1
|
Hussain MA, Das SP, Kulkarni M, Laha S. A review on the functional characteristics of the c-Myeloproliferative Leukaemia (c-MPL) gene and its isoforms. Cell Oncol (Dordr) 2024; 47:1607-1626. [PMID: 39283476 DOI: 10.1007/s13402-024-00988-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2024] [Indexed: 10/11/2024] Open
Abstract
The c-MPL-TPO axis regulates hematopoiesis by activating various signalling cascades, including JAK/STAT, MAPK/ERK, and PIK3/AKT. Here, we have summarized how TPO is regulated by c-MPL and, how mutations in the c-MPL regulate hematopoiesis. We also focus on its non-hematological regulatory role in diseases like Unstable Angina and pathways like DNA damage repair, skeletal homeostasis, & apoptotic regulation of neurons/HSCs at the embryonic state. We discuss the therapeutic efficiency of c-MPL and, its potential to be developed as a bio-marker for detecting metastasis and development of chemo-resistance in various cancers, justifying the multifaceted nature of c-MPL. We have also highlighted the importance of c-MPL isoforms and their stoichiometry in controlling the HSC quiescent and proliferative state. The regulation of the ratio of different isoforms through gene-therapy can open future therapeutic avenues. A systematic understanding of c-MPL-isoforms would undoubtedly take one step closer to facilitating c-MPL from basic-research towards translational medicine.
Collapse
Affiliation(s)
- Mohammad Amjad Hussain
- Cell Biology and Molecular Genetics Division, Yenepoya Research Centre, Yenepoya (Deemed to be) University, 3rd Floor, Academic Block, University Road, Deralakatte, Mangalore, Karnataka, 575018, India
| | - Shankar Prasad Das
- Cell Biology and Molecular Genetics Division, Yenepoya Research Centre, Yenepoya (Deemed to be) University, 3rd Floor, Academic Block, University Road, Deralakatte, Mangalore, Karnataka, 575018, India
| | - Mithila Kulkarni
- Cell Biology and Molecular Genetics Division, Yenepoya Research Centre, Yenepoya (Deemed to be) University, 3rd Floor, Academic Block, University Road, Deralakatte, Mangalore, Karnataka, 575018, India
| | - Suparna Laha
- Cell Biology and Molecular Genetics Division, Yenepoya Research Centre, Yenepoya (Deemed to be) University, 3rd Floor, Academic Block, University Road, Deralakatte, Mangalore, Karnataka, 575018, India.
| |
Collapse
|
2
|
Zhu S, Xu K, Li S, Yu X, Liu Y, Zhang Q, Zeng L, Xu K, Fu C. Assessment of intestinal status in MPL W515L mutant myeloproliferative neoplasms mice model. Int Immunopharmacol 2023; 125:111091. [PMID: 37883814 DOI: 10.1016/j.intimp.2023.111091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/27/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023]
Abstract
The MPLW515L mutation is a prevalent genetic mutation in patients with myeloproliferative neoplasms (MPN), and utilizing this mutation in mice model can provide important insights into the disease. However, the relationship between intestinal homeostasis and MPN mice model remains elusive. In this study, we utilized a retroviral vector to transfect hematopoietic stem cells with the MPLW515L mutation, creating mutated MPN mice model to investigate their intestinal status. Our results revealed that the MPLW515L in MPN mice model aggravated inflammation in the intestines, decreased the levels of tight junction proteins and receptors for bacteria metabolites. Additionally, there was increased activation of the caspase1/IL-1β signaling pathway and a significant reduction in phos-p38 levels in the intestinal tissue in MPN mice. The MPLW515L mutation also led to up-expression of anti-microbial genes in the intestinal tract. Though the mutation had no impact on the alpha diversity and dominant bacterial taxa, it did influence the rare bacterial taxa/sub-communities and consequently impacted intestinal homeostasis. Our findings demonstrate the significance of MPLW515L mice model for studying MPN disease and highlight the mutation's influence on intestinal homeostasis, including inflammation, activation of the IL-1β signaling pathway, and the composition of gut microbial communities.
Collapse
Affiliation(s)
- Shengyun Zhu
- Institute of Blood Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Hematology, Affliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Key Laboratory of Bone Marrow Stem Cells, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Kairen Xu
- Institute of Blood Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Shuyao Li
- Institute of Blood Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiangru Yu
- Institute of Blood Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yahui Liu
- Institute of Blood Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qigang Zhang
- Institute of Blood Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lingyu Zeng
- Institute of Blood Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Hematology, Affliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Key Laboratory of Bone Marrow Stem Cells, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Kailin Xu
- Institute of Blood Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Hematology, Affliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Key Laboratory of Bone Marrow Stem Cells, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Chunling Fu
- Institute of Blood Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Hematology, Affliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Key Laboratory of Bone Marrow Stem Cells, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
3
|
Arai K, Sakaguchi M, Yui S, Kitano T, Miyata M, Yogosawa M, Nakayama K, Tajika K, Usuki K, Kuroda J, Uoshima N, Kobayashi Y, Uchiyama H, Kubota Y, Kimura S, Mori S, Hirai M, Wakita S, Yamaguchi H. Simultaneous detection of JAK2, CALR, and MPL mutations and quantitation of JAK2 V617F allele burden in myeloproliferative neoplasms using the quenching probe-Tm method in i-densy IS-5320. Int J Lab Hematol 2022; 44:1102-1110. [PMID: 36039795 DOI: 10.1111/ijlh.13938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 07/07/2022] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Accurate detection of myeloproliferative neoplasms (MPN)-associated gene mutations is necessary to correctly diagnose MPN. However, conventional gene testing has various limitations, including the requirement of skilled technicians, cumbersome experimental procedures, and turnaround time of several days. The gene analyzer i-densy IS-5320 allows gene testing using the quenching probe-Tm method. Specifically, pretreatment of samples including DNA extraction, amplification and detection of genes, and analysis of results are performed in a fully automatic manner after samples and test reagents are added into this system, which is compact and can be easily installed in a laboratory. The aim of this study is to investigate the sensitivity and specificity associated with the simultaneous detection of MPN-associated gene mutations. METHODS We conducted an analysis of MPN-associated genes using i-densy IS-5320. We analyzed 384 samples (171 JAK2 V617F mutations, 10 JAK2 exon12 mutations, 104 CALR mutations, and 26 MPL mutations) that had been examined using conventional approaches such as allele-specific polymerase chain reaction (PCR), droplet digital PCR, and the direct sequencing method. RESULTS The detection accuracy of JAK2 V617F, JAK2 exon 12, CALR, and MPL was 100.0% (383/383), 99.7% (383/384), 100.0% (370/370), and 99.7% (377/378), respectively. There was a strong positive correlation between the JAK2 V617F allele burden measured using conventional methods and i-densy IS-5320 (r = .989). CONCLUSION Overall, i-densy IS-5320 exhibited good accuracy in terms of analyzing MPN-associated genes; thus, it can serve as a replacement for conventional methods of MPN-associated gene testing.
Collapse
Affiliation(s)
- Kunihito Arai
- Department of Hematology, Nippon Medical School, Tokyo, Japan
| | | | - Shunsuke Yui
- Department of Hematology, Nippon Medical School, Tokyo, Japan
| | - Tomoaki Kitano
- Department of Hematology, Nippon Medical School, Tokyo, Japan
| | - Miho Miyata
- Department of Hematology, Nippon Medical School, Tokyo, Japan
| | - Mayumi Yogosawa
- Department of Hematology, Nippon Medical School, Tokyo, Japan
| | - Kazutaka Nakayama
- Department of Hematology, Yokohama Minami Kyousai Hospital, Kanagawa, Japan
| | - Kenji Tajika
- Department of Hematology, Yokohama Minami Kyousai Hospital, Kanagawa, Japan
| | - Kensuke Usuki
- Department of Hematology, NTT Medical Center Tokyo, Tokyo, Japan
| | - Junya Kuroda
- Division of Hematology and Oncology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Nobuhiko Uoshima
- Department of Hematology, Japanese Red Cross, Kyoto Daini Hospital, Kyoto, Japan
| | - Yutaka Kobayashi
- Department of Hematology, Japanese Red Cross, Kyoto Daini Hospital, Kyoto, Japan
| | - Hitoji Uchiyama
- Department of Hematology, Japanese Red Cross Kyoto Daiichi Hospital, Kyoto, Japan
| | - Yasushi Kubota
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Shinya Kimura
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Shinichiro Mori
- Hemato-Oncology Department, St Luke's International Hospital, Tokyo, Japan
| | | | - Satoshi Wakita
- Department of Hematology, Nippon Medical School, Tokyo, Japan
| | | |
Collapse
|
4
|
Hippo pathway-related genes expression is deregulated in myeloproliferative neoplasms. Med Oncol 2022; 39:97. [DOI: 10.1007/s12032-022-01696-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/22/2022] [Indexed: 10/18/2022]
|
5
|
Guglielmelli P, Calabresi L. The MPL mutation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 365:163-178. [PMID: 34756243 DOI: 10.1016/bs.ircmb.2021.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Myeloproliferative neoplasms (MPN) patients share driver mutations in JAK2, MPL or CALR genes leading to the activation of the thrombopoietin receptor (TPOR) and downstream signaling pathways. JAK2 mutation drives all the three major entities of MPN (Polycythemia Vera, Essential Thrombocythemia and Primary Myelofibrosis) through the constitutive activation of TPOR, erythropoietin (EPOR) and colony stimulating factor 3 receptor (CSF3R) signaling. MPL is a proto-oncogene encoding for TPOR, the hematopoietic growth factor receptor of myeloid stem cells. MPL mutants induce the stable dimerization of TPOR that in turn activate JAK2 and the thrombopoietin pathway. The thrombopoietin pathway plays an important role in the development of megakaryocytes and platelets as well as the self-renewal of hematopoietic stem cells. Little wonder therefore that mutations of MPL result in thrombocytosis, leading to an abnormal MPL trafficking or receptor activation. Finally, some extremely rare germline genetic variants in MPL can induce MPN-like hereditary disease. Against this molecular background, TPOR is a key actor in the MPN development and MPL mutations are of major relevance to fully elucidate the molecular mechanisms underlying the clinical manifestations of MPN and to arrange novel therapeutic strategies aiming to disrupt the dysegulated signaling cascade. This chapter will focus on the role MPL in the pathogenesis of MPN and in familial thrombocytosis and will review these different subtypes of somatic and germline genetic variants by dissecting how they impact clinical phenotype.
Collapse
Affiliation(s)
- Paola Guglielmelli
- Department of Experimental and Clinical Medicine, Center for Research and Innovation of Myeloproliferative Neoplasms (CRIMM), AOU Careggi, University of Florence, Florence, Italy.
| | - Laura Calabresi
- Department of Experimental and Clinical Medicine, Center for Research and Innovation of Myeloproliferative Neoplasms (CRIMM), AOU Careggi, University of Florence, Florence, Italy
| |
Collapse
|
6
|
Wei Q, Pinho S, Dong S, Pierce H, Li H, Nakahara F, Xu J, Xu C, Boulais PE, Zhang D, Maryanovich M, Cuervo AM, Frenette PS. MAEA is an E3 ubiquitin ligase promoting autophagy and maintenance of haematopoietic stem cells. Nat Commun 2021; 12:2522. [PMID: 33947846 PMCID: PMC8097058 DOI: 10.1038/s41467-021-22749-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 03/22/2021] [Indexed: 12/11/2022] Open
Abstract
Haematopoietic stem cells (HSCs) tightly regulate their quiescence, proliferation, and differentiation to generate blood cells during the entire lifetime. The mechanisms by which these critical activities are balanced are still unclear. Here, we report that Macrophage-Erythroblast Attacher (MAEA, also known as EMP), a receptor thus far only identified in erythroblastic island, is a membrane-associated E3 ubiquitin ligase subunit essential for HSC maintenance and lymphoid potential. Maea is highly expressed in HSCs and its deletion in mice severely impairs HSC quiescence and leads to a lethal myeloproliferative syndrome. Mechanistically, we have found that the surface expression of several haematopoietic cytokine receptors (e.g. MPL, FLT3) is stabilised in the absence of Maea, thereby prolonging their intracellular signalling. This is associated with impaired autophagy flux in HSCs but not in mature haematopoietic cells. Administration of receptor kinase inhibitor or autophagy-inducing compounds rescues the functional defects of Maea-deficient HSCs. Our results suggest that MAEA provides E3 ubiquitin ligase activity, guarding HSC function by restricting cytokine receptor signalling via autophagy.
Collapse
Affiliation(s)
- Qiaozhi Wei
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | - Sandra Pinho
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, USA
| | - Shuxian Dong
- Department of Development and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Halley Pierce
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Huihui Li
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Fumio Nakahara
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Jianing Xu
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Chunliang Xu
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Philip E Boulais
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Dachuan Zhang
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Maria Maryanovich
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ana Maria Cuervo
- Department of Development and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Paul S Frenette
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Bronx, NY, USA.
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA.
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
7
|
Poluben LO, Neumerzhytska LV, Klymenko SV, Fraenkel P, Balk C, Shumeiko OO. MOLECULAR GENETIC ABNORMALITIES IN THE GENOME OF PATIENTS WITH Ph-NEGATIVE MYELOPROLIFERATIVE NEOPLASIA AFFECTED BY IONIZING RADIATION AS A RESULT OF THE CHORNOBYL NUCLEAR ACCIDENT. PROBLEMY RADIAT︠S︡IĬNOÏ MEDYT︠S︡YNY TA RADIOBIOLOHIÏ 2020; 25:362-373. [PMID: 33361847 DOI: 10.33145/2304-8336-2020-25-362-373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Indexed: 11/10/2022]
Abstract
OBJECTIVE to determine the frequency of major somatic mutations in the JAK2, MPL and CALR genes in the genomeof patients with Ph-negative myeloproliferative neoplasms that occur in individuals who have been exposed to ionizing radiation as a result of the Chornobyl accident. MATERIALS AND METHODS Molecular genetic analysis of genomic DNA samples isolated from blood was performed in90 patients with Ph-negative myeloproliferative neoplasia (MPN) with a history of radiation exposure and 191patients with spontaneous MPN utilizing allele-specific polymerase chain reaction (PCR). RESULTS The presence of major mutations in the genes JAK2, CALR and MPL was revealed in patients with MPN witha history of radiation exposure with a frequency 58.9 % (53 of 90), 12.2 % (11 of 90), and 0 % respectively, and without exposure with frequency 75.4 % (144 of 191), 3.1 % (6 out of 191) and 1.6 % (3 out of 191) respectively.Mutations JAK2 V617F in patients with spontaneous MPN were observed in each clinical form: polycythemia vera (PV),essential thrombocythemia (ET) and primary myelofibrosis (PMF). CALR mutations were detected exclusively inpatients with PMF and ET, significantly more often in groups with a radiation exposure history (18.9 % and 33.3 %,vs. 4.2 % and 6.5 %) than without one. At the same time, the occurence of MPL mutations was determined only inpatients with spontaneous MPN in 1.6 % of casees. Triple negative mutation status of genes JAK2, MPL and CALR prevailed in the group of patients with MPN with a history of radiation exposure and was 27.8 %, against 16.2 % inpatients without radiation exposure (p = 0.05). CONCLUSIONS Genomic research of patients with Ph-negative MPN revealed features of molecular genetic damage inthose patients who were exposed to IR as a result of the Chornobyl accident and those with spontaneous MPN. Thedata obtained by determining of JAK2, MPL and CALR genes mutational status in the genome of patients with MPN isnecessary to expand the understanding of the mechanism of leukogenesis, especially caused by radiation.
Collapse
Affiliation(s)
- L O Poluben
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka St., Kyiv, 04050, Ukraine
| | - L V Neumerzhytska
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka St., Kyiv, 04050, Ukraine
| | - S V Klymenko
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka St., Kyiv, 04050, Ukraine
| | - P Fraenkel
- Bes Israel Dikoness Medical Center, Hematology/Oncology Department, Boston, Massachusetts, USA
| | - C Balk
- Bes Israel Dikoness Medical Center, Hematology/Oncology Department, Boston, Massachusetts, USA
| | - O O Shumeiko
- Bogomolets National Medical University, 13 Tarasa Shevchenka Blvd, Kyiv, 01601, Ukraine
| |
Collapse
|
8
|
Prefibrotic Myelofibrosis Presenting with Multiple Cerebral Embolic Infarcts and the Rare MPL W515S Mutation. Case Rep Hematol 2020; 2020:8375986. [PMID: 32637179 PMCID: PMC7322597 DOI: 10.1155/2020/8375986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/24/2020] [Accepted: 06/04/2020] [Indexed: 11/17/2022] Open
Abstract
Acquired, activating mutations of MPL W515 are recognised driver mutations of the myeloproliferative neoplasms (MPN), namely, essential thrombocythemia and primary myelofibrosis. The most common mutation at this codon is W515L with several other mutations also described at a lower frequency. Of these less common mutations, MPL W515S has only been reported sporadically with limited information on clinicopathological associations. We describe the case of an elderly man with persistent thrombocytosis presenting with an ischemic cerebral event. Bone marrow biopsy showed evidence of prefibrotic myelofibrosis with targeted sequencing demonstrating the presence of the rare MPL W515S mutation. Thrombolytic and cytoreductive therapies resulted in a favorable outcome and follow-up. This case provides additional, necessary, and phenotypic data for the rare MPN-associated MPL W515S mutation.
Collapse
|
9
|
C. Diaconu C, Gurban P, Mambet C, Chivu-Economescu M, G. Necula L, Matei L, Dragu D, Nedeianu S, I. Neagu A, Tatic A, Cristodor D, Bleotu C. Programmed Cell Death Deregulation in BCR-ABL1-Negative Myeloproliferative Neoplasms. PROGRAMMED CELL DEATH 2020. [DOI: 10.5772/intechopen.86062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2024]
|
10
|
Xie J, Chen X, Gao F, Hou R, Tian T, Zhang Y, Fan L, Hu J, Zhu G, Yang W, Wang H. Two activating mutations of MPL in triple-negative myeloproliferative neoplasms. Cancer Med 2019; 8:5254-5263. [PMID: 31294534 PMCID: PMC6718619 DOI: 10.1002/cam4.2387] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 05/24/2019] [Accepted: 06/17/2019] [Indexed: 12/17/2022] Open
Abstract
MPLW515K or W515L mutation plays an important role in the pathogenesis of myeloproliferative neoplasms (MPNs) through signaling molecules of the cytokine receptor axis. Besides MPLW515K or W515L, more than 30 atypical MPL mutations have been reported in patients who are negative for JAK2V617F, MPLW515K/L, and CALR mutations. Here, we aimed to identify the disease-causing mutations in the triple-negative case of ET. We described two MPL mutations in patients diagnosed with ET by target sequencing the hotspot mutation region of MPL gene. The MPLA497-L498ins4 is an insertion mutation detected recurrently in ET patients, and the MPLW515RQ516E is a novel double-point mutation found in an ET patient. Functional studies of MPLA497-L498ins4 and MPLW515RQ516E revealed that they are gain-of-function mutations. Mutants of MPLA497-L498ins4 and MPLW515RQ516E promoted autonomous proliferation on Ba/F3 cells in the absence of IL-3. Autonomous activation of TPO-R without ligand TPO was observed in MPLA497-L498ins4 and MPLW515RQ516E mutants. Lower percentage of cells in G1 phase and higher percentage of cells in S phase of two atypical MPL mutants were detected after culturing without any cytokines. These two atypical MPL mutations also presented increase in phosphorylation of signaling proteins including JAK2/STAT, PI3K/AKT, and MAPK/RAS. In summary, the MPLA497-L498ins4 and MPLW515RQ516E are gain-of-function mutations which may be novel driving factors participating in the pathogenesis of triple-negative MPN.
Collapse
Affiliation(s)
- Juan Xie
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiuhua Chen
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Feng Gao
- Clinical laboratory, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Ruixia Hou
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Tingting Tian
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yaofang Zhang
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Lifang Fan
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Jinjun Hu
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Guiyang Zhu
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Wanfang Yang
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Hongwei Wang
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
11
|
Elsayed AG, Ranavaya A, Jamil MO. MPL Y252H an Md PL F126fs mutations in essential thrombocythemia: Case series and review of literature. Hematol Rep 2019; 11:7868. [PMID: 30996850 PMCID: PMC6434327 DOI: 10.4081/hr.2019.7868] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 02/15/2019] [Indexed: 12/24/2022] Open
Abstract
Essential thrombocythemia (ET) is a clonal bone marrow disease, characterized by increased production of platelets along with other clinical and bone marrow findings. Most patients with ET will have a somatic mutation in one of the known gene locations of JAK2, CALR, or MPL that can upregulate the JAK-STAT pathway. MPL mutation is present in 5% of cases with the most common mutations being W515L and W515K. In this report we describe 2 cases of patients with clinical and laboratory picture of ET. One patient carried MPLY252H mutation which is previously unreported in the adult population but has been shown to be a gain-of-function mutation. The other patient carried MPL F126fs mutation which is not known to be of clinical importance and has not been previously reported.
Collapse
Affiliation(s)
- Ahmed G Elsayed
- Hematology Oncology Department, Promedica/University of Toledo, Toledo, OH
| | - Aeesha Ranavaya
- Hematology/Oncology Department, Joan C. Edwards School of Medicine, Marshall University, WV, USA
| | - Muhammad Omer Jamil
- Hematology/Oncology Department, Joan C. Edwards School of Medicine, Marshall University, WV, USA
| |
Collapse
|
12
|
Defour JP, Levy G, Leroy E, Smith SO, Constantinescu SN. The S505A thrombopoietin receptor mutation in childhood hereditary thrombocytosis and essential thrombocythemia is S505N: single letter amino acid code matters. Leukemia 2019; 33:563-564. [PMID: 30635630 DOI: 10.1038/s41375-018-0356-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 11/22/2018] [Indexed: 01/17/2023]
Affiliation(s)
- Jean-Philippe Defour
- Université catholique de Louvain, de Duve Institute and WELBIO, Brussels, Belgium.,Ludwig Institute for Cancer Research, Brussels, Belgium.,Department of Clinical Biology, Cliniques universitaires Saint-Luc, Brussels, Belgium
| | - Gabriel Levy
- Université catholique de Louvain, de Duve Institute and WELBIO, Brussels, Belgium.,Ludwig Institute for Cancer Research, Brussels, Belgium.,Department of Pediatrics, Cliniques universitaires Saint-Luc, Brussels, Belgium
| | - Emilie Leroy
- Université catholique de Louvain, de Duve Institute and WELBIO, Brussels, Belgium.,Ludwig Institute for Cancer Research, Brussels, Belgium
| | - Steven O Smith
- Department of Biochemistry, Stony Brook University, Stony Brook, Long Island, New York, NY, USA
| | - Stefan N Constantinescu
- Université catholique de Louvain, de Duve Institute and WELBIO, Brussels, Belgium. .,Ludwig Institute for Cancer Research, Brussels, Belgium.
| |
Collapse
|
13
|
Poluben L, Puligandla M, Neuberg D, Bryke CR, Hsu Y, Shumeiko O, Yuan X, Voznesensky O, Pihan G, Adam M, Fraenkel E, Rasnic R, Linial M, Klymenko S, Balk SP, Fraenkel PG. Characteristics of myeloproliferative neoplasms in patients exposed to ionizing radiation following the Chernobyl nuclear accident. Am J Hematol 2019; 94:62-73. [PMID: 30295334 DOI: 10.1002/ajh.25307] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 09/28/2018] [Accepted: 10/02/2018] [Indexed: 12/20/2022]
Abstract
Myeloproliferative neoplasms (MPNs) driver mutations are usually found in JAK2, MPL, and CALR genes; however, 10%-15% of cases are triple negative (TN). A previous study showed lower rate of JAK2 V617F in primary myelofibrosis patients exposed to low doses of ionizing radiation (IR) from Chernobyl accident. To examine distinct driver mutations, we enrolled 281 Ukrainian IR-exposed and unexposed MPN patients. Genomic DNA was obtained from peripheral blood leukocytes. JAK2 V617F, MPL W515, types 1- and 2-like CALR mutations were identified by Sanger Sequencing and real time polymerase chain reaction. Chromosomal alterations were assessed by oligo-SNP microarray platform. Additional genetic variants were identified by whole exome and targeted sequencing. Statistical significance was evaluated by Fisher's exact test and Wilcoxon's rank sum test (R, version 3.4.2). IR-exposed MPN patients exhibited a different genetic profile vs unexposed: lower rate of JAK2 V617F (58.4% vs 75.4%, P = .0077), higher rate of type 1-like CALR mutation (12.2% vs 3.1%, P = .0056), higher rate of TN cases (27.8% vs 16.2%, P = .0366), higher rate of potentially pathogenic sequence variants (mean numbers: 4.8 vs 3.1, P = .0242). Furthermore, we identified several potential drivers specific to IR-exposed TN MPN patients: ATM p.S1691R with copy-neutral loss of heterozygosity at 11q; EZH2 p.D659G at 7q and SUZ12 p.V71 M at 17q with copy number loss. Thus, IR-exposed MPN patients represent a group with distinct genomic characteristics worthy of further study.
Collapse
Affiliation(s)
- Larysa Poluben
- Division of Hematology/Oncology Cancer Research Institute, Beth Israel Deaconess Medical Center Boston Massachusetts
- National Research Center for Radiation Medicine Kyiv Ukraine
| | | | - Donna Neuberg
- Dana‐Farber/Harvard Cancer Center Boston Massachusetts
| | - Christine R. Bryke
- Division of Clinical Pathology Beth Israel Deaconess Medical Center Boston Massachusetts
| | - Yahsuan Hsu
- Division of Clinical Pathology Beth Israel Deaconess Medical Center Boston Massachusetts
| | | | - Xin Yuan
- Division of Hematology/Oncology Cancer Research Institute, Beth Israel Deaconess Medical Center Boston Massachusetts
| | - Olga Voznesensky
- Division of Hematology/Oncology Cancer Research Institute, Beth Israel Deaconess Medical Center Boston Massachusetts
| | - German Pihan
- Division of Clinical Pathology Beth Israel Deaconess Medical Center Boston Massachusetts
| | - Miriam Adam
- Department of Biological Engineering Massachusetts Institute of Technology Cambridge Massachusetts
| | - Ernest Fraenkel
- Department of Biological Engineering Massachusetts Institute of Technology Cambridge Massachusetts
| | - Roni Rasnic
- School of Computer Science and Engineering & Department of Biological Chemistry Hebrew University Jerusalem Israel
| | - Michal Linial
- School of Computer Science and Engineering & Department of Biological Chemistry Hebrew University Jerusalem Israel
| | - Sergiy Klymenko
- National Research Center for Radiation Medicine Kyiv Ukraine
| | - Steven P. Balk
- Division of Hematology/Oncology Cancer Research Institute, Beth Israel Deaconess Medical Center Boston Massachusetts
| | - Paula G. Fraenkel
- Division of Hematology/Oncology Cancer Research Institute, Beth Israel Deaconess Medical Center Boston Massachusetts
| |
Collapse
|
14
|
Molecular Markers and Prognosis of Myelofibrosis in the Genomic Era: A Meta-analysis. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2018; 18:558-568. [PMID: 29970342 DOI: 10.1016/j.clml.2018.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/19/2018] [Accepted: 06/04/2018] [Indexed: 12/27/2022]
Abstract
Molecular markers are important in guiding treatment and predicting outcome in the genomic era. Meta-analysis of molecular markers in myelofibrosis through a search of PubMed and Medline through October 31, 2017 was performed. Markers with more than 3 studies that compared overall survival (OS) and leukemia-free survival (LFS) were analyzed. A total of 16 studies were included. Hazard ratios (HRs) for OS were as follows: IDH 2.65 (95% confidence interval [CI], 1.66-4.21), SRSF2 2.12 (95% CI, 1.18-3.79), high-risk myeloma 2.11 (95% CI, 1.70-2.61), ASXL1 1.92 (95% CI, 1.60-2.32), EZH2 1.88 (95% CI, 1.32-2.67), JAK2 1.41 (95% CI, 1.04-1.93) in the univariate analysis and 1.49 (95% CI, 0.42-5.30) in the multivariate analysis. LFS of JAK2 and SRSF2 had HRs of 1.81 (95% CI, 0.42-5.30) and 0.36 (95% CI, 0.02-6.48), respectively. In conclusion, mutations in IDH, SRSF2, and ASXL1 had worse prognosis in OS with HRs around 2. JAK2 and SRSF2 mutation were not associated with increased leukemia transformation. The adverse effect of triple-negative, which was often compared with CALR mutation, needs to be explored.
Collapse
|
15
|
Nielsen HM, Andersen CL, Westman M, Kristensen LS, Asmar F, Kruse TA, Thomassen M, Larsen TS, Skov V, Hansen LL, Bjerrum OW, Hasselbalch HC, Punj V, Grønbæk K. Epigenetic changes in myelofibrosis: Distinct methylation changes in the myeloid compartments and in cases with ASXL1 mutations. Sci Rep 2017; 7:6774. [PMID: 28754985 PMCID: PMC5533802 DOI: 10.1038/s41598-017-07057-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 06/26/2017] [Indexed: 02/07/2023] Open
Abstract
This is the first study to compare genome-wide DNA methylation profiles of sorted blood cells from myelofibrosis (MF) patients and healthy controls. We found that differentially methylated CpG sites located to genes involved in 'cancer' and 'embryonic development' in MF CD34+ cells, in 'inflammatory disease' in MF mononuclear cells, and in 'immunological diseases' in MF granulocytes. Only few differentially methylated CpG sites were common among the three cell populations. Mutations in the epigenetic regulators ASXL1 (47%) and TET2 (20%) were not associated with a specific DNA methylation pattern using an unsupervised approach. However, in a supervised analysis of ASXL1 mutated versus wild-type cases, differentially methylated CpG sites were enriched in regions marked by histone H3K4me1, histone H3K27me3, and the bivalent histone mark H3K27me3 + H3K4me3 in human CD34+ cells. Hypermethylation of selected CpG sites was confirmed in a separate validation cohort of 30 MF patients by pyrosequencing. Altogether, we show that individual MF cell populations have distinct differentially methylated genes relative to their normal counterparts, which likely contribute to the phenotypic characteristics of MF. Furthermore, differentially methylated CpG sites in ASXL1 mutated MF cases are found in regulatory regions that could be associated with aberrant gene expression of ASXL1 target genes.
Collapse
Affiliation(s)
- Helene Myrtue Nielsen
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Danish Stem Cell Centre (DanStem) Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christen Lykkegaard Andersen
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Hematology, Roskilde Hospital, Roskilde, Denmark
| | - Maj Westman
- Department of Clinical Genetics, Rigshospitalet, Copenhagen, Denmark
| | - Lasse Sommer Kristensen
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Fazila Asmar
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Torben Arvid Kruse
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Mads Thomassen
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | | | - Vibe Skov
- Department of Hematology, Roskilde Hospital, Roskilde, Denmark
| | | | - Ole Weis Bjerrum
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | | | - Vasu Punj
- Division of Hematology, Keck School of Medicine, University of Southern California, Los Angeles, United States
| | - Kirsten Grønbæk
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark. .,Danish Stem Cell Centre (DanStem) Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
16
|
Nangalia J, Grinfeld J, Green AR. Pathogenesis of Myeloproliferative Disorders. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2017; 11:101-26. [PMID: 27193452 DOI: 10.1146/annurev-pathol-012615-044454] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Myeloproliferative neoplasms (MPNs) are a set of chronic hematopoietic neoplasms with overlapping clinical and molecular features. Recent years have witnessed considerable advances in our understanding of their pathogenetic basis. Due to their protracted clinical course, the evolution to advanced hematological malignancies, and the accessibility of neoplastic tissue, the study of MPNs has provided a window into the earliest stages of tumorigenesis. With the discovery of mutations in CALR, the majority of MPN patients now bear an identifiable marker of clonal disease; however, the mechanism by which mutated CALR perturbs megakaryopoiesis is currently unresolved. We are beginning to understand better the role of JAK2(V617F) homozygosity, the function of comutations in epigenetic regulators and spliceosome components, and how these mutations cooperate with JAK2(V617F) to modulate MPN phenotype.
Collapse
Affiliation(s)
- Jyoti Nangalia
- Department of Haematology, Cambridge Institute for Medical Research and Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge CB2 0XY, United Kingdom; .,Department of Haematology, Addenbrooke's Hospital, Cambridge CB2 2QR, United Kingdom
| | - Jacob Grinfeld
- Department of Haematology, Cambridge Institute for Medical Research and Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge CB2 0XY, United Kingdom; .,Department of Haematology, Addenbrooke's Hospital, Cambridge CB2 2QR, United Kingdom
| | - Anthony R Green
- Department of Haematology, Cambridge Institute for Medical Research and Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge CB2 0XY, United Kingdom; .,Department of Haematology, Addenbrooke's Hospital, Cambridge CB2 2QR, United Kingdom
| |
Collapse
|
17
|
Rashidi A, Nelson AC, Linden MA, Weisdorf DJ, Dolan MM, Ustun C. Genomics of clonal evolution in a case of essential thrombocythemia. Leuk Lymphoma 2017; 59:497-500. [PMID: 28604261 DOI: 10.1080/10428194.2017.1337113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Armin Rashidi
- a Division of Hematology, Oncology, and Transplantation , University of Minnesota , Minneapolis , MN , USA
| | - Andrew C Nelson
- b Department of Laboratory Medicine and Pathology , University of Minnesota , Minneapolis , MN , USA
| | - Michael A Linden
- b Department of Laboratory Medicine and Pathology , University of Minnesota , Minneapolis , MN , USA
| | - Daniel J Weisdorf
- a Division of Hematology, Oncology, and Transplantation , University of Minnesota , Minneapolis , MN , USA
| | - Michelle M Dolan
- b Department of Laboratory Medicine and Pathology , University of Minnesota , Minneapolis , MN , USA
| | - Celalettin Ustun
- a Division of Hematology, Oncology, and Transplantation , University of Minnesota , Minneapolis , MN , USA
| |
Collapse
|
18
|
Megakaryocytes in Myeloproliferative Neoplasms Have Unique Somatic Mutations. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:1512-1522. [PMID: 28502479 DOI: 10.1016/j.ajpath.2017.03.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 03/23/2017] [Indexed: 02/06/2023]
Abstract
Myeloproliferative neoplasms (MPNs) are a group of related clonal hemopoietic stem cell disorders associated with hyperproliferation of myeloid cells. They are driven by mutations in the hemopoietic stem cell, most notably JAK2V617F, CALR, and MPL. Clinically, they have the propensity to progress to myelofibrosis and transform to acute myeloid leukemia. Megakaryocytic hyperplasia with abnormal features are characteristic, and it is thought that these cells stimulate and drive fibrotic progression. The biological defects underpinning this remain to be explained. In this study we examined the megakaryocyte genome in 12 patients with MPNs to determine whether there are somatic variants and whether there is any association with marrow fibrosis. We performed targeted next-generation sequencing for 120 genes associated with myeloid neoplasms on megakaryocytes isolated from aspirated bone marrow. Ten of the 12 patients had genomic defects in megakaryocytes that were not present in nonmegakaryocytic hemopoietic marrow cells from the same patient. The greatest allelic burden was in patients with increased reticulin deposition. The megakaryocyte-unique mutations were predominantly in genes that regulate chromatin remodeling, chromosome alignment, and stability. These findings show that genomic abnormalities are present in megakaryocytes in MPNs and that these appear to be associated with progression to bone marrow fibrosis.
Collapse
|
19
|
Wiśniewska-Chudy E, Szylberg Ł, Dworacki G, Mizera-Nyczak E, Marszałek A. pSTAT5 and ERK exhibit different expression in myeloproliferative neoplasms. Oncol Rep 2017; 37:2295-2307. [DOI: 10.3892/or.2017.5476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 12/02/2016] [Indexed: 11/06/2022] Open
|
20
|
Plo I, Bellanné-Chantelot C, Mosca M, Mazzi S, Marty C, Vainchenker W. Genetic Alterations of the Thrombopoietin/MPL/JAK2 Axis Impacting Megakaryopoiesis. Front Endocrinol (Lausanne) 2017; 8:234. [PMID: 28955303 PMCID: PMC5600916 DOI: 10.3389/fendo.2017.00234] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 08/28/2017] [Indexed: 12/31/2022] Open
Abstract
Megakaryopoiesis is an original and complex cell process which leads to the formation of platelets. The homeostatic production of platelets is mainly regulated and controlled by thrombopoietin (TPO) and the TPO receptor (MPL)/JAK2 axis. Therefore, any hereditary or acquired abnormality affecting this signaling axis can result in thrombocytosis or thrombocytopenia. Thrombocytosis can be due to genetic alterations that affect either the intrinsic MPL signaling through gain-of-function (GOF) activity (MPL, JAK2, CALR) and loss-of-function (LOF) activity of negative regulators (CBL, LNK) or the extrinsic MPL signaling by THPO GOF mutations leading to increased TPO synthesis. Alternatively, thrombocytosis may paradoxically result from mutations of MPL leading to an abnormal MPL trafficking, inducing increased TPO levels by alteration of its clearance. In contrast, thrombocytopenia can also result from LOF THPO or MPL mutations, which cause a complete defect in MPL trafficking to the cell membrane, impaired MPL signaling or stability, defects in the TPO/MPL interaction, or an absence of TPO production.
Collapse
Affiliation(s)
- Isabelle Plo
- INSERM UMR 1170, Gustave Roussy, Villejuif, France
- Université Paris-Saclay, UMR1170, Gustave Roussy, Villejuif, France
- Gustave Roussy, UMR1170, Villejuif, France
| | - Christine Bellanné-Chantelot
- INSERM UMR 1170, Gustave Roussy, Villejuif, France
- Department of Genetics, AP-HP Hôpitaux Universitaires Pitié Salpêtrière - Charles Foix, UPMC Univ Paris 06, Paris, France
| | - Matthieu Mosca
- INSERM UMR 1170, Gustave Roussy, Villejuif, France
- Université Paris-Saclay, UMR1170, Gustave Roussy, Villejuif, France
- Gustave Roussy, UMR1170, Villejuif, France
| | - Stefania Mazzi
- INSERM UMR 1170, Gustave Roussy, Villejuif, France
- Université Paris-Saclay, UMR1170, Gustave Roussy, Villejuif, France
- Université Paris-Diderot, Paris, France
| | - Caroline Marty
- INSERM UMR 1170, Gustave Roussy, Villejuif, France
- Université Paris-Saclay, UMR1170, Gustave Roussy, Villejuif, France
- Gustave Roussy, UMR1170, Villejuif, France
| | - William Vainchenker
- INSERM UMR 1170, Gustave Roussy, Villejuif, France
- Université Paris-Saclay, UMR1170, Gustave Roussy, Villejuif, France
- Gustave Roussy, UMR1170, Villejuif, France
- *Correspondence: William Vainchenker,
| |
Collapse
|
21
|
Langabeer SE. Chasing down the triple-negative myeloproliferative neoplasms: Implications for molecular diagnostics. JAKSTAT 2016; 5:e1248011. [PMID: 28144498 DOI: 10.1080/21623996.2016.1248011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 10/10/2016] [Indexed: 12/13/2022] Open
Abstract
The majority of patients with classical myeloproliferative neoplasms (MPN) of polycythemia vera, essential thrombocythemia, and primary myelofibrosis harbor distinct disease-driving mutations within the JAK2, CALR, or MPL genes. The term triple-negative has been recently applied to those MPN without evidence of these consistent mutations, prompting whole or targeted exome sequencing approaches to determine the driver mutational status of this subgroup. These strategies have identified numerous novel mutations that occur in alternative exons of both JAK2 and MPL, the majority of which result in functional activation. Current molecular diagnostic approaches may possess insufficient coverage to detect these alternative mutations, prompting further consideration of targeted exon sequencing into routine diagnostic practice. How to incorporate these illuminating findings into the expanding molecular diagnostic algorithm for MPN requires continual attention.
Collapse
|
22
|
Abdollahi E, Tavasolian F, Momtazi-Borojeni AA, Samadi M, Rafatpanah H. Protective role of R381Q (rs11209026) polymorphism in IL-23R gene in immune-mediated diseases: A comprehensive review. J Immunotoxicol 2016; 13:286-300. [PMID: 27043356 DOI: 10.3109/1547691x.2015.1115448] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Interleukin-23 (IL-23) is a regulator of cellular immune responses involved in controlling infection and autoimmune diseases. Strong evidence has shown that IL-23 plays a role in the maintenance of immune responses by influencing the proliferation and survival of IL-17-producing T-helper (TH)-17 cells. The critical role of the IL-23/TH17 axis in immune-mediated diseases has emerged from different studies. It has also been seen that polymorphisms in the IL-23 receptor (IL-23R) gene might influence IL-23 responses. Interestingly, a functional single nucleotide polymorphism (SNP) in the IL-23 receptor gene (IL-23R; rs11209026, 1142 G wild-type A reduced function, Arg381Gln, R381Q) seems to confer a measure of protection against development of inflammatory bowel disease (IBD; Crohn's disease, ulcerative colitis), ankylosing spondylitis, rheumatoid arthritis, psoriasis, thyroiditis, recurrent spontaneous abortion and asthma, suggesting that a perturbation in the IL-23 signaling pathway is likely to be relevant to the pathophysiology of these diseases. The aim of this review was to provide an evaluation of what is currently known about the protective role of R381Q variant in IL-23R gene in immune-based diseases.
Collapse
Affiliation(s)
- Elham Abdollahi
- a Department of Medical Immunology , School of Medicine, Mashhad University of Medical Sciences , Mashhad , Iran ;,b Shahid Sadoughi University of Medical Science , Yazd , Iran ;,c Student Research Committee, Mashhad University of Medical Sciences , Mashhad , Iran
| | - Fataneh Tavasolian
- d Department of Immunology , School of Medical Sciences, Tarbiat Modares University , Tehran , Iran
| | - Amir Abbas Momtazi-Borojeni
- c Student Research Committee, Mashhad University of Medical Sciences , Mashhad , Iran ;,e Department of Medical Biotechnology , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Morteza Samadi
- f Department of Immunology , Shahid Sadoughi University , Yazd , Iran ;,g Reproductive Immunology Research Center, Shahid Sadoughi University , Yazd , Iran
| | - Houshang Rafatpanah
- h Research Center for HIV/AIDS, HTLV1 and Viral Hepatitis, Iranian Academic for Education, Culture and Research (ACECR), Mashhad Branch , Mashhad , Iran ;,i Inflammation/Inflammatory Diseases Research Center, Mashhad University of Medical Sciences , Mashhad , Iran
| |
Collapse
|
23
|
Presence of atypical thrombopoietin receptor (MPL) mutations in triple-negative essential thrombocythemia patients. Blood 2016; 127:333-42. [DOI: 10.1182/blood-2015-07-661983] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 09/24/2015] [Indexed: 01/06/2023] Open
Abstract
Key Points
Enrichment of atypical MPL mutations in essential thrombocythemia. MPLS204P and MPLY591N mutants are weak gain-of-function mutants.
Collapse
|
24
|
Saeidi K. Myeloproliferative neoplasms: Current molecular biology and genetics. Crit Rev Oncol Hematol 2015; 98:375-89. [PMID: 26697989 DOI: 10.1016/j.critrevonc.2015.11.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Revised: 09/10/2015] [Accepted: 11/09/2015] [Indexed: 12/16/2022] Open
Abstract
Myeloproliferative neoplasms (MPNs) are clonal disorders characterized by increased production of mature blood cells. Philadelphia chromosome-negative MPNs (Ph-MPNs) consist of polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF). A number of stem cell derived mutations have been identified in the past 10 years. These findings showed that JAK2V617F, as a diagnostic marker involving JAK2 exon 14 with a high frequency, is the best molecular characterization of Ph-MPNs. Somatic mutations in an endoplasmic reticulum chaperone, named calreticulin (CALR), is the second most common mutation in patients with ET and PMF after JAK2 V617F mutation. Discovery of CALR mutations led to the increased molecular diagnostic of ET and PMF up to 90%. It has been shown that JAK2V617F is not the unique event in disease pathogenesis. Some other genes' location such as TET oncogene family member 2 (TET2), additional sex combs-like 1 (ASXL1), casitas B-lineage lymphoma proto-oncogene (CBL), isocitrate dehydrogenase 1/2 (IDH1/IDH2), IKAROS family zinc finger 1 (IKZF1), DNA methyltransferase 3A (DNMT3A), suppressor of cytokine signaling (SOCS), enhancer of zeste homolog 2 (EZH2), tumor protein p53 (TP53), runt-related transcription factor 1 (RUNX1) and high mobility group AT-hook 2 (HMGA2) have also identified to be involved in MPNs phenotypes. Here, current molecular biology and genetic mechanisms involved in MNPs with a focus on the aforementioned factors is presented.
Collapse
Affiliation(s)
- Kolsoum Saeidi
- Department of Medical Genetics, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
25
|
Verger E, Teillet F, Conejero C, Letort G, Chomienne C, Giraudier S, Cassinat B. Unexplained thrombocytosis: association of Baltimore polymorphism with germline MPL nonsense mutation. Br J Haematol 2015; 175:167-9. [PMID: 26568271 DOI: 10.1111/bjh.13840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Emmanuelle Verger
- Service de Biologie Cellulaire, AP-HP, Hopital Saint-Louis, Paris, France
| | - France Teillet
- Laboratoire d'Hématologie, AP-HP, Hopital Louis Mourier, Colombes, France
| | | | - Gil Letort
- Inserm UMR-S 1131, Hopital Saint-Louis, Paris, France
| | - Christine Chomienne
- Service de Biologie Cellulaire, AP-HP, Hopital Saint-Louis, Paris, France.,Inserm UMR-S 1131, Hopital Saint-Louis, Paris, France.,Université Paris-Diderot, Paris, France
| | - Stephane Giraudier
- Faculte de medecine, Université Paris 12, Creteil, France.,Laboratoire d'Hématologie, AP-HP, Hopital Henri Mondor, Creteil, France
| | - Bruno Cassinat
- Service de Biologie Cellulaire, AP-HP, Hopital Saint-Louis, Paris, France. .,Inserm UMR-S 1131, Hopital Saint-Louis, Paris, France.
| |
Collapse
|
26
|
Inflammation as a Keystone of Bone Marrow Stroma Alterations in Primary Myelofibrosis. Mediators Inflamm 2015; 2015:415024. [PMID: 26640324 PMCID: PMC4660030 DOI: 10.1155/2015/415024] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 10/08/2015] [Accepted: 10/15/2015] [Indexed: 01/11/2023] Open
Abstract
Primary myelofibrosis (PMF) is a clonal myeloproliferative neoplasm where severity as well as treatment complexity is mainly attributed to a long lasting disease and presence of bone marrow stroma alterations as evidenced by myelofibrosis, neoangiogenesis, and osteosclerosis. While recent understanding of mutations role in hematopoietic cells provides an explanation for pathological myeloproliferation, functional involvement of stromal cells in the disease pathogenesis remains poorly understood. The current dogma is that stromal changes are secondary to the cytokine “storm” produced by the hematopoietic clone cells. However, despite therapies targeting the myeloproliferation-sustaining clones, PMF is still regarded as an incurable disease except for patients, who are successful recipients of allogeneic stem cell transplantation. Although the clinical benefits of these inhibitors have been correlated with a marked reduction in serum proinflammatory cytokines produced by the hematopoietic clones, further demonstrating the importance of inflammation in the pathological process, these treatments do not address the role of the altered bone marrow stroma in the pathological process. In this review, we propose hypotheses suggesting that the stroma is inflammatory-imprinted by clonal hematopoietic cells up to a point where it becomes “independent” of hematopoietic cell stimulation, resulting in an inflammatory vicious circle requiring combined stroma targeted therapies.
Collapse
|
27
|
Wang Z. [Advances in research of essential thrombocythemia]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2015; 36:802-4. [PMID: 26462788 PMCID: PMC7342712 DOI: 10.3760/cma.j.issn.0253-2727.2015.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Zhaoyue Wang
- Key Lab of Thrombosis and Hemostasis of Ministry of Health, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| |
Collapse
|
28
|
Abstract
The classical myeloproliferative neoplasms (MPNs) are a group of clonal diseases comprising essential thrombocythaemia (ET), polycythaemia vera (PV) and primary myelofibrosis (PMF). PMF is the rarest disease sub type and has been challenging to address due to the lack of a specific genetic marker, inadequate risk identification models and a highly variable clinical course. Continuous efforts have over time, seen the inclusion of cytogenetic information in prognostic scoring models that have resulted in improved risk stratification models providing further rationale for therapeutic management. Technological advances using single nucleotide polymorphism arrays increased the detection of known and novel MPN related changes and variant detection by massively parallel sequencing provided a large scale screening tool for the multitude of somatic gene mutations that have more recently been described in MPN. Some of these mutations show an association with specific cytogenetic changes or phenotypes. While PMF occurs mainly in adults, it has also been described in paediatric cases and shows distinct histopathological, genetic and clinical features in comparison. This review provides an overview of the genomics landscape of PMF and current developments in MPN therapy.
Collapse
Affiliation(s)
- Nisha R Singh
- 1 Department of Genetics, Pathology North-Sydney, St Leonards, NSW, Australia ; 2 Kolling Institute, University of Sydney, NSW, Australia
| |
Collapse
|
29
|
Malara A, Abbonante V, Di Buduo CA, Tozzi L, Currao M, Balduini A. The secret life of a megakaryocyte: emerging roles in bone marrow homeostasis control. Cell Mol Life Sci 2015; 72:1517-36. [PMID: 25572292 PMCID: PMC4369169 DOI: 10.1007/s00018-014-1813-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 12/15/2014] [Accepted: 12/19/2014] [Indexed: 12/19/2022]
Abstract
Megakaryocytes are rare cells found in the bone marrow, responsible for the everyday production and release of millions of platelets into the bloodstream. Since the discovery and cloning, in 1994, of their principal humoral factor, thrombopoietin, and its receptor c-Mpl, many efforts have been directed to define the mechanisms underlying an efficient platelet production. However, more recently different studies have pointed out new roles for megakaryocytes as regulators of bone marrow homeostasis and physiology. In this review we discuss the interaction and the reciprocal regulation of megakaryocytes with the different cellular and extracellular components of the bone marrow environment. Finally, we provide evidence that these processes may concur to the reconstitution of the bone marrow environment after injury and their deregulation may lead to the development of a series of inherited or acquired pathologies.
Collapse
Affiliation(s)
- Alessandro Malara
- Department of Molecular Medicine, University of Pavia, Via Forlanini 6, 27100 Pavia, Italy
- Laboratory of Biotechnology, IRCCS San Matteo Foundation, Pavia, Italy
| | - Vittorio Abbonante
- Department of Molecular Medicine, University of Pavia, Via Forlanini 6, 27100 Pavia, Italy
- Laboratory of Biotechnology, IRCCS San Matteo Foundation, Pavia, Italy
| | - Christian A. Di Buduo
- Department of Molecular Medicine, University of Pavia, Via Forlanini 6, 27100 Pavia, Italy
- Laboratory of Biotechnology, IRCCS San Matteo Foundation, Pavia, Italy
| | - Lorenzo Tozzi
- Department of Molecular Medicine, University of Pavia, Via Forlanini 6, 27100 Pavia, Italy
- Department of Biomedical Engineering, Tufts University, Medford, MA USA
| | - Manuela Currao
- Department of Molecular Medicine, University of Pavia, Via Forlanini 6, 27100 Pavia, Italy
- Laboratory of Biotechnology, IRCCS San Matteo Foundation, Pavia, Italy
| | - Alessandra Balduini
- Department of Molecular Medicine, University of Pavia, Via Forlanini 6, 27100 Pavia, Italy
- Laboratory of Biotechnology, IRCCS San Matteo Foundation, Pavia, Italy
- Department of Biomedical Engineering, Tufts University, Medford, MA USA
| |
Collapse
|
30
|
Chen CC, Gau JP, Chou HJ, You JY, Huang CE, Chen YY, Lung J, Chou YS, Leu YW, Lu CH, Lee KD, Tsai YH. Frequencies, clinical characteristics, and outcome of somatic CALR mutations in JAK2-unmutated essential thrombocythemia. Ann Hematol 2015; 93:2029-36. [PMID: 25015052 DOI: 10.1007/s00277-014-2151-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 06/23/2014] [Indexed: 01/16/2023]
Abstract
Calreticulin (CALR) mutations were recently identified in patients with essential thrombocythemia (ET) and primary myelofibrosis (PMF) devoid of JAK2 and MPL mutations. We evaluated the clinical, laboratory, and molecular features of a Taiwanese population of patients with ET. Among 147 ET patients, CALR mutations were detected in 33 (22.5 %), JAK2V617F in 94 (63.9 %), and MPL mutations in 4 (2.7 %). Sixteen (10.9 %) patients were negative for all three mutations (CALR, JAK2V617F, and MPL; triple negative). Interestingly, one patient with the type 2 CALR mutation also harbored a low allele burden (0.025 %) of JAK2V617F mutation. Furthermore, we found a novel CALR mutation, with the resultant protein sharing an identical amino acid sequence to the type 6 CALR mutant. Compared to those with JAK2 mutation, CALR-mutated ET patients were characterized by younger age, lower leukocyte count, higher platelet count, and decreased risk of thrombosis. CALR mutations had a favorable impact on thrombosis-free survival (TFS) for ET patients, whereas the respective TFS outcomes were similarly poorer in JAK2-mutated ET and PV patients. Multivariate analysis confirmed that younger age (<60 years), presence of CALR mutations, and a lower platelet count (<1,000 × 10(9)/L) were independently associated with a longer TFS in ET patients. The current study demonstrates that CALR mutations characterize a special group of ET patients with unique phenotypes that are not discrepant from those seen in Western countries.
Collapse
|
31
|
Abstract
Abstract
Our understanding of the genetic basis of the Philadelphia chromosome-negative myeloproliferative neoplasms (MPNs) has moved forward at a staggering pace over the last decade. With the discoveries of underlying mutations in JAK2, MPL, and, most recently, calreticulin (CALR), that together account for ∼90% of patients with MPNs, these conditions are now among the best characterized of hematological malignancies. While JAK-STAT pathway activation has been shown to be central to the pathogenesis of the MPN phenotype, the mechanism by which mutant CALR alters cellular function to result in myeloid proliferation remains unclear. Other mutations in several epigenetic modifiers, such as ASXL1, DNMT3a, TET2, EZH2, IDH1, and IDH2, as well as in genes involved in mRNA splicing, such as SF3B1 and U2AF2, have also been described in recent years in patients with MPNs, and evidence is emerging as to how these may be contributing to disease biology. From a therapeutic perspective, the discovery of aberrations in JAK2 has rapidly translated into the successful clinical use of JAK inhibitors in MPNs. Mutant calreticulin has the potential to be a tumor-specific therapeutic target because the mutations generate a novel protein C-terminus. In this chapter, we detail the genomic alterations that underlie MPNs, with a focus on the recent discovery of mutations in CALR, and explore the clinical and biological relevance of the altered genomic landscape in MPNs.
Collapse
|
32
|
Matynia AP, Szankasi P, Shen W, Kelley TW. Molecular genetic biomarkers in myeloid malignancies. Arch Pathol Lab Med 2014; 139:594-601. [PMID: 25152312 DOI: 10.5858/arpa.2014-0096-ra] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CONTEXT Recent studies using massively parallel sequencing technologies, so-called next-generation sequencing, have uncovered numerous recurrent, single-gene variants or mutations across the spectrum of myeloid malignancies. OBJECTIVES To review the recent advances in the understanding of the molecular basis of myeloid neoplasms, including their significance for diagnostic and prognostic purposes and the possible implications for the development of novel therapeutic strategies. DATA SOURCES Literature review. CONCLUSIONS The recurrent mutations found in myeloid malignancies fall into distinct functional categories. These include (1) cell signaling factors, (2) transcription factors, (3) regulators of the cell cycle, (4) regulators of DNA methylation, (5) regulators of histone modification, (6) RNA-splicing factors, and (7) components of the cohesin complex. As the clinical significance of these mutations and mutation combinations is established, testing for their presence is likely to become a routine part of the diagnostic workup. This review will attempt to establish a framework for understanding these mutations in the context of myeloproliferative neoplasms, myelodysplastic syndromes, and acute myeloid leukemia.
Collapse
Affiliation(s)
- Anna P Matynia
- From the Department of Pathology, University of Utah, Salt Lake City (Drs Matynia and Kelley); and Research and Development, ARUP Laboratories, Salt Lake City, Utah (Drs Szankasi and Shen)
| | | | | | | |
Collapse
|
33
|
Takei H, Morishita S, Araki M, Edahiro Y, Sunami Y, Hironaka Y, Noda N, Sekiguchi Y, Tsuneda S, Ohsaka A, Komatsu N. Detection of MPLW515L/K mutations and determination of allele frequencies with a single-tube PCR assay. PLoS One 2014; 9:e104958. [PMID: 25144224 PMCID: PMC4140728 DOI: 10.1371/journal.pone.0104958] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 07/14/2014] [Indexed: 12/21/2022] Open
Abstract
A gain-of-function mutation in the myeloproliferative leukemia virus (MPL) gene, which encodes the thrombopoietin receptor, has been identified in patients with essential thrombocythemia and primary myelofibrosis, subgroups of classic myeloproliferative neoplasms (MPNs). The presence of MPL gene mutations is a critical diagnostic criterion for these diseases. Here, we developed a rapid, simple, and cost-effective method of detecting two major MPL mutations, MPLW515L/K, in a single PCR assay; we termed this method DARMS (dual amplification refractory mutation system)-PCR. DARMS-PCR is designed to produce three different PCR products corresponding to MPLW515L, MPLW515K, and all MPL alleles. The amplicons are later detected and quantified using a capillary sequencer to determine the relative frequencies of the mutant and wild-type alleles. Applying DARMS-PCR to human specimens, we successfully identified MPL mutations in MPN patients, with the exception of patients bearing mutant allele frequencies below the detection limit (5%) of this method. The MPL mutant allele frequencies determined using DARMS-PCR correlated strongly with the values determined using deep sequencing. Thus, we demonstrated the potential of DARMS-PCR to detect MPL mutations and determine the allele frequencies in a timely and cost-effective manner.
Collapse
Affiliation(s)
- Hiraku Takei
- Department of Hematology, Juntendo University School of Medicine, Tokyo, Japan
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan
| | - Soji Morishita
- Department of Transfusion Medicine and Stem Cell Regulation, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Marito Araki
- Department of Transfusion Medicine and Stem Cell Regulation, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yoko Edahiro
- Department of Hematology, Juntendo University School of Medicine, Tokyo, Japan
| | - Yoshitaka Sunami
- Department of Hematology, Juntendo University School of Medicine, Tokyo, Japan
| | - Yumi Hironaka
- Department of Hematology, Juntendo University School of Medicine, Tokyo, Japan
| | - Naohiro Noda
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Yuji Sekiguchi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Satoshi Tsuneda
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan
| | - Akimichi Ohsaka
- Department of Transfusion Medicine and Stem Cell Regulation, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Norio Komatsu
- Department of Hematology, Juntendo University School of Medicine, Tokyo, Japan
- * E-mail:
| |
Collapse
|
34
|
Liongue C, Ward AC. Granulocyte colony-stimulating factor receptor mutations in myeloid malignancy. Front Oncol 2014; 4:93. [PMID: 24822171 PMCID: PMC4013473 DOI: 10.3389/fonc.2014.00093] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 04/14/2014] [Indexed: 12/21/2022] Open
Abstract
Granulocyte colony-stimulating factor is a cytokine able to stimulate both myelopoiesis and hematopoietic stem cell mobilization, which has seen it used extensively in the clinic to aid hematopoietic recovery. It acts specifically via the homodimeric granulocyte colony-stimulating factor receptor (G-CSFR), which is principally expressed on the surface of myeloid and hematopoietic progenitor cells. A number of pathogenic mutations have now been identified in CSF3R, the gene encoding G-CSFR. These fall into distinct classes, each of which is associated with a particular spectrum of myeloid disorders, including malignancy. This review details the various CSF3R mutations, their mechanisms of action, and contribution to disease, as well as discussing the clinical implications of such mutations.
Collapse
Affiliation(s)
- Clifford Liongue
- School of Medicine, Deakin University , Geelong, VIC , Australia ; Strategic Research Centre in Molecular and Medical Research, Deakin University , Geelong, VIC , Australia
| | - Alister Curtis Ward
- School of Medicine, Deakin University , Geelong, VIC , Australia ; Strategic Research Centre in Molecular and Medical Research, Deakin University , Geelong, VIC , Australia
| |
Collapse
|
35
|
A multiplex snapback primer system for the enrichment and detection of JAK2 V617F and MPL W515L/K mutations in Philadelphia-negative myeloproliferative neoplasms. BIOMED RESEARCH INTERNATIONAL 2014; 2014:458457. [PMID: 24729973 PMCID: PMC3960525 DOI: 10.1155/2014/458457] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 01/18/2014] [Accepted: 01/18/2014] [Indexed: 11/23/2022]
Abstract
A multiplex snapback primer system was developed for the simultaneous detection of JAK2 V617F and MPL W515L/K mutations in Philadelphia chromosome- (Ph-) negative myeloproliferative neoplasms (MPNs). The multiplex system comprises two snapback versus limiting primer sets for JAK2 and MPL mutation enrichment and detection, respectively. Linear-After exponential (LATE) PCR strategy was employed for the primer design to maximize the amplification efficiency of the system. Low ionic strength buffer and rapid PCR protocol allowed for selective amplification of the mutant alleles. Amplification products were analyzed by melting curve analysis for mutation identification. The multiplex system archived 0.1% mutation load sensitivity and <5% coefficient of variation inter-/intra-assay reproducibility. 120 clinical samples were tested by the multiplex snapback primer assay, and verified with amplification refractory system (ARMS), quantitative PCR (qPCR) and Sanger sequencing method. The multiplex system, with a favored versatility, provided the molecular diagnosis of Ph-negative MPNs with a suitable implement and simplified the genetic test process.
Collapse
|
36
|
Vannucchi AM, Guglielmelli P, Pieri L, Antonioli E, Bosi A. Treatment options for essential thrombocythemia and polycythemia vera. Expert Rev Hematol 2014; 2:41-55. [DOI: 10.1586/17474086.2.1.41] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
37
|
Laboratory Practice Guidelines for Detecting and Reporting JAK2 and MPL Mutations in Myeloproliferative Neoplasms. J Mol Diagn 2013; 15:733-44. [DOI: 10.1016/j.jmoldx.2013.07.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 07/01/2013] [Accepted: 07/12/2013] [Indexed: 12/11/2022] Open
|
38
|
Gäbler K, Behrmann I, Haan C. JAK2 mutants (e.g., JAK2V617F) and their importance as drug targets in myeloproliferative neoplasms. JAKSTAT 2013; 2:e25025. [PMID: 24069563 PMCID: PMC3772115 DOI: 10.4161/jkst.25025] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 05/13/2013] [Accepted: 05/13/2013] [Indexed: 12/25/2022] Open
Abstract
The Janus kinase 2 (JAK2) mutant V617F and other JAK mutants are found in patients with myeloproliferative neoplasms and leukemias. Due to their involvement in neoplasia and inflammatory disorders, Janus kinases are promising targets for kinase inhibitor therapy. Several small-molecule compounds are evaluated in clinical trials for myelofibrosis, and ruxolitinib (INCB018424, Jakafi®) was the first Janus kinase inhibitor to receive clinical approval. In this review we provide an overview of JAK2V617F signaling and its inhibition by small-molecule kinase inhibitors. In addition, myeloproliferative neoplasms are discussed regarding the role of JAK2V617F and other mutant proteins of possible relevance. We further give an overview about treatment options with special emphasis on possible combination therapies.
Collapse
Affiliation(s)
- Karoline Gäbler
- Signal Transduction Laboratory; Life Sciences Research Unit; University of Luxembourg; Luxembourg
| | - Iris Behrmann
- Signal Transduction Laboratory; Life Sciences Research Unit; University of Luxembourg; Luxembourg
| | - Claude Haan
- Signal Transduction Laboratory; Life Sciences Research Unit; University of Luxembourg; Luxembourg
| |
Collapse
|
39
|
Acquired copy-neutral loss of heterozygosity of chromosome 1p as a molecular event associated with marrow fibrosis in MPL-mutated myeloproliferative neoplasms. Blood 2013; 121:4388-95. [PMID: 23575445 DOI: 10.1182/blood-2013-02-486050] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We studied mutations of MPL exon 10 in patients with essential thrombocythemia (ET) or primary myelofibrosis (PMF), first investigating a cohort of 892 consecutive patients. MPL mutation scanning was performed on granulocyte genomic DNA by using a high-resolution melt assay, and the mutant allele burden was evaluated by using deep sequencing. Somatic mutations of MPL, all but one involving codon W515, were detected in 26/661 (4%) patients with ET, 10/187 (5%) with PMF, and 7/44 (16%) patients with post-ET myelofibrosis. Comparison of JAK2 (V617F)-mutated and MPL-mutated patients showed only minor phenotypic differences. In an extended group of 62 MPL-mutated patients, the granulocyte mutant allele burden ranged from 1% to 95% and was significantly higher in patients with PMF or post-ET myelofibrosis compared with those with ET. Patients with higher mutation burdens had evidence of acquired copy-neutral loss of heterozygosity (CN-LOH) of chromosome 1p in granulocytes, consistent with a transition from heterozygosity to homozygosity for the MPL mutation in clonal cells. A significant association was found between MPL-mutant allele burden greater than 50% and marrow fibrosis. These observations suggest that acquired CN-LOH of chromosome 1p involving the MPL location may represent a molecular mechanism of fibrotic transformation in MPL-mutated myeloproliferative neoplasms.
Collapse
|
40
|
JAK2 V617F, MPL W515L and JAK2 Exon 12 Mutations in Chinese Patients with Primary Myelofibrosis. Chin J Cancer Res 2013; 24:72-6. [PMID: 23359764 DOI: 10.1007/s11670-012-0072-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 06/05/2011] [Indexed: 10/14/2022] Open
Abstract
OBJECTIVE JAK2 V617F, MPL W515L and JAK2 exon 12 mutations are novel acquired mutations that induce constitutive cytokine-independent activation of the JAK-STAT pathway in myeloproliferative disorders (MPD). The discovery of these mutations provides novel mechanism for activation of signal transduction in hematopoietic malignancies. This research was to investigate their prevalence in Chinese patients with primary myelofibrosis (PMF). METHODS We introduced allele-specific PCR (AS-PCR) combined with sequence analysis to simultaneously screen JAK2 V617F, MPL W515L and JAK2 exon 12 mutations in 30 patients with PMF. RESULTS Fifteen PMF patients (50.0%) carried JAK2 V617F mutation, and only two JAK2 V617F-negative patients (6.7%) harbored MPL W515L mutation. None had JAK2 exon 12 mutations. Furthermore, these three mutations were not detected in 50 healthy controls. CONCLUSION MPL W515L and JAK2 V617F mutations existed in PMF patients but JAK2 exon 12 mutations not. JAK2 V617F and MPL W515L and mutations might contribute to the primary molecular pathogenesis in patients with PMF.
Collapse
|
41
|
He X, Chen Z, Jiang Y, Qiu X, Zhao X. Different mutations of the human c-mpl gene indicate distinct haematopoietic diseases. J Hematol Oncol 2013; 6:11. [PMID: 23351976 PMCID: PMC3563459 DOI: 10.1186/1756-8722-6-11] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Accepted: 01/22/2013] [Indexed: 11/10/2022] Open
Abstract
The human c-mpl gene (MPL) plays an important role in the development of megakaryocytes and platelets as well as the self-renewal of haematopoietic stem cells. However, numerous MPL mutations have been identified in haematopoietic diseases. These mutations alter the normal regulatory mechanisms and lead to autonomous activation or signalling deficiencies. In this review, we summarise 59 different MPL mutations and classify these mutations into four different groups according to the associated diseases and mutation rates. Using this classification, we clearly distinguish four diverse types of MPL mutations and obtain a deep understand of their clinical significance. This will prove to be useful for both disease diagnosis and the design of individual therapy regimens based on the type of MPL mutations.
Collapse
Affiliation(s)
- Xin He
- Department of Hematology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | | | | | | | | |
Collapse
|
42
|
Nonfamilial, MPL S505N-Mutated Essential Thrombocythaemia. Case Rep Hematol 2013; 2013:729327. [PMID: 23970983 PMCID: PMC3732633 DOI: 10.1155/2013/729327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 07/01/2013] [Indexed: 11/17/2022] Open
Abstract
Mutations of MPL are present in a significant proportion of patients with the myeloproliferative neoplasms (MPN), primary myelofibrosis (PMF), and essential thrombocythaemia (ET). The most frequent of these mutations, W515L and W515K, occur in exon 10 of MPL, which encodes the receptor for thrombopoietin. Another exon 10 mutation, MPL S505N, has been shown to be a founder mutation in several pedigrees with familial thrombocythaemia where it is associated with a high thrombotic risk, splenomegaly and progression to bone marrow fibrosis. Rare cases of sporadic, nonfamilial, MPL S505N MPN have been documented, but the presenting laboratory and clinical features have not been described in detail. The diagnosis and clinical course of a case of MPL S505N-positive MPN are presented with diagnostic features and treatment response resembling typical ET but with evidence of increasing bone marrow fibrosis. Further MPN cases possessing this genotype require reporting in order to ascertain whether any particular morphological or clinical features, if present, determine clinical course and aid the refinement of therapeutic options.
Collapse
|
43
|
Bench AJ, White HE, Foroni L, Godfrey AL, Gerrard G, Akiki S, Awan A, Carter I, Goday-Fernandez A, Langabeer SE, Clench T, Clark J, Evans PA, Grimwade D, Schuh A, McMullin MF, Green AR, Harrison CN, Cross NCP. Molecular diagnosis of the myeloproliferative neoplasms: UK guidelines for the detection ofJAK2V617F and other relevant mutations. Br J Haematol 2012; 160:25-34. [DOI: 10.1111/bjh.12075] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Anthony J. Bench
- Molecular Malignancy Laboratory and Haemato-Oncology Diagnostic Service; Cambridge University Hospitals NHS Foundation Trust; Cambridge; UK
| | | | - Letizia Foroni
- Imperial Molecular Pathology; Imperial College Academic Health Science Centre; London; UK
| | - Anna L. Godfrey
- Cambridge Institute for Medical Research; Department of Haematology; University of Cambridge; Cambridge; UK
| | - Gareth Gerrard
- Imperial Molecular Pathology; Imperial College Academic Health Science Centre; London; UK
| | - Susanna Akiki
- West Midlands Regional Genetics Laboratory; Birmingham Women's NHS Foundation Trust; Birmingham; UK
| | - Abida Awan
- Molecular Diagnostics Centre; Manchester Royal Infirmary; Manchester; UK
| | - Ian Carter
- Nottingham University Hospitals NHS Trust; Nottingham; UK
| | - Andrea Goday-Fernandez
- Molecular Malignancy Laboratory and Haemato-Oncology Diagnostic Service; Cambridge University Hospitals NHS Foundation Trust; Cambridge; UK
| | | | | | - Jordan Clark
- UK NEQAS for Leucocyte Immunophenotyping; Sheffield; UK
| | - Paul A. Evans
- HMDS, Leeds Institute of Oncology; St. James's University Hospital; Leeds; UK
| | - David Grimwade
- Department of Medical and Molecular Genetics; King's College London School of Medicine; London; UK
| | - Anna Schuh
- Oxford Cancer and Haematology Centre; Churchill Hospital; Oxford; UK
| | | | - Anthony R. Green
- Cambridge Institute for Medical Research; Department of Haematology; University of Cambridge; Cambridge; UK
| | | | | |
Collapse
|
44
|
Brisci A, Damin F, Pietra D, Galbiati S, Boggi S, Casetti I, Rumi E, Chiari M, Cazzola M, Ferrari M, Cremonesi L. COLD-PCR and innovative microarray substrates for detecting and genotyping MPL exon 10 W515 substitutions. Clin Chem 2012; 58:1692-702. [PMID: 23065476 DOI: 10.1373/clinchem.2012.192708] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Myeloproliferative neoplasms (MPNs) include polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF). Somatic mutations in exon 10 of the MPL (myeloproliferative leukemia virus oncogene) gene, mainly substitutions encoding W515 variants, have recently been described in a minority of patients with ET or PMF. We optimized analytically sensitive methods for detecting and genotyping MPL variants. METHODS We used DNA previously isolated from circulating granulocytes of 60 patients with MPN that had previously been analyzed by high-resolution melting (HRM), direct sequencing, and the TaqMan allelic-discrimination assay. We developed conditions for enriching tumor mutant alleles with COLD-PCR (coamplification at lower denaturation temperature PCR) and coupled it with direct sequencing. Assays were designed for identifying MPL W515 substitutions with full COLD-PCR protocols. In parallel, we used innovative microarray substrates to develop assays for evaluating the mutant burden in granulocyte cells. RESULTS Mutations that were present at very low levels in patients who had previously been scored as having an MPL variant by HRM and as wild type by direct sequencing were successfully identified in granulocyte DNA. Notably, the microarray approach displayed analytical sensitivities of 0.1% to 5% mutant allele, depending on the particular mutation. This analytical sensitivity is similar to that obtained with COLD-PCR. The assay requires no enrichment strategy and allows both the characterization of each variant allele and the evaluation of its proportion in every patient. CONCLUSIONS These procedures, which are transferable to clinical diagnostic laboratories, can be used for detecting very low proportions of minority mutant alleles that cannot be identified by other, conventional methods.
Collapse
Affiliation(s)
- Angela Brisci
- San Raffaele Scientific Institute, Genomic Unit for the Diagnosis of Human Pathologies, Center for Translational Genomics and Bioinformatics, Milan, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
The chronic myeloproliferative neoplasms (MPNs) are clonal disorders characterized by overproduction of mature myeloid cells. They share associations with molecular abnormalities such as the JAK2V617F mutation but are distinguished by important phenotypic differences. This review first considers the factors that may influence phenotype in JAK2-mutated MPNs, especially polycythemia vera (PV) and essential thrombocythemia (ET), and then discusses the mutations implicated in JAK2-negative MPNs such as in MPL and epigenetic regulators. Current evidence supports a model where ET and PV are disorders of relatively low genetic complexity, whereas evolution to myelofibrosis or blast-phase disease reflects accumulation of a higher mutation burden.
Collapse
|
46
|
Anand S, Huntly BJP. Disordered signaling in myeloproliferative neoplasms. Hematol Oncol Clin North Am 2012; 26:1017-35. [PMID: 23009935 DOI: 10.1016/j.hoc.2012.07.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The human myeloproliferative neoplasms (MPN) have long been associated with abnormal responses to cytokines and activation of signaling pathways, although the exact molecular mechanisms underlying these observations were unknown. This situation altered with the discovery of the JAK2 V617F, which presaged the ongoing description of further mutations predicted to activate canonical signaling pathways in MPN. This article covers the nature of these mutations and summarizes functional experiments in model systems and in human MPN cells to define the signaling pathways altered and how these drive and determine the MPN cellular phenotype. Also discussed are recently described, novel noncanonical signaling pathways to chromatin predicted to alter gene transcription more directly and to also contribute to the MPN phenotype.
Collapse
Affiliation(s)
- Shubha Anand
- Department of Haematology, Cambridge Institute of Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | | |
Collapse
|
47
|
|
48
|
Abstract
The JAK2(V617F) mutation is present in the majority of patients with polycythemia vera and one-half of those with essential thrombocythemia and primary myelofibrosis. JAK2(V617F) is a gain-of-function mutation resulting in constitutive JAK2 signaling involved in the pathogenesis of these diseases. JAK2(V617F) has been shown to promote S-phase entry. Here, we demonstrate that the CDC25A phosphatase, a key regulator of the G1/S cell-cycle transition, is constitutively overexpressed in JAK2(V617F)-positive cell lines, JAK2-mutated patient CD36(+) progenitors, and in vitro-differentiated proerythroblasts. Accordingly, CDC25A is overexpressed in BM and spleen of Jak2(V617F) knock-in mice compared with wild-type littermates. By using murine FDC-P1-EPOR and human HEL and SET-2 cell lines, we found that JAK2(V617F)-induced CDC25A up-regulation was caused neither by increased CDC25A transcription or stability nor by the involvement of its upstream regulators Akt and MAPK. Instead, our results suggest that CDC25A is regulated at the translational level through STAT5 and the translational initiation factor eIF2α. CDC25A inhibition reduces the clonogenic and proliferative potential of JAK2(V617F)-expressing cell lines and erythroid progenitors while moderately affecting normal erythroid differentiation. These results suggest that CDC25A deregulation may be involved in hematopoietic cells expansion in JAK2(V617F) patients, making this protein an attracting potential therapeutic target.
Collapse
|
49
|
Abstract
Megakaryopoiesis is the process by which bone marrow progenitor cells develop into mature megakaryocytes (MKs), which in turn produce platelets required for normal haemostasis. Over the past decade, molecular mechanisms that contribute to MK development and differentiation have begun to be elucidated. In this review, we provide an overview of megakaryopoiesis and summarise the latest developments in this field. Specially, we focus on polyploidisation, a unique form of the cell cycle that allows MKs to increase their DNA content, and the genes that regulate this process. In addition, because MKs have an important role in the pathogenesis of acute megakaryocytic leukaemia and a subset of myeloproliferative neoplasms, including essential thrombocythemia and primary myelofibrosis, we discuss the biology and genetics of these disorders. We anticipate that an increased understanding of normal MK differentiation will provide new insights into novel therapeutic approaches that will directly benefit patients.
Collapse
|
50
|
Pidasheva S, Trifari S, Phillips A, Hackney JA, Ma Y, Smith A, Sohn SJ, Spits H, Little RD, Behrens TW, Honigberg L, Ghilardi N, Clark HF. Functional studies on the IBD susceptibility gene IL23R implicate reduced receptor function in the protective genetic variant R381Q. PLoS One 2011; 6:e25038. [PMID: 22022372 PMCID: PMC3192060 DOI: 10.1371/journal.pone.0025038] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 08/26/2011] [Indexed: 12/12/2022] Open
Abstract
Genome-wide association studies (GWAS) in several populations have demonstrated significant association of the IL23R gene with IBD (Crohn's disease (CD) and ulcerative colitis (UC)) and psoriasis, suggesting that perturbation of the IL-23 signaling pathway is relevant to the pathophysiology of these diseases. One particular variant, R381Q (rs11209026), confers strong protection against development of CD. We investigated the effects of this variant in primary T cells from healthy donors carrying IL23R(R381) and IL23R(Q381) haplotypes. Using a proprietary anti-IL23R antibody, ELISA, flow cytometry, phosphoflow and real-time RT-PCR methods, we examined IL23R expression and STAT3 phosphorylation and activation in response to IL-23. IL23R(Q381) was associated with reduced STAT3 phosphorylation upon stimulation with IL-23 and decreased number of IL-23 responsive T-cells. We also observed slightly reduced levels of proinflammatory cytokine secretion in IL23R(Q381) positive donors. Our study shows conclusively that IL23R(Q381) is a loss-of-function allele, further strengthening the implication from GWAS results that the IL-23 pathway is pathogenic in human disease. This data provides an explanation for the protective role of R381Q in CD and may lead to the development of improved therapeutics for autoimmune disorders like CD.
Collapse
Affiliation(s)
- Svetlana Pidasheva
- Department of Bioinformatics and Computational Biology, Genentech Inc, South San Francisco, California, United States of America
- Department of Immunology, Genentech Inc, South San Francisco, California, United States of America
- * E-mail: (SP) (SP); (HFC) (HC)
| | - Sara Trifari
- Department of Immunology, Genentech Inc, South San Francisco, California, United States of America
| | - Anne Phillips
- Department of Bioinformatics and Computational Biology, Genentech Inc, South San Francisco, California, United States of America
| | - Jason A. Hackney
- Department of Bioinformatics and Computational Biology, Genentech Inc, South San Francisco, California, United States of America
| | - Yan Ma
- Department of Bioinformatics and Computational Biology, Genentech Inc, South San Francisco, California, United States of America
| | - Ashley Smith
- ITGR Early Development, Genentech Inc, South San Francisco, California, United States of America
| | - Sue J. Sohn
- Department of Immunology, Genentech Inc, South San Francisco, California, United States of America
| | - Hergen Spits
- Department of Immunology, Genentech Inc, South San Francisco, California, United States of America
| | | | - Timothy W. Behrens
- ITGR Biomarker Discovery Group, Genentech Inc, South San Francisco, California, United States of America
| | - Lee Honigberg
- ITGR Early Development, Genentech Inc, South San Francisco, California, United States of America
| | - Nico Ghilardi
- Department of Immunology, Genentech Inc, South San Francisco, California, United States of America
- Department of Molecular Biology, Genentech Inc, South San Francisco, California, United States of America
| | - Hilary F. Clark
- Department of Bioinformatics and Computational Biology, Genentech Inc, South San Francisco, California, United States of America
- Department of Immunology, Genentech Inc, South San Francisco, California, United States of America
- * E-mail: (SP) (SP); (HFC) (HC)
| |
Collapse
|