1
|
Duan JJ, Cai J, Gao L, Yu SC. ALDEFLUOR activity, ALDH isoforms, and their clinical significance in cancers. J Enzyme Inhib Med Chem 2023; 38:2166035. [PMID: 36651035 PMCID: PMC9858439 DOI: 10.1080/14756366.2023.2166035] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
High aldehyde dehydrogenase (ALDH) activity is a metabolic feature of adult stem cells and various cancer stem cells (CSCs). The ALDEFLUOR system is currently the most commonly used method for evaluating ALDH enzyme activity in viable cells. This system is applied extensively in the isolation of normal stem cells and CSCs from heterogeneous cell populations. For many years, ALDH1A1 has been considered the most important subtype among the 19 ALDH family members in determining ALDEFLUOR activity. However, in recent years, studies of many types of normal and tumour tissues have demonstrated that other ALDH subtypes can also significantly influence ALDEFLUOR activity. In this article, we briefly review the relationships between various members of the ALDH family and ALDEFLUOR activity. The clinical significance of these ALDH isoforms in different cancers and possible directions for future studies are also summarised.
Collapse
Affiliation(s)
- Jiang-Jie Duan
- Department of Stem Cell and Regenerative Medicine, Southwest Hospital; Third Military Medical University (Army Medical University), Chongqing, China,International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing, China,Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Chongqing, China,Ministry of Education, Key Laboratory of Cancer Immunopathology, Chongqing, China
| | - Jiao Cai
- Department of Stem Cell and Regenerative Medicine, Southwest Hospital; Third Military Medical University (Army Medical University), Chongqing, China,International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing, China,Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Chongqing, China,Ministry of Education, Key Laboratory of Cancer Immunopathology, Chongqing, China
| | - Lei Gao
- Department of Hematology, Xinqiao Hospital; Third Medical University (Army Medical University), Chongqing, China
| | - Shi-Cang Yu
- Department of Stem Cell and Regenerative Medicine, Southwest Hospital; Third Military Medical University (Army Medical University), Chongqing, China,International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing, China,Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Chongqing, China,Ministry of Education, Key Laboratory of Cancer Immunopathology, Chongqing, China,Jin-feng Laboratory, Chongqing, China,CONTACT Shi-Cang Yu Department of Stem Cell and Regenerative Medicine, Third Military Medical University (Army Medical University), Chongqing400038, China
| |
Collapse
|
2
|
Fei MY, Wang Y, Chang BH, Xue K, Dong F, Huang D, Li XY, Li ZJ, Hu CL, Liu P, Wu JC, Yu PC, Hong MH, Chen SB, Xu CH, Chen BY, Jiang YL, Liu N, Zhao C, Jin JC, Hou D, Chen XC, Ren YY, Deng CH, Zhang JY, Zong LJ, Wang RJ, Gao FF, Liu H, Zhang QL, Wu LY, Yan J, Shen S, Chang CK, Sun XJ, Wang L. The non-cell-autonomous function of ID1 promotes AML progression via ANGPTL7 from the microenvironment. Blood 2023; 142:903-917. [PMID: 37319434 PMCID: PMC10644073 DOI: 10.1182/blood.2022019537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/04/2023] [Accepted: 05/24/2023] [Indexed: 06/17/2023] Open
Abstract
The bone marrow microenvironment (BMM) can regulate leukemia stem cells (LSCs) via secreted factors. Increasing evidence suggests that dissecting the mechanisms by which the BMM maintains LSCs may lead to the development of effective therapies for the eradication of leukemia. Inhibitor of DNA binding 1 (ID1), a key transcriptional regulator in LSCs, previously identified by us, controls cytokine production in the BMM, but the role of ID1 in acute myeloid leukemia (AML) BMM remains obscure. Here, we report that ID1 is highly expressed in the BMM of patients with AML, especially in BM mesenchymal stem cells, and that the high expression of ID1 in the AML BMM is induced by BMP6, secreted from AML cells. Knocking out ID1 in mesenchymal cells significantly suppresses the proliferation of cocultured AML cells. Loss of Id1 in the BMM results in impaired AML progression in AML mouse models. Mechanistically, we found that Id1 deficiency significantly reduces SP1 protein levels in mesenchymal cells cocultured with AML cells. Using ID1-interactome analysis, we found that ID1 interacts with RNF4, an E3 ubiquitin ligase, and causes a decrease in SP1 ubiquitination. Disrupting the ID1-RNF4 interaction via truncation in mesenchymal cells significantly reduces SP1 protein levels and delays AML cell proliferation. We identify that the target of Sp1, Angptl7, is the primary differentially expression protein factor in Id1-deficient BM supernatant fluid to regulate AML progression in mice. Our study highlights the critical role of ID1 in the AML BMM and aids the development of therapeutic strategies for AML.
Collapse
Affiliation(s)
- Ming-Yue Fei
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Bin-He Chang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Kai Xue
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fangyi Dong
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dan Huang
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, Dalian Key Laboratory of Hematology, Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Diamond Bay Institute of Hematology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Xi-Ya Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zi-Juan Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Cheng-Long Hu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ping Liu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ji-Chuan Wu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Peng-Cheng Yu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ming-Hua Hong
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Shu-Bei Chen
- Department of Life Sciences and Biotechnology, Shanghai Jiao Tong University School of Life Sciences and Biotechnology, Shanghai, China
| | - Chun-Hui Xu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Bing-Yi Chen
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yi-Lun Jiang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Na Liu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Chong Zhao
- Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jia-Cheng Jin
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Dan Hou
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xin-Chi Chen
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yi-Yi Ren
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Chu-Han Deng
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jia-Ying Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Li-juan Zong
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Rou-Jia Wang
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Fei-Fei Gao
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University Affiliated Eighth People’s Hospital, Shanghai, China
| | - Hui Liu
- Department of Hematology/Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Key Laboratory of Pediatric Hematology and Oncology of China Ministry of Health, and National Children's Medical Center, Shanghai, China
| | - Qun-Ling Zhang
- Department of Lymphoma, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ling-Yun Wu
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Jinsong Yan
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, Dalian Key Laboratory of Hematology, Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Diamond Bay Institute of Hematology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Shuhong Shen
- Department of Hematology/Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Key Laboratory of Pediatric Hematology and Oncology of China Ministry of Health, and National Children's Medical Center, Shanghai, China
| | - Chun-Kang Chang
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Xiao-Jian Sun
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Life Sciences and Biotechnology, Shanghai Jiao Tong University School of Life Sciences and Biotechnology, Shanghai, China
| | - Lan Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
3
|
Bujko K, Ciechanowicz AK, Kucia M, Ratajczak MZ. Molecular analysis and comparison of CD34 + and CD133 + very small embryonic-like stem cells purified from umbilical cord blood. Cytometry A 2023; 103:703-711. [PMID: 37246957 DOI: 10.1002/cyto.a.24767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/15/2023] [Accepted: 05/23/2023] [Indexed: 05/30/2023]
Abstract
Very small embryonic like stem cells (VSELs) are a dormant population of stem cells that, as proposed, are deposited during embryogenesis in various tissues, including bone marrow (BM). These cells are released under steady state conditions from their tissue locations and circulate at a low level in peripheral blood (PB). Their number increases in response to stressors as well as tissue/organ damage. This increase is evident during neonatal delivery, as delivery stress prompts enrichment of umbilical cord blood (UCB) with VSELs. These cells could be purified from BM, PB, and UCB by multiparameter sorting as a population of very small CXCR4+ Lin- CD45- cells that express the CD34 or CD133 antigen. In this report, we evaluated a number of CD34+ Lin- CD45- and CD133+ Lin- CD45- UCB-derived VSELs. We also performed initial molecular characterization of both cell populations for expression of selected pluripotency markers and compared these cells at the proteomic level. We noticed that CD133+ Lin- CD45- population is more rare and express, at a higher level, mRNA for pluripotency markers Oct-4 and Nanog as well as the stromal-derived factor-1 (SDF-1) CXCR4 receptor that regulates trafficking of these cells, however both cells population did not significantly differ in the expression of proteins assigned to main biological processes.
Collapse
Affiliation(s)
- Kamila Bujko
- Laboratory of Regenerative Medicine, Medical University of Warsaw, Warsaw, Poland
| | | | - Magdalena Kucia
- Laboratory of Regenerative Medicine, Medical University of Warsaw, Warsaw, Poland
- Stem Cell Institute, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA
| | - Mariusz Z Ratajczak
- Laboratory of Regenerative Medicine, Medical University of Warsaw, Warsaw, Poland
- Stem Cell Institute, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
4
|
Ratajczak MZ, Bujko K, Ciechanowicz A, Sielatycka K, Cymer M, Marlicz W, Kucia M. SARS-CoV-2 Entry Receptor ACE2 Is Expressed on Very Small CD45 - Precursors of Hematopoietic and Endothelial Cells and in Response to Virus Spike Protein Activates the Nlrp3 Inflammasome. Stem Cell Rev Rep 2021; 17:266-277. [PMID: 32691370 PMCID: PMC7370872 DOI: 10.1007/s12015-020-10010-z] [Citation(s) in RCA: 119] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Angiotensin-converting enzyme 2 (ACE2) plays an important role as a member of the renin–angiotensin–aldosterone system (RAAS) in regulating the conversion of angiotensin II (Ang II) into angiotensin (1–7) (Ang [1–7]). But at the same time, while expressed on the surface of human cells, ACE2 is the entry receptor for SARS-CoV-2. Expression of this receptor has been described in several types of cells, including hematopoietic stem cells (HSCs) and endothelial progenitor cells (EPCs), which raises a concern that the virus may infect and damage the stem cell compartment. We demonstrate for the first time that ACE2 and the entry-facilitating transmembrane protease TMPRSS2 are expressed on very small CD133+CD34+Lin−CD45− cells in human umbilical cord blood (UCB), which can be specified into functional HSCs and EPCs. The existence of these cells known as very small embryonic-like stem cells (VSELs) has been confirmed by several laboratories, and some of them may correspond to putative postnatal hemangioblasts. Moreover, we demonstrate for the first time that, in human VSELs and HSCs, the interaction of the ACE2 receptor with the SARS-CoV-2 spike protein activates the Nlrp3 inflammasome, which if hyperactivated may lead to cell death by pyroptosis. Based on this finding, there is a possibility that human VSELs residing in adult tissues could be damaged by SARS-CoV-2, with remote effects on tissue/organ regeneration. We also report that ACE2 is expressed on the surface of murine bone marrow-derived VSELs and HSCs, although it is known that murine cells are not infected by SARS-CoV-2. Finally, human and murine VSELs express several RAAS genes, which sheds new light on the role of these genes in the specification of early-development stem cells. •Human VSELs and HSCs express ACE2 receptor for SARS-CoV2 entry. •Interaction of viral spike protein with ACE2 receptor may hyperactivate Nlrp3 inflammasome which induces cell death by pyroptosis. •SARS-CoV2 may also enter cells and eliminate them by cell lysis. •What is not shown since these cells express also Ang II receptor they may hyperactivate Nlrp3 inflammasome in response to Ang II which may induce pyroptosis. Our data indicates that Ang 1–7 may have a protective effect. ![]()
Collapse
Affiliation(s)
- Mariusz Z Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY, 40202, USA. .,Department of Regenerative Medicine, Center for Preclinical Research and Technology, Medical University of Warsaw, Warsaw, Poland.
| | - Kamila Bujko
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY, 40202, USA
| | - Andrzej Ciechanowicz
- Department of Regenerative Medicine, Center for Preclinical Research and Technology, Medical University of Warsaw, Warsaw, Poland
| | - Kasia Sielatycka
- Institute of Biology, Faculty of Exact and Natural Sciences, University of Szczecin, Szczecin, Poland.,Research and Developmental Center Sanprobi, Szczecin, Poland
| | - Monika Cymer
- Department of Regenerative Medicine, Center for Preclinical Research and Technology, Medical University of Warsaw, Warsaw, Poland
| | | | - Magda Kucia
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY, 40202, USA. .,Department of Regenerative Medicine, Center for Preclinical Research and Technology, Medical University of Warsaw, Warsaw, Poland.
| |
Collapse
|
5
|
Bujko K, Cymer M, Adamiak M, Ratajczak MZ. An Overview of Novel Unconventional Mechanisms of Hematopoietic Development and Regulators of Hematopoiesis - a Roadmap for Future Investigations. Stem Cell Rev Rep 2020; 15:785-794. [PMID: 31642043 PMCID: PMC6925068 DOI: 10.1007/s12015-019-09920-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hematopoietic stem cells (HSCs) are the best-characterized stem cells in adult tissues. Nevertheless, as of today, many open questions remain. First, what is the phenotype of the most primitive "pre-HSC" able to undergo asymmetric divisions during ex vivo expansion that gives rise to HSC for all hemato-lymphopoietic lineages. Next, most routine in vitro assays designed to study HSC specification into hematopoietic progenitor cells (HPCs) for major hematopoietic lineages are based on a limited number of peptide-based growth factors and cytokines, neglecting the involvement of several other regulators that are endowed with hematopoietic activity. Examples include many hormones, such as pituitary gonadotropins, gonadal sex hormones, IGF-1, and thyroid hormones, as well as bioactive phosphosphingolipids and extracellular nucleotides (EXNs). Moreover, in addition to regulation by stromal-derived factor 1 (SDF-1), trafficking of these cells during mobilization or homing after transplantation is also regulated by bioactive phosphosphingolipids, EXNs, and three ancient proteolytic cascades, the complement cascade (ComC), the coagulation cascade (CoA), and the fibrinolytic cascade (FibC). Finally, it has emerged that bone marrow responds by "sterile inflammation" to signals sent from damaged organs and tissues, systemic stress, strenuous exercise, gut microbiota, and the administration of certain drugs. This review will address the involvement of these unconventional regulators and present a broader picture of hematopoiesis.
Collapse
Affiliation(s)
- Kamila Bujko
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY, 40202, USA
| | - Monika Cymer
- Center for Preclinical Studies and Technology, Department of Regenerative Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Mateusz Adamiak
- Center for Preclinical Studies and Technology, Department of Regenerative Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Mariusz Z Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY, 40202, USA. .,Center for Preclinical Studies and Technology, Department of Regenerative Medicine, Medical University of Warsaw, Warsaw, Poland.
| |
Collapse
|
6
|
Yuan L, Jiang J, Liu X, Zhang Y, Zhang L, Xin J, Wu K, Li X, Cao J, Guo X, Shi D, Li J, Jiang L, Sun S, Wang T, Hou W, Zhang T, Zhu H, Zhang J, Yuan Q, Cheng T, Li J, Xia N. HBV infection-induced liver cirrhosis development in dual-humanised mice with human bone mesenchymal stem cell transplantation. Gut 2019; 68:2044-2056. [PMID: 30700543 PMCID: PMC6839735 DOI: 10.1136/gutjnl-2018-316091] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 11/09/2018] [Accepted: 12/08/2018] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Developing a small animal model that accurately delineates the natural history of hepatitis B virus (HBV) infection and immunopathophysiology is necessary to clarify the mechanisms of host-virus interactions and to identify intervention strategies for HBV-related liver diseases. This study aimed to develop an HBV-induced chronic hepatitis and cirrhosis mouse model through transplantation of human bone marrow mesenchymal stem cells (hBMSCs). DESIGN Transplantation of hBMSCs into Fah-/-Rag2-/-IL-2Rγc-/- SCID (FRGS) mice with fulminant hepatic failure (FHF) induced by hamster-anti-mouse CD95 antibody JO2 generated a liver and immune cell dual-humanised (hBMSC-FRGS) mouse. The generated hBMSC-FRGS mice were subjected to assessments of sustained viremia, specific immune and inflammatory responses and liver pathophysiological injury to characterise the progression of chronic hepatitis and cirrhosis after HBV infection. RESULTS The implantation of hBMSCs rescued FHF mice, as demonstrated by robust proliferation and transdifferentiation of functional human hepatocytes and multiple immune cell lineages, including B cells, T cells, natural killer cells, dendritic cells and macrophages. After HBV infection, the hBMSC-FRGS mice developed sustained viremia and specific immune and inflammatory responses and showed progression to chronic hepatitis and liver cirrhosis at a frequency of 55% after 54 weeks. CONCLUSION This new humanised mouse model recapitulates the liver cirrhosis induced by human HBV infection, thus providing research opportunities for understanding viral immune pathophysiology and testing antiviral therapies in vivo.
Collapse
Affiliation(s)
- Lunzhi Yuan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences and School of Public Health, Xiamen University, Xiamen, China
| | - Jing Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xuan Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences and School of Public Health, Xiamen University, Xiamen, China
| | - Yali Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences and School of Public Health, Xiamen University, Xiamen, China
| | - Liang Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences and School of Public Health, Xiamen University, Xiamen, China
| | - Jiaojiao Xin
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kun Wu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences and School of Public Health, Xiamen University, Xiamen, China
| | - Xiaoling Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences and School of Public Health, Xiamen University, Xiamen, China
| | - Jiali Cao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences and School of Public Health, Xiamen University, Xiamen, China
| | - Xueran Guo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences and School of Public Health, Xiamen University, Xiamen, China
| | - Dongyan Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Li
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Longyan Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Suwan Sun
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tengyun Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences and School of Public Health, Xiamen University, Xiamen, China
| | - Wangheng Hou
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences and School of Public Health, Xiamen University, Xiamen, China
| | - Tianying Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences and School of Public Health, Xiamen University, Xiamen, China
| | - Hua Zhu
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences and School of Public Health, Xiamen University, Xiamen, China
| | - Quan Yuan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences and School of Public Health, Xiamen University, Xiamen, China
| | - Tong Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences and School of Public Health, Xiamen University, Xiamen, China
| | - Jun Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences and School of Public Health, Xiamen University, Xiamen, China
| |
Collapse
|
7
|
Ratajczak MZ, Domingues A, Suman S, Straughn AR, Kakar SS, Suszynska M. Novel view of the adult stem cell compartment - a developmental story of germline and parental imprinting. PROCEEDINGS OF STEM CELL RESEARCH AND ONCOGENESIS 2019; 7:e1001. [PMID: 32699838 PMCID: PMC7375353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Evidence has accumulated that postnatal tissues contain developmentally early stem cells that remain in a dormant state as well as stem cells that are more proliferative, supplying tissue-specific progenitor cells and thus playing a more active role in the turnover of adult tissues. The most primitive, dormant, postnatal tissue-derived stem cells, called very small embryonic like stem cells (VSELs), are regulated by epigenetic changes in the expression of certain parentally imprinted genes, a molecular phenomenon previously described for maintaining primordial germ cells (PGCs) in a quiescent state. Specifically, they show erasure of parental imprinting at the Igf2-H19 locus, which keeps them in a quiescent state in a similar manner as migrating PGCs. To date, the presence of these cells in adult postnatal tissues have been demonstrated by at least 25 independent laboratories. We envision that similar changes in expression of parentally imprinted genes may also play a role in the quiescence of dormant VSELs present in other non-hematopoietic tissues. Recent data indicate that VSELs expand in vivo and in vitro after reestablishment of somatic imprinting at the Igf2-H19 locus by nicotinamide treatment in response to stimulation by pituitary gonadotrophins (follicle stimulating factor, luteinizing hormone and prolactin) and gonadal androgens and estrogens. These cells could be also successfully expanded ex vivo in the presence of the small molecule UM177.
Collapse
Affiliation(s)
- Mariusz Z. Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, KY, USA
| | - Alison Domingues
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, KY, USA
| | - Suman Suman
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, KY, USA
| | - Alex R. Straughn
- James Graham Brown Cancer Center, University of Louisville, KY, USA
| | - Sham S. Kakar
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, KY, USA
- James Graham Brown Cancer Center, University of Louisville, KY, USA
| | - Malwina Suszynska
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, KY, USA
| |
Collapse
|
8
|
Gounari E, Daniilidis A, Tsagias N, Michopoulou A, Kouzi K, Koliakos G. Isolation of a novel embryonic stem cell cord blood-derived population with in vitro hematopoietic capacity in the presence of Wharton's jelly-derived mesenchymal stromal cells. Cytotherapy 2018; 21:246-259. [PMID: 30522805 DOI: 10.1016/j.jcyt.2018.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/06/2018] [Accepted: 11/13/2018] [Indexed: 01/16/2023]
Abstract
BACKGROUND Recent studies highlight the existence of a population of cord blood (CB)-derived stem cells that bare embryonic features (very small embryonic-like stem cells [VSELs]) as the most primitive CB-stem cell population. In the present study, we present for the first time a novel and high purity isolation method of VSELs with in vitro hematopoietic capacity in the presence of Wharton's jelly-derived mesenchymal stromal cells (WJ-MSCs). METHODS The experimental procedure includes isolation upon gradually increased centrifugation spins and chemotaxis to Stromal cell-derived factor 1a (SDF-1a). Τhis cell population is characterized with flow cytometry, alkaline phosphatase (ALP) staining and qRT-PCR. The functional role of the isolated VSELs is assayed following co-culture with WJ-MSCs or bone marrow-derived mesenchymal stromal cells (BM-MSCs), whereas the stimulation of the quiescent VSEL population is verified via cell cycle analysis. The in vitro hematopoietic capacity is evaluated in methylcellulose cultures and also through induction of erythroid differentiation. RESULTS The final isolated subpopulation is characterized as a small-sized CD45/Lineage-/CXCR4+/CD133+/SSEA-4+cell population, positive in ALP staining and overexpressing the Oct3/4, Nanog and Sox-2 transcription factors. Upon the co-culture with MSCs, a stimulation of the quiescent VSEL population is observed. An impressive increase in the co-expression of the CD34+/CD45+ markers is observed following the co-culture with the WJ-MSCs, which is confirmed by the intense clonogenic ability suggesting in vitro differentiation toward all of the hematopoietic cell lineages and successful differentiation toward erythrocytes. DISCUSSION Conclusively, we propose a novel, rapid and rather simplified isolation method of CB-VSELs, capable of in vitro hematopoiesis.
Collapse
Affiliation(s)
- Eleni Gounari
- Biohellenika Biotechnology Company, Thessaloniki, Greece; Department of Biological Chemistry, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - Angelos Daniilidis
- 2nd Department of Obstetrics and Gynecology, Hippokratio General Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Anna Michopoulou
- Biohellenika Biotechnology Company, Thessaloniki, Greece; Department of Biological Chemistry, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Kokkona Kouzi
- Biohellenika Biotechnology Company, Thessaloniki, Greece; Department of Histology Embryology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - George Koliakos
- Biohellenika Biotechnology Company, Thessaloniki, Greece; Department of Biological Chemistry, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
9
|
Very Small Embryonic-Like Stem Cells, Endothelial Progenitor Cells, and Different Monocyte Subsets Are Effectively Mobilized in Acute Lymphoblastic Leukemia Patients after G-CSF Treatment. Stem Cells Int 2018; 2018:1943980. [PMID: 30034479 PMCID: PMC6032642 DOI: 10.1155/2018/1943980] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/03/2018] [Indexed: 12/16/2022] Open
Abstract
Background Acute lymphoblastic leukemia (ALL) is a malignant disease of lymphoid progenitor cells. ALL chemotherapy is associated with numerous side effects including neutropenia that is routinely prevented by the administration of growth factors such as granulocyte colony-stimulating factor (G-CSF). To date, the effects of G-CSF treatment on the level of mobilization of different stem and progenitor cells in ALL patients subjected to clinically effective chemotherapy have not been fully elucidated. Therefore, in this study we aimed to assess the effect of administration of G-CSF to ALL patients on mobilization of other than hematopoietic stem cell (HSCs) subsets, namely, very small embryonic-like stem cells (VSELs), endothelial progenitor cells (EPCs), and different monocyte subsets. Methods We used multicolor flow cytometry to quantitate numbers of CD34+ cells, hematopoietic stem cells (HSCs), VSELs, EPCs, and different monocyte subsets in the peripheral blood of ALL patients and normal age-matched blood donors. Results We showed that ALL patients following chemotherapy, when compared to healthy donors, presented with significantly lower numbers of CD34+ cells, HSCs, VSELs, and CD14+ monocytes, but not EPCs. Moreover, we found that G-CSF administration induced effective mobilization of all the abovementioned progenitor and stem cell subsets with high regenerative and proangiogenic potential. Conclusion These findings contribute to better understanding the beneficial clinical effect of G-CSF administration in ALL patients following successful chemotherapy.
Collapse
|
10
|
Prolonged Growth Hormone/Insulin/Insulin-like Growth Factor Nutrient Response Signaling Pathway as a Silent Killer of Stem Cells and a Culprit in Aging. Stem Cell Rev Rep 2018; 13:443-453. [PMID: 28229284 PMCID: PMC5493720 DOI: 10.1007/s12015-017-9728-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The dream of slowing down the aging process has always inspired mankind. Since stem cells are responsible for tissue and organ rejuvenation, it is logical that we should search for encoded mechanisms affecting life span in these cells. However, in adult life the hierarchy within the stem cell compartment is still not very well defined, and evidence has accumulated that adult tissues contain rare stem cells that possess a broad trans-germ layer differentiation potential. These most-primitive stem cells-those endowed with pluripotent or multipotent differentiation ability and that give rise to other cells more restricted in differentiation, known as tissue-committed stem cells (TCSCs) - are of particular interest. In this review we present the concept supported by accumulating evidence that a population of so-called very small embryonic-like stem cells (VSELs) residing in adult tissues positively impacts the overall survival of mammals, including humans. These unique cells are prevented in vertebrates from premature depletion by decreased sensitivity to growth hormone (GH), insulin (INS), and insulin-like growth factor (IGF) signaling, due to epigenetic changes in paternally imprinted genes that regulate their resistance to these factors. In this context, we can envision nutrient response GH/INS/IGF signaling pathway as a lethal factor for these most primitive stem cells and an important culprit in aging.
Collapse
|
11
|
Stem cells, pluripotency and glial cell markers in peripheral blood of bipolar patients on long-term lithium treatment. Prog Neuropsychopharmacol Biol Psychiatry 2018. [PMID: 28625858 DOI: 10.1016/j.pnpbp.2017.06.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND We investigated the effect of long-term lithium treatment on very-small embryonic-like stem cells (VSELs) and the mRNA expression of pluripotency and glial markers, in peripheral blood, in patients with bipolar disorder (BD). METHODS Fifteen BD patients (aged 53±7years) not treated with lithium, with duration of illness >10years, 15 BD patients (aged 55±6years) treated with lithium for 8-40years (mean 16years) and 15 control subjects (aged 50±5years) were included. The number of VSELs was measured by flow cytometric analysis. Assessment of the mRNA levels of pluripotency markers (Oct-4, Sox 2 and Nanog) and glial markers (glial fibrillary acidic protein - GFAP, Olig1 and Olig2) was performed, using the Real-time quantitative reverse transcription PCR. RESULTS In BD patients not taking lithium, the number of VSELs was significantly higher than in control subjects and correlated with the duration of illness. The expression of pluripotency markers was significantly higher than in the controls and correlated with the number of VSELs. The mRNA levels of the Olig1 and Olig 2 were higher than in the controls and those of the GFAP were higher than in patients receiving lithium. In lithium-treated BD patients the number of VSELs was similar to controls and correlated negatively with the duration of lithium treatment and serum lithium concentration. The mRNA levels of Oct-4, Sox-2, GFAP and Olig1 were not different from controls. The mRNA expression of Nanog was significantly higher and correlated with the number of VSELs. The mRNA expression of Olig 2 was higher than in the BD patients not taking lithium. CONCLUSION Long-term treatment with lithium may suppress the activation of regenerative processes by reducing the number of VSELs circulating in PB. These cells, in BD patients not treated with lithium, may provide a new potential biological marker of the illness and its clinical progress. The higher expression of peripheral mRNA markers in BD patients may involve ongoing inflammatory process, compensatory mechanisms and regenerative responses. Long-term lithium treatment may attenuate these mechanisms, especially in relation to the transcription factors Oct-4, Sox-2, GFAP and Olig1.
Collapse
|
12
|
Mouse Bone Marrow VSELs Exhibit Differentiation into Three Embryonic Germ Lineages and Germ & Hematopoietic Cells in Culture. Stem Cell Rev Rep 2017; 13:202-216. [PMID: 28070859 DOI: 10.1007/s12015-016-9714-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Very small embryonic-like stem cells (VSELs) have been reported in various adult tissues, express pluripotent and primordial germ cells (PGCs) specific markers, are mobilized under stress/disease conditions, give rise to tissue committed progenitors and thus help regenerate and maintain homeostasis. The aim of the present study was to evaluate in vitro differentiation potential of VSELs using a quantitative approach. VSELs were collected from mouse bone marrow after 4 days of 5-fluorouracil (5-FU, 150 mg/Kg) treatment, further enriched by size based filtration and cultured on a feeder support in the presence of specific differentiation media. Cultured VSELs were found to differentiate into all three embryonic germ cell lineages, germ and hematopoietic cells after 14 days in culture. This was confirmed by studying Nestin, PDX-1, NKX2.5, DAZL, CD45 and other markers expression by various approaches. Very small, CD45 negative cells collected and enriched from GFP positive 5-FU treated mice bone marrow transitioned into CD45 positive cells in vitro thus demonstrating that VSELs can give rise to hematopoietic stem cells (HSCs). We envision that VSELs may be responsible for plasticity and ability of bone marrow cells to give rise to non-hematopoietic tissue progenitors of all 3 germ layers. Moreover the ability of VSELs to differentiate into germ cells as well as all the three lineages provides further evidence to support their pluripotent state and confirms developmental link between bone marrow VSELs and PGCs. The property of quiescence, no risk of teratoma formation and autologus source, make pluripotent VSELs a potential candidate to facilitate endogenous regeneration compared to cell replacement strategy envisioned using embryonic and induced pluripotent stem cells.
Collapse
|
13
|
Ratajczak MZ. Why are hematopoietic stem cells so 'sexy'? on a search for developmental explanation. Leukemia 2017; 31:1671-1677. [PMID: 28502982 PMCID: PMC5540746 DOI: 10.1038/leu.2017.148] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 03/03/2017] [Accepted: 03/07/2017] [Indexed: 02/07/2023]
Abstract
Evidence has accumulated that normal human and murine hematopoietic stem cells express several functional pituitary and gonadal sex hormones, and that, in fact, some sex hormones, such as androgens, have been employed for many years to stimulate hematopoiesis in patients with bone marrow aplasia. Interestingly, sex hormone receptors are also expressed by leukemic cell lines and blasts. In this review, I will discuss the emerging question of why hematopoietic cells express these receptors. A tempting hypothetical explanation for this phenomenon is that hematopoietic stem cells are related to subpopulation of migrating primordial germ cells. To support of this notion, the anatomical sites of origin of primitive and definitive hematopoiesis during embryonic development are tightly connected with the migratory route of primordial germ cells: from the proximal epiblast to the extraembryonic endoderm at the bottom of the yolk sac and then back to the embryo proper via the primitive streak to the aorta-gonado-mesonephros (AGM) region on the way to the genital ridges. The migration of these cells overlaps with the emergence of primitive hematopoiesis in the blood islands at the bottom of the yolk sac, and definitive hematopoiesis that occurs in hemogenic endothelium in the embryonic dorsal aorta in AGM region.
Collapse
Affiliation(s)
- M Z Ratajczak
- Stem Cell Institute, James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
- Department of Regenerative Medicine, Warsaw Medical University, Warsaw, Poland
| |
Collapse
|
14
|
Ratajczak MZ, Ratajczak J, Suszynska M, Miller DM, Kucia M, Shin DM. A Novel View of the Adult Stem Cell Compartment From the Perspective of a Quiescent Population of Very Small Embryonic-Like Stem Cells. Circ Res 2017; 120:166-178. [PMID: 28057792 DOI: 10.1161/circresaha.116.309362] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 11/16/2016] [Accepted: 11/17/2016] [Indexed: 12/12/2022]
Abstract
Evidence has accumulated that adult hematopoietic tissues and other organs contain a population of dormant stem cells (SCs) that are more primitive than other, already restricted, monopotent tissue-committed SCs (TCSCs). These observations raise several questions, such as the developmental origin of these cells, their true pluripotent or multipotent nature, which surface markers they express, how they can be efficiently isolated from adult tissues, and what role they play in the adult organism. The phenotype of these cells and expression of some genes characteristic of embryonic SCs, epiblast SCs, and primordial germ cells suggests their early-embryonic deposition in developing tissues as precursors of adult SCs. In this review, we will critically discuss all these questions and the concept that small dormant SCs related to migratory primordial germ cells, described as very small embryonic-like SCs, are deposited during embryogenesis in bone marrow and other organs as a backup population for adult tissue-committed SCs and are involved in several processes related to tissue or organ rejuvenation, aging, and cancerogenesis. The most recent results on successful ex vivo expansion of human very small embryonic-like SC in chemically defined media free from feeder-layer cells open up new and exciting possibilities for their application in regenerative medicine.
Collapse
Affiliation(s)
- Mariusz Z Ratajczak
- From the Department of Medicine, Stem Cell Biology Program at the James Graham Brown Cancer Center, University of Louisville, KY (M.Z.R., J.R., M.S., D.M.M., M.K.); Department of Regenerative Medicine, Warsaw Medical University, Poland (M.Z.R., M.K.); and Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, South Korea (D.-M.S.).
| | - Janina Ratajczak
- From the Department of Medicine, Stem Cell Biology Program at the James Graham Brown Cancer Center, University of Louisville, KY (M.Z.R., J.R., M.S., D.M.M., M.K.); Department of Regenerative Medicine, Warsaw Medical University, Poland (M.Z.R., M.K.); and Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, South Korea (D.-M.S.)
| | - Malwina Suszynska
- From the Department of Medicine, Stem Cell Biology Program at the James Graham Brown Cancer Center, University of Louisville, KY (M.Z.R., J.R., M.S., D.M.M., M.K.); Department of Regenerative Medicine, Warsaw Medical University, Poland (M.Z.R., M.K.); and Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, South Korea (D.-M.S.)
| | - Donald M Miller
- From the Department of Medicine, Stem Cell Biology Program at the James Graham Brown Cancer Center, University of Louisville, KY (M.Z.R., J.R., M.S., D.M.M., M.K.); Department of Regenerative Medicine, Warsaw Medical University, Poland (M.Z.R., M.K.); and Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, South Korea (D.-M.S.)
| | - Magda Kucia
- From the Department of Medicine, Stem Cell Biology Program at the James Graham Brown Cancer Center, University of Louisville, KY (M.Z.R., J.R., M.S., D.M.M., M.K.); Department of Regenerative Medicine, Warsaw Medical University, Poland (M.Z.R., M.K.); and Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, South Korea (D.-M.S.)
| | - Dong-Myung Shin
- From the Department of Medicine, Stem Cell Biology Program at the James Graham Brown Cancer Center, University of Louisville, KY (M.Z.R., J.R., M.S., D.M.M., M.K.); Department of Regenerative Medicine, Warsaw Medical University, Poland (M.Z.R., M.K.); and Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, South Korea (D.-M.S.)
| |
Collapse
|
15
|
Ferensztajn-Rochowiak E, Kucharska-Mazur J, Samochowiec J, Ratajczak MZ, Michalak M, Rybakowski JK. The effect of long-term lithium treatment of bipolar disorder on stem cells circulating in peripheral blood. World J Biol Psychiatry 2017; 18:54-62. [PMID: 27071327 DOI: 10.3109/15622975.2016.1174301] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVES To investigate the effect of long-term lithium treatment on very small embryonic-like stem cells (VSELs), haematopoietic stem cells (HSCs), mesenchymal stem cells (MSCs) and endothelial progenitor cells (EPCs) circulating in peripheral blood (PB), in bipolar disorder (BD). METHODS The study included 15 BD patients (aged 55 ± 6 years) treated with lithium for 8-40 years (mean 16 years), 15 BD patients (aged 53 ± 7 years) with duration of illness >10 years, who had never received lithium, and 15 healthy controls (aged 50 ± 5 years). The VSELs, HSCs, MSCs and EPCs were measured by flow cytometric analysis. RESULTS In BD subjects not taking lithium the number of CD34+ VSELs was significantly higher, and MSCs and EPCs numerically higher, than in control subjects and the number of CD34+ VSELs correlated with the duration of illness. In lithium-treated patients these values were similar to controls and the number of CD34+ VSELs correlated negatively with the duration of lithium treatment and serum lithium concentration. CONCLUSIONS Long-term treatment with lithium may suppress the activation of regenerative processes by reducing the number of VSELs circulating in PB. These cells, in BD patients not treated with lithium, may provide a new potential biological marker of the illness and its clinical progress.
Collapse
Affiliation(s)
| | | | - Jerzy Samochowiec
- b Department of Psychiatry , Pomeranian University of Medicine , Szczecin , Poland
| | - Mariusz Z Ratajczak
- c Department of Physiology , Pomeranian University of Medicine , Szczecin , Poland.,d Stem Cell Biology Program at the James Graham Brown Cancer Center , University of Louisville , Louisville , KY , 40202 , USA
| | - Michal Michalak
- e Department of Computer Science and Statistics , Poznan University of Medical Sciences , Poznan , Poland
| | - Janusz K Rybakowski
- a Department of Adult Psychiatry , Poznan University of Medical Sciences , Poznan , Poland
| |
Collapse
|
16
|
Abdelbaset-Ismail A, Borkowska S, Janowska-Wieczorek A, Tonn T, Rodriguez C, Moniuszko M, Bolkun L, Koloczko J, Eljaszewicz A, Ratajczak J, Ratajczak MZ, Kucia M. Novel evidence that pituitary gonadotropins directly stimulate human leukemic cells-studies of myeloid cell lines and primary patient AML and CML cells. Oncotarget 2016; 7:3033-46. [PMID: 26701888 PMCID: PMC4823088 DOI: 10.18632/oncotarget.6698] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 11/21/2015] [Indexed: 12/22/2022] Open
Abstract
We recently reported that normal hematopoietic stem cells express functional pituitary sex hormone (SexH) receptors. Here we report for the first time that pituitary-secreted gonadotrophins stimulate migration, adhesion, and proliferation of several human myeloid and lymphoid leukemia cell lines. Similar effects were observed after stimulation of human leukemic cell lines by gonadal SexHs. This effect seems to be direct, as the SexH receptors expressed by leukemic cells responded to stimulation by phosphorylation of MAPKp42/44 and AKTser473. Furthermore, in parallel studies we confirmed that human primary patient-derived AML and CML blasts also express several functional SexH receptors. These results shed more light on the potential role of SexHs in leukemogenesis and, in addition, provide further evidence suggesting a developmental link between hematopoiesis and the germline.
Collapse
Affiliation(s)
| | | | | | - Torsten Tonn
- Transfusion Medicine, Medical Faculty Carl Gustav Carus - Technische Universtität Dresden, German Red Cross Blood Donation Service North East, Dresden, Germany
| | - Cesar Rodriguez
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, KY, USA
| | - Marcin Moniuszko
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Bialystok, Poland
| | - Lukasz Bolkun
- Department of Hematology, Medical University of Bialystok, Bialystok, Poland
| | - Janusz Koloczko
- Department of Hematology, Medical University of Bialystok, Bialystok, Poland
| | - Andrzej Eljaszewicz
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Bialystok, Poland
| | - Janina Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, KY, USA
| | - Mariusz Z Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, KY, USA.,Department of Regenerative Medicine Medical University of Warsaw, Warsaw, Poland
| | - Magda Kucia
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, KY, USA.,Department of Regenerative Medicine Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
17
|
Shaikh A, Bhartiya D, Kapoor S, Nimkar H. Delineating the effects of 5-fluorouracil and follicle-stimulating hormone on mouse bone marrow stem/progenitor cells. Stem Cell Res Ther 2016; 7:59. [PMID: 27095238 PMCID: PMC4837595 DOI: 10.1186/s13287-016-0311-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 03/31/2016] [Indexed: 01/10/2023] Open
Abstract
Background Pluripotent, Lin–/CD45–/Sca-1+ very small embryonic-like stem cells (VSELs) in mouse bone marrow (BM) are resistant to total body radiation because of their quiescent nature, whereas Lin–/CD45+/Sca-1+ hematopoietic stem cells (HSCs) get eliminated. In the present study, we provide further evidence for the existence of VSELs in mouse BM and have also examined the effects of a chemotherapeutic agent (5-fluorouracil (5-FU)) and gonadotropin hormone (follicle-stimulating hormone (FSH)) on BM stem/progenitor cells. Methods VSELs and HSCs were characterized in intact BM. Swiss mice were injected with 5-FU (150 mg/kg) and sacrificed on 2, 4, and 10 days (D2, D4, and D10) post treatment to examine changes in BM histology and effects on VSELs and HSCs by a multiparametric approach. The effect of FSH (5 IU) administered 48 h after 5-FU treatment was also studied. Bromodeoxyuridine (BrdU) incorporation, cell cycle analysis, and colony-forming unit (CFU) assay were carried out to understand the functional potential of stem/progenitor cells towards regeneration of chemoablated marrow. Results Nuclear OCT-4, SCA-1, and SSEA-1 coexpressing LIN–/CD45– VSELs and slightly larger LIN–/CD45+ HSCs expressing cytoplasmic OCT-4 were identified and comprised 0.022 ± 0.002 % and 0.081 ± 0.004 % respectively of the total cells in BM. 5-FU treatment resulted in depletion of cells with a 7-fold reduction by D4 and normal hematopoiesis was re-established by D10. Nuclear OCT-4 and PCNA-positive VSELs were detected in chemoablated bone sections near the endosteal region. VSELs remained unaffected by 5-FU on D2 and increased on D4, whereas HSCs showed a marked reduction in numbers on D2 and later increased along with the corresponding increase in BrdU uptake and upregulation of specific transcripts (Oct-4A, Oct-4, Sca-1, Nanog, Stella, Fragilis, Pcna). Cells that survived 5-FU formed colonies in vitro. Both VSELs and HSCs expressed FSH receptors and FSH treatment enhanced hematopoietic recovery by 72 h. Conclusion Both VSELs and HSCs were activated in response to the stress created by 5-FU and FSH enhanced hematopoietic recovery by at least 72 h in 5-FU-treated mice. VSELs are the most primitive pluripotent stem cells in BM that self-renew and give rise to HSCs under stress, and HSCs further divide rapidly and differentiate to maintain homeostasis. The study provides a novel insight into basic hematopoiesis and has clinical relevance. Electronic supplementary material The online version of this article (doi:10.1186/s13287-016-0311-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ambreen Shaikh
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (ICMR), Jehangir Merwanji Street, Parel, Mumbai, 400 012, India
| | - Deepa Bhartiya
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (ICMR), Jehangir Merwanji Street, Parel, Mumbai, 400 012, India.
| | - Sona Kapoor
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (ICMR), Jehangir Merwanji Street, Parel, Mumbai, 400 012, India
| | - Harshada Nimkar
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (ICMR), Jehangir Merwanji Street, Parel, Mumbai, 400 012, India
| |
Collapse
|
18
|
Abdelbaset-Ismail A, Suszynska M, Borkowska S, Adamiak M, Ratajczak J, Kucia M, Ratajczak MZ. Human haematopoietic stem/progenitor cells express several functional sex hormone receptors. J Cell Mol Med 2015; 20:134-46. [PMID: 26515267 PMCID: PMC4717849 DOI: 10.1111/jcmm.12712] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 08/31/2015] [Indexed: 02/06/2023] Open
Abstract
Evidence has accumulated that murine haematopoietic stem/progenitor cells (HSPCs) share several markers with the germline, a connection supported by recent reports that pituitary and gonadal sex hormones (SexHs) regulate development of murine HSPCs. It has also been reported that human HSPCs, like their murine counterparts, respond to certain SexHs (e.g. androgens). However, to better address the effects of SexHs, particularly pituitary SexHs, on human haematopoiesis, we tested for expression of receptors for pituitary SexHs, including follicle‐stimulating hormone (FSH), luteinizing hormone (LH), and prolactin (PRL), as well as the receptors for gonadal SexHs, including progesterone, oestrogens, and androgen, on HSPCs purified from human umbilical cord blood (UCB) and peripheral blood (PB). We then tested the functionality of these receptors in ex vivo signal transduction studies and in vitro clonogenic assays. In parallel, we tested the effect of SexHs on human mesenchymal stromal cells (MSCs). Finally, based on our observation that at least some of the UCB‐derived, CD45− very small embryonic‐like stem cells (VSELs) become specified into CD45+HSPCs, we also evaluated the expression of pituitary and gonadal SexH receptors on these cells. We report for the first time that human HSPCs and VSELs, like their murine counterparts, express pituitary and gonadal SexH receptors at the mRNA and protein levels. Most importantly, SexH if added to suboptimal doses of haematopoietic cytokines and growth factors enhance clonogenic growth of human HSPCs as well as directly stimulate proliferation of MSCs.
Collapse
Affiliation(s)
- Ahmed Abdelbaset-Ismail
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Malwina Suszynska
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA.,Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Sylwia Borkowska
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Mateusz Adamiak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Janina Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Magda Kucia
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA.,Department of Regenerative Medicine, Medical University of Warsaw, Warszawa, Poland.,Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Mariusz Z Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA.,Department of Regenerative Medicine, Medical University of Warsaw, Warszawa, Poland
| |
Collapse
|
19
|
Shaikh A, Nagvenkar P, Pethe P, Hinduja I, Bhartiya D. Molecular and phenotypic characterization of CD133 and SSEA4 enriched very small embryonic-like stem cells in human cord blood. Leukemia 2015; 29:1909-17. [PMID: 25882698 DOI: 10.1038/leu.2015.100] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/19/2015] [Accepted: 04/07/2015] [Indexed: 02/07/2023]
Abstract
Very small embryonic-like stem cells (VSELs) are immature primitive cells residing in adult and fetal tissues. This study describes enrichment strategy and molecular and phenotypic characterization of human cord blood VSELs. Flow cytometry analysis revealed that a majority of VSELs (LIN(-)/CD45(-)/CD34(+)) were present in the red blood cell (RBC) pellet after Ficoll-Hypaque centrifugation in contrast to the hematopoietic stem cells (LIN(-)/CD45(+)/CD34(+)) in the interphase layer. Thus, after lyses of RBCs, VSELs were enriched using CD133 and SSEA4 antibodies. These enriched cells were small in size (4-6 μm), spherical, exhibited telomerase activity and expressed pluripotent stem cell (OCT4A, OCT4, SSEA4, NANOG, SOX2, REX1), primordial germ cell (STELLA, FRAGILIS) as well as primitive hematopoietic (CD133, CD34) markers at protein and transcript levels. Heterogeneity was noted among VSELs based on subtle differences in expression of various markers studied. DNA analysis and cell cycle studies revealed that a majority of enriched VSELs were diploid, non-apoptotic and in G0/G1 phase, reflecting their quiescent state. VSELs also survived 5-fluorouracil treatment in vitro and treated cells entered into cell cycle. This study provides further support for the existence of pluripotent, diploid and relatively quiescent VSELs in cord blood and suggests further exploration of the subpopulations among them.
Collapse
Affiliation(s)
- A Shaikh
- Stem Cell Biology Department, National Institute for Research in Reproductive Health, Mumbai, India
| | - P Nagvenkar
- Stem Cell Biology Department, National Institute for Research in Reproductive Health, Mumbai, India
| | - P Pethe
- Stem Cell Biology Department, National Institute for Research in Reproductive Health, Mumbai, India
| | - I Hinduja
- Jaslok Hospital & Research Centre, Mumbai, India
| | - D Bhartiya
- Stem Cell Biology Department, National Institute for Research in Reproductive Health, Mumbai, India
| |
Collapse
|
20
|
Goldenberg-Cohen N, Iskovich S, Askenasy N. Bone Marrow Homing Enriches Stem Cells Responsible for Neogenesis of Insulin-Producing Cells, While Radiation Decreases Homing Efficiency. Stem Cells Dev 2015; 24:2297-306. [PMID: 26067874 DOI: 10.1089/scd.2014.0524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Small-sized adult bone marrow cells isolated by counterflow centrifugal elutriation and depleted of lineage markers (Fr25lin(-)) have the capacity to differentiate into insulin-producing cells and stabilize glycemic control. This study assessed competitive migration of syngeneic stem cells to the bone marrow and islets in a murine model of chemical diabetes. VLA-4 is expressed in ∼ 25% of these cells, whereas CXCR4 is not detected, however, it is transcriptionally upregulated (6-fold). The possibility to enrich stem cells by a bone marrow homing (BM-H) functional assay was assessed in sequential transplants. Fr25lin(-) cells labeled with PKH26 were grafted into primary myeloablated recipients, and mitotically quiescent Fr25lin(-)PKH(bright) cells were sorted from the bone marrow after 2 days. The contribution of bone marrow-homed stem cells was remarkably higher in secondary recipients compared to freshly elutriated cells. The therapeutic efficacy was further increased by omission of irradiation in the secondary recipients, showing a 25-fold enrichment of islet-reconstituting cells by the bone marrow homing assay. Donor cells identified by the green fluorescent protein (GFP) and a genomic marker in sex-mismatched transplants upregulated PDX-1 and produced proinsulin, affirming the capacity of BM-H cells to convert in the injured islets. There was no evidence of transcriptional priming of freshly elutriated subsets to express PDX-1, insulin, and other markers of endocrine progenitors, indicating that the bone marrow harbors stem cells with versatile differentiation capacity. Affinity to the bone marrow can be used to enrich stem cells for pancreatic regeneration, and reciprocally, conditioning reduces the competitive incorporation in the injured islets.
Collapse
Affiliation(s)
- Nitza Goldenberg-Cohen
- 1 Krieger Eye Research Laboratory, Schneider Children's Medical Center of Israel , Petach Tikva, Israel
| | - Svetlana Iskovich
- 2 Frankel Laboratory, Center for Stem Cell Research, Schneider Children's Medical Center of Israel , Petach Tikva, Israel
| | - Nadir Askenasy
- 2 Frankel Laboratory, Center for Stem Cell Research, Schneider Children's Medical Center of Israel , Petach Tikva, Israel
| |
Collapse
|
21
|
Chen ZH, Lv X, Dai H, Liu C, Lou D, Chen R, Zou GM. Hepatic regenerative potential of mouse bone marrow very small embryonic-like stem cells. J Cell Physiol 2015; 230:1852-61. [PMID: 25545634 DOI: 10.1002/jcp.24913] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 12/18/2014] [Indexed: 12/12/2022]
Abstract
Very small embryonic-like stem cells (VSELs) are a Sca-1 (+) Lin(-) CD45(-) cell population that has been isolated from the bone marrow of mice. The similarities and differences between the mRNA profiles of VSELs and embryonic stem (ES) cells have not yet been defined. Here, we report the whole genome gene expression profile of VSELs and ES cells. We analyzed the global gene expression of VSELs and compared it with ES cells by microarray analysis. We observed that 9,521 genes are expressed in both VSELs and ES cells, 1,159 genes are expressed uniquely in VSELs, and 420 genes are expressed uniquely in ES cells. We found that although VSELs are similar to ES cells in their expression of genes associated with stem cell behavior and pluripotency, there are also differences in their mRNA expression. We further analyzed the expression of stem cell-associated genes in VSELs and ES cells, and found that there were differences in these genes. For instance, the Pkd2 and Yap1 gene were reduced in their expression in VSELs when compared with ES cells. But we also found Zfp54 gene expression was higher in VSELs compared with ES cells. More interestingly, we demonstrated that VSELs express c-kit, the stem cell factor (SCF) receptor. In vitro, SCF promoted VSEL differentiation into hepatic colonies in the presence of hepatocyte growth factor. In vivo, transplantation of VSELs directly into CCl4-induced injured livers significantly reduced serum ALT and AST levels. Therefore, these data suggest that VSELs play a role in the repair of injured livers.
Collapse
Affiliation(s)
- Zhi-Hua Chen
- Department of Neurosurgery, Shanghai Children's Hospital, Shanghai, P.R. China; Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | | | | | | | | | | | | |
Collapse
|
22
|
Mierzejewska K, Borkowska S, Suszynska E, Suszynska M, Poniewierska-Baran A, Maj M, Pedziwiatr D, Adamiak M, Abdel-Latif A, Kakar SS, Ratajczak J, Kucia M, Ratajczak MZ. Hematopoietic stem/progenitor cells express several functional sex hormone receptors-novel evidence for a potential developmental link between hematopoiesis and primordial germ cells. Stem Cells Dev 2015; 24:927-37. [PMID: 25607657 DOI: 10.1089/scd.2014.0546] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Evidence has accumulated that hematopoietic stem progenitor cells (HSPCs) share several markers with the germline, a connection supported by reports that prolactin, androgens, and estrogens stimulate hematopoiesis. To address this issue more directly, we tested the expression of receptors for pituitary-derived hormones, such as follicle-stimulating hormone (FSH) and luteinizing hormone (LH), on purified murine bone marrow (BM) cells enriched for HSPCs and tested the functionality of these receptors in ex vivo signal transduction studies and in vitro clonogenic assays. We also tested whether administration of pituitary- and gonad-derived sex hormones (SexHs) increases incorporation of bromodeoxyuridine (BrdU) into HSPCs and expansion of hematopoietic clonogenic progenitors in mice and promotes recovery of blood counts in sublethally irradiated animals. We report for the first time that HSPCs express functional FSH and LH receptors and that both proliferate in vivo and in vitro in response to stimulation by pituitary SexHs. Furthermore, based on our observations that at least some of CD45(-) very small embryonic-like stem cells (VSELs) may become specified into CD45(+) HSPCs, we also evaluated the expression of pituitary and gonadal SexHs receptors on these cells and tested whether these quiescent cells may expand in vivo in response to SexHs administration. We found that VSELs express SexHs receptors and respond in vivo to SexHs stimulation, as evidenced by BrdU accumulation. Since at least some VSELs share several markers characteristic of migrating primordial germ cells and can be specified into HSPCs, this observation sheds new light on the BM stem cell hierarchy.
Collapse
|
23
|
Kassmer SH, Jin H, Zhang PX, Bruscia EM, Heydari K, Lee JH, Kim CF, Kassmer SH, Krause DS, Krouse D. Very small embryonic-like stem cells from the murine bone marrow differentiate into epithelial cells of the lung. Stem Cells 2015; 31:2759-66. [PMID: 23681901 DOI: 10.1002/stem.1413] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 03/11/2013] [Accepted: 03/28/2013] [Indexed: 01/17/2023]
Abstract
The view that adult stem cells are lineage restricted has been challenged by numerous reports of bone marrow (BM)-derived cells giving rise to epithelial cells. Previously, we demonstrated that nonhematopoietic BM cells are the primary source of BM-derived lung epithelial cells. Here, we tested the hypothesis that very small embryonic like cells (VSELs) are responsible for this engraftment. We directly compared the level of BM-derived epithelial cells after transplantation of VSELs, hematopoietic stem/progenitor cells, or other nonhematopoietic cells. VSELs clearly had the highest rate of forming epithelial cells in the lung. By transplanting VSELs from donor mice expressing H2B-GFP under a type 2 pneumocyte-specific promoter, we demonstrate that this engraftment occurs by differentiation and not fusion. This is the first report of VSELs differentiating into an endodermal lineage in vivo, thereby potentially crossing germ layer lineages. Our data suggest that Oct4+ VSELs in the adult BM exhibit broad differentiation potential.
Collapse
Affiliation(s)
- Susannah H Kassmer
- Department of Laboratory Medicine, and Yale Flow Cytometry Core Facility, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Cwykiel J, Tfaily EB, Siemionow MZ. Cellular Therapies in Nerve Regeneration. Plast Reconstr Surg 2015. [DOI: 10.1007/978-1-4471-6335-0_76] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
25
|
A novel view of the adult bone marrow stem cell hierarchy and stem cell trafficking. Leukemia 2014; 29:776-82. [PMID: 25486871 PMCID: PMC4396402 DOI: 10.1038/leu.2014.346] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 11/21/2014] [Accepted: 12/01/2014] [Indexed: 01/02/2023]
Abstract
This review presents a novel view and working hypothesis about the hierarchy within the adult bone marrow stem cell compartment and the still-intriguing question of whether adult bone marrow contains primitive stem cells from early embryonic development, such as cells derived from the epiblast, migrating primordial germ cells or yolk sac-derived hemangioblasts. It also presents a novel view of the mechanisms that govern stem cell mobilization and homing, with special emphasis on the role of the complement cascade as a trigger for egress of hematopoietic stem cells from bone marrow into blood as well as the emerging role of novel homing factors and priming mechanisms that support stromal-derived factor 1-mediated homing of hematopoietic stem/progenitor cells after transplantation.
Collapse
|
26
|
Suszynska M, Poniewierska-Baran A, Gunjal P, Ratajczak J, Marycz K, Kakar SS, Kucia M, Ratajczak MZ. Expression of the erythropoietin receptor by germline-derived cells - further support for a potential developmental link between the germline and hematopoiesis. J Ovarian Res 2014; 7:66. [PMID: 24982693 PMCID: PMC4074848 DOI: 10.1186/1757-2215-7-66] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Accepted: 06/11/2014] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Expressing several markers of migrating primordial germ cells (PGCs), the rare population of quiescent, bone marrow (BM)-residing very small embryonic-like stem cells (VSELs) can be specified like PGCs into hematopoietic stem/progenitor cells (HSPCs). These two properties of VSELs support the possibility of a developmental origin of HSPCs from migrating PGCs. METHODS To address a potential link between VSELs and germ line cells we analyzed by RT-PCR and FACS expression of erythropoietin receptor (EpoR) on murine bone marrow- and human umbilical cord blood-derived VSELs, murine and human teratocarcinoma cell lines and human ovarian cancer cells. A proper gating strategy and immunostaining excluded from FACS analysis potential contamination by erythroblasts. Furthermore, the transwell chemotaxis assays as well as adhesion and signaling studies were performed to demonstrate functionality of erythropoietin - EpoR axes on these cells. RESULTS We report here that murine and human VSELs as well as murine and human teratocarcinoma cell lines and ovarian cancer cell lines share a functional EpoR. CONCLUSIONS Our data provide more evidence of a potential developmental link between germline cells, VSELs, and HSCs and sheds more light on the developmental hierarchy of the stem cell compartment in adult tissues.
Collapse
Affiliation(s)
- Malwina Suszynska
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY 40202, USA ; Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Agata Poniewierska-Baran
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY 40202, USA ; Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Pranesh Gunjal
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY 40202, USA
| | - Janina Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY 40202, USA ; Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | | | - Sham S Kakar
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY 40202, USA
| | - Magda Kucia
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY 40202, USA ; Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Mariusz Z Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY 40202, USA ; Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
27
|
Suszynska M, Zuba-Surma EK, Maj M, Mierzejewska K, Ratajczak J, Kucia M, Ratajczak MZ. The proper criteria for identification and sorting of very small embryonic-like stem cells, and some nomenclature issues. Stem Cells Dev 2014; 23:702-13. [PMID: 24299281 DOI: 10.1089/scd.2013.0472] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Evidence has accumulated that both murine and human adult tissues contain early-development stem cells with a broader differentiation potential than other adult monopotent stem cells. These cells, being pluripotent or multipotent, exist at different levels of specification and most likely represent overlapping populations of cells that, depending on the isolation strategy, ex vivo expansion protocol, and markers employed for their identification, have been given different names. In this review, we will discuss a population of very small embryonic-like stem cells (VSELs) in the context of other stem cells that express pluripotent/multipotent markers isolated from adult tissues as well as review the most current, validated working criteria on how to properly identify and isolate these very rare cells. VSELs have been successfully purified in several laboratories; however, a few have failed to isolate them, which has raised some unnecessary controversy in the field. Therefore, in this short review, we will address the most important reasons that some investigators have experienced problems in isolating these very rare cells and discuss some still unresolved challenges which should be overcome before these cells can be widely employed in the clinic.
Collapse
Affiliation(s)
- Malwina Suszynska
- 1 Stem Cell Institute at the James Graham Brown Cancer Center, University of Louisville , Louisville, Kentucky
| | | | | | | | | | | | | |
Collapse
|
28
|
Shin DM, Suszynska M, Mierzejewska K, Ratajczak J, Ratajczak MZ. Very small embryonic-like stem-cell optimization of isolation protocols: an update of molecular signatures and a review of current in vivo applications. Exp Mol Med 2013; 45:e56. [PMID: 24232255 PMCID: PMC3849570 DOI: 10.1038/emm.2013.117] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 07/22/2013] [Indexed: 01/09/2023] Open
Abstract
As the theory of stem cell plasticity was first proposed, we have explored an alternative hypothesis for this phenomenon: namely that adult bone marrow (BM) and umbilical cord blood (UCB) contain more developmentally primitive cells than hematopoietic stem cells (HSCs). In support of this notion, using multiparameter sorting we were able to isolate small Sca1(+)Lin(-)CD45(-) cells and CD133(+)Lin(-)CD45(-) cells from murine BM and human UCB, respectively, which were further enriched for the detection of various early developmental markers such as the SSEA antigen on the surface and the Oct4 and Nanog transcription factors in the nucleus. Similar populations of cells have been found in various organs by our team and others, including the heart, brain and gonads. Owing to their primitive cellular features, such as the high nuclear/cytoplasm ratio and the presence of euchromatin, they are called very small embryonic-like stem cells (VSELs). In the appropriate in vivo models, VSELs differentiate into long-term repopulating HSCs, mesenchymal stem cells (MSCs), lung epithelial cells, cardiomyocytes and gametes. In this review, we discuss the most recent data from our laboratory and other groups regarding the optimal isolation procedures and describe the updated molecular characteristics of VSELs.
Collapse
Affiliation(s)
- Dong-Myung Shin
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, Korea
| | - Malwina Suszynska
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Kasia Mierzejewska
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Janina Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Mariusz Z Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 South Floyd Street, Room 107, Louisville, KY 40202, USA. E-mail:
| |
Collapse
|
29
|
Very small embryonic-like stem cells (VSELs) represent a real challenge in stem cell biology: recent pros and cons in the midst of a lively debate. Leukemia 2013; 28:473-84. [PMID: 24018851 PMCID: PMC3948156 DOI: 10.1038/leu.2013.255] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 08/28/2013] [Indexed: 02/07/2023]
Abstract
The concept that adult tissue, including bone marrow (BM), contains early-development cells with broader differentiation potential has again been recently challenged. In response, we would like to review the accumulated evidence from several independent laboratories that adult tissues, including BM, harbor a population of very rare stem cells that may cross germ layers in their differentiation potential. Thus, the BM stem cell compartment hierarchy needs to be revisited. These dormant, early-development cells that our group described as very small embryonic-like stem cells (VSELs) most likely overlap with similar populations of stem cells that have been identified in adult tissues by other investigators as the result of various experimental strategies and have been given various names. As reported, murine VSELs have some pluripotent stem cell characteristics. Moreover, they display several epiblast/germline markers that suggest their embryonic origin and developmental deposition in adult BM. Moreover, at the molecular level, changes in expression of parentally imprinted genes (for example, Igf2–H19) and resistance to insulin/insulin-like growth factor signaling (IIS) regulates their quiescent state in adult tissues. In several emergency situations related to organ damage, VSELs can be activated and mobilized into peripheral blood, and in appropriate animal models they contribute to tissue organ/regeneration. Interestingly, their number correlates with lifespan in mice, and they may also be involved in some malignancies. VSELs have been successfully isolated in several laboratories; however, some investigators experience problems with their isolation.
Collapse
|
30
|
Kassmer SH, Krause DS. Very small embryonic-like cells: biology and function of these potential endogenous pluripotent stem cells in adult tissues. Mol Reprod Dev 2013; 80:677-90. [PMID: 23440892 DOI: 10.1002/mrd.22168] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 02/17/2013] [Indexed: 01/15/2023]
Abstract
Very small embryonic-like cells (VSELs), found in murine bone marrow and other adult tissues, are small, non-hematopoietic cells expressing markers of pluripotent embryonic and primordial germ cells. A similar cell type in humans has begun to be characterized, though with a slightly different phenotype and surface markers. Consistent with expression of pluripotency genes, murine VSELs differentiate into cell types from three germ-layer lineages in vitro, though pluripotency has yet to be shown at the single-cell level or in vivo. VSELs appear to be quiescent under steady state conditions, apparently due to partially erased imprinting and overexpression of cell cycle inhibitory genes. In vivo, VSELs can enter the cell cycle under stress conditions, but which factors regulate quiescence versus proliferation and self-renewal versus differentiation are as yet unknown, and in vitro conditions that induce proliferation and self-renewal have yet to be defined. Future experiments are needed to address whether a VSEL niche actively regulates quiescence in vivo or quiescence is cell autonomous under steady state conditions. Insights into these mechanisms may help to address whether or not VSELs could play a role in regenerative medicine in the future.
Collapse
Affiliation(s)
- Susannah H Kassmer
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut
| | | |
Collapse
|
31
|
Kucia M, Masternak M, Liu R, Shin DM, Ratajczak J, Mierzejewska K, Spong A, Kopchick JJ, Bartke A, Ratajczak MZ. The negative effect of prolonged somatotrophic/insulin signaling on an adult bone marrow-residing population of pluripotent very small embryonic-like stem cells (VSELs). AGE (DORDRECHT, NETHERLANDS) 2013; 35:315-330. [PMID: 22218782 PMCID: PMC3592960 DOI: 10.1007/s11357-011-9364-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 12/05/2011] [Indexed: 05/31/2023]
Abstract
It is well known that attenuated insulin/insulin-like growth factor signaling (IIS) has a positive effect on longevity in several animal species, including mice. Here, we demonstrate that a population of murine pluripotent very small embryonic-like stem cells (VSELs) that reside in bone marrow (BM) is protected from premature depletion during aging by intrinsic parental gene imprinting mechanisms and the level of circulating insulin-like growth factor-I (IGF-I). Accordingly, an increase in the circulating level of IGF-I, as seen in short-lived bovine growth hormone (bGH)-expressing transgenic mice, which age prematurely, as well as in wild-type animals injected for 2 months with bGH, leads to accelerated depletion of VSELs from bone marrow (BM). In contrast, long-living GHR-null or Ames dwarf mice, which have very low levels of circulating IGF-I, exhibit a significantly higher number of VSELs in BM than their littermates at the same age. However, the number of VSELs in these animals decreases after GH or IGF-I treatment. These changes in the level of plasma-circulating IGF-I corroborate with changes in the genomic imprinting status of crucial genes involved in IIS, such as Igf-2-H19, RasGRF1, and Ig2R. Thus, we propose that a chronic increase in IIS contributes to aging by premature depletion of pluripotent VSELs in adult tissues.
Collapse
Affiliation(s)
- Magda Kucia
- />Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Louisville, KY 40202 USA
- />Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Michal Masternak
- />Burnett School of Biomedical Sciences College of Medicine, Institute of Human Genetics, University of Central Florida, Orlando, FL USA
- />Department of Internal Medicine, School of Medicine, Southern Illinois University, Springfield, IL USA
- />Institute for Human Genetics Polish Academy of Sciences, Poznan, Poland
| | - Riu Liu
- />Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Louisville, KY 40202 USA
| | - Dong-Myung Shin
- />Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Louisville, KY 40202 USA
| | - Janina Ratajczak
- />Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Louisville, KY 40202 USA
- />Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Katarzyna Mierzejewska
- />Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Louisville, KY 40202 USA
| | - Adam Spong
- />Department of Internal Medicine, School of Medicine, Southern Illinois University, Springfield, IL USA
- />Institute for Human Genetics Polish Academy of Sciences, Poznan, Poland
| | - John J. Kopchick
- />Edison Biotechnology Institute and Department of Biomedical Sciences, College of Osteopathic Medicine, Ohio University, Athens, OH USA
| | - Andrzej Bartke
- />Department of Internal Medicine, School of Medicine, Southern Illinois University, Springfield, IL USA
- />Institute for Human Genetics Polish Academy of Sciences, Poznan, Poland
| | - Mariusz Z. Ratajczak
- />Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Louisville, KY 40202 USA
- />Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
32
|
Ratajczak MZ, Mierzejewska K, Ratajczak J, Kucia M. CD133 Expression Strongly Correlates with the Phenotype of Very Small Embryonic-/Epiblast-Like Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 777:125-41. [PMID: 23161080 DOI: 10.1007/978-1-4614-5894-4_9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
CD133 antigen (prominin-1) is a useful cell surface marker of very small embryonic-like stem cells (VSELs). Antibodies against it, conjugated to paramagnetic beads or fluorochromes, are thus powerful biological tools for their isolation from human umbilical cord blood, mobilized peripheral blood, and bone marrow. VSELs are described with the following characteristics: (1) are slightly smaller than red blood cells; (2) display a distinct morphology, typified by a high nuclear/cytoplasmic ratio and an unorganized euchromatin; (3) become mobilized during stress situations into peripheral blood; (4) are enriched in the CD133(+)Lin(-)CD45(-) cell fraction in humans; and (5) express markers of pluripotent stem cells (e.g., Oct-4, Nanog, and stage-specific embryonic antigen-4). The most recent in vivo data from our and other laboratories demonstrated that human VSELs exhibit some characteristics of long-term repopulating hematopoietic stem cells and are at the top of the hierarchy in the mesenchymal lineage. However, still more labor is needed to characterize better at a molecular level these rare cells.
Collapse
Affiliation(s)
- Mariusz Z Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, 40202 Rm. 107, Louisville, KY, USA,
| | | | | | | |
Collapse
|
33
|
Corbeil D, Karbanová J, Fargeas CA, Jászai J. Prominin-1 (CD133): Molecular and Cellular Features Across Species. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 777:3-24. [DOI: 10.1007/978-1-4614-5894-4_1] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
34
|
Peripheral blood stem cells: phenotypic diversity and potential clinical applications. Stem Cell Rev Rep 2012; 8:917-25. [PMID: 22451417 DOI: 10.1007/s12015-012-9361-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A small proportion of cells in peripheral blood are actually pluripotent stem cells. These peripheral blood stem cells (PBSCs) are thought to be heterogeneous and could be exploited for a variety of clinical applications. The exact number of distinct populations is unknown. It is likely that individual PBSC populations detected by different experimental strategies are similar or overlapping but have been assigned different names. In this mini review, we divide PBSCs into seven groups: hematopoietic stem cells (HSCs), CD34- stem cells, CD14+ stem cells, mesenchymal stem cells (MSCs), very small embryonic-like (VSEL) stem cells, endothelial progenitor cells (EPCs), and other pluripotent stem cells. We review the major characteristics of these stem/progenitor cell populations and their potential applications in ophthalmology.
Collapse
|
35
|
Ratajczak MZ, Shin DM, Schneider G, Ratajczak J, Kucia M. Parental imprinting regulates insulin-like growth factor signaling: a Rosetta Stone for understanding the biology of pluripotent stem cells, aging and cancerogenesis. Leukemia 2012; 27:773-9. [PMID: 23135355 DOI: 10.1038/leu.2012.322] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In recent years, solid evidence has accumulated that insulin-like growth factor-1 (IGF-1) and 2 (IGF-2) regulate many biological processes in normal and malignant cells. Recently, more light has been shed on the epigenetic mechanisms regulating expression of genes involved in IGF signaling (IFS) and it has become evident that these mechanisms are crucial for initiation of embryogenesis, maintaining the quiescence of pluripotent stem cells deposited in adult tissues (for example, very-small embryonic-like stem cells), the aging process, and the malignant transformation of cells. The expression of several genes involved in IFS is regulated at the epigenetic level by imprinting/methylation within differentially methylated regions (DMRs), which regulate their expression from paternal or maternal chromosomes. The most important role in the regulation of IFS gene expression is played by the Igf-2-H19 locus, which encodes the autocrine/paracrine mitogen IGF-2 and the H19 gene, which gives rise to a non-coding RNA precursor of several microRNAs that negatively affect cell proliferation. Among these, miR-675 has recently been demonstrated to downregulate expression of the IGF-1 receptor. The proper imprinting of DMRs at the Igf-2-H19 locus, with methylation of the paternal chromosome and a lack of methylation on the maternal chromosome, regulates expression of these genes so that Igf-2 is transcribed only from the paternal chromosome and H19 (including miR-675) only from the maternal chromosome. In this review, we will discuss the relevance of (i) proper somatic imprinting, (ii) erasure of imprinting and (iii) loss of imprinting within the DMRs at the Igf-2-H19 locus to the expression of genes involved in IFS, and the consequences of these alternative patterns of imprinting for stem cell biology.
Collapse
Affiliation(s)
- M Z Ratajczak
- Stem Cell Biology Program at the James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | | | | | | | | |
Collapse
|
36
|
Ratajczak J, Kucia M, Mierzejewska K, Marlicz W, Pietrzkowski Z, Wojakowski W, Greco NJ, Tendera M, Ratajczak MZ. Paracrine proangiopoietic effects of human umbilical cord blood-derived purified CD133+ cells--implications for stem cell therapies in regenerative medicine. Stem Cells Dev 2012; 22:422-30. [PMID: 23003001 DOI: 10.1089/scd.2012.0268] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
CD133+ cells purified from hematopoietic tissues are enriched mostly for hematopoietic stem/progenitor cells, but also contain some endothelial progenitor cells and very small embryonic-like stem cells. CD133+ cells, which are akin to CD34+ cells, are a potential source of stem cells in regenerative medicine. However, the lack of convincing donor-derived chimerism in the damaged organs of patients treated with these cells suggests that the improvement in function involves mechanisms other than a direct contribution to the damaged tissues. We hypothesized that CD133+ cells secrete several paracrine factors that play a major role in the positive effects observed after treatment and tested supernatants derived from these cells for the presence of such factors. We observed that CD133+ cells and CD133+ cell-derived microvesicles (MVs) express mRNAs for several antiapoptotic and proangiopoietic factors, including kit ligand, insulin growth factor-1, vascular endothelial growth factor, basic fibroblast growth factor, and interleukin-8. These factors were also detected in a CD133+ cell-derived conditioned medium (CM). More important, the CD133+ cell-derived CM and MVs chemoattracted endothelial cells and display proangiopoietic activity both in vitro and in vivo assays. This observation should be taken into consideration when evaluating clinical outcomes from purified CD133+ cell therapies in regenerative medicine.
Collapse
Affiliation(s)
- Janina Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky 40202, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Kotowski M, Safranow K, Kawa MP, Lewandowska J, Kłos P, Dziedziejko V, Paczkowska E, Czajka R, Celewicz Z, Rudnicki J, Machaliński B. Circulating hematopoietic stem cell count is a valuable predictor of prematurity complications in preterm newborns. BMC Pediatr 2012; 12:148. [PMID: 22985188 PMCID: PMC3573966 DOI: 10.1186/1471-2431-12-148] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 08/29/2012] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The frequency of preterm labour has risen over the last few years. Hence, there is growing interest in the identification of markers that may facilitate prediction and prevention of premature birth complications. Here, we studied the association of the number of circulating stem cell populations with the incidence of complications typical of prematurity. METHODS The study groups consisted of 90 preterm (23-36 weeks of gestational age) and 52 full-term (37-41 weeks) infants. Non-hematopoietic stem cells (non-HSCs; CD45-lin-CD184+), enriched in very small embryonic-like stem cells (VSELs), expressing pluripotent (Oct-4, Nanog), early neural (β-III-tubulin), and oligodendrocyte lineage (Olig-1) genes as well as hematopoietic stem cells (HSCs; CD45+lin-CD184+), and circulating stem/progenitor cells (CSPCs; CD133+CD34+; CD133-CD34+) in association with characteristics of prematurity and preterm morbidity were analyzed in cord blood (CB) and peripheral blood (PB) until the sixth week after delivery. Phenotype analysis was performed using flow cytometry methods. Clonogenic assays suitable for detection of human hematopoietic progenitor cells were also applied. The quantitative parameters were compared between groups by the Mann-Whitney test and between time points by the Friedman test. Fisher's exact test was used for qualitative variables. RESULTS We found that the number of CB non-HSCs/VSELs is inversely associated with the birth weight of preterm infants. More notably, a high number of CB HSCs is strongly associated with a lower risk of prematurity complications including intraventricular hemorrhage, respiratory distress syndrome, infections, and anemia. The number of HSCs remains stable for the first six weeks of postnatal life. Besides, the number of CSPCs in CB is significantly higher in preterm infants than in full-term neonates (p < 0.0001) and extensively decreases in preterm babies during next six weeks after birth. Finally, the growth of burst-forming unit of erythrocytes (BFU-E) and colony-forming units of granulocyte-macrophage (CFU-GM) obtained from CB of premature neonates is higher than those obtained from CB of full-term infants and strongly correlates with the number of CB-derived CSPCs. CONCLUSION We conclude that CB HSCs are markedly associated with the development of premature birth complications. Thus, HSCs ought to be considered as the potential target for further research as they may be relevant for predicting and controlling the morbidity of premature infants. Moreover, the observed levels of non-HSCs/VSELs circulating in CB are inversely associated with the birth weight of preterm infants, suggesting non-HSCs/VSELs might be involved in the maturation of fetal organism.
Collapse
Affiliation(s)
- Maciej Kotowski
- Department of General Pathology, Pomeranian Medical University in Szczecin, Powstancow Wlkp, 72, Szczecin 70-111, Poland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Ratajczak MZ, Shin DM, Liu R, Mierzejewska K, Ratajczak J, Kucia M, Zuba-Surma EK. Very small embryonic/epiblast-like stem cells (VSELs) and their potential role in aging and organ rejuvenation--an update and comparison to other primitive small stem cells isolated from adult tissues. Aging (Albany NY) 2012; 4:235-46. [PMID: 22498452 PMCID: PMC3371759 DOI: 10.18632/aging.100449] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Very small embryonic-like stem cells (VSELs) are a population of developmentally early stem cells residing in adult tissues. These rare cells, which are slightly smaller than red blood cells, i) become mobilized during stress situations into peripheral blood, ii) are enriched in the Sca1+Lin−CD45− cell fraction in mice and the CD133+ Lin−CD45− cell fraction in humans, iii) express markers of pluripotent stem cells (e.g., Oct4, Nanog, and SSEA), and iv) display a distinct morphology characterized by a high nuclear/cytoplasmic ratio and undifferentiated chromatin. Recent evidence indicates that murine VSELs are kept quiescent in adult tissues and protected from teratoma formation by epigenetic modification of imprinted genes that regulate insulin/insulin like growth factor signaling (IIS). The successful reversal of these epigenetic changes in VSELs that render them quiescent will be crucial for efficient expansion of these cells. The most recent data in vivo from our and other laboratories demonstrated that both murine and human VSELs exhibit some characteristics of long-term repopulating hematopoietic stem cells (LT-HSCs), are at the top of the hierarchy in the mesenchymal lineage, and may differentiate into organ-specific cells (e.g., cardiomyocytes). Moreover, as recently demonstrated the number of these cells positively correlates in several murine models with longevity. Finally, while murine BM-derived VSELs have been extensively characterized more work is needed to better characterize these small cells at the molecular level in humans.
Collapse
Affiliation(s)
- Mariusz Z Ratajczak
- Stem Cell Biology Program at the James Graham Brown Cancer Center, University of Louisville, Louisville, KT, USA.
| | | | | | | | | | | | | |
Collapse
|
39
|
Ivanovic Z. Human umbilical cord blood-derived very-small-embryonic-like stem cells with maximum regenerative potential? Stem Cells Dev 2012; 21:2561-2; author reply 2563-4. [PMID: 22420482 DOI: 10.1089/scd.2012.0058] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
40
|
Very small embryonic-like stem cells purified from umbilical cord blood lack stem cell characteristics. PLoS One 2012; 7:e34899. [PMID: 22509366 PMCID: PMC3318011 DOI: 10.1371/journal.pone.0034899] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 03/06/2012] [Indexed: 01/04/2023] Open
Abstract
Very small embryonic-like (VSEL) cells have been described as putatively pluripotent stem cells present in murine bone marrow and human umbilical cord blood (hUCB) and as such are of high potential interest for regenerative medicine. However, there remain some questions concerning the precise identity and properties of VSEL cells, particularly those derived from hUCB. For this reason, we have carried out an extensive characterisation of purified populations of VSEL cells from a large number of UCB samples. Consistent with a previous report, we find that VSEL cells are CXCR4+, have a high density, are indeed significantly smaller than HSC and have an extremely high nuclear/cytoplasmic ratio. Their nucleoplasm is unstructured and stains strongly with Hoechst 33342. A comprehensive FACS screen for surface markers characteristic of embryonic, mesenchymal, neuronal or hematopoietic stem cells revealed negligible expression on VSEL cells. These cells failed to expand in vitro under a wide range of culture conditions known to support embryonic or adult stem cell types and a microarray analysis revealed the transcriptional profile of VSEL cells to be clearly distinct both from well-defined populations of pluripotent and adult stem cells and from the mature hematopoietic lineages. Finally, we detected an aneuploid karyotype in the majority of purified VSEL cells by fluorescence in situ hybridisation. These data support neither an embryonic nor an adult stem cell like phenotype, suggesting rather that hUCB VSEL cells are an aberrant and inactive population that is not comparable to murine VSEL cells.
Collapse
|
41
|
Pelosi E, Castelli G, Testa U. Human umbilical cord is a unique and safe source of various types of stem cells suitable for treatment of hematological diseases and for regenerative medicine. Blood Cells Mol Dis 2012; 49:20-8. [PMID: 22446302 DOI: 10.1016/j.bcmd.2012.02.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 02/17/2012] [Accepted: 02/17/2012] [Indexed: 12/31/2022]
Abstract
Cord blood (CB) is a rich source of hematopoietic stem cells (HSCs) and for this reason CB transplantation has been used successfully for the treatment of some malignant and nonmalignant diseases. However, this technique is limited by the relatively low number of HSCs present in each CB unit and by the delayed engraftment of platelets and neutrophils. To bypass these obstacles efforts have been made to develop strategies to expand CB HSCs in vitro for transplantation. CB is also an important source of other stem cells, including endothelial progenitors, mesenchymal stem cells (MSCs), very small embryonic/epiblast-like (VSEL) stem cells, and unrestricted somatic stem cells (USSC), potentially suitable for use in regenerative medicine. For some of these stem cell populations, such as MSCs, clinical studies have been started and for other stem cell populations potential clinical applications have been identified and clinical studies will follow. In addition to CB, other parts of umbilical cord, such as the Wharton's jelly, or tissues strictly linked such as the placenta are also rich sources of stem cells.
Collapse
Affiliation(s)
- Elvira Pelosi
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Italy
| | | | | |
Collapse
|
42
|
|
43
|
Shin DM, Liu R, Wu W, Waigel SJ, Zacharias W, Ratajczak MZ, Kucia M. Global gene expression analysis of very small embryonic-like stem cells reveals that the Ezh2-dependent bivalent domain mechanism contributes to their pluripotent state. Stem Cells Dev 2012; 21:1639-52. [PMID: 22023227 DOI: 10.1089/scd.2011.0389] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Recently, we identified a population of Oct4(+)Sca-1(+)Lin(-)CD45(-) very small embryonic-like stem cells (VSELs) in murine and human adult tissues. VSELs can differentiate in vitro into cells from all 3 germ layers and in vivo tissue-committed stem cells. Open chromatin structure of core pluripotency transcription factors (TFs) supports the pluripotent state of VSELs. However, it has been difficult to determine how primitive VSELs maintain pluripotency, owing to their limited number in adult tissues. Here, we demonstrate by genome-wide gene-expression analysis with a small number of highly purified murine bone marrow-derived VSELs that Oct4(+) VSELs (i) express a similar, yet nonidentical, transcriptome as embryonic stem cells (ESCs), (ii) highly express cell cycle checkpoint genes, (iii) express at a low level genes involved in protein turnover and mitogenic pathways, and (iv) highly express enhancer of zeste drosophila homolog 2 (Ezh2), a polycomb group protein. Furthermore, as a result of high expression of Ezh2, VSELs, like ESCs, exhibit bivalently modified nucleosomes (trimethylated H3K27 and H3K4) at promoters of important homeodomain-containing developmental TFs, thus preventing premature activation of the lineage-committing factors. Notably, spontaneous or RNA interference-enforced downregulation of Ezh2 during VSEL differentiation removes the bivalent domain (BD) structure, which leads to de-repression of several BD-regulated genes. Therefore, we suggest that Oct4(+) VSELs, like other pluripotent stem cells, maintain their pluripotent state through an Ezh2-dependent BD-mediated epigenetic mechanism. Furthermore, our global survey of VSEL gene expression signature would not only advance our understanding of biological process for their pluripotency, differentiation, and quiescence but should also help to develop better protocols for ex vivo expansion of VSELs.
Collapse
Affiliation(s)
- Dong-Myung Shin
- Stem Cell Institute at the James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA.
| | | | | | | | | | | | | |
Collapse
|
44
|
Zhang L, Tang A, Zhou Y, Tang J, Luo Z, Jiang C, Li X, Xiang J, Li G. Tumor-conditioned mesenchymal stem cells display hematopoietic differentiation and diminished influx of Ca2+. Stem Cells Dev 2011; 21:1418-28. [PMID: 21905919 DOI: 10.1089/scd.2011.0319] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) that are present in many adult tissues can generate new cells either continuously or in response to injury/cancer. An increasing number of studies demonstrated that MSCs have the ability to differentiate into cells of mesodermal origin and transdifferentiate into cells such as hepatocytes, neural cells. There has been growing interest in the application of MSCs to cancer therapy. The relationship between MSCs and cancer cells remains highly controversial. In this study, we analyzed the interaction of bone marrow-derived MSCs and cancer cells by cell-cell contact and transwell culture system. The flow cytometry and real-time polymerase chain reaction showed that after coculture of MSCs and cancer cells, MSCs displayed the hematopoietic cell markers such as CD34, CD45, and CD11b. The CD68, MRCI, and CSF1R were dramatically upregulated after coculture. The cytokine array showed that MSCs after coculture secreted monokines and chemokines much more than that of intact MSCs. The MSCs under tumor conditions were responsive to stimulation with lipopolysaccharide by cytokines release. The tumor-conditioned MSCs showed phagocytic ability and enhanced release of nitric oxide, which are the characteristics of macrophages. Calcium ion is an important intracellular messenger responsible for differentiation and gene expression regulations. The influx of Ca(2+) into MSCs was obviously reduced after coculture. The blocking of calcium channel with verapamil obviously increased the expression of CD34, CD45, and CD11b, thus indicating that the diminished calcium ion influx is coupled with the hematopoietic differentiation of MSCs under tumor conditions. Taken together, in a cancer environment, MSCs could effectively differentiate into immune hematopoietic cells, precisely macrophages. Diminished transient influx of Ca(2+) may mediate the hematopoietic differentiation of MSCs.
Collapse
Affiliation(s)
- Liyang Zhang
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Ratajczak MZ. New stem cell meeting on the Baltic Sea is launched. Leukemia 2011; 26:164-6. [PMID: 21769102 DOI: 10.1038/leu.2011.182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|