloidosis with mainly kidney, spleen, liver, skin, thyroid, intestinal, tracheal, and esophageal involvement. Mass spectrometry‐based proteomic analysis, reconfirmed with immunohistochemistry, revealed that apolipoprotein‐AIV was the main amyloid protein in the deposits together with several accompanying proteins. Although the local amyloidogenic protein expression was disturbed in KO animals, no difference was found in laboratory lipid parameters, suggesting a complex pathway leading to increased age‐related degeneration with amyloid deposits in the absence of PACAP. In spite of no marked inflammatory histological changes or blood test parameters, we detected a disturbed cytokine profile that possibly creates a pro‐inflammatory milieu favoring amyloid deposition. In summary, here we describe accelerated systemic senile amyloidosis in PACAP gene‐deficient mice, which might indicate an early aging phenomenon in this mouse strain. Thus, PACAP KO mice could serve as a model of accelerated aging with human relevance. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Dora Reglodi
- Department of Anatomy, MTA-PTE PACAP Research Group, University of Pecs Medical School, Pécs, Hungary
| | - Adel Jungling
- Department of Anatomy, MTA-PTE PACAP Research Group, University of Pecs Medical School, Pécs, Hungary
| | - Rémi Longuespée
- Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | - Joerg Kriegsmann
- Center for Histology, Cytology and Molecular Diagnostics, Trier, Germany.,Proteopath GmbH, Trier, Germany
| | | | - Mark Kriegsmann
- Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | - Tamas Juhasz
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Hungary
| | - Sebastian Bardosi
- Center for Histology, Cytology and Molecular Diagnostics, Trier, Germany
| | - Andrea Tamas
- Department of Anatomy, MTA-PTE PACAP Research Group, University of Pecs Medical School, Pécs, Hungary
| | - Balazs Daniel Fulop
- Department of Anatomy, MTA-PTE PACAP Research Group, University of Pecs Medical School, Pécs, Hungary
| | - Krisztina Kovacs
- Department of Biochemistry and Medical Chemistry, University of Pecs Medical School, Pécs, Hungary
| | - Zsuzsanna Nagy
- Second Department of Internal Medicine, University of Pecs Medical School, Pécs, Hungary
| | - Jason Sparks
- Department of Anatomy, MTA-PTE PACAP Research Group, University of Pecs Medical School, Pécs, Hungary
| | - Attila Miseta
- Department of Laboratory Medicine and Szentagothai Research Centre, University of Pecs Medical School, Pécs, Hungary
| | - Gabriel Mazzucchelli
- Laboratory of Mass Spectrometry (LSM) - MolSys, Department of Chemistry, University of Liège, Belgium
| | - Hitoshi Hashimoto
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Japan
| | - Attila Bardosi
- Center for Histology, Cytology and Molecular Diagnostics, Trier, Germany
| |
Collapse
|
17
|
Li X, Lyu Y, Shen J, Mu Y, Qiang L, Liu L, Araki K, Imbimbo BP, Yamamura KI, Jin S, Li Z. Amyloid deposition in a mouse model humanized at the transthyretin and retinol-binding protein 4 loci. J Transl Med 2018; 98:512-524. [PMID: 29330472 DOI: 10.1038/s41374-017-0019-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/29/2017] [Accepted: 12/02/2017] [Indexed: 12/19/2022] Open
Abstract
Familial amyloidotic polyneuropathy is an autosomal dominant disorder caused by a point mutation in the transthyretin (TTR) gene. The process of TTR amyloidogenesis begins with rate-limiting dissociation of the TTR tetramer. Thus, the TTR stabilizers, such as Tafamidis and Diflunisal, are now in clinical trials. Mouse models will be useful to testing the efficacy of these drugs. Although several mouse models have been generated, they all express mouse Rbp4. Thus, human TTR associates with mouse RBP4, resulting in different kinetic and thermodynamic stability profiles of TTR tetramers. To overcome this problem, we previously produced humanized mouse strains at both the TTR and Rbp4 loci (Ttr hTTRVal30 , Ttr hTTRMet30 , and Rbp4 hRBP4 ). By mating these mice, we produced double-humanized mouse strains, Ttr hTTRVal30/hTTRVal30 :Rbp4 hRBP4/hRBP4 and Ttr hTTRVal30/Met30 :Rbp4 hRBP4/hRBP4 . We used conventional transgenic mouse strains on a wild-type (Ttr +/+ :Tg[6.0hTTRMet30]) or knockout Ttr background (Ttr-/-:Tg[6.0hTTRMet30]) as reference strains. The double-humanized mouse showed 1/25 of serum hTTR and 1/40 of serum hRBP4 levels. However, amyloid deposition was more pronounced in Ttr hTTRVal30/Met30 :Rbp4 hRBP4/hRBP4 than in conventional transgenic mouse strains. In addition, a similar amount of amyloid deposition was also observed in Ttr hTTRVal30/ hTTRVal30 :Rbp4 hRBP4/ hRBP4 mice that carried the wild-type human TTR gene. Furthermore, amyloid deposition was first observed in the sciatic nerve without any additional genetic change. In all strains, anti-TTR antibody-positive deposits were found in earlier age and at higher percentage than amyloid fibril deposition. In double-humanized mice, gel filtration analysis of serum revealed that most hTTR was free of hRBP4, suggesting importance of free TTR for amyloid deposition.
Collapse
Affiliation(s)
- Xiangshun Li
- Division of Respiratory Disease, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yanyi Lyu
- Department of Histology and Embryology, Harbin Medical University, Harbin, China
| | - Jingling Shen
- Department of Histology and Embryology, Harbin Medical University, Harbin, China
| | - Yanshuang Mu
- Yamamura Project Laboratory, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
| | - Lixia Qiang
- Division of Respiratory Disease, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Li Liu
- Department of Histology and Embryology, Harbin Medical University, Harbin, China
| | - Kimi Araki
- Department of Developmental Genetics, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
| | | | - Ken-Ichi Yamamura
- Yamamura Project Laboratory, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
| | - Shoude Jin
- Division of Respiratory Disease, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Zhenghua Li
- Department of Histology and Embryology, Harbin Medical University, Harbin, China.
| |
Collapse
|
18
|
Kan HW, Chiang H, Lin WM, Yu IS, Lin SW, Hsieh ST. Sensory nerve degeneration in a mouse model mimicking early manifestations of familial amyloid polyneuropathy due to transthyretin Ala97Ser. Neuropathol Appl Neurobiol 2018; 44:673-686. [PMID: 29423915 DOI: 10.1111/nan.12477] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 01/31/2018] [Indexed: 01/30/2023]
Abstract
AIMS Sensory nerve degeneration and consequent abnormal sensations are the earliest and most prevalent manifestations of familial amyloid polyneuropathy (FAP) due to amyloidogenic transthyretin (TTR). FAP is a relentlessly progressive degenerative disease of the peripheral nervous system. However, there is a lack of mouse models to replicate the early neuropathic manifestations of FAP. METHODS We established human TTR knock-in mice by replacing one allele of the mouse Ttr locus with human wild-type TTR (hTTRwt ) or human TTR with the A97S mutation (hTTRA97S ). Given the late onset of neuropathic manifestations in A97S-FAP, we investigated nerve pathology, physiology, and behavioural tests in these mice at two age points: the adult group (8 - 56 weeks) and the ageing group (> 104 weeks). RESULTS In the adult group, nerve profiles, neurophysiology and behaviour were similar between hTTRwt and hTTRA97S mice. By contrast, ageing hTTRA97S mice showed small fibre neuropathy with decreased intraepidermal nerve fibre density and behavioural signs of mechanical allodynia. Furthermore, significant reductions in sural nerve myelinated nerve fibre density and sensory nerve action potential amplitudes in these mice indicated degeneration of large sensory fibres. The unaffected motor nerve physiology replicated the early symptoms of FAP patients, that is, sensory nerves were more vulnerable to mutant TTR than motor nerves. CONCLUSIONS These results demonstrate that the hTTRA97S mouse model develops sensory nerve pathology and corresponding physiology mimicking A97S-FAP and provides a platform to develop new therapies for the early stage of A97S-FAP.
Collapse
Affiliation(s)
- H-W Kan
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - H Chiang
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - W-M Lin
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - I-S Yu
- Laboratory Animal Center, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - S-W Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - S-T Hsieh
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
19
|
A mouse model of a novel missense mutation (Gly83Arg) in a Chinese kindred manifesting vitreous amyloidosis only. Exp Eye Res 2018; 169:13-19. [PMID: 29360446 DOI: 10.1016/j.exer.2018.01.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 01/18/2018] [Accepted: 01/18/2018] [Indexed: 12/24/2022]
Abstract
The purpose of this study is to establish a mouse model of transthyretin (TTR) Gly83Arg gene mutation by the technique of gene targeting for research on hereditary vitreous amyloidosis (HVA) and to confirm whether this point mutation is a genetic feature of HVA. A vector (pBR322-MK-TTR) was constructed to target ES cells. The successfully transfected ES cells were used for blastocyst injection, thus generating F0. F0 and Flp mice were mated to generate F1 (TTR+/-, Flp +/-) mice that lacked the neo gene but carried the Flp gene. F1 mice were mated with C57BL/6N wild type mice to generate F2 (TTR+/-) mice. F3 homozygous and heterozygous mice were generated by mating F2 mice with each other. PCR and sequencing were performed for F3 mice. Amyloid was detected using Congo red stain and polarized light. Immunohistochemistry was used to detect the expression of TTR in the tissues. Quantitative fluorescent PCR and Western blotting were used to detect the expression of TTR mRNA and TTR protein, respectively. Two F0-generation, 2 F1-generation and 15 F3-generation mice were obtained. The gene sequencing of F3 mice showed TTR Gly83Arg mutation. When examined with Congo red and polarized light, the vitreous of TTR Gly83Arg mutant mice tested positive for amyloid. The hearts, livers, brains and kidneys of the experimental group and control group were all negative by Congo red staining. Immunohistochemical staining showed that the vitreous of TTR Gly83Arg mutant mice and the livers of the control mice were positive, but the kidneys, hearts and brains of both groups were negative. Quantitative fluorescent PCR showed that the mRNA expression of mutant mice was significantly lower than that of wild-type mice (F = 0.295, P = 0.023). Western blotting showed that the expression of TTR protein was significantly lower in the model mice than in the wild-type mice (t = 3.224, P = 0.018). TTR gene mutation is indeed a molecular characteristic of HVA and manifest in the eye disease only. A C57BL/6 mouse line carrying the TTR Gly83Arg gene mutation was successfully established. This strain of mice can be used for the study of HVA.
Collapse
|
20
|
Matsuzaki T, Akasaki Y, Olmer M, Alvarez‐Garcia O, Reixach N, Buxbaum JN, Lotz MK. Transthyretin deposition promotes progression of osteoarthritis. Aging Cell 2017; 16:1313-1322. [PMID: 28941045 PMCID: PMC5676063 DOI: 10.1111/acel.12665] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2017] [Indexed: 01/01/2023] Open
Abstract
Deposition of amyloid is a common aging-associated phenomenon in several aging-related diseases. Osteoarthritis (OA) is the most prevalent joint disease, and aging is its major risk factor. Transthyretin (TTR) is an amyloidogenic protein that is deposited in aging and OA-affected human cartilage and promotes inflammatory and catabolic responses in cultured chondrocytes. Here, we investigated the role of TTR in vivo using transgenic mice overexpressing wild-type human TTR (hTTR-TG). Although TTR protein was detected in cartilage in hTTR-TG mice, the TTR transgene was highly overexpressed in liver, but not in chondrocytes. OA was surgically induced by destabilizing the medial meniscus (DMM) in hTTR-TG mice, wild-type mice of the same strain (WT), and mice lacking endogenous Ttr genes. In the DMM model, both cartilage and synovitis histological scores were significantly increased in hTTR-TG mice. Further, spontaneous degradation and OA-like changes in cartilage and synovium developed in 18-month-old hTTR mice. Expression of cartilage catabolic (Adamts4, Mmp13) and inflammatory genes (Nos2, Il6) was significantly elevated in cartilage from 6-month-old hTTR-TG mice compared with WT mice as was the level of phospho-NF-κB p65. Intra-articular injection of aggregated TTR in WT mice increased synovitis and significantly increased expression of inflammatory genes in synovium. These findings are the first to show that TTR deposition increases disease severity in the murine DMM and aging model of OA.
Collapse
Affiliation(s)
- Tokio Matsuzaki
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCAUSA
| | - Yukio Akasaki
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCAUSA
| | - Merissa Olmer
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCAUSA
| | | | - Natalia Reixach
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCAUSA
| | - Joel N. Buxbaum
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCAUSA
| | - Martin K. Lotz
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCAUSA
| |
Collapse
|
21
|
Rizk M, Tüzmen Ş. Update on the clinical utility of an RNA interference-based treatment: focus on Patisiran. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2017; 10:267-278. [PMID: 29184431 PMCID: PMC5689029 DOI: 10.2147/pgpm.s87945] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
RNA interference (RNAi) is a naturally existing endogenous mechanism for post-transcriptional gene regulation, nowadays commonly utilized for functional characterization of genes and development of potential treatment strategies for diseases. RNAi-based studies for therapy, after being examined for over a decade, are finally in the pipeline for developing a potential treatment for the mutated transthyretin (TTR) gene, which gives rise to a dysfunctional TTR protein. This dysfunctional protein causes TTR amyloidosis (ATTR), an inherited, progressively incapacitating, and often fatal genetic disorder. TTR is a protein produced in the liver, and functions as a carrier for retinol-binding protein and also thyroxine. This protein facilitates the transport of vitamin A around the human body. A mutation or misprint in the code of this protein results in an abnormal folding of the protein. Therefore, not only does the transportation of the vitamin A become disabled, but also there will be formation of clusters called amyloid deposits, which attack the heart and the nerves causing some patients to be unconditionally bound to bed. ATTR is a hereditary autosomal dominant disease with a 50% chance of inheritance by offspring, even with just one of the parents having a single defective allele of this gene. Alnylam Pharmaceuticals worked on the concept of RNAi therapy for years, which led to the introduction of lipid nanoparticles encircling small interfering RNAs. The drug showed extremely positive results since the first trial, and a great percentage of defective protein reduction. This drug was later named Patisiran.
Collapse
Affiliation(s)
- Malak Rizk
- Molecular Biology and Genetics Program, Department of Biological Sciences, Faculty of Arts and Sciences, Eastern Mediterranean University (EMU), Famagusta, North Cyprus, Turkey
| | - Şükrü Tüzmen
- Molecular Biology and Genetics Program, Department of Biological Sciences, Faculty of Arts and Sciences, Eastern Mediterranean University (EMU), Famagusta, North Cyprus, Turkey
| |
Collapse
|
22
|
Li X, Song Y, Sanders CR, Buxbaum JN. Transthyretin Suppresses Amyloid-β Secretion by Interfering with Processing of the Amyloid-β Protein Precursor. J Alzheimers Dis 2017; 52:1263-75. [PMID: 27079720 DOI: 10.3233/jad-160033] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In Alzheimer's disease (AD), most hippocampal and cortical neurons show increased staining with anti-transthyretin (TTR) antibodies. Genetically programmed overexpression of wild type human TTR suppressed the neuropathologic and behavioral abnormalities in APP23 AD model mice and TTR-Aβ complexes have been isolated from some human AD brains and those of APP23 transgenic mice. In the present study, in vitro NMR analysis showed interaction between the hydrophobic thyroxine binding pocket of TTR and the cytoplasmic loop of the C99 fragment released by β-secretase cleavage of AβPP, with Kd = 86±9 μM. In cultured cells expressing both proteins, the interaction reduced phosphorylation of C99 (at T668) and suppressed its cleavage by γ-secretase, significantly decreasing Aβ secretion. Coupled with its previously demonstrated capacity to inhibit Aβ aggregation (with the resultant cytotoxicity in tissue culture) and its regulation by HSF1, these findings indicate that TTR can behave as a stress responsive multimodal suppressor of AD pathogenesis.
Collapse
Affiliation(s)
- Xinyi Li
- Janssen Research & Development, LLC, Johnson & Johnson, San Diego, CA, USA.,Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Yuanli Song
- Bristol-Myers Squibb, Biologics Process Development, Devens, MA, USA.,Department of Biochemistry and Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Charles R Sanders
- Department of Biochemistry and Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Joel N Buxbaum
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
23
|
Affiliation(s)
- Ronglih Liao
- From the Divisions of Genetics and Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA.
| | - Jennifer E Ward
- From the Divisions of Genetics and Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
24
|
Relevance of mouse models of cardiac fibrosis and hypertrophy in cardiac research. Mol Cell Biochem 2016; 424:123-145. [PMID: 27766529 DOI: 10.1007/s11010-016-2849-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 10/14/2016] [Indexed: 01/15/2023]
Abstract
Heart disease causing cardiac cell death due to ischemia-reperfusion injury is a major cause of morbidity and mortality in the United States. Coronary heart disease and cardiomyopathies are the major cause for congestive heart failure, and thrombosis of the coronary arteries is the most common cause of myocardial infarction. Cardiac injury is followed by post-injury cardiac remodeling or fibrosis. Cardiac fibrosis is characterized by net accumulation of extracellular matrix proteins in the cardiac interstitium and results in both systolic and diastolic dysfunctions. It has been suggested by both experimental and clinical evidence that fibrotic changes in the heart are reversible. Hence, it is vital to understand the mechanism involved in the initiation, progression, and resolution of cardiac fibrosis to design anti-fibrotic treatment modalities. Animal models are of great importance for cardiovascular research studies. With the developing research field, the choice of selecting an animal model for the proposed research study is crucial for its outcome and translational purpose. Compared to large animal models for cardiac research, the mouse model is preferred by many investigators because of genetic manipulations and easier handling. This critical review is focused to provide insight to young researchers about the various mouse models, advantages and disadvantages, and their use in research pertaining to cardiac fibrosis and hypertrophy.
Collapse
|
25
|
Schrader T, Bitan G, Klärner FG. Molecular tweezers for lysine and arginine - powerful inhibitors of pathologic protein aggregation. Chem Commun (Camb) 2016; 52:11318-34. [PMID: 27546596 PMCID: PMC5026632 DOI: 10.1039/c6cc04640a] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Molecular tweezers represent the first class of artificial receptor molecules that have made the way from a supramolecular host to a drug candidate with promising results in animal tests. Due to their unique structure, only lysine and arginine are well complexed with exquisite selectivity by a threading mechanism, which unites electrostatic, hydrophobic and dispersive attraction. However, tweezer design must avoid self-dimerization, self-inclusion and external guest binding. Moderate affinities of molecular tweezers towards sterically well accessible basic amino acids with fast on and off rates protect normal proteins from potential interference with their biological function. However, the early stages of abnormal Aβ, α-synuclein, and TTR assembly are redirected upon tweezer binding towards the generation of amorphous non-toxic materials that can be degraded by the intracellular and extracellular clearance mechanisms. Thus, specific host-guest chemistry between aggregation-prone proteins and lysine/arginine binders rescues cell viability and restores animal health in models of AD, PD, and TTR amyloidosis.
Collapse
Affiliation(s)
- Thomas Schrader
- Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany.
| | | | | |
Collapse
|
26
|
Akasaki Y, Reixach N, Matsuzaki T, Alvarez-Garcia O, Olmer M, Iwamoto Y, Buxbaum JN, Lotz MK. Transthyretin deposition in articular cartilage: a novel mechanism in the pathogenesis of osteoarthritis. Arthritis Rheumatol 2015; 67:2097-107. [PMID: 25940564 DOI: 10.1002/art.39178] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 04/23/2015] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Amyloid deposits are prevalent in osteoarthritic (OA) joints. We undertook this study to define the dominant precursor and to determine whether the deposits affect chondrocyte functions. METHODS Amyloid deposition in human normal and OA knee cartilage was determined by Congo red staining. Transthyretin (TTR) in cartilage and synovial fluid was analyzed by immunohistochemistry and Western blotting. The effects of recombinant amyloidogenic and nonamyloidogenic TTR variants were tested in human chondrocyte cultures. RESULTS Normal cartilage from young donors did not contain detectable amyloid deposits, but 7 of 12 aged normal cartilage samples (58%) and 12 of 12 OA cartilage samples (100%) had Congo red staining with green birefringence under polarized light. TTR, which is located predominantly at the cartilage surfaces, was detected in all OA cartilage samples and in a majority of aged normal cartilage samples, but not in normal cartilage samples from young donors. Chondrocytes and synoviocytes did not contain significant amounts of TTR messenger RNA. Synovial fluid TTR levels were similar in normal and OA knees. In cultured chondrocytes, only an amyloidogenic TTR variant induced cell death as well as the expression of proinflammatory cytokines and extracellular matrix-degrading enzymes. The effects of amyloidogenic TTR on gene expression were mediated in part by Toll-like receptor 4, receptor for advanced glycation end products, and p38 MAPK. TTR-induced cytotoxicity was inhibited by resveratrol, a plant polyphenol that stabilizes the native tetrameric structure of TTR. CONCLUSION These findings are the first to suggest that TTR amyloid deposition contributes to cell and extracellular matrix damage in articular cartilage in human OA and that therapies designed to reduce TTR amyloid formation might be useful.
Collapse
Affiliation(s)
- Yukio Akasaki
- The Scripps Research Institute, La Jolla, California
| | | | | | | | - Merissa Olmer
- The Scripps Research Institute, La Jolla, California
| | - Yukihide Iwamoto
- Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | | | - Martin K Lotz
- The Scripps Research Institute, La Jolla, California
| |
Collapse
|
27
|
Amyloidogenic and non-amyloidogenic transthyretin variants interact differently with human cardiomyocytes: insights into early events of non-fibrillar tissue damage. Biosci Rep 2015; 35:BSR20140155. [PMID: 25395306 PMCID: PMC4293901 DOI: 10.1042/bsr20140155] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
TTR (transthyretin) amyloidoses are diseases characterized by the aggregation and extracellular deposition of the normally soluble plasma protein TTR. Ex vivo and tissue culture studies suggest that tissue damage precedes TTR fibril deposition, indicating that early events in the amyloidogenic cascade have an impact on disease development. We used a human cardiomyocyte tissue culture model system to define these events. We previously described that the amyloidogenic V122I TTR variant is cytotoxic to human cardiac cells, whereas the naturally occurring, stable and non-amyloidogenic T119M TTR variant is not. We show that most of the V122I TTR interacting with the cells is extracellular and this interaction is mediated by a membrane protein(s). In contrast, most of the non-amyloidogenic T119M TTR associated with the cells is intracellular where it undergoes lysosomal degradation. The TTR internalization process is highly dependent on membrane cholesterol content. Using a fluorescent labelled V122I TTR variant that has the same aggregation and cytotoxic potential as the native V122I TTR, we determined that its association with human cardiomyocytes is saturable with a KD near 650 nM. Only amyloidogenic V122I TTR compete with fluorescent V122I for cell-binding sites. Finally, incubation of the human cardiomyocytes with V122I TTR but not with T119M TTR, generates superoxide species and activates caspase 3/7. In summary, our results show that the interaction of the amyloidogenic V122I TTR is distinct from that of a non-amyloidogenic TTR variant and is characterized by its retention at the cell membrane, where it initiates the cytotoxic cascade.
Collapse
|
28
|
Robinson LZ, Reixach N. Quantification of quaternary structure stability in aggregation-prone proteins under physiological conditions: the transthyretin case. Biochemistry 2014; 53:6496-510. [PMID: 25245430 PMCID: PMC4204887 DOI: 10.1021/bi500739q] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
![]()
The quaternary structure stability
of proteins is typically studied
under conditions that accelerate their aggregation/unfolding processes
on convenient laboratory time scales. Such conditions include high
temperature or pressure, chaotrope-mediated unfolding, or low or high
pH. These approaches have the limitation of being nonphysiological
and that the concentration of the protein in solution is changing
as the reactions proceed. We describe a methodology to define the
quaternary structure stability of the amyloidogenic homotetrameric
protein transthyretin (TTR) under physiological conditions. This methodology
expands from a described approach based on the measurement of the
rate of subunit exchange of TTR with a tandem flag-tagged (FT2) TTR counterpart. We demonstrate that subunit exchange of
TTR with FT2·TTR can be analyzed and quantified using
a semi-native polyacrylamide gel electrophoresis technique. In addition,
we biophysically characterized two FT2·TTR variants
derived from wild-type and the amyloidogenic variant Val122Ile TTR,
both of which are associated with cardiac amyloid deposition late
in life. The FT2·TTR variants have similar amyloidogenic
potential and similar thermodynamic and kinetic stabilities compared
to those of their nontagged counterparts. We utilized the methodology
to study the potential of the small molecule SOM0226, a repurposed
drug under clinical development for the prevention and treatment of
the TTR amyloidoses, to stabilize TTR. The results enabled us to characterize
the binding energetics of SOM0226 to TTR. The described technique
is well-suited to study the quaternary structure of other human aggregation-prone
proteins under physiological conditions.
Collapse
Affiliation(s)
- Lei Z Robinson
- Department of Molecular and Experimental Medicine, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | | |
Collapse
|
29
|
Mohammed SF, Mirzoyev SA, Edwards WD, Dogan A, Grogan DR, Dunlay SM, Roger VL, Gertz MA, Dispenzieri A, Zeldenrust SR, Redfield MM. Left ventricular amyloid deposition in patients with heart failure and preserved ejection fraction. JACC. HEART FAILURE 2014; 2:113-22. [PMID: 24720917 PMCID: PMC3984539 DOI: 10.1016/j.jchf.2013.11.004] [Citation(s) in RCA: 308] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 11/06/2013] [Accepted: 11/07/2013] [Indexed: 10/25/2022]
Abstract
OBJECTIVES This study sought to determine the frequency of left ventricular amyloid in heart failure with preserved ejection fraction (HFpEF). BACKGROUND Left ventricular amyloid deposition can cause diastolic dysfunction and HFpEF. METHODS Autopsy of left ventricular specimens from patients with antemortem diagnosis of HFpEF without clinically apparent amyloid (n = 109) and from control subjects (n = 131) were screened with sulfated Alcian blue and subsequent Congo red staining with microdissection for mass spectrometry-based proteomics to determine amyloid type. Fibrosis was assessed with quantitative whole-field digital microscopy. RESULTS The presence of wild-type transthyretin (wtTTR) amyloid was associated with age at death and male sex, but the age- and sex-adjusted prevalence of wtTTR amyloid was higher in HFpEF patients than in control subjects (odds ratio: 3.8, 95% confidence interval: 1.5 to 11.3; p = 0.03). Among HFpEF patients, moderate or severe interstitial wtTTR deposition, consistent with senile systemic amyloidosis as the primary etiology of HFpEF, was present in 5 (5%) patients (80% men), with mild interstitial and/or variable severity of intramural coronary vascular deposition in 13 (12%) patients. While, wtTTR deposition was often mild, adjusting for age and presence of HFpEF, wtTTR amyloid was associated with more fibrosis (p = 0.005) and lower age, sex, and body size-adjusted heart weight (p = 0.04). CONCLUSIONS Given the age- and sex-independent association of HFpEF and wtTTR deposition and an emerging understanding of the pathophysiology of the amyloidoses, the current findings support further investigation of the role of wtTTR in the pathophysiology of HFpEF.
Collapse
Affiliation(s)
- Selma F Mohammed
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota; Mayo Graduate School, Mayo Clinic, Rochester, Minnesota
| | | | | | - Ahmet Dogan
- Division of Hematology, Mayo Clinic, Rochester, Minnesota
| | | | - Shannon M Dunlay
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota
| | - Veronique L Roger
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota; Department of Health Science Research, Mayo Clinic, Rochester, Minnesota
| | - Morie A Gertz
- Division of Hematology, Mayo Clinic, Rochester, Minnesota
| | | | | | | |
Collapse
|
30
|
Phay M, Blinder V, Macy S, Greene MJ, Wooliver DC, Liu W, Planas A, Walsh DM, Connors LH, Primmer SR, Planque SA, Paul S, O'Nuallain B. Transthyretin Aggregate-Specific Antibodies Recognize Cryptic Epitopes on Patient-Derived Amyloid Fibrils. Rejuvenation Res 2014; 17:97-104. [DOI: 10.1089/rej.2013.1524] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Monichan Phay
- The Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Veronika Blinder
- The Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Sallie Macy
- Department of Medicine, University of Tennessee Graduate School of Medicine, Knoxville, Tennessee
| | - Michael J. Greene
- Amyloidosis Center, Boston University School of Medicine, Boston, Massachusetts
| | - Daniel C. Wooliver
- Department of Medicine, University of Tennessee Graduate School of Medicine, Knoxville, Tennessee
| | - Wen Liu
- The Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Antoni Planas
- Laboratory of Biochemistry, Institut Químic de Sarrià, Universitat Ramon Llull, Barcelona, Spain
| | - Dominic M. Walsh
- The Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Lawreen H. Connors
- Amyloidosis Center, Boston University School of Medicine, Boston, Massachusetts
| | | | - Stephanie A. Planque
- Chemical Immunology Research Center, University of Texas-Houston Medical School, Houston, Texas
| | - Sudhir Paul
- Chemical Immunology Research Center, University of Texas-Houston Medical School, Houston, Texas
| | - Brian O'Nuallain
- The Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
31
|
Petrakis I, Mavroeidi V, Stylianou K, Efthymiou G, Perakis K, Vardaki E, Stratigis S, Giannakakis K, Kourouniotis K, Amoiridis G, Plaitakis A, Saraiva MJ, Yamamura KI, Daphnis E. Human TTRV30M localization within podocytes in a transgenic mouse model of transthyretin related amyloidosis: does the environment play a role? Transgenic Res 2012; 22:101-16. [DOI: 10.1007/s11248-012-9632-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 07/02/2012] [Indexed: 11/24/2022]
|
32
|
Lee EJ, Lee HJ, Kamli MR, Pokharel S, Bhat AR, Lee YH, Choi BH, Chun T, Kang SW, Lee YS, Kim JW, Schnabel RD, Taylor JF, Choi I. Depot-specific gene expression profiles during differentiation and transdifferentiation of bovine muscle satellite cells, and differentiation of preadipocytes. Genomics 2012; 100:195-202. [PMID: 22728265 DOI: 10.1016/j.ygeno.2012.06.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 05/18/2012] [Accepted: 06/13/2012] [Indexed: 01/22/2023]
Abstract
We report a systematic study of gene expression during myogenesis and transdifferentiation in four bovine muscle tissues and of adipogenesis in three bovine fat tissues using DNA microarray analysis. One hundred hybridizations were performed and 7245 genes of known and unknown function were identified as being differentially expressed. Supervised hierarchical cluster analysis of gene expression patterns revealed the tissue specificity of genes. A close relationship in global gene expression observed for adipocyte-like cells derived from muscle and adipocytes derived from intramuscular fat suggests a common origin for these cells. The role of transthyretin in myogenesis is a novel finding. Different genes were highly induced during the transdifferentiation of myogenic satellite cells and in the adipogenesis of preadipocytes, indicating the involvement of different molecular mechanisms in these processes. Induction of CD36 and FABP4 expression in adipocyte-like cells and adipocytes may share a common pathway.
Collapse
Affiliation(s)
- Eun Ju Lee
- School of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Houser SR, Margulies KB, Murphy AM, Spinale FG, Francis GS, Prabhu SD, Rockman HA, Kass DA, Molkentin JD, Sussman MA, Koch WJ. Animal models of heart failure: a scientific statement from the American Heart Association. Circ Res 2012; 111:131-50. [PMID: 22595296 DOI: 10.1161/res.0b013e3182582523] [Citation(s) in RCA: 338] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
34
|
Abstract
The amyloidoses are protein-misfolding disorders associated with progressive organ dysfunction. Immunoglobulin light chain is the most common, amyloid A the longest recognized, and transthyretin-associated amyloidosis (ATTR) the most frequent inherited systemic form. Although ATTR, an autosomal-dominant disease, is associated with at least 100 different transthyretin (TTR) mutations, the single amino-acid substitution of methionine for valine at position 30 is the most common mutation. Each variant has a different organ involvement, although clinical differences attributed to environmental and genetic factors exist within the same mutation. Peripheral neuropathy and cardiomyopathy are broadly described, and insights into disease reveal that kidney impairment and proteinuria are also clinical features. This review combines clinical and laboratory findings of renal involvement from the main geographic regions of disease occurrence and for different mutations of TTR. Fifteen nephropathic variants have been described, but the TTR V30M mutation is the best documented. Nephropathy affects patients with late-onset neuropathy, low penetrance in the family, and cardiac dysrhythmias. Microalbuminuria can be the disorder's first presentation, even before the onset of neuropathy. Amyloid renal deposits commonly occur, even in the absence of urinary abnormalities. The experience with renal replacement therapy is based on hemodialysis, which is associated with poor survival. Because TTR is synthesized mainly in the liver, liver transplantation has been considered an acceptable treatment; simultaneous liver-kidney transplantation is recommended to avoid recurrence of nephropathy. In addition, the kidney-safety profile of new drugs in development may soon be available.
Collapse
Affiliation(s)
- Luísa Lobato
- Department of Nephrology, Hospital de Santo António, Centro Hospitalar do Porto, Porto, Portugal.
| | | |
Collapse
|
35
|
Ueda M, Ageyama N, Nakamura S, Nakamura M, Chambers JK, Misumi Y, Mizuguchi M, Shinriki S, Kawahara S, Tasaki M, Jono H, Obayashi K, Sasaki E, Une Y, Ando Y. Aged vervet monkeys developing transthyretin amyloidosis with the human disease-causing Ile122 allele: a valid pathological model of the human disease. J Transl Med 2012; 92:474-84. [PMID: 22184092 DOI: 10.1038/labinvest.2011.195] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Mutant forms of transthyretin (TTR) cause the most common type of autosomal-dominant hereditary systemic amyloidosis. In addition, wild-type TTR causes senile systemic amyloidosis, a sporadic disease seen in the elderly. Although spontaneous development of TTR amyloidosis had not been reported in animals other than humans, we recently determined that two aged vervet monkeys (Chlorocebus pygerythrus) spontaneously developed systemic TTR amyloidosis. In this study here, we first determined that aged vervet monkeys developed TTR amyloidosis and showed cardiac dysfunction but other primates did not. We also found that vervet monkeys had the TTR Ile122 allele, which is well known as a frequent mutation-causing human TTR amyloidosis. Furthermore, we generated recombinant monkey TTRs and determined that the vervet monkey TTR had lower tetrameric stability and formed more amyloid fibrils than did cynomolgus monkey TTR, which had the Val122 allele. We thus propose that the Ile122 allele has an important role in TTR amyloidosis in the aged vervet monkey and that this monkey can serve as a valid pathological model of the human disease. Finally, from the viewpoint of molecular evolution of TTR in primates, we determined that human TTR mutations causing the leptomeningeal phenotype of TTR amyloidosis tended to occur in amino acid residues that showed no diversity throughout primate evolution. Those findings may be valuable for understanding the genotype-phenotype correlation in this inherited human disease.
Collapse
Affiliation(s)
- Mitsuharu Ueda
- Department of Diagnostic Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Buxbaum JN, Tagoe C, Gallo G, Walker JR, Kurian S, Salomon DR. Why are some amyloidoses systemic? Does hepatic "chaperoning at a distance" prevent cardiac deposition in a transgenic model of human senile systemic (transthyretin) amyloidosis? FASEB J 2012; 26:2283-93. [PMID: 22362898 DOI: 10.1096/fj.11-189571] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In the human systemic amyloidoses caused by mutant or wild-type transthyretin (TTR), deposition occurs at a distance from the site of synthesis. The TTR synthesized and secreted by the hepatocyte circulates in plasma, then deposits in target tissues far from the producing cell, a pattern reproduced in mice transgenic for multiple copies of the human wild-type TTR gene. By 2 yr of age, half of the transgenic males show cardiac deposition resembling human senile systemic amyloidosis. However, as early as 3 mo of age, when there are no deposits, cardiac gene transcription differs from that of nontransgenic littermates, primarily in the expression of a large number of genes associated with inflammation and the immune response. At 24 mo, the hearts with histologically proven TTR deposits show expression of stress response genes, exuberant mitochondrial gene transcription, and increased expression of genes associated with apoptosis, relative to the hearts without TTR deposition. These 24-mo-old hearts with TTR deposits also show a decrease in transcription of inflammatory genes relative to that in the younger transgenic mice. After 2 yr of expressing large amounts of human TTR, the livers of the transgenic mice without cardiac deposition display chaperone gene expression and evidence of an activated unfolded protein response, while the livers of animals with cardiac TTR deposition display neither, showing increased transcription of interferon-responsive inflammatory genes and those encoding an antioxidant response. With time, in animals with cardiac deposition, it appears that hepatic proteostatic capacity is diminished, exposing the heart to a greater load of misfolded TTR with subsequent extracellular deposition. Hence systemic (cardiac) TTR deposition may be the direct result of the diminution in the distant chaperoning capacity of the liver related to age or long-standing exposure to misfolded TTR, or both.
Collapse
Affiliation(s)
- Joel N Buxbaum
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Buxbaum JN, Linke RP. A molecular history of the amyloidoses. J Mol Biol 2012; 421:142-59. [PMID: 22321796 DOI: 10.1016/j.jmb.2012.01.024] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 01/07/2012] [Accepted: 01/18/2012] [Indexed: 11/30/2022]
Abstract
The molecular investigation of the amyloidoses began in the mid-19th century with the observation of areas in human tissues obtained at autopsy that were homogeneous and eosinophilic with conventional stains but became blue when exposed to mixtures of iodine and sulfuric acid. The foci corresponded to regions formerly identified as "waxy" or lardaceous. Subsequent identification of the characteristic staining of the same tissues with metachromatic dyes such as crystal violet or with the cotton dye Congo red (particularly under polarized light) and thioflavins allowed the pathological classification of those tissues as belonging to a set of disorders known as the amyloidoses. Not unexpectedly, progress has reflected evolving technology and parallel advances in all fields of biological science. Investigation using contemporary methods has expanded our notions of amyloid proteins from being simply agents or manifestations of systemic, largely extracellular diseases to include "protein-only infection," the concept that "normal" functional amyloids might exist in eukaryotes and prokaryotes and that aggregatability may be an intrinsic structural price to be paid for some functional protein domains. We now distinguish between the amyloidoses, that is, diseases caused by the deposition of amyloid fibrils and amyloid proteins (i.e., purified or recombinant proteins that form amyloid fibrils in vitro), which may or may not be associated with disease in vivo.
Collapse
Affiliation(s)
- Joel N Buxbaum
- Department of Molecular and Experimental Medicine (MEM230), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | |
Collapse
|
38
|
Neuronal production of transthyretin in human and murine Alzheimer's disease: is it protective? J Neurosci 2011; 31:12483-90. [PMID: 21880910 DOI: 10.1523/jneurosci.2417-11.2011] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Transthyretin (TTR), a systemic amyloid precursor in the human TTR amyloidoses, interacts with β-amyloid (Aβ) in vitro, inhibits Aβ fibril formation, and suppresses the Alzheimer's disease (AD) phenotype in APP23 mice bearing a human APP gene containing the Swedish autosomal dominant AD mutation. In the present study, we show that TTR is a neuronal product upregulated in AD. Immunohistochemical analysis reveals that, in contrast to brains from non-demented age-matched individuals and control mice, the majority of hippocampal neurons from human AD and all those from the APP23 mouse brains contain TTR. Quantitative PCR for TTR mRNA and Western blot analysis show that primary neurons from APP23 mice transcribe TTR mRNA, and the cells synthesize and secrete TTR protein. TTR mRNA abundance is greatly increased in cultured cortical and hippocampal embryonic neurons and cortical lysates from adult APP23 mice. Antibodies specific for TTR and Aβ pulled down TTR/Aβ complexes from cerebral cortical extracts of APP23 mice and some human AD patients but not from control brains. In complementary tissue culture experiments, recombinant human TTR suppressed the cytotoxicity of soluble Aβ aggregates added to mouse neurons and differentiated human SH-SY5Y neuroblastoma cells. The findings that production of Aβ, its precursor, or its related peptides induces neuronal TTR transcription and synthesis and the presence of Aβ/TTR complexes in vivo suggest that increased TTR production coupled with interaction between TTR and Aβ and/or its related peptides may play a role in natural resistance to human AD.
Collapse
|
39
|
Zhang P, Fu X, Sawashita J, Yao J, Zhang B, Qian J, Tomozawa H, Mori M, Ando Y, Naiki H, Higuchi K. Mouse model to study human A beta2M amyloidosis: generation of a transgenic mouse with excessive expression of human beta2-microglobulin. Amyloid 2010; 17:50-62. [PMID: 20462363 DOI: 10.3109/13506129.2010.483116] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Patients on long-term hemodialysis can develop dialysis-related amyloidosis (DRA) due to deposition of beta(2)-microglobulin (beta(2)m) into amyloid fibrils (Abeta(2)M). Despite intensive biochemical studies, the pathogenesis of amyloid deposition in DRA patients remains poorly understood. To elucidate the mechanisms that underlie Abeta(2)M fibril formation in DRA, we generated transgenic mice that overexpress human beta(2)m protein in a mouse beta(2)m gene knockout background (hB2MTg(+/+) mB2m(+/+)). The hB2MTg(+/+)mB2m(-/-) mice express a high level of human beta(2)m protein in many tissues as well as a high plasma beta(2)m concentration (192.8 mg/L). This concentration is >100 times higher than that observed in healthy humans and >4 times higher than that detected in patients on dialysis. We examined spontaneous and amyloid fibril-induced amyloid deposition in these mice. Amyloid deposition of beta(2)m protein was not observed in aged or amyloid fibril injected animals. However, mouse senile apolipoprotein A-II amyloidosis (AApoAII) was detected, particularly in the joints of mice that were injected with AApoAII amyloid fibrils. This study demonstrates that this mouse model could be valuable in studying the components and conditions that promote DRA, and indicates that high plasma concentrations of hbeta(2)m as well as seeding with pre-existing amyloid fibrils may not be sufficient to induce Abeta(2)M.
Collapse
Affiliation(s)
- Pengyao Zhang
- Department of Aging Biology, Institute on Aging and Adaptation, Shinshu University Graduate School of Medicine, Matsumoto 390-8621, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Santos SD, Fernandes R, Saraiva MJ. The heat shock response modulates transthyretin deposition in the peripheral and autonomic nervous systems. Neurobiol Aging 2010; 31:280-9. [PMID: 18485534 DOI: 10.1016/j.neurobiolaging.2008.04.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2007] [Revised: 03/27/2008] [Accepted: 04/01/2008] [Indexed: 11/28/2022]
Abstract
Familial amyloidotic polyneuropathy (FAP) is a neurodegenerative disease that selectively affects the peripheral nervous system. The putative cause of this life threatening pathology is tissue deposition of mutant transthyretin (TTR), initially as non-fibrillar deposits and later as fibrillar material. The mouse models currently available do not recapitulate the human whole features, since the peripheral nervous tissue is spared. We have characterized a new mouse model expressing the human transthyretin V30M in a heat shock transcription factor 1 (Hsf1) null background. The lack of HSF1 expression leads to an extensive and earlier non-fibrillar TTR, evolving into fibrillar material in distinct organs including the peripheral nervous system. Furthermore, inflammatory stress and a reduction in unmyelinated nerve fibers were observed, as in human patients. These results indicate that HSF1 regulated genes are involved in FAP, modulating TTR tissue deposition. The novel mouse model is of the utmost importance in testing new therapeutic strategies and in addressing the influence of the stress response in misfolding diseases.
Collapse
Affiliation(s)
- Sofia Duque Santos
- Molecular Neurobiology Unit, Institute for Molecular and Cell Biology - IBMC, 4150-180 Porto, Portugal
| | | | | |
Collapse
|
41
|
Transthyretin: More than meets the eye. Prog Neurobiol 2009; 89:266-76. [DOI: 10.1016/j.pneurobio.2009.07.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 07/24/2009] [Accepted: 07/31/2009] [Indexed: 11/20/2022]
|
42
|
Buxbaum JN, Reixach N. Transthyretin: the servant of many masters. Cell Mol Life Sci 2009; 66:3095-101. [PMID: 19644733 PMCID: PMC4820353 DOI: 10.1007/s00018-009-0109-0] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Revised: 07/10/2009] [Accepted: 07/15/2009] [Indexed: 01/08/2023]
Abstract
Transthyretin (TTR) (formerly, thyroxine binding prealbumin) is an evolutionarily conserved serum and cerebrospinal fluid protein that transports holo-retinol-binding protein and thyroxine. Its serum concentration has been widely used to assess clinical nutritional status. It is also well known that wild-type transthyretin and approximately 100 different mutants give rise to a variety of forms of systemic amyloid deposition. It has been suspected and recently established that TTR can suppress the Alzheimer's disease phenotype in transgenic animal models of cerebral Abeta deposition. Thus, while TTR is a systemic amyloid precursor, in the brain it seems to have an anti-amyloidogenic effect. TTR is found in other organs as a result of local synthesis or transport, suggesting that it may have other, as yet undiscovered, functions. It is possible that its capacity to bind many classes of compounds allows it to serve as an endogenous detoxifier of molecules with potential pathologic effects.
Collapse
Affiliation(s)
- Joel N Buxbaum
- Molecular and Experimental Medicine Department, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | |
Collapse
|
43
|
Buxbaum JN. Animal models of human amyloidoses: are transgenic mice worth the time and trouble? FEBS Lett 2009; 583:2663-73. [PMID: 19627988 DOI: 10.1016/j.febslet.2009.07.031] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 07/15/2009] [Accepted: 07/15/2009] [Indexed: 02/05/2023]
Abstract
The amyloidoses are the prototype gain of toxic function protein misfolding diseases. As such, several naturally occurring animal models and their inducible variants provided some of the first insights into these disorders of protein aggregation. With greater analytic knowledge and the increasing flexibility of transgenic and gene knockout technology, new models have been generated allowing the interrogation of phenomena that have not been approachable in more reductionist systems, i.e. behavioral readouts in the neurodegenerative diseases, interactions among organ systems in the transthyretin amyloidoses and taking pre-clinical therapeutic trials beyond cell culture. The current review describes the features of both transgenic and non-transgenic models and discusses issues that appear to be unresolved even when viewed in their organismal context.
Collapse
Affiliation(s)
- Joel N Buxbaum
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
44
|
Zhao G, Li Z, Araki K, Haruna K, Yamaguchi K, Araki M, Takeya M, Ando Y, Yamamura KI. Inconsistency between hepatic expression and serum concentration of transthyretin in mice humanized at the transthyretin locus. Genes Cells 2008; 13:1257-68. [DOI: 10.1111/j.1365-2443.2008.01242.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
45
|
Nagasaka T, Togashi S, Watanabe H, Iida H, Nagasaka K, Nakamura Y, Miwa M, Kobayashi F, Shindo K, Shiozawa Z. Clinical and histopathological features of progressive-type familial amyloidotic polyneuropathy with TTR Lys54. J Neurol Sci 2008; 276:88-94. [PMID: 18930252 DOI: 10.1016/j.jns.2008.09.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Revised: 08/31/2008] [Accepted: 09/03/2008] [Indexed: 10/21/2022]
Abstract
The purpose of this study was to evaluate the clinical and pathological features in patients with progressive-type familial amyloidotic polyneuropathy (FAP) using autopsy and biopsy specimens. A proband is a 33-year-old man with FAP type I who developed motor, sensory and autonomic impairments with neuropathy, heart failure, and anorexia. Genetic findings of transthyretin (TTR) revealed G to A transition in codon 54 causing a rare mutation of TTR Lys54. He died of pneumonia and severe cardiac failure 4 years after onset. Autopsy showed heavy amyloid deposition in the heart, peripheral nerves, thyroid, skin, fat tissue, prostate and testis, moderate in the sympathetic nerve trunk, vagal nerve, celiac plexus, pelvic plexus, bladder, gastrointestinal tract, tongue, pancreas, lung, pituitary, blood vessel, gall bladder, adrenals and muscles, and free in the central nervous system, liver, kidney and spleen. Sural nerve biopsy in a sibling confirmed TTR amyloidosis immunohistochemically. Electronmicroscopic findings of amyloid fibrils were similar to that of FAP Met30. Immunoelectronmicroscopic findings indicated the relationship between amyloid fibrils or non-fibrillar structure and collagen fibers. The distribution of amyloid deposition, heavy in the heart and lacking in the kidney, is a characteristic feature and reflected severity of FAP with TTR Lys54.
Collapse
Affiliation(s)
- Takamura Nagasaka
- Department of Neurology, University of Yamanashi, Chuou-City, Yamanashi, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Doostkam S, Bohl JRE, Sahraian A, Mahjoor AA. Amyloid deposits in senile vertebral arteries, immunohistological and ultrastructural findings. Pak J Biol Sci 2008; 11:1852-1855. [PMID: 18817230 DOI: 10.3923/pjbs.2008.1852.1855] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
In a study on amyloid deposits in vertebral arteries, many elderly patients showed amyloid deposits in the perivascular tissue. These proved to be senile systemic amyloidosis of the transthyretin-type by immunohistochemistry. Amyloid deposits were also found in the arterial wall. These intramural amyloid deposits showed significant affinity to elastic material of the arterial wall. The intramural amyloid deposits did not react with any of the known or available antibodies to amyloid subtypes. Only a polyclonal antibody to human elastin could mark this type of amyloid. It may therefore be assumed that the precursor protein of this amyloid is derived from elastin molecules. By electron microscopy, the light microscopic amyloid deposits were of fibrillary structure, typical for amyloid with a direct contact to elastic material.
Collapse
Affiliation(s)
- S Doostkam
- Department of Neuropathology, Neurocentre, University Hospital of Freiburg, Germany
| | | | | | | |
Collapse
|
47
|
Transthyretin protects Alzheimer's mice from the behavioral and biochemical effects of Abeta toxicity. Proc Natl Acad Sci U S A 2008; 105:2681-6. [PMID: 18272491 DOI: 10.1073/pnas.0712197105] [Citation(s) in RCA: 221] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cells that have evolved to produce large quantities of secreted proteins to serve the integrated functions of complex multicellular organisms are equipped to compensate for protein misfolding. Hepatocytes and plasma cells have well developed chaperone and proteasome systems to ensure that secreted proteins transit the cell efficiently. The number of neurodegenerative disorders associated with protein misfolding suggests that neurons are particularly sensitive to the pathogenic effects of aggregates of misfolded molecules because those systems are less well developed in this lineage. Aggregates of the amyloidogenic (Abeta(1-42)) peptide play a major role in the pathogenesis of Alzheimer's disease (AD), although the precise mechanism is unclear. In genetic studies examining protein-protein interactions that could constitute native mechanisms of neuroprotection in vivo, overexpression of a WT human transthyretin (TTR) transgene was ameliorative in the APP23 transgenic murine model of human AD. Targeted silencing of the endogenous TTR gene accelerated the development of the neuropathologic phenotype. Intraneuronal TTR was seen in the brains of normal humans and mice and in AD patients and APP23 mice. The APP23 brains showed colocalization of extracellular TTR with Abeta in plaques. Using surface plasmon resonance we obtained in vitro evidence of direct protein-protein interaction between TTR and Abeta aggregates. These findings suggest that TTR is protective because of its capacity to bind toxic or pretoxic Abeta aggregates in both the intracellular and extracellular environment in a chaperone-like manner. The interaction may represent a unique normal host defense mechanism, enhancement of which could be therapeutically useful.
Collapse
|
48
|
Nakamura S, Okabayashi S, Ageyama N, Koie H, Sankai T, Ono F, Fujimoto K, Terao K. Transthyretin Amyloidosis and Two Other Aging-Related Amyloidoses in an Aged Vervet Monkey. Vet Pathol 2008; 45:67-72. [DOI: 10.1354/vp.45-1-67] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
An aged male vervet monkey showed severe cardiac arrhythmia for more than 3 years. A multifocal amyloid consisting of transthyretin was deposited in all areas of the heart wall, especially in the extracellular stroma among muscle fibers and external tunica of arterioles. Moreover, the amyloid was deposited in the stroma and arterioles of other systemic organs except the liver and spleen. These characteristics are consistent with senile systemic amyloidosis in humans. A second amyloid consisting of amyloid β protein was in senile plaques and cerebral amyloid angiopathy in the cerebral cortex. A third amyloid consisting of islet amyloid polypeptide was deposited in islets of the pancreas. Apolipoprotein E and amyloid P component colocalized with the 3 amyloids. Thus, 3 different aging-related amyloids were found in an aged vervet monkey. In particular, to our knowledge, this is the first report on spontaneous transthyretin amyloidosis in animals.
Collapse
Affiliation(s)
- S. Nakamura
- The Corporation for Production and Research of Laboratory Primates, Tsukuba, Ibaraki, Japan
| | - S. Okabayashi
- The Corporation for Production and Research of Laboratory Primates, Tsukuba, Ibaraki, Japan
| | - N. Ageyama
- Tsukuba Primate Research Center, National Institute of Biomedical Innovation, Tsukuba, Ibaraki, Japan
| | - H. Koie
- Department of Veterinary Medicine, College of Bioscience, Nihon University, Fujisawa, Kanagawa, Japan
| | - T. Sankai
- Tsukuba Primate Research Center, National Institute of Biomedical Innovation, Tsukuba, Ibaraki, Japan
| | - F. Ono
- The Corporation for Production and Research of Laboratory Primates, Tsukuba, Ibaraki, Japan
| | - K. Fujimoto
- The Corporation for Production and Research of Laboratory Primates, Tsukuba, Ibaraki, Japan
| | - K. Terao
- Tsukuba Primate Research Center, National Institute of Biomedical Innovation, Tsukuba, Ibaraki, Japan
| |
Collapse
|
49
|
Reixach N, Foss TR, Santelli E, Pascual J, Kelly JW, Buxbaum JN. Human-murine transthyretin heterotetramers are kinetically stable and non-amyloidogenic. A lesson in the generation of transgenic models of diseases involving oligomeric proteins. J Biol Chem 2007; 283:2098-107. [PMID: 18006495 DOI: 10.1074/jbc.m708028200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transthyretin amyloidoses appear to be caused by rate-limiting tetramer dissociation and partial monomer unfolding of the human serum protein transthyretin, resulting in aggregation and extracellular deposition of amorphous aggregates and amyloid fibrils. Mice transgenic for few copies of amyloid-prone human transthyretin variants, including the aggressive L55P mutant, failed to develop deposits. Silencing the murine transthyretin gene in the presence of the L55P human gene resulted in enhanced tissue deposition. To test the hypothesis that the murine protein interacted with human transthyretin, preventing the dissociation and partial unfolding required for amyloidogenesis, we produced recombinant murine transthyretin and human/murine transthyretin heterotetramers and compared their structures and biophysical properties to recombinant human transthyretin. We found no significant differences between the crystal structures of murine and human homotetramers. Murine transthyretin is not amyloidogenic because the native homotetramer is kinetically stable under physiologic conditions and cannot dissociate into partially unfolded monomers, the misfolding and aggregation precursor. Heterotetramers composed of murine and human subunits are also kinetically stable. These observations explain the lack of transthyretin deposition in transgenics carrying a low copy number of human transthyretin genes. The incorporation of mouse subunits into tetramers otherwise composed of human amyloid-prone transthyretin subunits imposes kinetic stability, preventing dissociation and subsequent amyloidogenesis.
Collapse
Affiliation(s)
- Natàlia Reixach
- W. M. Keck Autoimmune Disease Center, Division of Rheumatology Research, Molecular and Experimental Medicine Department, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | | | | | | | |
Collapse
|
50
|
Tagoe CE, Reixach N, Friske L, Mustra D, French D, Gallo G, Buxbaum JN. In vivo stabilization of mutant human transthyretin in transgenic mice. Amyloid 2007; 14:227-36. [PMID: 17701470 DOI: 10.1080/13506120701464396] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Transthyretin (TTR) is a 55 kD homotetrameric serum protein transporter of retinol binding protein charged with retinol and thyroxine (T4). The highly amyloidogenic human TTR variant in which leucine at position 55 is replaced by proline (L55P TTR) is responsible for aggressive fatal amyloidosis with peripheral and autonomic neuropathy, cardiomyopathy and nephropathy. Mice bearing one or two copies of a 19.2 kB human genomic fragment containing the entire coding sequence and the known control regions of the L55P TTR transgene, failed to develop TTR amyloidosis even though their sera contained mutant human TTR. The frequency of TTR tissue deposition was increased when the L55P TTR transgene was bred onto a murine TTR-null background. Denaturation of sera from the transgenic animals and murine TTR-knockouts expressing the human L55P TTR transgene revealed that the TTR tetramer was much more stable in the presence of the murine protein because the TTR circulates as hybrid human/murine heterotetramers. Intraperitoneal administration of diflunisal, a non-steroidal anti-inflammatory drug that binds to TTR in its T4-binding site and inhibits fibril formation in vitro, to human L55P TTR transgenic animals in which the murine TTR gene had been silenced, also stabilizes the circulating mutant protein to in vitro urea denaturation.
Collapse
Affiliation(s)
- Clement E Tagoe
- Department of Medicine, New York University School of Medicine, New York, NY, USA
| | | | | | | | | | | | | |
Collapse
|