1
|
Corleone G, Sorino C, Caforio M, Di Giovenale S, De Nicola F, Goeman F, Bertaina V, Pitisci A, Cortile C, Locatelli F, Folgiero V, Fanciulli M. Enhancer engagement sustains oncogenic transformation and progression of B-cell precursor acute lymphoblastic leukemia. J Exp Clin Cancer Res 2024; 43:179. [PMID: 38926853 PMCID: PMC11210131 DOI: 10.1186/s13046-024-03075-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/18/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Enhancer reprogramming plays a significant role in the heterogeneity of cancer. However, we have limited knowledge about the impact of chromatin remodeling in B-Cell Precursor Acute Lymphoblastic Leukemia (BCP-ALL) patients, and how it affects tumorigenesis and drug response. Our research focuses on investigating the role of enhancers in sustaining oncogenic transformation in children with BCP-ALL. METHODS We used ATAC-seq to study the accessibility of chromatin in pediatric BCP-ALL at three different stages-onset, remission, and relapse. Using a combination of computational and experimental methods, we were able to analyze the accessibility landscape and focus on the most significant cis-regulatory sites. These sites were then functionally validated through the use of Promoter capture Hi-C in a primary cell line model called LAL-B, followed by RNA-seq and genomic deletion of target sites using CRISPR-Cas9 editing. RESULTS We found that enhancer activity changes during cancer progression and is mediated by the production of enhancer RNAs (eRNAs). CRISPR-Cas9-mediated validation of previously unknown eRNA productive enhancers demonstrated their capability to control the oncogenic activities of the MYB and DCTD genes. CONCLUSIONS Our findings directly support the notion that productive enhancer engagement is a crucial determinant of the BCP-ALL and highlight the potential of enhancers as therapeutic targets in pediatric BCP-ALL.
Collapse
Affiliation(s)
- Giacomo Corleone
- IRCCS Regina Elena National Cancer Institute, Via Chianesi 53, Rome, 00144, Italy
| | - Cristina Sorino
- IRCCS Regina Elena National Cancer Institute, Via Chianesi 53, Rome, 00144, Italy
| | - Matteo Caforio
- Department of Pediatric Hematology-Oncology and Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Viale Di San Paolo 12, Rome, 00146, Italy
| | - Stefano Di Giovenale
- IRCCS Regina Elena National Cancer Institute, Via Chianesi 53, Rome, 00144, Italy
- Department of Computer, Control, and Management, Engineering Antonio Ruberti, Sapienza University of Rome, Rome, 00161, Italy
| | - Francesca De Nicola
- IRCCS Regina Elena National Cancer Institute, Via Chianesi 53, Rome, 00144, Italy
| | - Frauke Goeman
- IRCCS Regina Elena National Cancer Institute, Via Chianesi 53, Rome, 00144, Italy
| | - Valentina Bertaina
- Department of Pediatric Hematology-Oncology and Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Viale Di San Paolo 12, Rome, 00146, Italy
| | - Angela Pitisci
- Department of Pediatric Hematology-Oncology and Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Viale Di San Paolo 12, Rome, 00146, Italy
| | - Clelia Cortile
- IRCCS Regina Elena National Cancer Institute, Via Chianesi 53, Rome, 00144, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology-Oncology and Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Viale Di San Paolo 12, Rome, 00146, Italy
- Department of Life Sciences and Public Health, Catholic University of the Sacred Heart, Rome, Italy
| | - Valentina Folgiero
- Department of Pediatric Hematology-Oncology and Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Viale Di San Paolo 12, Rome, 00146, Italy.
| | - Maurizio Fanciulli
- IRCCS Regina Elena National Cancer Institute, Via Chianesi 53, Rome, 00144, Italy.
| |
Collapse
|
2
|
Khoshnevisan R, Hassanzadeh S, Klein C, Rohlfs M, Grimbacher B, Molavi N, Zamanifar A, Khoshnevisan A, Jafari M, Bagherpour B, Behnam M, Najafi S, Sherkat R. B-cells absence in patients diagnosed as inborn errors of immunity: a registry-based study. Immunogenetics 2024; 76:189-202. [PMID: 38683392 DOI: 10.1007/s00251-024-01342-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 04/05/2024] [Indexed: 05/01/2024]
Abstract
Hypogammaglobulinemia without B-cells is a subgroup of inborn errors of immunity (IEI) which is characterized by a significant decline in all serum immunoglobulin isotypes, coupled with a pronounced reduction or absence of B-cells. Approximately 80 to 90% of individuals exhibit genetic variations in Bruton's agammaglobulinemia tyrosine kinase (BTK), whereas a minority of cases, around 5-10%, are autosomal recessive agammaglobulinemia (ARA). Very few cases are grouped into distinct subcategories. We evaluated phenotypically and genetically 27 patients from 13 distinct families with hypogammaglobinemia and no B-cells. Genetic analysis was performed via whole-exome and Sanger sequencing. The most prevalent genetic cause was mutations in BTK. Three novel mutations in the BTK gene include c.115 T > C (p. Tyr39His), c.685-686insTTAC (p.Asn229llefs5), and c.163delT (p.Ser55GlnfsTer2). Our three ARA patients include a novel homozygous stop-gain mutation in the immunoglobulin heavy constant Mu chain (IGHM) gene, a novel frameshift mutation of the B-cell antigen receptor complex-associated protein (CD79A) gene, a novel bi-allelic stop-gain mutation in the transcription factor 3 (TCF3) gene. Three patients with agammaglobulinemia have an autosomal dominant inheritance pattern, which includes a missense variant in PIK3CD, a novel missense variant in PIK3R1 and a homozygous silent mutation in the phosphoinositide-3-kinase regulatory subunit (RASGRP1) gene. This study broadens the genetic spectrum of hypogammaglobulinemia without B-cells and presented a few novel variants within the Iranian community, which may also have implications in other Middle Eastern populations. Notably, disease control was better in the second affected family member in families with multiple cases.
Collapse
Affiliation(s)
- Razieh Khoshnevisan
- Immunodeficiency Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shakiba Hassanzadeh
- Immunodeficiency Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Christoph Klein
- Dr. Von Hauner Children's Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Meino Rohlfs
- Dept. of Pediatrics, Dr. Von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Bodo Grimbacher
- RESIST-Cluster of Excellence 2155, Hannover Medical School, Hannover, Germany
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University, Freiburg, Germany
- Clinic for Rheumatology and Clinical Immunology, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, Albert-Ludwigs-University, Freiburg, Germany
- DZIF-German Center for Infection Research, Satellite Center Freiburg, Freiburg, Germany
- CIBSS-Centre for Integrative Biological Signaling Studies, Albert-Ludwigs-University, Freiburg, Germany
| | - Newsha Molavi
- Immunodeficiency Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Aryana Zamanifar
- Immunodeficiency Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Khoshnevisan
- Immunodeficiency Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahbube Jafari
- Immunodeficiency Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Bahram Bagherpour
- Immunodeficiency Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahdiyeh Behnam
- Medical Genetics Laboratory of Genome, Isfahan, Iran
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Somayeh Najafi
- Immunodeficiency Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Roya Sherkat
- Immunodeficiency Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
3
|
Chen H, Ryu J, Vinyard ME, Lerer A, Pinello L. SIMBA: single-cell embedding along with features. Nat Methods 2024; 21:1003-1013. [PMID: 37248389 PMCID: PMC11166568 DOI: 10.1038/s41592-023-01899-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 04/26/2023] [Indexed: 05/31/2023]
Abstract
Most current single-cell analysis pipelines are limited to cell embeddings and rely heavily on clustering, while lacking the ability to explicitly model interactions between different feature types. Furthermore, these methods are tailored to specific tasks, as distinct single-cell problems are formulated differently. To address these shortcomings, here we present SIMBA, a graph embedding method that jointly embeds single cells and their defining features, such as genes, chromatin-accessible regions and DNA sequences, into a common latent space. By leveraging the co-embedding of cells and features, SIMBA allows for the study of cellular heterogeneity, clustering-free marker discovery, gene regulation inference, batch effect removal and omics data integration. We show that SIMBA provides a single framework that allows diverse single-cell problems to be formulated in a unified way and thus simplifies the development of new analyses and extension to new single-cell modalities. SIMBA is implemented as a comprehensive Python library ( https://simba-bio.readthedocs.io ).
Collapse
Affiliation(s)
- Huidong Chen
- Molecular Pathology Unit, Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Jayoung Ryu
- Molecular Pathology Unit, Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Michael E Vinyard
- Molecular Pathology Unit, Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Adam Lerer
- Facebook AI Research, New York, NY, USA.
| | - Luca Pinello
- Molecular Pathology Unit, Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA.
- Department of Pathology, Harvard Medical School, Boston, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| |
Collapse
|
4
|
Rojas-Quintero J, Ochsner SA, New F, Divakar P, Yang CX, Wu TD, Robinson J, Chandrashekar DS, Banovich NE, Rosas IO, Sauler M, Kheradmand F, Gaggar A, Margaroli C, San Jose Estepar R, McKenna NJ, Polverino F. Spatial Transcriptomics Resolve an Emphysema-Specific Lymphoid Follicle B Cell Signature in Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2024; 209:48-58. [PMID: 37934672 PMCID: PMC10870877 DOI: 10.1164/rccm.202303-0507le] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 10/15/2023] [Indexed: 11/09/2023] Open
Abstract
Rationale: Within chronic obstructive pulmonary disease (COPD), emphysema is characterized by a significant yet partially understood B cell immune component. Objectives: To characterize the transcriptomic signatures from lymphoid follicles (LFs) in ever-smokers without COPD and patients with COPD with varying degrees of emphysema. Methods: Lung sections from 40 patients with COPD and ever-smokers were used for LF proteomic and transcriptomic spatial profiling. Formalin- and O.C.T.-fixed lung samples obtained from biopsies or lung explants were assessed for LF presence. Emphysema measurements were obtained from clinical chest computed tomographic scans. High-confidence transcriptional target intersection analyses were conducted to resolve emphysema-induced transcriptional networks. Measurements and Main Results: Overall, 115 LFs from ever-smokers and Global Initiative for Chronic Obstructive Lung Disease (GOLD) 1-2 and GOLD 3-4 patients were analyzed. No LFs were found in never-smokers. Differential gene expression analysis revealed significantly increased expression of LF assembly and B cell marker genes in subjects with severe emphysema. High-confidence transcriptional analysis revealed activation of an abnormal B cell activity signature in LFs (q-value = 2.56E-111). LFs from patients with GOLD 1-2 COPD with emphysema showed significantly increased expression of genes associated with antigen presentation, inflammation, and B cell activation and proliferation. LFs from patients with GOLD 1-2 COPD without emphysema showed an antiinflammatory profile. The extent of centrilobular emphysema was significantly associated with genes involved in B cell maturation and antibody production. Protein-RNA network analysis showed that LFs in emphysema have a unique signature skewed toward chronic B cell activation. Conclusions: An off-targeted B cell activation within LFs is associated with autoimmune-mediated emphysema pathogenesis.
Collapse
Affiliation(s)
| | - Scott A. Ochsner
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Felicia New
- Spatial Data Analysis Services, Nanostring Biotechnologies, Seattle, Washington
| | - Prajan Divakar
- Spatial Data Analysis Services, Nanostring Biotechnologies, Seattle, Washington
| | - Chen Xi Yang
- Center for Heart Lung Innovation, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Jerid Robinson
- Field Application Scientists, Nanostring Biotechnologies, Seattle, Washington
| | | | | | | | - Maor Sauler
- Pulmonary and Critical Care Medicine, Yale University, New Haven, Connecticut
| | - Farrah Kheradmand
- Pulmonary Division, Department of Medicine, and
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas
| | - Amit Gaggar
- Pulmonary and Critical Care Medicine, and
- Birmingham Veterans Affairs Medical Center, Birmingham, Alabama; and
| | - Camilla Margaroli
- Pathology – Division of Cellular and Molecular Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Raul San Jose Estepar
- Applied Chest Imaging Laboratory, Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Neil J. McKenna
- Spatial Data Analysis Services, Nanostring Biotechnologies, Seattle, Washington
| | | |
Collapse
|
5
|
Chetverina D, Vorobyeva NE, Gyorffy B, Shtil AA, Erokhin M. Analyses of Genes Critical to Tumor Survival Reveal Potential 'Supertargets': Focus on Transcription. Cancers (Basel) 2023; 15:cancers15113042. [PMID: 37297004 DOI: 10.3390/cancers15113042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
The identification of mechanisms that underlie the biology of individual tumors is aimed at the development of personalized treatment strategies. Herein, we performed a comprehensive search of genes (termed Supertargets) vital for tumors of particular tissue origin. In so doing, we used the DepMap database portal that encompasses a broad panel of cell lines with individual genes knocked out by CRISPR/Cas9 technology. For each of the 27 tumor types, we revealed the top five genes whose deletion was lethal in the particular case, indicating both known and unknown Supertargets. Most importantly, the majority of Supertargets (41%) were represented by DNA-binding transcription factors. RNAseq data analysis demonstrated that a subset of Supertargets was deregulated in clinical tumor samples but not in the respective non-malignant tissues. These results point to transcriptional mechanisms as key regulators of cell survival in specific tumors. Targeted inactivation of these factors emerges as a straightforward approach to optimize therapeutic regimens.
Collapse
Affiliation(s)
- Darya Chetverina
- Group of Epigenetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Nadezhda E Vorobyeva
- Group of Dynamics of Transcriptional Complexes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Balazs Gyorffy
- Departments of Bioinformatics and Pediatrics, Semmelweis University, H-1094 Budapest, Hungary
- Cancer Biomarker Research Group, Research Centre for Natural Sciences, Institute of Enzymology, H-1117 Budapest, Hungary
| | - Alexander A Shtil
- Blokhin National Medical Research Center of Oncology, 24 Kashirskoye Shosse, Moscow 115522, Russia
| | - Maksim Erokhin
- Group of Chromatin Biology, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| |
Collapse
|
6
|
Kim H, Ahn HS, Hwang N, Huh Y, Bu S, Seo KJ, Kwon SH, Lee HK, Kim JW, Yoon BK, Fang S. Epigenomic landscape exhibits interferon signaling suppression in the patient of myocarditis after BNT162b2 vaccination. Sci Rep 2023; 13:8926. [PMID: 37264110 DOI: 10.1038/s41598-023-36070-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/29/2023] [Indexed: 06/03/2023] Open
Abstract
After the outbreak of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, a novel mRNA vaccine (BNT162b2) was developed at an unprecedented speed. Although most countries have achieved widespread immunity from vaccines and infections, yet people, even who have recovered from SARS-CoV-2 infection, are recommended to receive vaccination due to their effectiveness in lowering the risk of recurrent infection. However, the BNT162b2 vaccine has been reported to increase the risk of myocarditis. To our knowledge, for the first time in this study, we tracked changes in the chromatin dynamics of peripheral blood mononuclear cells (PBMCs) in the patient who underwent myocarditis after BNT162b2 vaccination. A longitudinal study of chromatin accessibility using concurrent analysis of single-cell assays for transposase-accessible chromatin with sequencing and single-cell RNA sequencing showed downregulation of interferon signaling and upregulated RUNX2/3 activity in PBMCs. Considering BNT162b2 vaccination increases the level of interferon-α/γ in serum, our data highlight the immune responses different from the conventional responses to the vaccination, which is possibly the key to understanding the side effects of BNT162b2 vaccination.
Collapse
Affiliation(s)
- Hyeonhui Kim
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Korea
- Severance Biomedical Science Institute, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Hyo-Suk Ahn
- Division of Cardiology, Department of Internal Medicine, The Catholic University of Korea, Uijeongbu St. Mary's Hospital, Seoul, 06591, Korea
- Catholic Research Institute for Intractable Cardiovascular Disease (CRID), College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
| | - Nahee Hwang
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Korea
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Yune Huh
- Department of Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Seonghyeon Bu
- Division of Cardiology, Department of Internal Medicine, The Catholic University of Korea, Uijeongbu St. Mary's Hospital, Seoul, 06591, Korea
- Catholic Research Institute for Intractable Cardiovascular Disease (CRID), College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
| | - Kyung Jin Seo
- Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Uijeongbu St. Mary's Hospital, Seoul, South Korea
| | - Se Hwan Kwon
- Department of Radiology, Kyung Hee University Medical Center, Seoul, South Korea
| | - Hae-Kyung Lee
- Severance Biomedical Science Institute, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Jae-Woo Kim
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Bo Kyung Yoon
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, 03722, Korea.
| | - Sungsoon Fang
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Korea.
- Severance Biomedical Science Institute, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Korea.
| |
Collapse
|
7
|
Downes CEJ, McClure BJ, McDougal DP, Heatley SL, Bruning JB, Thomas D, Yeung DT, White DL. JAK2 Alterations in Acute Lymphoblastic Leukemia: Molecular Insights for Superior Precision Medicine Strategies. Front Cell Dev Biol 2022; 10:942053. [PMID: 35903543 PMCID: PMC9315936 DOI: 10.3389/fcell.2022.942053] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common pediatric cancer, arising from immature lymphocytes that show uncontrolled proliferation and arrested differentiation. Genomic alterations affecting Janus kinase 2 (JAK2) correlate with some of the poorest outcomes within the Philadelphia-like subtype of ALL. Given the success of kinase inhibitors in the treatment of chronic myeloid leukemia, the discovery of activating JAK2 point mutations and JAK2 fusion genes in ALL, was a breakthrough for potential targeted therapies. However, the molecular mechanisms by which these alterations activate JAK2 and promote downstream signaling is poorly understood. Furthermore, as clinical data regarding the limitations of approved JAK inhibitors in myeloproliferative disorders matures, there is a growing awareness of the need for alternative precision medicine approaches for specific JAK2 lesions. This review focuses on the molecular mechanisms behind ALL-associated JAK2 mutations and JAK2 fusion genes, known and potential causes of JAK-inhibitor resistance, and how JAK2 alterations could be targeted using alternative and novel rationally designed therapies to guide precision medicine approaches for these high-risk subtypes of ALL.
Collapse
Affiliation(s)
- Charlotte EJ. Downes
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- School of Biological Sciences, Faculty of Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Barbara J. McClure
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Daniel P. McDougal
- School of Biological Sciences, Faculty of Sciences, University of Adelaide, Adelaide, SA, Australia
- Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, Adelaide, SA, Australia
| | - Susan L. Heatley
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Australian and New Zealand Children’s Oncology Group (ANZCHOG), Clayton, VIC, Australia
| | - John B. Bruning
- School of Biological Sciences, Faculty of Sciences, University of Adelaide, Adelaide, SA, Australia
- Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, Adelaide, SA, Australia
| | - Daniel Thomas
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - David T. Yeung
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Department of Haematology, Royal Adelaide Hospital and SA Pathology, Adelaide, SA, Australia
| | - Deborah L. White
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- School of Biological Sciences, Faculty of Sciences, University of Adelaide, Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Australian and New Zealand Children’s Oncology Group (ANZCHOG), Clayton, VIC, Australia
| |
Collapse
|
8
|
Mutational Analysis of the VPREB1 Gene of Pre-BCR Complex in a Cohort of Sporadic Pediatric Patients With B-Cell Acute Lymphoblastic Leukemia. J Pediatr Hematol Oncol 2022; 44:210-219. [PMID: 35398858 DOI: 10.1097/mph.0000000000002456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/28/2022] [Indexed: 11/26/2022]
Abstract
During bone marrow B-cell development, the pre-B-cell receptor is formed by the association of the immunoglobulin heavy chain with a surrogate light chain, which is encoded by the VPREB1, and λ5 genes. It is known that pre-BCR signaling signifies a critical checkpoint at the pre-B-cell stage. Thus, failure pre-BCR signaling is proposed as a critical factor for the development of B-cell acute lymphoblastic leukemia (B-ALL). B‑ALL is the most common pediatric cancer and is one of the leading causes of death in children. Until now, several molecular analyses were performed for genomic alterations in B-ALL, but for genomic analysis of the VPREB1 gene and its rare variations, limited studies have been conducted. In this study, using polymerase chain reaction and direct sequencing of 88 pediatric patients with B-ALL, we investigated the genomic region of the VPREB1 gene to find sequence variations of this gene. Our study presented ten homozygous and heterozygous point mutations and heterozygous nucleotide deletions, in the VPREB1 gene in 36 boys and 32 girls' patients. Our Bioinformatics assay results presented that these variations may alter the RNA folding, protein structure, and therefore probable effect on the protein function. These results propose that nucleotide changes probably contribute to B-ALL pathogenesis.
Collapse
|
9
|
IRF4 deficiency vulnerates B-cell progeny for leukemogenesis via somatically acquired Jak3 mutations conferring IL-7 hypersensitivity. Cell Death Differ 2022; 29:2163-2176. [PMID: 35459909 PMCID: PMC9613660 DOI: 10.1038/s41418-022-01005-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 12/13/2022] Open
Abstract
The processes leading from disturbed B-cell development to adult B-cell progenitor acute lymphoblastic leukemia (BCP-ALL) remain poorly understood. Here, we describe Irf4−/− mice as prone to developing BCP-ALL with age. Irf4−/− preB-I cells exhibited impaired differentiation but enhanced proliferation in response to IL-7, along with reduced retention in the IL-7 providing bone marrow niche due to decreased CXCL12 responsiveness. Thus selected, preB-I cells acquired Jak3 mutations, probably following irregular AID activity, resulting in malignant transformation. We demonstrate heightened IL-7 sensitivity due to Jak3 mutants, devise a model to explain it, and describe structural and functional similarities to Jak2 mutations often occurring in human Ph-like ALL. Finally, targeting JAK signaling with Ruxolitinib in vivo prolonged survival of mice bearing established Irf4−/− leukemia. Intriguingly, organ infiltration including leukemic meningeosis was selectively reduced without affecting blood blast counts. In this work, we present spontaneous leukemogenesis following IRF4 deficiency with potential implications for high-risk BCP-ALL in adult humans.
Collapse
|
10
|
Wang Y, Hou H, Liang Z, Chen X, Lian X, Yang J, Zhu Z, Luo H, Su H, Gong Q. P38 MAPK/AKT signalling is involved in IL-33-mediated anti-apoptosis in childhood acute lymphoblastic leukaemia blast cells. Ann Med 2021; 53:1461-1469. [PMID: 34435521 PMCID: PMC8405111 DOI: 10.1080/07853890.2021.1970217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 08/13/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Acute lymphoblastic leukaemia (ALL) is often characterized by broad clinical and biological heterogeneity, as well as recurrent genetic aberrations. Despite remarkable improvements in the treatment outcome in paediatric ALL over the past several decades, it remains a leading cause of morbidity and mortality among children. Cytokines have been extensively studied in haematologic diseases; however, the mechanisms by which cytokines contribute to ALL pathogenesis remain poorly understood. METHODS IL-33 levels were measured by enzyme-linked immunosorbent assay (ELISA). IL1RL1 expression on ALL cell surface was accessed by flow cytometry. Expression of phosphorylated p38 MAPK, p38, pAKT, AKT and GAPDH were quantified by western blot. Cell survival signals were evaluated by apoptosis using flow cytometry. RESULTS BM samples from ALL patients at diagnosis upregulated their cell surface expression of IL1RL1, and a higher interleukin (IL)-33 level in the serum was observed as compared to the healthy individuals. Moreover, exogenous IL-33 treatment significantly inhibited apoptosis by activating p38 mitogen-activated protein kinase (MAPK) and AKT pathway, while the inhibitor for p38 MAPK, SB203580, counteracted IL-33-induced anti-apoptosis via inactivation of p38 MAPK and AKT. Furthermore, IL-33 negatively regulates cyclin B1 protein level while increasing the expression of CDK1, with SB203580 inhibiting the effect. CONCLUSION Our study reveals an important role for IL-33/IL1RL1 axis in supporting ALL which may represent a novel treatment for paediatric patients.KEY MESSAGESBoth IL-33 and IL1RL1 levels are upregulated in primary ALL samples.IL-33 increased both p38 MAPK and AKT activation in ALL.IL-33 promotes survival and cell cycle progression of ALL cells via activating p38 MAPK.
Collapse
Affiliation(s)
- Yiqian Wang
- The Sixed Affiliated Hospital, GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Hanyi Hou
- The Second Clinical Medicine School, Guangzhou Medical University, Guangzhou, China
| | - Zhongping Liang
- The Sixed Affiliated Hospital, GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Xuexin Chen
- The Sixed Affiliated Hospital, GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Xindan Lian
- School of Pediatrics, Guangzhou Medical University, Guangzhou, China
| | - Jie Yang
- School of Pediatrics, Guangzhou Medical University, Guangzhou, China
| | - Zeyu Zhu
- KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
| | - Huanmin Luo
- The Third Clinical Medicine School, Guangzhou Medical University, Guangzhou, China
| | - Haibo Su
- The Sixed Affiliated Hospital, GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Qing Gong
- The Sixed Affiliated Hospital, GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
11
|
Li X, Gao F, Wang X, Liang Q, Bai A, Liu Z, Chen X, Li E, Chen S, Lu C, Qian R, Sun N, Liang P, Xu C. E2A ablation enhances proportion of nodal-like cardiomyocytes in cardiac-specific differentiation of human embryonic stem cells. EBioMedicine 2021; 71:103575. [PMID: 34488017 PMCID: PMC8426208 DOI: 10.1016/j.ebiom.2021.103575] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Human sinoatrial cardiomyocytes are essential building blocks for cell therapies of conduction system disorders. However, current differentiation protocols for deriving nodal cardiomyocytes from human pluripotent stem cells (hPSCs) are very inefficient. METHODS By employing the hPSCs to cardiomyocyte (CM) in vitro differentiation system and generating E2A-knockout hESCs using CRISPR/Cas9 gene editing technology, we analyze the functions of E2A in CM differentiation. FINDINGS We found that knockout of the transcription factor E2A substantially increased the proportion of nodal-like cells in hESC-derived CMs. The E2A ablated CMs displayed smaller cell size, increased beating rates, weaker contractile force, and other functional characteristics similar to sinoatrial node (SAN) cells. Transcriptomic analyses indicated that ion channel-encoding genes were up-regulated in E2A ablated CMs. E2A directly bounded to the promoters of genes key to SAN development via conserved E-box motif, and promoted their expression. Unexpect enhanced activity of NOTCH pathway after E2A ablation could also facilate to induct ventricle workingtype CMs reprogramming into SAN-like cells. INTERPRETATION Our study revealed a new role for E2A during directed cardiac differentiation of hESCs and may provide new clues for enhancing induction efficiency of SAN-like cardiomyocytes from hPSCs in the future. FUNDING This work was supported by the NSFC (No.82070391, N.S.; No.81870175 and 81922006, P.L.), the National Key R&D Program of China (2018YFC2000202, N.S.; 2017YFA0103700, P.L.), the Haiju program of National Children's Medical Center EK1125180102, and Innovative research team of high-level local universities in Shanghai and a key laboratory program of the Education Commission of Shanghai Municipality (ZDSYS14005).
Collapse
Affiliation(s)
- Xiuya Li
- Department of Physiology and Pathophysiology, Shanghai Key Laboratory of Bioactive Small Molecules, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, School of Life Sciences and Technology, Tongji University,Shanghai 200092, China
| | - Fei Gao
- Department of Physiology and Pathophysiology, Shanghai Key Laboratory of Bioactive Small Molecules, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Xiaochen Wang
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Institute of Translational Medicine, Zhejiang University, Hangzhou 310029, China
| | - Qianqian Liang
- Department of Physiology and Pathophysiology, Shanghai Key Laboratory of Bioactive Small Molecules, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Aobing Bai
- Department of Physiology and Pathophysiology, Shanghai Key Laboratory of Bioactive Small Molecules, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Zhuo Liu
- Department of Physiology and Pathophysiology, Shanghai Key Laboratory of Bioactive Small Molecules, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Xinyun Chen
- Department of Physiology and Pathophysiology, Shanghai Key Laboratory of Bioactive Small Molecules, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Ermin Li
- Department of Physiology and Pathophysiology, Shanghai Key Laboratory of Bioactive Small Molecules, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Sifeng Chen
- Department of Physiology and Pathophysiology, Shanghai Key Laboratory of Bioactive Small Molecules, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Chao Lu
- Department of Physiology and Pathophysiology, Shanghai Key Laboratory of Bioactive Small Molecules, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Ruizhe Qian
- Department of Physiology and Pathophysiology, Shanghai Key Laboratory of Bioactive Small Molecules, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Ning Sun
- Department of Physiology and Pathophysiology, Shanghai Key Laboratory of Bioactive Small Molecules, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; Shanghai Key Lab of Birth Defect, Children's Hospital of Fudan University, Shanghai, 201102, China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Research Center on Aging and Medicine, Fudan University, Shanghai 200032, China.
| | - Ping Liang
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Institute of Translational Medicine, Zhejiang University, Hangzhou 310029, China.
| | - Chen Xu
- Department of Physiology and Pathophysiology, Shanghai Key Laboratory of Bioactive Small Molecules, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| |
Collapse
|
12
|
Park S, Zhu X, Kim M, Zhao L, Cheng SY. Thyroid Hormone Receptor α1 Mutants Impair B Lymphocyte Development in a Mouse Model. Thyroid 2021; 31:994-1002. [PMID: 33267733 PMCID: PMC8349714 DOI: 10.1089/thy.2019.0782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Background: Mutations of the thyroid hormone receptor α (THRA) gene cause resistance to thyroid hormone (RTHα). RTHα patients exhibit very mild abnormal thyroid function test results (serum triiodothyronine can be high-normal to high; thyroxine normal to low; thyrotropin is normal or mildly raised) but manifest hypothyroid symptoms with growth retardation, delayed bone development, and anemia. Much has been learned about the in vivo molecular actions in TRα1 mutants affecting abnormal growth, bone development, and anemia by using a mouse model of RTHα (Thra1PV/+ mice). However, it is not clear whether TRα1 mutants affect lymphopoiesis in RTHα patients. The present study addressed the question of whether TRα1 mutants could cause defective lymphopoiesis. Methods: We assessed lymphocyte abundance in the peripheral circulation and in the lymphoid organs of Thra1PV/+ mice. We evaluated the effect of thyroid hormone on B cell development in the bone and spleen of these mice. We identified key transcription factors that are directly regulated by TRα1 in the regulation of B cell development. Results: Compared with wild-type mice, a significant reduction in B cells, but not in T cells, was detected in the peripheral circulation, bone marrow, and spleen of Thra1PV/+ mice. The expression of key transcription regulators of B cell development, such as Ebf1, Tcf3, and Pax5, was significantly decreased in the bone marrow and spleen of Thra1PV/+ mice. We further elucidated that the Ebf1 gene, essential for lineage specification in the early B cell development, was directly regulated by TRα1. Thus, mutations of TRα1 could impair B cell development in the bone marrow via suppression of key regulators of B lymphopoiesis. Conclusions: Analysis of lymphopoiesis in a mouse model of RTHα showed that B cell lymphopoiesis was suppressed by TRα1 mutations. The suppressed development of B cells was, at least in part, via inhibition of the expression of key regulators, Ebf1, Tcf3, and Pax5, by TRα1 mutations. These findings suggest that the mutations of the THRA gene in patients could lead to B cell deficiency.
Collapse
Affiliation(s)
- Sunmi Park
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Xuguang Zhu
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Minjun Kim
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Li Zhao
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Sheue-Yann Cheng
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
- Address correspondence to: Sheue-Yann Cheng, PhD, Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Building 37, Room: 5128A2, 37 Convent Drive MSC 4264, Bethesda, MD 20892-4264, USA
| |
Collapse
|
13
|
Genome-wide interference of ZNF423 with B-lineage transcriptional circuitries in acute lymphoblastic leukemia. Blood Adv 2021; 5:1209-1223. [PMID: 33646306 DOI: 10.1182/bloodadvances.2020001844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 01/21/2021] [Indexed: 11/20/2022] Open
Abstract
Aberrant expression of the transcriptional modulator and early B-cell factor 1 (EBF1) antagonist ZNF423 has been implicated in B-cell leukemogenesis, but its impact on transcriptional circuitries in lymphopoiesis has not been elucidated in a comprehensive manner. Herein, in silico analyses of multiple expression data sets on 1354 acute leukemia samples revealed a widespread presence of ZNF423 in various subtypes of acute lymphoblastic leukemia (ALL). Average expression of ZNF423 was highest in ETV6-RUNX1, B-other, and TCF3-PBX1 ALL followed by BCR-ABL, hyperdiploid ALL, and KMT2A-rearranged ALL. In a KMT2A-AFF1 pro-B ALL model, a CRISPR-Cas9-mediated genetic ablation of ZNF423 decreased cell viability and significantly prolonged survival of mice upon xenotransplantation. For the first time, we characterized the genome-wide binding pattern of ZNF423, its impact on the chromatin landscape, and differential gene activities in a B-lineage context. In general, chromatin-bound ZNF423 was associated with a depletion of activating histone marks. At the transcriptional level, EBF1-dependent transactivation was disrupted by ZNF423, whereas repressive and pioneering activities of EBF1 were not discernibly impeded. Unexpectedly, we identified an enrichment of ZNF423 at canonical EBF1-binding sites also in the absence of EBF1, which was indicative of intrinsic EBF1-independent ZNF423 activities. A genome-wide motif search at EBF1 target gene loci revealed that EBF1 and ZNF423 co-regulated genes often contain SMAD1/SMAD4-binding motifs as exemplified by the TGFB1 promoter, which was repressed by ZNF423 outcompeting EBF1 by depending on its ability to bind EBF1 consensus sites and to interact with EBF1 or SMADs. Overall, these findings underscore the wide scope of ZNF423 activities that interfere with B-cell lymphopoiesis and contribute to leukemogenesis.
Collapse
|
14
|
Agarwal M, Seth R, Chatterjee T. Recent Advances in Molecular Diagnosis and Prognosis of Childhood B Cell Lineage Acute Lymphoblastic Leukemia (B-ALL). Indian J Hematol Blood Transfus 2021; 37:10-20. [PMID: 33707831 PMCID: PMC7900311 DOI: 10.1007/s12288-020-01295-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 05/25/2020] [Indexed: 11/26/2022] Open
Abstract
B cell lineage acute lymphoblastic leukemia is the most common leukemia occurring in children and young adults and is the leading cause of cancer related deaths. The 5 year overall survival outcome in children with B-ALL has improved significantly in the last few decades. In the past, the discovery of various genetic alterations and targeted therapy have played a major role in decreasing disease-related deaths. In addition, numerous advances in the pathogenesis of B-ALL have been found which have provided better understanding of the genes involved in disease biology with respect to diagnostic and prognostic implications. Present review will summarize current understanding of risk stratification, genetic factors including cytogenetics in diagnosis and prognosis of B-ALL.
Collapse
Affiliation(s)
- Manisha Agarwal
- Department of Laboratory Sciences and Molecular Medicine, Army Hospital (R&R), New Delhi, India
| | - Rachna Seth
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Tathagata Chatterjee
- Department of Laboratory Sciences and Molecular Medicine, Army Hospital (R&R), New Delhi, India
| |
Collapse
|
15
|
Mehtonen J, Teppo S, Lahnalampi M, Kokko A, Kaukonen R, Oksa L, Bouvy-Liivrand M, Malyukova A, Mäkinen A, Laukkanen S, Mäkinen PI, Rounioja S, Ruusuvuori P, Sangfelt O, Lund R, Lönnberg T, Lohi O, Heinäniemi M. Single cell characterization of B-lymphoid differentiation and leukemic cell states during chemotherapy in ETV6-RUNX1-positive pediatric leukemia identifies drug-targetable transcription factor activities. Genome Med 2020; 12:99. [PMID: 33218352 PMCID: PMC7679990 DOI: 10.1186/s13073-020-00799-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 11/03/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Tight regulatory loops orchestrate commitment to B cell fate within bone marrow. Genetic lesions in this gene regulatory network underlie the emergence of the most common childhood cancer, acute lymphoblastic leukemia (ALL). The initial genetic hits, including the common translocation that fuses ETV6 and RUNX1 genes, lead to arrested cell differentiation. Here, we aimed to characterize transcription factor activities along the B-lineage differentiation trajectory as a reference to characterize the aberrant cell states present in leukemic bone marrow, and to identify those transcription factors that maintain cancer-specific cell states for more precise therapeutic intervention. METHODS We compared normal B-lineage differentiation and in vivo leukemic cell states using single cell RNA-sequencing (scRNA-seq) and several complementary genomics profiles. Based on statistical tools for scRNA-seq, we benchmarked a workflow to resolve transcription factor activities and gene expression distribution changes in healthy bone marrow lymphoid cell states. We compared these to ALL bone marrow at diagnosis and in vivo during chemotherapy, focusing on leukemias carrying the ETV6-RUNX1 fusion. RESULTS We show that lymphoid cell transcription factor activities uncovered from bone marrow scRNA-seq have high correspondence with independent ATAC- and ChIP-seq data. Using this comprehensive reference for regulatory factors coordinating B-lineage differentiation, our analysis of ETV6-RUNX1-positive ALL cases revealed elevated activity of multiple ETS-transcription factors in leukemic cells states, including the leukemia genome-wide association study hit ELK3. The accompanying gene expression changes associated with natural killer cell inactivation and depletion in the leukemic immune microenvironment. Moreover, our results suggest that the abundance of G1 cell cycle state at diagnosis and lack of differentiation-associated regulatory network changes during induction chemotherapy represent features of chemoresistance. To target the leukemic regulatory program and thereby overcome treatment resistance, we show that inhibition of ETS-transcription factors reduced cell viability and resolved pathways contributing to this using scRNA-seq. CONCLUSIONS Our data provide a detailed picture of the transcription factor activities characterizing both normal B-lineage differentiation and those acquired in leukemic bone marrow and provide a rational basis for new treatment strategies targeting the immune microenvironment and the active regulatory network in leukemia.
Collapse
Affiliation(s)
- Juha Mehtonen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Yliopistonranta 1, FI-70211, Kuopio, Finland
| | - Susanna Teppo
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, FI-33014, Tampere, Finland
| | - Mari Lahnalampi
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Yliopistonranta 1, FI-70211, Kuopio, Finland
| | - Aleksi Kokko
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Yliopistonranta 1, FI-70211, Kuopio, Finland
| | - Riina Kaukonen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland
| | - Laura Oksa
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, FI-33014, Tampere, Finland
| | - Maria Bouvy-Liivrand
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Yliopistonranta 1, FI-70211, Kuopio, Finland
| | - Alena Malyukova
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Artturi Mäkinen
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, FI-33014, Tampere, Finland
| | - Saara Laukkanen
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, FI-33014, Tampere, Finland
| | - Petri I Mäkinen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Yliopistonranta 1, FI-70211, Kuopio, Finland
| | | | - Pekka Ruusuvuori
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, FI-33014, Tampere, Finland
| | - Olle Sangfelt
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Riikka Lund
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland
| | - Tapio Lönnberg
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland
| | - Olli Lohi
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, FI-33014, Tampere, Finland
- Tays Cancer Centre, Tampere University Hospital, Tampere, Finland
| | - Merja Heinäniemi
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Yliopistonranta 1, FI-70211, Kuopio, Finland.
| |
Collapse
|
16
|
Wang C, Li L, Li M, Shen X, Liu Y, Wang S. Inactivated STAT5 pathway underlies a novel inhibitory role of EBF1 in chronic lymphocytic leukemia. Exp Cell Res 2020; 398:112371. [PMID: 33188849 DOI: 10.1016/j.yexcr.2020.112371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/24/2022]
Abstract
B-cell chronic lymphocytic leukemia (CLL) is a disease caused by gradual accumulation of functionally incompetent lymphocytes. The majority of CLL cases are accompanied by chemoresistance. Early B cell factor 1 (EBF1) is a crucial contributor to B-cell lymphopoiesis. This study is to explore the effect of EBF1 on CLL cell progression and its involvement in regulating the signal transducers and activators of transcription 5 (STAT5) pathway. We conducted a correlation analysis between EBF1 and the clinical characteristics of CLL patients. Subsequently, EBF1 was overexpressed by transfection with EBF1 overexpression plasmid and the STAT5 pathway was also blocked by treatment with SH-4-54 in isolated CD20+ B lymphocytes to investigate their roles in the regulation of cellular functions. STAT5, Janus kinase 2 (JAK2) expression and their phosphorylation levels were determined by quantitative PCR and Western blot analyses. The in vivo effects of EBF1 on tumor growth were evaluated using a xenotransplant model. Downregulation of EBF1 was observed in CD20+ B lymphocytes of CLL patients. EBF1 overexpression disrupted the activation of STAT5 pathway, as evidenced by decreased expression and phosphorylation levels of STAT5 and JAK2. Furthermore, overexpression of EBF1 repressed viability and cell cycle entry, and increased apoptosis of CD20+ B lymphocytes by inhibiting the STAT5 pathway. Finally, EBF1 exerted antitumor effects in nude mice. Overall, our study elucidates the inhibitory role of EBF1 in CLL through inactivation of the STAT5 pathway, which may provide new targets for CLL treatment.
Collapse
Affiliation(s)
- Chong Wang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Lingling Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Mengya Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Xiaohui Shen
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Yanfang Liu
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Shujuan Wang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China.
| |
Collapse
|
17
|
Cai W, Zhou W, Han Z, Lei J, Zhuang J, Zhu P, Wu X, Yuan W. Master regulator genes and their impact on major diseases. PeerJ 2020; 8:e9952. [PMID: 33083114 PMCID: PMC7546222 DOI: 10.7717/peerj.9952] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/25/2020] [Indexed: 01/10/2023] Open
Abstract
Master regulator genes (MRGs) have become a hot topic in recent decades. They not only affect the development of tissue and organ systems but also play a role in other signal pathways by regulating additional MRGs. Because a MRG can regulate the concurrent expression of several genes, its mutation often leads to major diseases. Moreover, the occurrence of many tumors and cardiovascular and nervous system diseases are closely related to MRG changes. With the development in omics technology, an increasing amount of investigations will be directed toward MRGs because their regulation involves all aspects of an organism’s development. This review focuses on the definition and classification of MRGs as well as their influence on disease regulation.
Collapse
Affiliation(s)
- Wanwan Cai
- The Center for Heart Development, State Key Laboratory of Development Biology of Freshwater Fish, Key Laboratory of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Wanbang Zhou
- College of Physical Education, Hunan Normal University, Changsha, Hunan, China
| | - Zhe Han
- University of Maryland School of Medicine, Center for Precision Disease Modeling, Baltimore, MD, USA
| | - Junrong Lei
- College of Physical Education, Hunan Normal University, Changsha, Hunan, China
| | - Jian Zhuang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Department of Cardiac Surgery, Guangzhou, Guangdong, China
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Department of Cardiac Surgery, Guangzhou, Guangdong, China
| | - Xiushan Wu
- The Center for Heart Development, State Key Laboratory of Development Biology of Freshwater Fish, Key Laboratory of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Wuzhou Yuan
- The Center for Heart Development, State Key Laboratory of Development Biology of Freshwater Fish, Key Laboratory of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
18
|
Wang Z, Zhang Y, Zhu S, Peng H, Chen Y, Cheng Z, Liu S, Luo Y, Li R, Deng M, Xu Y, Hu G, Chen L, Zhang G. A small molecular compound CC1007 induces cross-lineage differentiation by inhibiting HDAC7 expression and HDAC7/MEF2C interaction in BCR-ABL1 - pre-B-ALL. Cell Death Dis 2020; 11:738. [PMID: 32913188 PMCID: PMC7483467 DOI: 10.1038/s41419-020-02949-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 08/09/2020] [Accepted: 08/27/2020] [Indexed: 02/07/2023]
Abstract
Histone deacetylase 7 (HDAC7), a member of class IIa HDACs, has been described to be an important regulator for B cell development and has a potential role in B cell acute lymphoblastic leukemia (B-ALL). CC1007, a BML-210 analog, is designed to indirectly inhibit class IIa HDACs by binding to myocyte enhancer factor-2 (MEF2) and blocking the recruitment of class IIa HDACs to MEF2-targeted genes to enhance the expression of these targets. In this study, we investigated the anticancer effects of CC1007 in breakpoint cluster region-Abelson 1 fusion gene-negative (BCR-ABL1−) pre-B-ALL cell lines and primary patient-derived BCR-ABL1− pre-B-ALL cells. CC1007 had obvious antileukemic activity toward pre-B-ALL cells in vitro and in vivo; it also significantly prolonged median survival time of pre-B-ALL-bearing mice. Interestingly, low dose of CC1007 could inhibit proliferation of BCR-ABL1− pre-B-ALL cells in a time-dependent manner not accompanied by significant cell apoptosis, but along with cross-lineage differentiation toward monocytic lineage. From a mechanistic angle, we showed that HDAC7 was overexpressed in BCR-ABL1− pre-B-ALL cells compared to normal bone marrow samples, and CC1007 could reduce the binding of HDAC7 at the promoters of monocyte–macrophage-specific genes via inhibition of HDAC7 expression and HDAC7:MEF2C interaction. These data indicated that CC1007 may be a promising agent for the treatment of BCR-ABL1− pre-B-ALL.
Collapse
Affiliation(s)
- Zhihua Wang
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - Yang Zhang
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shicong Zhu
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hongling Peng
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - Yongheng Chen
- Laboratory of Structural Biology, Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital & State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan, China
| | - Zhao Cheng
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - Sufang Liu
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - Yunya Luo
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - Ruijuan Li
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - Mingyang Deng
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - Yunxiao Xu
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - Guoyu Hu
- Department of Hematology, The Affiliated Zhuzhou Hospital of Xiangya Medical College, Central South University, Zhuzhou, Hunan, China
| | - Lin Chen
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Guangsen Zhang
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Institute of Molecular Hematology, Central South University, Changsha, Hunan, China.
| |
Collapse
|
19
|
Functional interplay of Epstein-Barr virus oncoproteins in a mouse model of B cell lymphomagenesis. Proc Natl Acad Sci U S A 2020; 117:14421-14432. [PMID: 32522871 DOI: 10.1073/pnas.1921139117] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Epstein-Barr virus (EBV) is a B cell transforming virus that causes B cell malignancies under conditions of immune suppression. EBV orchestrates B cell transformation through its latent membrane proteins (LMPs) and Epstein-Barr nuclear antigens (EBNAs). We here identify secondary mutations in mouse B cell lymphomas induced by LMP1, to predict and identify key functions of other EBV genes during transformation. We find aberrant activation of early B cell factor 1 (EBF1) to promote transformation of LMP1-expressing B cells by inhibiting their differentiation to plasma cells. EBV EBNA3A phenocopies EBF1 activities in LMP1-expressing B cells, promoting transformation while inhibiting differentiation. In cells expressing LMP1 together with LMP2A, EBNA3A only promotes lymphomagenesis when the EBNA2 target Myc is also overexpressed. Collectively, our data support a model where proproliferative activities of LMP1, LMP2A, and EBNA2 in combination with EBNA3A-mediated inhibition of terminal plasma cell differentiation critically control EBV-mediated B cell lymphomagenesis.
Collapse
|
20
|
Sánchez-Luis E, Joaquín-García A, Campos-Laborie FJ, Sánchez-Guijo F, De las Rivas J. Deciphering Master Gene Regulators and Associated Networks of Human Mesenchymal Stromal Cells. Biomolecules 2020; 10:E557. [PMID: 32260546 PMCID: PMC7226324 DOI: 10.3390/biom10040557] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/27/2020] [Accepted: 04/02/2020] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal Stromal Cells (MSC) are multipotent cells characterized by self-renewal, multilineage differentiation, and immunomodulatory properties. To obtain a gene regulatory profile of human MSCs, we generated a compendium of more than two hundred cell samples with genome-wide expression data, including a homogeneous set of 93 samples of five related primary cell types: bone marrow mesenchymal stem cells (BM-MSC), hematopoietic stem cells (HSC), lymphocytes (LYM), fibroblasts (FIB), and osteoblasts (OSTB). All these samples were integrated to generate a regulatory gene network using the algorithm ARACNe (Algorithm for the Reconstruction of Accurate Cellular Networks; based on mutual information), that finds regulons (groups of target genes regulated by transcription factors) and regulators (i.e., transcription factors, TFs). Furtherly, the algorithm VIPER (Algorithm for Virtual Inference of Protein-activity by Enriched Regulon analysis) was used to inference protein activity and to identify the most significant TF regulators, which control the expression profile of the studied cells. Applying these algorithms, a footprint of candidate master regulators of BM-MSCs was defined, including the genes EPAS1, NFE2L1, SNAI2, STAB2, TEAD1, and TULP3, that presented consistent upregulation and hypomethylation in BM-MSCs. These TFs regulate the activation of the genes in the bone marrow MSC lineage and are involved in development, morphogenesis, cell differentiation, regulation of cell adhesion, and cell structure.
Collapse
Affiliation(s)
- Elena Sánchez-Luis
- Bioinformatics and Functional Genomics Group, Cancer Research Center (CiC-IMBCC, CSIC/USAL/IBSAL), Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca (USAL), 37007 Salamanca, Spain; (E.S.-L.); (A.J.-G.); (F.J.C.-L.)
| | - Andrea Joaquín-García
- Bioinformatics and Functional Genomics Group, Cancer Research Center (CiC-IMBCC, CSIC/USAL/IBSAL), Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca (USAL), 37007 Salamanca, Spain; (E.S.-L.); (A.J.-G.); (F.J.C.-L.)
| | - Francisco J. Campos-Laborie
- Bioinformatics and Functional Genomics Group, Cancer Research Center (CiC-IMBCC, CSIC/USAL/IBSAL), Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca (USAL), 37007 Salamanca, Spain; (E.S.-L.); (A.J.-G.); (F.J.C.-L.)
- Bioinformatics and Cancer genomics, Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, CB2 1QN Cambridge, UK
| | - Fermín Sánchez-Guijo
- Cell Therapy Area and Department of Hematology, Institute of Biomedical Research of Salamanca -Hospital Universitario de Salamanca (IBSAL-HUS) and Department of Medicine, University of Salamanca (USAL), 37007 Salamanca, Spain;
| | - Javier De las Rivas
- Bioinformatics and Functional Genomics Group, Cancer Research Center (CiC-IMBCC, CSIC/USAL/IBSAL), Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca (USAL), 37007 Salamanca, Spain; (E.S.-L.); (A.J.-G.); (F.J.C.-L.)
| |
Collapse
|
21
|
Citalan-Madrid AF, Cabral-Pacheco GA, Martinez-de-Villarreal LE, Villarreal-Martinez L, Ibarra-Ramirez M, Garza-Veloz I, Cardenas-Vargas E, Marino-Martinez I, Martinez-Fierro ML. Proteomic tools and new insights for the study of B-cell precursor acute lymphoblastic leukemia. ACTA ACUST UNITED AC 2019; 24:637-650. [PMID: 31514680 DOI: 10.1080/16078454.2019.1664127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
B-cell precursor acute lymphoblastic leukemia (BCP-ALL) is a hematological malignancy of immature B-cell precursors, affecting children more often than adults. The etiology of BCP-ALL is still unknown, but environmental factors, sex, race or ethnicity, and genomic alterations influence the development of the disease. Tools based on protein detection, such as flow cytometry, mass spectrometry, mass cytometry and reverse phase protein array, represent an opportunity to investigate BCP-ALL pathogenesis and to identify new biomarkers of disease. This review aims to document the recent advancements with respect to applications of proteomic technologies to study mechanisms of leukemogenesis, how this information could be used in the discovery of biological targets, and finally we describe the challenges of application of proteomic tools for the approach of BCP-ALL.
Collapse
Affiliation(s)
- Alí F Citalan-Madrid
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Zacatecas Autonomous University , Zacatecas , Mexico
| | - Griselda A Cabral-Pacheco
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Zacatecas Autonomous University , Zacatecas , Mexico.,Program of Doctorate in Sciences with Orientation in Molecular Medicine, Academic Unit of Human Medicine and Health Sciences, Zacatecas Autonomous University , Zacatecas , Mexico
| | | | - Laura Villarreal-Martinez
- Hematology Service, Hospital Universitario 'Dr. José Eleuterio González', Universidad Autonoma de Nuevo Leon , Monterrey , Mexico
| | - Marisol Ibarra-Ramirez
- Departamento de Genetica, Facultad de Medicina, Universidad Autónoma de Nuevo Leon , Monterrey , Mexico
| | - Idalia Garza-Veloz
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Zacatecas Autonomous University , Zacatecas , Mexico.,Program of Doctorate in Sciences with Orientation in Molecular Medicine, Academic Unit of Human Medicine and Health Sciences, Zacatecas Autonomous University , Zacatecas , Mexico
| | - Edith Cardenas-Vargas
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Zacatecas Autonomous University , Zacatecas , Mexico.,Program of Doctorate in Sciences with Orientation in Molecular Medicine, Academic Unit of Human Medicine and Health Sciences, Zacatecas Autonomous University , Zacatecas , Mexico.,Hospital General Zacatecas 'Luz González Cosío' , Zacatecas , Mexico
| | - Ivan Marino-Martinez
- Departamento de Patologia, Facultad de Medicina, Universidad Autonoma de Nuevo Leon , Monterrey , Mexico
| | - Margarita L Martinez-Fierro
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Zacatecas Autonomous University , Zacatecas , Mexico.,Program of Doctorate in Sciences with Orientation in Molecular Medicine, Academic Unit of Human Medicine and Health Sciences, Zacatecas Autonomous University , Zacatecas , Mexico
| |
Collapse
|
22
|
Zia S, Shahid R. Mutagenic players in ALL progression and their associated signaling pathways. Cancer Genet 2019; 233-234:7-20. [DOI: 10.1016/j.cancergen.2019.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 02/10/2019] [Accepted: 02/25/2019] [Indexed: 12/19/2022]
|
23
|
Hart MR, Anderson DJ, Porter CC, Neff T, Levin M, Horwitz MS. Activating PAX gene family paralogs to complement PAX5 leukemia driver mutations. PLoS Genet 2018; 14:e1007642. [PMID: 30216339 PMCID: PMC6157899 DOI: 10.1371/journal.pgen.1007642] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 09/26/2018] [Accepted: 08/17/2018] [Indexed: 12/15/2022] Open
Abstract
PAX5, one of nine members of the mammalian paired box (PAX) family of transcription factors, plays an important role in B cell development. Approximately one-third of individuals with pre-B acute lymphoblastic leukemia (ALL) acquire heterozygous inactivating mutations of PAX5 in malignant cells, and heterozygous germline loss-of-function PAX5 mutations cause autosomal dominant predisposition to ALL. At least in mice, Pax5 is required for pre-B cell maturation, and leukemic remission occurs when Pax5 expression is restored in a Pax5-deficient mouse model of ALL. Together, these observations indicate that PAX5 deficiency reversibly drives leukemogenesis. PAX5 and its two most closely related paralogs, PAX2 and PAX8, which are not mutated in ALL, exhibit overlapping expression and function redundantly during embryonic development. However, PAX5 alone is expressed in lymphocytes, while PAX2 and PAX8 are predominantly specific to kidney and thyroid, respectively. We show that forced expression of PAX2 or PAX8 complements PAX5 loss-of-function mutation in ALL cells as determined by modulation of PAX5 target genes, restoration of immunophenotypic and morphological differentiation, and, ultimately, reduction of replicative potential. Activation of PAX5 paralogs, PAX2 or PAX8, ordinarily silenced in lymphocytes, may therefore represent a novel approach for treating PAX5-deficient ALL. In pursuit of this strategy, we took advantage of the fact that, in kidney, PAX2 is upregulated by extracellular hyperosmolarity. We found that hyperosmolarity, at potentially clinically achievable levels, transcriptionally activates endogenous PAX2 in ALL cells via a mechanism dependent on NFAT5, a transcription factor coordinating response to hyperosmolarity. We also found that hyperosmolarity upregulates residual wild type PAX5 expression in ALL cells and modulates gene expression, including in PAX5-mutant primary ALL cells. These findings specifically demonstrate that osmosensing pathways may represent a new therapeutic target for ALL and more broadly point toward the possibility of using gene paralogs to rescue mutations driving cancer and other diseases.
Collapse
Affiliation(s)
- Matthew R. Hart
- Allen Discovery Center and Department of Pathology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Donovan J. Anderson
- Allen Discovery Center and Department of Pathology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Christopher C. Porter
- University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Tobias Neff
- University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Michael Levin
- Allen Discovery Center and Biology Department, Tufts University, Medford, Massachusetts, United States of America
| | - Marshall S. Horwitz
- Allen Discovery Center and Department of Pathology, University of Washington School of Medicine, Seattle, Washington, United States of America
| |
Collapse
|
24
|
Kachroo P, Szymczak S, Heinsen FA, Forster M, Bethune J, Hemmrich-Stanisak G, Baker L, Schrappe M, Stanulla M, Franke A. NGS-based methylation profiling differentiates TCF3-HLF and TCF3-PBX1 positive B-cell acute lymphoblastic leukemia. Epigenomics 2018; 10:133-147. [DOI: 10.2217/epi-2017-0080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aim: To determine whether methylation differences between mostly fatal TCF3-HLF and curable TCF3-PBX1 pediatric acute lymphoblastic leukemia subtypes can be associated with differential gene expression and remission. Materials & methods: Five (extremely rare) TCF3-HLF versus five (very similar) TCF3-PBX1 patients were sampled before and after remission and analyzed using reduced representation bisulfite sequencing and RNA-sequencing. Results: We identified 7000 differentially methylated CpG sites between subtypes, of which 78% had lower methylation levels in TCF3-HLF. Gene expression was negatively correlated with CpG sites in 23 genes. KBTBD11 clearly differed in methylation and expression between subtypes and before and after remission in TCF3-HLF samples. Conclusion: KBTBD11 hypomethylation may be a promising potential target for further experimental validation especially for the TCF3-HLF subtype.
Collapse
Affiliation(s)
- Priyadarshini Kachroo
- Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel, Kiel 24105, Germany
- Channing Laboratory, Department of Medicine, Brigham & Women's Hospital & Harvard Medical School, Boston, MA 02115, USA
| | - Silke Szymczak
- Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel, Kiel 24105, Germany
- Institute of Medical Informatics & Statistics, Christian Albrechts University of Kiel, Kiel 24105, Germany
| | - Femke-Anouska Heinsen
- Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel, Kiel 24105, Germany
| | - Michael Forster
- Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel, Kiel 24105, Germany
| | - Jörn Bethune
- Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel, Kiel 24105, Germany
| | - Georg Hemmrich-Stanisak
- Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel, Kiel 24105, Germany
| | - Lewis Baker
- Department of Applied Mathematics, University of Colorado, Boulder, CO 80309, USA
| | - Martin Schrappe
- Department of Pediatrics, University Hospital Schleswig-Holstein, Campus Kiel, Kiel 24105, Germany
| | - Martin Stanulla
- Pediatric Hematology & Oncology, Hannover Medical School, Hannover 30625, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel, Kiel 24105, Germany
| |
Collapse
|
25
|
Rossmann MP, Orkin SH, Chute JP. Hematopoietic Stem Cell Biology. Hematology 2018. [DOI: 10.1016/b978-0-323-35762-3.00009-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
26
|
Böiers C, Richardson SE, Laycock E, Zriwil A, Turati VA, Brown J, Wray JP, Wang D, James C, Herrero J, Sitnicka E, Karlsson S, Smith AJH, Jacobsen SEW, Enver T. A Human IPS Model Implicates Embryonic B-Myeloid Fate Restriction as Developmental Susceptibility to B Acute Lymphoblastic Leukemia-Associated ETV6-RUNX1. Dev Cell 2017; 44:362-377.e7. [PMID: 29290585 PMCID: PMC5807056 DOI: 10.1016/j.devcel.2017.12.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 08/04/2017] [Accepted: 12/01/2017] [Indexed: 12/15/2022]
Abstract
ETV6-RUNX1 is associated with childhood acute B-lymphoblastic leukemia (cALL) functioning as a first-hit mutation that initiates a clinically silent pre-leukemia in utero. Because lineage commitment hierarchies differ between embryo and adult, and the impact of oncogenes is cell-context dependent, we hypothesized that the childhood affiliation of ETV6-RUNX1 cALL reflects its origins in a progenitor unique to embryonic life. We characterize the first emerging B cells in first-trimester human embryos, identifying a developmentally restricted CD19-IL-7R+ progenitor compartment, which transitions from a myeloid to lymphoid program during ontogeny. This developmental series is recapitulated in differentiating human pluripotent stem cells (hPSCs), thereby providing a model for the initiation of cALL. Genome-engineered hPSCs expressing ETV6-RUNX1 from the endogenous ETV6 locus show expansion of the CD19-IL-7R+ compartment, show a partial block in B lineage commitment, and produce proB cells with aberrant myeloid gene expression signatures and potential: features (collectively) consistent with a pre-leukemic state.
Collapse
Affiliation(s)
- Charlotta Böiers
- Department of Cancer Biology, UCL Cancer Institute, UCL, London, UK; Lund Stem Cell Center, Lund University, Lund, Sweden
| | | | - Emma Laycock
- Department of Cancer Biology, UCL Cancer Institute, UCL, London, UK
| | - Alya Zriwil
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | | | - John Brown
- Department of Cancer Biology, UCL Cancer Institute, UCL, London, UK
| | - Jason P Wray
- Department of Cancer Biology, UCL Cancer Institute, UCL, London, UK
| | - Dapeng Wang
- Department of Cancer Biology, UCL Cancer Institute, UCL, London, UK
| | - Chela James
- Department of Cancer Biology, UCL Cancer Institute, UCL, London, UK
| | - Javier Herrero
- Department of Cancer Biology, UCL Cancer Institute, UCL, London, UK
| | - Ewa Sitnicka
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | | | - Andrew J H Smith
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK; MRC Molecular Haematology Unit, University of Oxford, Oxford, UK
| | - Sten Erik W Jacobsen
- MRC Molecular Haematology Unit, University of Oxford, Oxford, UK; Departments of Cell and Molecular Biology and Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden; Haematopoietic Stem Cell Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; Karolinska University Hospital, Stockholm, Sweden
| | - Tariq Enver
- Department of Cancer Biology, UCL Cancer Institute, UCL, London, UK; Lund Stem Cell Center, Lund University, Lund, Sweden.
| |
Collapse
|
27
|
Spontaneous loss of B lineage transcription factors leads to pre-B leukemia in Ebf1 +/-Bcl-x LTg mice. Oncogenesis 2017; 6:e355. [PMID: 28692033 PMCID: PMC5541707 DOI: 10.1038/oncsis.2017.55] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 04/26/2017] [Accepted: 05/19/2017] [Indexed: 12/20/2022] Open
Abstract
Early B-cell factor 1 (EBF1) plays a central role in B-cell lineage specification and commitment. Loss of this critical transcription factor is strongly associated with high-risk, relapsed and therapy-resistant B–cell-acute lymphoblastic leukemia, especially in children. However, Ebf1 haploinsufficient mice exhibit a normal lifespan. To determine whether prolonged survival of B cells would enable tumorigenesis in Ebf1 haploinsufficient animals, we generated Ebf1+/–Bcl-xLTg mice, which express the anti-apoptotic factor Bcl-xL in B cells. Approximately half of Ebf1+/–Bcl-xLTg mice develop aggressive oligoclonal leukemia as they age, which engrafts in congenic wild-type recipients without prior conditioning. The neoplastic cells display a pre-B phenotype and express early developmental- and natural killer cell/myeloid-markers inappropriately. In addition, we found tumor cell-specific loss of several transcription factors critical for maintaining differentiation: EBF1, TCF3 and RUNX1. However, in the majority of tumors, loss of Ebf1 expression was not due to loss of heterozygosity. This is the first spontaneous mouse model of pre-B leukemia to demonstrate inappropriate expression of non-B-cell-specific genes associated with loss of Ebf1, Tcf3 and Runx1 expression.
Collapse
|
28
|
Sauer CM, Haugg AM, Chteinberg E, Rennspiess D, Winnepenninckx V, Speel EJ, Becker JC, Kurz AK, Zur Hausen A. Reviewing the current evidence supporting early B-cells as the cellular origin of Merkel cell carcinoma. Crit Rev Oncol Hematol 2017; 116:99-105. [PMID: 28693804 DOI: 10.1016/j.critrevonc.2017.05.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 02/13/2017] [Accepted: 05/28/2017] [Indexed: 12/18/2022] Open
Abstract
Merkel cell carcinoma (MCC) is a highly malignant skin cancer characterized by early metastases and poor survival. Although MCC is a rare malignancy, its incidence is rapidly increasing in the U.S. and Europe. The discovery of the Merkel cell polyomavirus (MCPyV) has enormously impacted our understanding of its etiopathogenesis and biology. MCCs are characterized by trilinear differentiation, comprising the expression of neuroendocrine, epithelial and B-lymphoid lineage markers. To date, it is generally accepted that the initial assumption of MCC originating from Merkel cells (MCs) is unlikely. This is owed to their post-mitotic character, absence of MCPyV in MCs and discrepant protein expression pattern in comparison to MCC. Evidence from mouse models suggests that epidermal/dermal stem cells might be of cellular origin in MCC. The recently formulated hypothesis of MCC originating from early B-cells is based on morphology, the consistent expression of early B-cell lineage markers and the finding of clonal immunoglobulin chain rearrangement in MCC cells. In this review we elaborate on the cellular ancestry of MCC, the identification of which could pave the way for novel and more effective therapeutic regimens.
Collapse
Affiliation(s)
- C M Sauer
- Department of Pathology, GROW-School for Oncology & Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands; Department of Internal Medicine IV, University Hospital Aachen, Aachen, Germany
| | - A M Haugg
- Department of Pathology, GROW-School for Oncology & Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - E Chteinberg
- Department of Pathology, GROW-School for Oncology & Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - D Rennspiess
- Department of Pathology, GROW-School for Oncology & Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - V Winnepenninckx
- Department of Pathology, GROW-School for Oncology & Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - E-J Speel
- Department of Pathology, GROW-School for Oncology & Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - J C Becker
- Department for Translational Dermato-Oncology (DKTK), Center for Medical Biotechnology (ZMB), University Hospital Essen, Essen, Germany
| | - A K Kurz
- Department of Internal Medicine IV, University Hospital Aachen, Aachen, Germany
| | - A Zur Hausen
- Department of Pathology, GROW-School for Oncology & Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands.
| |
Collapse
|
29
|
Homozygous transcription factor 3 gene (TCF3) mutation is associated with severe hypogammaglobulinemia and B-cell acute lymphoblastic leukemia. J Allergy Clin Immunol 2017; 140:1191-1194.e4. [PMID: 28532655 DOI: 10.1016/j.jaci.2017.04.037] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 04/13/2017] [Accepted: 04/26/2017] [Indexed: 01/08/2023]
|
30
|
He C, Yu T, Shi Y, Ma C, Yang W, Fang L, Sun M, Wu W, Xiao F, Guo F, Chen M, Yang H, Qian J, Cong Y, Liu Z. MicroRNA 301A Promotes Intestinal Inflammation and Colitis-Associated Cancer Development by Inhibiting BTG1. Gastroenterology 2017; 152:1434-1448.e15. [PMID: 28193514 DOI: 10.1053/j.gastro.2017.01.049] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 01/15/2017] [Accepted: 01/24/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Intestinal tissues from patients with inflammatory bowel disease (IBD) and colorectal cancer have increased expression of microRNA-301a (MIR301A) compared with tissues from patients without IBD. We studied the mechanisms of MIR301A in the progression of IBD in human tissues and mice. METHODS We isolated intestinal epithelial cells (IECs) from biopsy samples of the colon from 153 patients with different stages of IBD activity, 6 patients with colitis-associated cancer (CAC), and 35 healthy individuals (controls), enrolled in the study in Shanghai, China. We measured expression of MIR301A and BTG anti-proliferation factor 1 (BTG1) by IECs using quantitative reverse-transcription polymerase chain reaction. Human colon cancer cell lines (HCT-116 and SW480) were transfected with a lentivirus that expresses MIR301A; expression of cytokines and tight junction proteins were measured by quantitative reverse transcription polymerase chain reaction, flow cytometry, and immunofluorescence staining. We generated mice with disruption of the microRNA-301A gene (MIR301A-knockout mice), and also studied mice that express a transgene-encoding BTG1. Colitis was induced in knockout, transgenic, and control (C57BL/B6) mice by administration of dextran sulfate sodium (DSS), and mice were given azoxymethane to induce colorectal carcinogenesis. Colons were collected and analyzed histologically and by immunohistochemistry; tumor nodules were counted and tumor size was measured. SW480 cells expressing the MIR301A transgene were grown as xenograft tumors in nude mice. RESULTS Expression of MIR301A increased in IECs from patients with IBD and CAC compared with controls. MIR301A-knockout mice were resistant to the development of colitis following administration of DSS; their colon tissues expressed lower levels of interleukin 1β (IL1β), IL6, IL8, and tumor necrosis factor than colons of control mice. Colon tissues from MIR301A-knockout mice had increased epithelial barrier integrity and formed fewer tumors following administration of azoxymethane than control mice. Human IECs expressing transgenic MIR301A down-regulated expression of cadherin 1 (also called E-cadherin or CDH1). We identified BTG1 mRNA as a target of MIR301A; levels of BTG1 mRNA were reduced in inflamed mucosa from patients with active IBD compared with controls. There was an inverse correlation between levels of BTG1 mRNA and levels of MIR301A in inflamed mucosal tissues from patients with active IBD. Human colon cancer cell lines that expressed a MIR301A transgene increased proliferation; they had increased permeability and decreased expression of CDH1 compared with cells transfected with a control vector, indicating reduced intestinal barrier function. BTG1 transgenic mice developed less severe colitis than control mice following administration of DSS. SW480 cells expressing anti-MIR301A formed fewer xenograft tumors in nude mice than cells expressing a control vector. CONCLUSIONS Levels of MIR301A are increased in IECs from patients with active IBD. MIR301A reduces expression of BTG1 to reduce epithelial integrity and promote inflammation in mouse colon and promotes tumorigenesis. Strategies to decrease levels of MIR301A in colon tissues might be developed to treat patients with IBD and CAC.
Collapse
Affiliation(s)
- Chong He
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Tianming Yu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Yan Shi
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Caiyun Ma
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Wenjing Yang
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Leilei Fang
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Mingming Sun
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Wei Wu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Fei Xiao
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, the Graduate School of the Chinese Academy of Sciences, Shanghai, China
| | - Feifan Guo
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, the Graduate School of the Chinese Academy of Sciences, Shanghai, China
| | - Minhu Chen
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Hong Yang
- Department of Gastroenterology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jiaming Qian
- Department of Gastroenterology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yingzi Cong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX.
| | - Zhanju Liu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China.
| |
Collapse
|
31
|
Scheijen B, Boer JM, Marke R, Tijchon E, van Ingen Schenau D, Waanders E, van Emst L, van der Meer LT, Pieters R, Escherich G, Horstmann MA, Sonneveld E, Venn N, Sutton R, Dalla-Pozza L, Kuiper RP, Hoogerbrugge PM, den Boer ML, van Leeuwen FN. Tumor suppressors BTG1 and IKZF1 cooperate during mouse leukemia development and increase relapse risk in B-cell precursor acute lymphoblastic leukemia patients. Haematologica 2016; 102:541-551. [PMID: 27979924 PMCID: PMC5394950 DOI: 10.3324/haematol.2016.153023] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 12/14/2016] [Indexed: 12/16/2022] Open
Abstract
Deletions and mutations affecting lymphoid transcription factor IKZF1 (IKAROS) are associated with an increased relapse risk and poor outcome in B-cell precursor acute lymphoblastic leukemia. However, additional genetic events may either enhance or negate the effects of IKZF1 deletions on prognosis. In a large discovery cohort of 533 childhood B-cell precursor acute lymphoblastic leukemia patients, we observed that single-copy losses of BTG1 were significantly enriched in IKZF1-deleted B-cell precursor acute lymphoblastic leukemia (P=0.007). While BTG1 deletions alone had no impact on prognosis, the combined presence of BTG1 and IKZF1 deletions was associated with a significantly lower 5-year event-free survival (P=0.0003) and a higher 5-year cumulative incidence of relapse (P=0.005), when compared with IKZF1-deleted cases without BTG1 aberrations. In contrast, other copy number losses commonly observed in B-cell precursor acute lymphoblastic leukemia, such as CDKN2A/B, PAX5, EBF1 or RB1, did not affect the outcome of IKZF1-deleted acute lymphoblastic leukemia patients. To establish whether the combined loss of IKZF1 and BTG1 function cooperate in leukemogenesis, Btg1-deficient mice were crossed onto an Ikzf1 heterozygous background. We observed that loss of Btg1 increased the tumor incidence of Ikzf1+/− mice in a dose-dependent manner. Moreover, murine B cells deficient for Btg1 and Ikzf1+/− displayed increased resistance to glucocorticoids, but not to other chemotherapeutic drugs. Together, our results identify BTG1 as a tumor suppressor in leukemia that, when deleted, strongly enhances the risk of relapse in IKZF1-deleted B-cell precursor acute lymphoblastic leukemia, and augments the glucocorticoid resistance phenotype mediated by the loss of IKZF1 function.
Collapse
Affiliation(s)
- Blanca Scheijen
- Laboratory of Pediatric Oncology, Radboud university medical center, Nijmegen, the Netherlands
| | - Judith M Boer
- Department of Pediatric Oncology, Erasmus MC-Sophia Children's Hospital, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - René Marke
- Laboratory of Pediatric Oncology, Radboud university medical center, Nijmegen, the Netherlands
| | - Esther Tijchon
- Laboratory of Pediatric Oncology, Radboud university medical center, Nijmegen, the Netherlands
| | | | - Esmé Waanders
- Department of Human Genetics, Radboud university medical center, Nijmegen, the Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Liesbeth van Emst
- Laboratory of Pediatric Oncology, Radboud university medical center, Nijmegen, the Netherlands
| | - Laurens T van der Meer
- Laboratory of Pediatric Oncology, Radboud university medical center, Nijmegen, the Netherlands
| | - Rob Pieters
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Gabriele Escherich
- Research Institute Children's Cancer Center and Clinic of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin A Horstmann
- Research Institute Children's Cancer Center and Clinic of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Nicola Venn
- Australian and New Zealand Children's Oncology Group, Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Sydney, Australia
| | - Rosemary Sutton
- Australian and New Zealand Children's Oncology Group, Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Sydney, Australia
| | | | - Roland P Kuiper
- Department of Human Genetics, Radboud university medical center, Nijmegen, the Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | | | - Monique L den Boer
- Department of Pediatric Oncology, Erasmus MC-Sophia Children's Hospital, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Frank N van Leeuwen
- Laboratory of Pediatric Oncology, Radboud university medical center, Nijmegen, the Netherlands
| |
Collapse
|
32
|
Kim JA, Hwang B, Park SN, Huh S, Im K, Choi S, Chung HY, Huh J, Seo EJ, Lee JH, Bang D, Lee DS. Genomic Profile of Chronic Lymphocytic Leukemia in Korea Identified by Targeted Sequencing. PLoS One 2016; 11:e0167641. [PMID: 27959900 PMCID: PMC5154520 DOI: 10.1371/journal.pone.0167641] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 11/17/2016] [Indexed: 11/17/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) is extremely rare in Asian countries and there has been one report on genetic changes for 5 genes (TP53, SF3B1, NOTCH1, MYD88, and BIRC3) by Sanger sequencing in Chinese CLL. Yet studies of CLL in Asian countries using Next generation sequencing have not been reported. We aimed to characterize the genomic profiles of Korean CLL and to find out ethnic differences in somatic mutations with prognostic implications. We performed targeted sequencing for 87 gene panel using next-generation sequencing along with G-banding and fluorescent in situ hybridization (FISH) for chromosome 12, 13q14.3 deletion, 17p13 deletion, and 11q22 deletion. Overall, 36 out of 48 patients (75%) harbored at least one mutation and mean number of mutation per patient was 1.6 (range 0-6). Aberrant karyotypes were observed in 30.4% by G-banding and 66.7% by FISH. Most recurrent mutation (>10% frequency) was ATM (20.8%) followed by TP53 (14.6%), SF3B1 (10.4%), KLHL6 (8.3%), and BCOR (6.25%). Mutations of MYD88 was associated with moderate adverse prognosis by multiple comparisons (P = 0.055). Mutation frequencies of MYD88, SAMHD1, EGR2, DDX3X, ZMYM3, and MED12 showed similar incidence with Caucasians, while mutation frequencies of ATM, TP53, KLHL6, BCOR and CDKN2A tend to be higher in Koreans than in Caucasians. Especially, ATM mutation showed 1.5 fold higher incidence than Caucasians, while mutation frequencies of SF3B1, NOTCH1, CHD2 and POT1 tend to be lower in Koreans than in Caucasians. However, mutation frequencies between Caucasians and Koreans were not significantly different statistically, probably due to low number of patients. Collectively, mutational profile and adverse prognostic genes in Korean CLL were different from those of Caucasians, suggesting an ethnic difference, while profile of cytogenetic aberrations was similar to those of Caucasians.
Collapse
Affiliation(s)
- Jung-Ah Kim
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Byungjin Hwang
- Department of Chemistry, Yonsei University, Seoul, Korea
| | - Si Nae Park
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Sunghoon Huh
- Department of Chemistry, Yonsei University, Seoul, Korea
| | - Kyongok Im
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Sungbin Choi
- Bachelor of Science, University of British Columbia, Vancouver, Canada
| | - Hye Yoon Chung
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - JooRyung Huh
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Eul-Ju Seo
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Je-Hwan Lee
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Duhee Bang
- Department of Chemistry, Yonsei University, Seoul, Korea
| | - Dong Soon Lee
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
33
|
Chen D, Zheng J, Gerasimcik N, Lagerstedt K, Sjögren H, Abrahamsson J, Fogelstrand L, Mårtensson IL. The Expression Pattern of the Pre-B Cell Receptor Components Correlates with Cellular Stage and Clinical Outcome in Acute Lymphoblastic Leukemia. PLoS One 2016; 11:e0162638. [PMID: 27611867 PMCID: PMC5017602 DOI: 10.1371/journal.pone.0162638] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 08/25/2016] [Indexed: 12/20/2022] Open
Abstract
Precursor-B cell receptor (pre-BCR) signaling represents a crucial checkpoint at the pre-B cell stage. Aberrant pre-BCR signaling is considered as a key factor for B-cell precursor acute lymphoblastic leukemia (BCP-ALL) development. BCP-ALL are believed to be arrested at the pre-BCR checkpoint independent of pre-BCR expression. However, the cellular stage at which BCP-ALL are arrested and whether this relates to expression of the pre-BCR components (IGHM, IGLL1 and VPREB1) is still unclear. Here, we show differential protein expression and copy number variation (CNV) patterns of the pre-BCR components in pediatric BCP-ALL. Moreover, analyzing six BCP-ALL data sets (n = 733), we demonstrate that TCF3-PBX1 ALL express high levels of IGHM, IGLL1 and VPREB1, and are arrested at the pre-B stage. By contrast, ETV6-RUNX1 ALL express low levels of IGHM or VPREB1, and are arrested at the pro-B stage. Irrespective of subtype, ALL with high levels of IGHM, IGLL1 and VPREB1 are arrested at the pre-B stage and correlate with good prognosis in high-risk pediatric BCP-ALL (n = 207). Our findings suggest that BCP-ALL are arrested at different cellular stages, which relates to the expression pattern of the pre-BCR components that could serve as prognostic markers for high-risk pediatric BCP-ALL patients.
Collapse
Affiliation(s)
- Dongfeng Chen
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Junxiong Zheng
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Natalija Gerasimcik
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Kristina Lagerstedt
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Helene Sjögren
- Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
| | | | - Linda Fogelstrand
- Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Inga-Lill Mårtensson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
- * E-mail:
| |
Collapse
|
34
|
Ryu D, Xu H, George V, Su S, Wang X, Shi H, Podolsky RH. Differential methylation tests of regulatory regions. Stat Appl Genet Mol Biol 2016; 15:237-51. [PMID: 26982617 DOI: 10.1515/sagmb-2015-0037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Differential methylation of regulatory elements is critical in epigenetic researches and can be statistically tested. We developed a new statistical test, the generalized integrated functional test (GIFT), that tests for regional differences in methylation based on the methylation percent at each CpG site within a genomic region. The GIFT uses estimated subject-specific profiles with smoothing methods, specifically wavelet smoothing, and calculates an ANOVA-like test to compare the average profile of groups. In this way, possibly correlated CpG sites within the regulatory region are compared all together. Simulations and analyses of data obtained from patients with chronic lymphocytic leukemia indicate that GIFT has good statistical properties and is able to identify promising genomic regions. Further, GIFT is likely to work with multiple different types of experiments since different smoothing methods can be used to estimate the profiles of data without noise. Matlab code for GIFT and sample data are available at http://www.augusta.edu/mcg/biostatepi/people/software/gift.html.
Collapse
|
35
|
Daakour S, Hajingabo LJ, Kerselidou D, Devresse A, Kettmann R, Simonis N, Dequiedt F, Twizere JC. Systematic interactome mapping of acute lymphoblastic leukemia cancer gene products reveals EXT-1 tumor suppressor as a Notch1 and FBWX7 common interactor. BMC Cancer 2016; 16:335. [PMID: 27229929 PMCID: PMC4882867 DOI: 10.1186/s12885-016-2374-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 05/19/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Perturbed genotypes in cancer can now be identified by whole genome sequencing of large number of diverse tumor samples, and observed gene mutations can be used for prognosis and classification of cancer subtypes. Although mutations in a few causative genes are directly linked to key signaling pathways perturbation, a global understanding of how known cancer genes drive oncogenesis in human is difficult to assess. METHODS We collected available information about mutated genes in Acute Lymphoblastic Leukemia (ALL). Validated human protein interactions (PPI) were collected from IntAct, HPRD and BioGRID interactomics databases, or obtained using yeast two-hybrid screening assay. RESULTS We have mapped interconnections between 116 cancer census gene products associated with ALL. Combining protein-protein interactions data and cancer-specific gene mutations information, we observed that 63 ALL-gene products are interconnected and identified 37 human proteins interacting with at least 2 ALL-gene products. We highlighted exclusive and coexistence genetic alterations in key signaling pathways including the PI3K/AKT and the NOTCH pathways. We then used different cell lines and reporter assay systems to validate the involvement of EXT1 in the Notch pathway. CONCLUSION We propose that novel ALL-gene candidates can be identified based on their functional association with well-known cancer genes. We identified EXT1, a gene not previously linked to ALL via mutations, as a common interactor of NOTCH1 and FBXW7 regulating the NOTCH pathway in an FBXW7-dependend manner.
Collapse
Affiliation(s)
- Sarah Daakour
- Laboratory of Protein Signaling and Interactions, Molecular Biology in Diseases Unit, GIGA-Research, University of Liège, Liège, B-4000, Belgium
| | - Leon Juvenal Hajingabo
- Laboratory of Protein Signaling and Interactions, Molecular Biology in Diseases Unit, GIGA-Research, University of Liège, Liège, B-4000, Belgium.,Laboratoire de Bioinformatique des Génomes et des Réseaux (BiGRe), Université Libre de Bruxelles (ULB), Bruxelles, B-1050, Belgium
| | - Despoina Kerselidou
- Laboratory of Protein Signaling and Interactions, Molecular Biology in Diseases Unit, GIGA-Research, University of Liège, Liège, B-4000, Belgium
| | - Aurelie Devresse
- Laboratory of Protein Signaling and Interactions, Molecular Biology in Diseases Unit, GIGA-Research, University of Liège, Liège, B-4000, Belgium
| | - Richard Kettmann
- Laboratory of Protein Signaling and Interactions, Molecular Biology in Diseases Unit, GIGA-Research, University of Liège, Liège, B-4000, Belgium
| | - Nicolas Simonis
- Laboratoire de Bioinformatique des Génomes et des Réseaux (BiGRe), Université Libre de Bruxelles (ULB), Bruxelles, B-1050, Belgium
| | - Franck Dequiedt
- Laboratory of Protein Signaling and Interactions, Molecular Biology in Diseases Unit, GIGA-Research, University of Liège, Liège, B-4000, Belgium
| | - Jean-Claude Twizere
- Laboratory of Protein Signaling and Interactions, Molecular Biology in Diseases Unit, GIGA-Research, University of Liège, Liège, B-4000, Belgium.
| |
Collapse
|
36
|
Wang LH, Baker NE. E Proteins and ID Proteins: Helix-Loop-Helix Partners in Development and Disease. Dev Cell 2016; 35:269-80. [PMID: 26555048 DOI: 10.1016/j.devcel.2015.10.019] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 10/18/2015] [Accepted: 10/23/2015] [Indexed: 01/12/2023]
Abstract
The basic Helix-Loop-Helix (bHLH) proteins represent a well-known class of transcriptional regulators. Many bHLH proteins act as heterodimers with members of a class of ubiquitous partners, the E proteins. A widely expressed class of inhibitory heterodimer partners-the Inhibitor of DNA-binding (ID) proteins-also exists. Genetic and molecular analyses in humans and in knockout mice implicate E proteins and ID proteins in a wide variety of diseases, belying the notion that they are non-specific partner proteins. Here, we explore relationships of E proteins and ID proteins to a variety of disease processes and highlight gaps in knowledge of disease mechanisms.
Collapse
Affiliation(s)
- Lan-Hsin Wang
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Nicholas E Baker
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| |
Collapse
|
37
|
Kanderova V, Kuzilkova D, Stuchly J, Vaskova M, Brdicka T, Fiser K, Hrusak O, Lund-Johansen F, Kalina T. High-resolution Antibody Array Analysis of Childhood Acute Leukemia Cells. Mol Cell Proteomics 2016; 15:1246-61. [PMID: 26785729 DOI: 10.1074/mcp.m115.054593] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Indexed: 11/06/2022] Open
Abstract
Acute leukemia is a disease pathologically manifested at both genomic and proteomic levels. Molecular genetic technologies are currently widely used in clinical research. In contrast, sensitive and high-throughput proteomic techniques for performing protein analyses in patient samples are still lacking. Here, we used a technology based on size exclusion chromatography followed by immunoprecipitation of target proteins with an antibody bead array (Size Exclusion Chromatography-Microsphere-based Affinity Proteomics, SEC-MAP) to detect hundreds of proteins from a single sample. In addition, we developed semi-automatic bioinformatics tools to adapt this technology for high-content proteomic screening of pediatric acute leukemia patients.To confirm the utility of SEC-MAP in leukemia immunophenotyping, we tested 31 leukemia diagnostic markers in parallel by SEC-MAP and flow cytometry. We identified 28 antibodies suitable for both techniques. Eighteen of them provided excellent quantitative correlation between SEC-MAP and flow cytometry (p< 0.05). Next, SEC-MAP was applied to examine 57 diagnostic samples from patients with acute leukemia. In this assay, we used 632 different antibodies and detected 501 targets. Of those, 47 targets were differentially expressed between at least two of the three acute leukemia subgroups. The CD markers correlated with immunophenotypic categories as expected. From non-CD markers, we found DBN1, PAX5, or PTK2 overexpressed in B-cell precursor acute lymphoblastic leukemias, LAT, SH2D1A, or STAT5A overexpressed in T-cell acute lymphoblastic leukemias, and HCK, GLUD1, or SYK overexpressed in acute myeloid leukemias. In addition, OPAL1 overexpression corresponded to ETV6-RUNX1 chromosomal translocation.In summary, we demonstrated that SEC-MAP technology is a powerful tool for detecting hundreds of proteins in clinical samples obtained from pediatric acute leukemia patients. It provides information about protein size and reveals differences in protein expression between particular leukemia subgroups. Forty-seven of SEC-MAP identified targets were validated by other conventional method in this study.
Collapse
Affiliation(s)
- Veronika Kanderova
- From the ‡CLIP - Childhood Leukaemia Investigation Prague, Department of Paediatric Haematology and Oncology, 2 Faculty of Medicine, Charles University in Prague, V Uvalu 84, 15006 Prague 5, Czech Republic
| | - Daniela Kuzilkova
- From the ‡CLIP - Childhood Leukaemia Investigation Prague, Department of Paediatric Haematology and Oncology, 2 Faculty of Medicine, Charles University in Prague, V Uvalu 84, 15006 Prague 5, Czech Republic
| | - Jan Stuchly
- From the ‡CLIP - Childhood Leukaemia Investigation Prague, Department of Paediatric Haematology and Oncology, 2 Faculty of Medicine, Charles University in Prague, V Uvalu 84, 15006 Prague 5, Czech Republic
| | - Martina Vaskova
- From the ‡CLIP - Childhood Leukaemia Investigation Prague, Department of Paediatric Haematology and Oncology, 2 Faculty of Medicine, Charles University in Prague, V Uvalu 84, 15006 Prague 5, Czech Republic
| | - Tomas Brdicka
- §Institute of Molecular Genetics, Academy of Sciences of the Czech Republic; Videnska 1083, 14220 Prague, Czech Republic
| | - Karel Fiser
- From the ‡CLIP - Childhood Leukaemia Investigation Prague, Department of Paediatric Haematology and Oncology, 2 Faculty of Medicine, Charles University in Prague, V Uvalu 84, 15006 Prague 5, Czech Republic
| | - Ondrej Hrusak
- From the ‡CLIP - Childhood Leukaemia Investigation Prague, Department of Paediatric Haematology and Oncology, 2 Faculty of Medicine, Charles University in Prague, V Uvalu 84, 15006 Prague 5, Czech Republic
| | - Fridtjof Lund-Johansen
- ¶Department of Immunology, Oslo University Hospital, Rikshospitalet; Sognsvannsveien 20, 0372 Oslo, Norway
| | - Tomas Kalina
- From the ‡CLIP - Childhood Leukaemia Investigation Prague, Department of Paediatric Haematology and Oncology, 2 Faculty of Medicine, Charles University in Prague, V Uvalu 84, 15006 Prague 5, Czech Republic;
| |
Collapse
|
38
|
Targetable genetic features of primary testicular and primary central nervous system lymphomas. Blood 2015; 127:869-81. [PMID: 26702065 DOI: 10.1182/blood-2015-10-673236] [Citation(s) in RCA: 400] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Accepted: 12/16/2015] [Indexed: 12/13/2022] Open
Abstract
Primary central nervous system lymphomas (PCNSLs) and primary testicular lymphomas (PTLs) are extranodal large B-cell lymphomas (LBCLs) with inferior responses to current empiric treatment regimens. To identify targetable genetic features of PCNSL and PTL, we characterized their recurrent somatic mutations, chromosomal rearrangements, copy number alterations (CNAs), and associated driver genes, and compared these comprehensive genetic signatures to those of diffuse LBCL and primary mediastinal large B-cell lymphoma (PMBL). These studies identify unique combinations of genetic alterations in discrete LBCL subtypes and subtype-selective bases for targeted therapy. PCNSLs and PTLs frequently exhibit genomic instability, and near-uniform, often biallelic, CDKN2A loss with rare TP53 mutations. PCNSLs and PTLs also use multiple genetic mechanisms to target key genes and pathways and exhibit near-uniform oncogenic Toll-like receptor signaling as a result of MYD88 mutation and/or NFKBIZ amplification, frequent concurrent B-cell receptor pathway activation, and deregulation of BCL6. Of great interest, PCNSLs and PTLs also have frequent 9p24.1/PD-L1/PD-L2 CNAs and additional translocations of these loci, structural bases of immune evasion that are shared with PMBL.
Collapse
|
39
|
Janczar K, Janczar S, Pastorczak A, Mycko K, Paige AJW, Zalewska-Szewczyk B, Wagrowska-Danilewicz M, Danilewicz M, Mlynarski W. Preserved global histone H4 acetylation linked to ETV6-RUNX1 fusion and PAX5 deletions is associated with favorable outcome in pediatric B-cell progenitor acute lymphoblastic leukemia. Leuk Res 2015; 39:1455-61. [PMID: 26520622 DOI: 10.1016/j.leukres.2015.10.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 10/14/2015] [Indexed: 10/22/2022]
Abstract
Epigenetic dysregulation is a hallmark of cancer executed by a number of complex processes the most important of which converge on DNA methylation and histone protein modifications. Epigenetic marks are potentially reversible and thus promising drug targets. In the setting of acute lymphoblastic leukemia (ALL) they have been associated with clinicopathological features including risk of relapse or molecular subgroups of the disease. Here, using immunocytochemistry of bone marrow smears from diagnosis, we studied global histone H4 acetylation, whose loss was previously linked to treatment failure in adults with ALL, in pediatric patients. We demonstrate that preserved global histone H4 acetylation is significantly associated with favorable outcome (RFS, EFS, OS) in children with B cell progenitor (BCP) ALL, recapitulating the findings from adult populations. Further, for the first time we demonstrate differential histone H4 acetylation in molecular subclasses of BCP-ALL including cases with ETV6-RUNX1 fusion gene or PAX5 deletion or deletions in genes linked to B cell development. We conclude global histone H4 acetylation is a prognostic marker and a potential therapeutic target in ALL.
Collapse
Affiliation(s)
- K Janczar
- Department of Nephropathology, Medical University of Lodz, Poland
| | - S Janczar
- Department of Paediatrics, Oncology, Hematology and Diabetology, Medical University of Lodz, Poland.
| | - A Pastorczak
- Department of Paediatrics, Oncology, Hematology and Diabetology, Medical University of Lodz, Poland
| | - K Mycko
- Department of Paediatrics, Oncology, Hematology and Diabetology, Medical University of Lodz, Poland
| | - A J W Paige
- Department of Life Science, University of Bedfordshire, UK
| | - B Zalewska-Szewczyk
- Department of Paediatrics, Oncology, Hematology and Diabetology, Medical University of Lodz, Poland
| | | | - M Danilewicz
- Department of Nephropathology, Medical University of Lodz, Poland
| | - W Mlynarski
- Department of Paediatrics, Oncology, Hematology and Diabetology, Medical University of Lodz, Poland
| |
Collapse
|
40
|
Abstract
In this issue of Blood, Prasad et al provide evidence for a new role for the B-lineage transcriptional regulator early B-cell factor 1 (Ebf1) during early B-cell development and B-cell acute lymphoblastic leukemia (B-ALL).
Collapse
|
41
|
PAK5-mediated E47 phosphorylation promotes epithelial-mesenchymal transition and metastasis of colon cancer. Oncogene 2015. [PMID: 26212009 DOI: 10.1038/onc.2015.259] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The p21-activated kinase 5 (PAK5) is overexpressed in advanced cancer and the transcription factor E47 is a direct repressor of E-cadherin and inducer of epithelial-mesenchymal transition (EMT). However, the relationship between PAK5 and E47 has not been explored. In this study, we found that PAK5-mediated E47 phosphorylation promoted EMT in advanced colon cancer. PAK5 interacted with E47 and phosphorylated E47 on Ser39 under hepatocyte growth factor (HGF) stimulation, which decreased cell-cell cohesion, increased cell migration and invasion in vitro and promoted metastasis in a xenograft model. Furthermore, phosphorylation of E47 facilitated its accumulating in nucleus in an importin α-dependent manner, and enhanced E47 binding to E-cadherin promoter directly, leading to inhibition of E-cadherin transcription. In contrast, PAK5-knockdown resulted in blockage of HGF-induced E47 phosphorylation, attenuated association of E47 with importin α and decreased E47 binding to E-cadherin promoter. In addition, we demonstrated a close correlation between PAK5 and phospho-Ser39 E47 expression in colon cancer specimens. More importantly, high expression of phospho-E47 was associated with an aggressive phenotype of colon cancer and nuclear phospho-E47 staining was found in certain cases of colon cancer with metastasis. Collectively, E47 is a novel substrate of PAK5, and PAK5-mediated phosphorylation of E47 promotes EMT and metastasis of colon cancer, suggesting that phosphorylated E47 on Ser39 may be a potential therapeutic target in progressive colon cancer.
Collapse
|
42
|
Fischer U, Forster M, Rinaldi A, Risch T, Sungalee S, Warnatz HJ, Bornhauser B, Gombert M, Kratsch C, Stütz AM, Sultan M, Tchinda J, Worth CL, Amstislavskiy V, Badarinarayan N, Baruchel A, Bartram T, Basso G, Canpolat C, Cario G, Cavé H, Dakaj D, Delorenzi M, Dobay MP, Eckert C, Ellinghaus E, Eugster S, Frismantas V, Ginzel S, Haas OA, Heidenreich O, Hemmrich-Stanisak G, Hezaveh K, Höll JI, Hornhardt S, Husemann P, Kachroo P, Kratz CP, Te Kronnie G, Marovca B, Niggli F, McHardy AC, Moorman AV, Panzer-Grümayer R, Petersen BS, Raeder B, Ralser M, Rosenstiel P, Schäfer D, Schrappe M, Schreiber S, Schütte M, Stade B, Thiele R, von der Weid N, Vora A, Zaliova M, Zhang L, Zichner T, Zimmermann M, Lehrach H, Borkhardt A, Bourquin JP, Franke A, Korbel JO, Stanulla M, Yaspo ML. Genomics and drug profiling of fatal TCF3-HLF-positive acute lymphoblastic leukemia identifies recurrent mutation patterns and therapeutic options. Nat Genet 2015. [PMID: 26214592 PMCID: PMC4603357 DOI: 10.1038/ng.3362] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
TCF3-HLF-fusion positive acute lymphoblastic leukemia (ALL) is currently incurable. Employing an integrated approach, we uncovered distinct mutation, gene expression, and drug response profiles in TCF3-HLF-positive and treatment-responsive TCF3-PBX1-positive ALL. Recurrent intragenic deletions of PAX5 or VPREB1 were identified in constellation with TCF3-HLF. Moreover somatic mutations in the non-translocated allele of TCF3 and a reduction of PAX5 gene dosage in TCF3-HLF ALL suggest cooperation within a restricted genetic context. The enrichment for stem cell and myeloid features in the TCF3-HLF signature may reflect reprogramming by TCF3-HLF of a lymphoid-committed cell of origin towards a hybrid, drug-resistant hematopoietic state. Drug response profiling of matched patient-derived xenografts revealed a distinct profile for TCF3-HLF ALL with resistance to conventional chemotherapeutics, but sensitivity towards glucocorticoids, anthracyclines and agents in clinical development. Striking on-target sensitivity was achieved with the BCL2-specific inhibitor venetoclax (ABT-199). This integrated approach thus provides alternative treatment options for this deadly disease.
Collapse
Affiliation(s)
- Ute Fischer
- Clinic for Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Michael Forster
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Anna Rinaldi
- Pediatric Oncology, Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
| | - Thomas Risch
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Stéphanie Sungalee
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Hans-Jörg Warnatz
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Beat Bornhauser
- Pediatric Oncology, Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
| | - Michael Gombert
- Clinic for Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Christina Kratsch
- Department of Algorithmic Bioinformatics, Heinrich-Heine-University, Düsseldorf, Germany
| | - Adrian M Stütz
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Marc Sultan
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Joelle Tchinda
- Pediatric Oncology, Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
| | - Catherine L Worth
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | | - Nandini Badarinarayan
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - André Baruchel
- Department of Pediatric Hemato-Immunology, Hôpital Robert Debré and Paris Diderot University, Paris, France
| | - Thies Bartram
- Department of Pediatrics, Christian-Albrechts-University of Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Giuseppe Basso
- Department of Pediatrics, Laboratory of Pediatric Hematology/Oncology, University of Padova, Padova, Italy
| | - Cengiz Canpolat
- Department of Pediatrics, Acıbadem University Medical School, Ataşehir, Istanbul, Turkey
| | - Gunnar Cario
- Department of Pediatrics, Christian-Albrechts-University of Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Hélène Cavé
- Department of Genetics, Hôpital Robert Debré and Paris Diderot University, Paris, France
| | - Dardane Dakaj
- Pediatric Oncology, Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
| | - Mauro Delorenzi
- Ludwig Center for Cancer Research, University of Lausanne, Lausanne, Switzerland.,Swiss Institute for Bioinformatics (SIB), Lausanne, Switzerland
| | | | - Cornelia Eckert
- Pediatric Hematology and Oncology, Charité University Hospital, Berlin, Germany
| | - Eva Ellinghaus
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Sabrina Eugster
- Pediatric Oncology, Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
| | - Viktoras Frismantas
- Pediatric Oncology, Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
| | - Sebastian Ginzel
- Clinic for Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany.,Department of Computer Science, Bonn-Rhine-Sieg University of Applied Sciences, Sankt Augustin, Germany
| | - Oskar A Haas
- Children's Cancer Research Institute, Vienna, Austria
| | - Olaf Heidenreich
- Northern Institute of Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Georg Hemmrich-Stanisak
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Kebria Hezaveh
- Clinic for Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Jessica I Höll
- Clinic for Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Sabine Hornhardt
- Federal Office for Radiation Protection, Oberschleissheim, Germany
| | - Peter Husemann
- Clinic for Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Priyadarshini Kachroo
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Christian P Kratz
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Geertruy Te Kronnie
- Department of Pediatrics, Laboratory of Pediatric Hematology/Oncology, University of Padova, Padova, Italy
| | - Blerim Marovca
- Pediatric Oncology, Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
| | - Felix Niggli
- Pediatric Oncology, Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
| | - Alice C McHardy
- Department of Algorithmic Bioinformatics, Heinrich-Heine-University, Düsseldorf, Germany
| | - Anthony V Moorman
- Northern Institute of Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - Britt S Petersen
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Benjamin Raeder
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Meryem Ralser
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Daniel Schäfer
- Clinic for Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Martin Schrappe
- Department of Pediatrics, Christian-Albrechts-University of Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Stefan Schreiber
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | | | - Björn Stade
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Ralf Thiele
- Department of Computer Science, Bonn-Rhine-Sieg University of Applied Sciences, Sankt Augustin, Germany
| | | | - Ajay Vora
- Sheffield Children's Hospital, Sheffield, United Kingdom
| | - Marketa Zaliova
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany.,Childhood Leukaemia Investigation Prague (CLIP), Department of Pediatric Hematology/Oncology, Second Faculty of Medicine, Charles University Prague, Prague, Czech Republic
| | - Langhui Zhang
- Clinic for Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany.,Department of Hematology, Union Hospital, Fujian Medical University, Fuzhou, China
| | - Thomas Zichner
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Martin Zimmermann
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Hans Lehrach
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany.,Alacris Theranostics GmbH, Berlin, Germany.,Dahlem Centre for Genome Reseach and Medical Systems Biology, Berlin, Germany
| | - Arndt Borkhardt
- Clinic for Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Jean-Pierre Bourquin
- Pediatric Oncology, Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Jan O Korbel
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Martin Stanulla
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Marie-Laure Yaspo
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| |
Collapse
|
43
|
Rudant J, Orsi L, Bonaventure A, Goujon-Bellec S, Baruchel A, Petit A, Bertrand Y, Nelken B, Pasquet M, Michel G, Saumet L, Chastagner P, Ducassou S, Réguerre Y, Hémon D, Clavel J. ARID5B, IKZF1 and non-genetic factors in the etiology of childhood acute lymphoblastic leukemia: the ESCALE study. PLoS One 2015; 10:e0121348. [PMID: 25806972 PMCID: PMC4373901 DOI: 10.1371/journal.pone.0121348] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 01/30/2015] [Indexed: 01/18/2023] Open
Abstract
Genome-wide association studies (GWAS) have identified that frequent polymorphisms in ARID5B and IKZF1, two genes involved in lymphoid differentiation, increase the risk of childhood acute lymphoblastic leukemia (ALL). These findings markedly modified the current field of research on the etiology of ALL. In this new context, the present exploratory study investigated the possible interactions between these at-risk alleles and the non-genetic suspected ALL risk factors that were of sufficient prevalence in the French ESCALE study: maternal use of home insecticides during pregnancy, preconception paternal smoking, and some proxies for early immune modulation, i.e. breastfeeding, history of common infections before age one year, and birth order. The analyses were based on 434 ALL cases and 442 controls of European origin, drawn from the nationwide population-based case-control study ESCALE. Information on non-genetic factors was obtained by standardized telephone interview. Interactions between rs10740055 in ARID5B or rs4132601 in IKZF1 and each of the suspected non-genetic factors were tested, with the SNPs coded as counts of minor alleles (trend variable). Statistical interactions were observed between rs4132601 and maternal insecticide use (p = 0.012), breastfeeding p = 0.017) and repeated early common infections (p = 0.0070), with allelic odds ratios (OR) which were only increased among the children not exposed to insecticides (OR = 1.8, 95%CI: 1.3, 2.4), those who had been breastfed (OR = 1.8, 95%CI: 1.3, 2.5) and those who had had repeated early common infections (OR = 2.4, 95%CI: 1.5, 3.8). The allelic ORs were close to one among children exposed to insecticides, who had not been breastfed and who had had no or few common infections. Repeated early common infections interacted with rs10740055 (p = 0.018) in the case-only design. Further studies are needed to evaluate whether these observations of a modification of the effect of the at-risk alleles by non-genetic factors are chance findings or reflect true underlying mechanisms.
Collapse
Affiliation(s)
- Jérémie Rudant
- Institut national de la santé et de la recherche médicale (INSERM) U1153, Epidemiology and Biostatistics Sorbonne Paris Cité Center (CRESS), Epidemiology of childhood and adolescent cancers team (EPICEA), Villejuif, France
- Paris-Descartes University, UMRS-1153, Epidemiology and Biostatistics Sorbonne Paris Cité Center (CRESS), Paris, France
- French National Registry of Childhood Hematopoietic Malignancies (RNHE), Villejuif, France
- * E-mail:
| | - Laurent Orsi
- Institut national de la santé et de la recherche médicale (INSERM) U1153, Epidemiology and Biostatistics Sorbonne Paris Cité Center (CRESS), Epidemiology of childhood and adolescent cancers team (EPICEA), Villejuif, France
- Paris-Descartes University, UMRS-1153, Epidemiology and Biostatistics Sorbonne Paris Cité Center (CRESS), Paris, France
| | - Audrey Bonaventure
- Institut national de la santé et de la recherche médicale (INSERM) U1153, Epidemiology and Biostatistics Sorbonne Paris Cité Center (CRESS), Epidemiology of childhood and adolescent cancers team (EPICEA), Villejuif, France
- Paris-Descartes University, UMRS-1153, Epidemiology and Biostatistics Sorbonne Paris Cité Center (CRESS), Paris, France
| | - Stéphanie Goujon-Bellec
- Institut national de la santé et de la recherche médicale (INSERM) U1153, Epidemiology and Biostatistics Sorbonne Paris Cité Center (CRESS), Epidemiology of childhood and adolescent cancers team (EPICEA), Villejuif, France
- Paris-Descartes University, UMRS-1153, Epidemiology and Biostatistics Sorbonne Paris Cité Center (CRESS), Paris, France
- French National Registry of Childhood Hematopoietic Malignancies (RNHE), Villejuif, France
| | - André Baruchel
- Assistance Publique-Hôpitaux de Paris, Hôpital Robert Debré, Paris, France
- Université Paris Diderot-Paris 7, Sorbonne Paris Cité, Paris, France
| | - Arnaud Petit
- Assistance Publique-Hôpitaux de Paris, HUEP, Hôpital Trousseau, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, UMR S_938, Paris, France
| | - Yves Bertrand
- Institut d’Hémato-Oncologie Pédiatrique, Lyon, France
- Université Claude Bernard Lyon 1, Lyon, France
| | - Brigitte Nelken
- Pôle Enfant, CHRU, Lille, France
- Université Lille Nord de France, Lille, France
| | - Marlène Pasquet
- Hématologie pédiatrique, CHU Toulouse, INSERM U1037, Equipe 16, CRCT, Oncopôle, Toulouse, France
| | - Gérard Michel
- Department of Pediatric Hematology and Oncology, Timone Enfants Hospital, Marseille, France
- Aix-Marseille University, Marseille, France
| | - Laure Saumet
- Hôpital Arnaud de Villeneuve, Montpellier, France
| | | | | | | | - Denis Hémon
- Institut national de la santé et de la recherche médicale (INSERM) U1153, Epidemiology and Biostatistics Sorbonne Paris Cité Center (CRESS), Epidemiology of childhood and adolescent cancers team (EPICEA), Villejuif, France
- Paris-Descartes University, UMRS-1153, Epidemiology and Biostatistics Sorbonne Paris Cité Center (CRESS), Paris, France
| | - Jacqueline Clavel
- Institut national de la santé et de la recherche médicale (INSERM) U1153, Epidemiology and Biostatistics Sorbonne Paris Cité Center (CRESS), Epidemiology of childhood and adolescent cancers team (EPICEA), Villejuif, France
- Paris-Descartes University, UMRS-1153, Epidemiology and Biostatistics Sorbonne Paris Cité Center (CRESS), Paris, France
- French National Registry of Childhood Hematopoietic Malignancies (RNHE), Villejuif, France
| |
Collapse
|
44
|
Barneda-Zahonero B, Collazo O, Azagra A, Fernández-Duran I, Serra-Musach J, Islam ABMMK, Vega-García N, Malatesta R, Camós M, Gómez A, Román-González L, Vidal A, López-Bigas N, Villanueva A, Esteller M, Parra M. The transcriptional repressor HDAC7 promotes apoptosis and c-Myc downregulation in particular types of leukemia and lymphoma. Cell Death Dis 2015; 6:e1635. [PMID: 25675295 PMCID: PMC4669785 DOI: 10.1038/cddis.2014.594] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 12/16/2014] [Accepted: 12/18/2014] [Indexed: 12/26/2022]
Abstract
The generation of B cells is a complex process requiring several cellular transitions, including cell commitment and differentiation. Proper transcriptional control to establish the genetic programs characteristic of each cellular stage is essential for the correct development of B lymphocytes. Deregulation of these particular transcriptional programs may result in a block in B-cell maturation, contributing to the development of hematological malignancies such as leukemia and lymphoma. However, very little is currently known about the role of transcriptional repressors in normal and aberrant B lymphopoiesis. Here we report that histone deacetylase 7 (HDAC7) is underexpressed in pro-B acute lymphoblastic leukemia (pro-B-ALL) and Burkitt lymphoma. Ectopic expression of HDAC7 induces apoptosis, leads to the downregulation of c-Myc and inhibits the oncogenic potential of cells in vivo, in a xenograft model. Most significantly, we have observed low levels of HDAC7 expression in B-ALL patient samples, which is correlated with the increased levels of c-Myc. From a mechanistic angle, we show that ectopically expressed HDAC7 localizes to the nucleus and interacts with the transcription factor myocyte enhancer factor C (MEF2C) and the corepressors HDAC3 and SMRT. Accordingly, both the HDAC7–MEF2C interaction domain as well as its catalytic domain are involved in the reduced cell viability induced by HDAC7. We conclude that HDAC7 has a potent anti-oncogenic effect on specific B-cell malignancies, indicating that its deregulation may contribute to the pathogenesis of the disease.
Collapse
Affiliation(s)
- B Barneda-Zahonero
- Cellular Differentiation Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research institute (IDIBELL), Avenida Gran Via 199, 08908 L'Hospitalet, Barcelona, Spain
| | - O Collazo
- Cellular Differentiation Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research institute (IDIBELL), Avenida Gran Via 199, 08908 L'Hospitalet, Barcelona, Spain
| | - A Azagra
- Cellular Differentiation Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research institute (IDIBELL), Avenida Gran Via 199, 08908 L'Hospitalet, Barcelona, Spain
| | - I Fernández-Duran
- Cellular Differentiation Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research institute (IDIBELL), Avenida Gran Via 199, 08908 L'Hospitalet, Barcelona, Spain
| | - J Serra-Musach
- Breast Cancer and Systems Biology Unit, Translational Research Laboratory, Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), Avenida Gran Via s/n km 2.7, 08907 L'Hospitalet, Barcelona, Spain
| | - A B M M K Islam
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | - N Vega-García
- Department of Hematology, Hospital Sant Joan de Déu, Barcelona, Spain
| | - R Malatesta
- Department of Hematology, Hospital Sant Joan de Déu, Barcelona, Spain
| | - M Camós
- Department of Hematology, Hospital Sant Joan de Déu, Barcelona, Spain
| | - A Gómez
- Cancer Epigenetics Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research institute (IDIBELL), Avenida Gran Via 199, 08908 L'Hospitalet, Barcelona, Spain
| | - L Román-González
- Cellular Differentiation Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research institute (IDIBELL), Avenida Gran Via 199, 08908 L'Hospitalet, Barcelona, Spain
| | - A Vidal
- Department of Pathology, University Hospital of Bellvitge, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - N López-Bigas
- 1] Research Unit on Biomedical Informatics, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Dr Aiguader 88, 08003 Barcelona, Spain [2] Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - A Villanueva
- Translational Research Laboratory, Catalan Institute of Oncology, Bellvitge Biomedical Research Institute, Barcelona, Spain
| | - M Esteller
- 1] Cancer Epigenetics Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research institute (IDIBELL), Avenida Gran Via 199, 08908 L'Hospitalet, Barcelona, Spain [2] Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain [3] Department of Physiological Sciences II, School of Medicine, University of Barcelona, Barcelona, Spain
| | - M Parra
- Cellular Differentiation Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research institute (IDIBELL), Avenida Gran Via 199, 08908 L'Hospitalet, Barcelona, Spain
| |
Collapse
|
45
|
Sei E, Wang T, Hunter OV, Xie Y, Conrad NK. HITS-CLIP analysis uncovers a link between the Kaposi's sarcoma-associated herpesvirus ORF57 protein and host pre-mRNA metabolism. PLoS Pathog 2015; 11:e1004652. [PMID: 25710169 PMCID: PMC4339584 DOI: 10.1371/journal.ppat.1004652] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 01/02/2015] [Indexed: 11/19/2022] Open
Abstract
The Kaposi's sarcoma associated herpesvirus (KSHV) is an oncogenic virus that causes Kaposi's sarcoma, primary effusion lymphoma (PEL), and some forms of multicentric Castleman's disease. The KSHV ORF57 protein is a conserved posttranscriptional regulator of gene expression that is essential for virus replication. ORF57 is multifunctional, but most of its activities are directly linked to its ability to bind RNA. We globally identified virus and host RNAs bound by ORF57 during lytic reactivation in PEL cells using high-throughput sequencing of RNA isolated by cross-linking immunoprecipitation (HITS-CLIP). As expected, ORF57-bound RNA fragments mapped throughout the KSHV genome, including the known ORF57 ligand PAN RNA. In agreement with previously published ChIP results, we observed that ORF57 bound RNAs near the oriLyt regions of the genome. Examination of the host RNA fragments revealed that a subset of the ORF57-bound RNAs was derived from transcript 5' ends. The position of these 5'-bound fragments correlated closely with the 5'-most exon-intron junction of the pre-mRNA. We selected four candidates (BTG1, EGR1, ZFP36, and TNFSF9) and analyzed their pre-mRNA and mRNA levels during lytic phase. Analysis of both steady-state and newly made RNAs revealed that these candidate ORF57-bound pre-mRNAs persisted for longer periods of time throughout infection than control RNAs, consistent with a role for ORF57 in pre-mRNA metabolism. In addition, exogenous expression of ORF57 was sufficient to increase the pre-mRNA levels and, in one case, the mRNA levels of the putative ORF57 targets. These results demonstrate that ORF57 interacts with specific host pre-mRNAs during lytic reactivation and alters their processing, likely by stabilizing pre-mRNAs. These data suggest that ORF57 is involved in modulating host gene expression in addition to KSHV gene expression during lytic reactivation.
Collapse
Affiliation(s)
- Emi Sei
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Tao Wang
- Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Olga V. Hunter
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Yang Xie
- Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Nicholas K. Conrad
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| |
Collapse
|
46
|
McDonald MLN, Cho MH, Sørheim IC, Lutz SM, Castaldi PJ, Lomas DA, Coxson HO, Edwards LD, MacNee W, Vestbo J, Yates JC, Agusti A, Calverley PMA, Celli B, Crim C, Rennard SI, Wouters EFM, Bakke P, Tal-Singer R, Miller BE, Gulsvik A, Casaburi R, Wells JM, Regan EA, Make BJ, Hokanson JE, Lange C, Crapo JD, Beaty TH, Silverman EK, Hersh CP. Common genetic variants associated with resting oxygenation in chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol 2015; 51:678-87. [PMID: 24825563 DOI: 10.1165/rcmb.2014-0135oc] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Hypoxemia is a major complication of chronic obstructive pulmonary disease (COPD) that correlates with disease prognosis. Identifying genetic variants associated with oxygenation may provide clues for deciphering the heterogeneity in prognosis among patients with COPD. However, previous genetic studies have been restricted to investigating COPD candidate genes for association with hypoxemia. To report results from the first genome-wide association study (GWAS) of resting oxygen saturation (as measured by pulse oximetry [Spo2]) in subjects with COPD, we performed a GWAS of Spo2 in two large, well characterized COPD populations: COPDGene, including both the non-Hispanic white (NHW) and African American (AA) groups, and Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints (ECLIPSE). We identified several suggestive loci (P < 1 × 10(-5)) associated with Spo2 in COPDGene in the NHW (n = 2810) and ECLIPSE (n = 1758) groups, and two loci on chromosomes 14 and 15 in the AA group (n = 820) from COPDGene achieving a level of genome-wide significance (P < 5 × 10(-8)). The chromosome 14 single-nucleotide polymorphism, rs6576132, located in an intergenic region, was nominally replicated (P < 0.05) in the NHW group from COPDGene. The chromosome 15 single-nucleotide polymorphisms were rare in subjects of European ancestry, so the results could not be replicated. The chromosome 15 region contains several genes, including TICRR and KIF7, and is proximal to RHCG (Rh family C glyocoprotein gene). We have identified two loci associated with resting oxygen saturation in AA subjects with COPD, and several suggestive regions in subjects of European descent with COPD. Our study highlights the importance of investigating the genetics of complex traits in different racial groups.
Collapse
|
47
|
Sharma RK, Purohit A, Somasundaram V, Mishra PC, Kotru M, Ranjan R, Kumar S, Sazawal S, Pati HP, Tyagi S, Saxena R. Aberrant myeloid antigen co-expression is correlated with high percentages of CD34-positive cells among blasts of acute lymphoblastic leukemia patients: an Indian tertiary care center perspective. Blood Res 2014; 49:241-5. [PMID: 25548757 PMCID: PMC4278005 DOI: 10.5045/br.2014.49.4.241] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 10/07/2014] [Accepted: 11/14/2014] [Indexed: 12/20/2022] Open
Abstract
Background Aberrant myeloid antigen (MA) co-expression and high expression of CD34 antigen on the blasts of acute lymphoblastic leukemia (ALL) patients are independently reported to have a role in pathogenesis and prognosis. This study was conducted to determine whether these two parameters are related. Methods A total of 204 cases of ALL were included in an analysis of blast immunophenotypic data. CD34 expression was categorized as low when less than 50% of blasts were CD34-positive (CD34low) and as high when 50% or more were CD34-positive (CD34high). Results Of 204 cases of ALL, 163 and 41 were of B-cell origin (B-ALL) and T-cell origin (T-ALL), respectively. Of all cases, 132 (64.7%) showed co-expression of MA and among these, 101 (76.51%) were CD34high, while the remaining 31 (23.48%) were CD34low. Of 72 cases without MA co-expression, 25 (34.72%) were CD34high and 47 (67.25%) were CD34low. Furthermore, of 163 cases of B-ALL, 111 showed co-expression of MA and 84 of these were CD34high. Of 52 cases of B-ALL without MA expression, 22 were CD34high. Among 41 cases of T-ALL, 21 co-expressed MA, 17 of which were CD34high. Moreover, all 20 cases of T-ALL without co-expression of MA were CD34low. These differences were statistically significant. Conclusion We observed a strong correlation between aberrant MA expression and CD34high expression on the blasts of ALL. We hypothesize that these different patient subsets may represent unique prognostic characteristics.
Collapse
Affiliation(s)
- Rahul Kumar Sharma
- Department of Hematology, All India Institute of Medical Sciences, New Delhi, India
| | - Abhishek Purohit
- Department of Hematology, All India Institute of Medical Sciences, New Delhi, India
| | | | | | - Mrinalini Kotru
- Department of Hematology, All India Institute of Medical Sciences, New Delhi, India
| | - Ravi Ranjan
- Department of Hematology, All India Institute of Medical Sciences, New Delhi, India
| | - Sunil Kumar
- Department of Hematology, All India Institute of Medical Sciences, New Delhi, India
| | - Sudha Sazawal
- Department of Hematology, All India Institute of Medical Sciences, New Delhi, India
| | - Hara Prasad Pati
- Department of Hematology, All India Institute of Medical Sciences, New Delhi, India
| | - Seema Tyagi
- Department of Hematology, All India Institute of Medical Sciences, New Delhi, India
| | - Renu Saxena
- Department of Hematology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
48
|
Christie DA, Xu LS, Turkistany SA, Solomon LA, Li SKH, Yim E, Welch I, Bell GI, Hess DA, DeKoter RP. PU.1 opposes IL-7-dependent proliferation of developing B cells with involvement of the direct target gene bruton tyrosine kinase. THE JOURNAL OF IMMUNOLOGY 2014; 194:595-605. [PMID: 25505273 DOI: 10.4049/jimmunol.1401569] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Deletion of genes encoding the E26 transformation-specific transcription factors PU.1 and Spi-B in B cells (CD19-CreΔPB mice) leads to impaired B cell development, followed by B cell acute lymphoblastic leukemia at 100% incidence and with a median survival of 21 wk. However, little is known about the target genes that explain leukemogenesis in these mice. In this study we found that immature B cells were altered in frequency in the bone marrow of preleukemic CD19-CreΔPB mice. Enriched pro-B cells from CD19-CreΔPB mice induced disease upon transplantation, suggesting that these were leukemia-initiating cells. Bone marrow cells from preleukemic CD19-CreΔPB mice had increased responsiveness to IL-7 and could proliferate indefinitely in response to this cytokine. Bruton tyrosine kinase (BTK), a negative regulator of IL-7 signaling, was reduced in preleukemic and leukemic CD19-CreΔPB cells compared with controls. Induction of PU.1 expression in cultured CD19-CreΔPB pro-B cell lines induced Btk expression, followed by reduced STAT5 phosphorylation and early apoptosis. PU.1 and Spi-B regulated Btk directly as shown by chromatin immunoprecipitation analysis. Ectopic expression of BTK was sufficient to induce apoptosis in cultured pro-B cells. In summary, these results suggest that PU.1 and Spi-B activate Btk to oppose IL-7 responsiveness in developing B cells.
Collapse
Affiliation(s)
- Darah A Christie
- Centre for Human Immunology, Department of Microbiology and Immunology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Li S Xu
- Centre for Human Immunology, Department of Microbiology and Immunology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Shereen A Turkistany
- Centre for Human Immunology, Department of Microbiology and Immunology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Lauren A Solomon
- Centre for Human Immunology, Department of Microbiology and Immunology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Stephen K H Li
- Centre for Human Immunology, Department of Microbiology and Immunology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Edmund Yim
- Centre for Human Immunology, Department of Microbiology and Immunology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Ian Welch
- Department of Animal Care and Veterinary Services, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Gillian I Bell
- Robarts Research Institute, University of Western Ontario, London, Ontario N6A 5C1, Canada; Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario N6A 5C1, Canada; and
| | - David A Hess
- Robarts Research Institute, University of Western Ontario, London, Ontario N6A 5C1, Canada; Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario N6A 5C1, Canada; and Division of Genetics and Development, Children's Health Research Institute, Lawson Research Institute, London, Ontario N6C 2R5, Canada
| | - Rodney P DeKoter
- Centre for Human Immunology, Department of Microbiology and Immunology, University of Western Ontario, London, Ontario N6A 5C1, Canada; Division of Genetics and Development, Children's Health Research Institute, Lawson Research Institute, London, Ontario N6C 2R5, Canada
| |
Collapse
|
49
|
Yardımcı GG, Frank CL, Crawford GE, Ohler U. Explicit DNase sequence bias modeling enables high-resolution transcription factor footprint detection. Nucleic Acids Res 2014; 42:11865-78. [PMID: 25294828 PMCID: PMC4231734 DOI: 10.1093/nar/gku810] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 08/22/2014] [Accepted: 08/27/2014] [Indexed: 12/31/2022] Open
Abstract
DNaseI footprinting is an established assay for identifying transcription factor (TF)-DNA interactions with single base pair resolution. High-throughput DNase-seq assays have recently been used to detect in vivo DNase footprints across the genome. Multiple computational approaches have been developed to identify DNase-seq footprints as predictors of TF binding. However, recent studies have pointed to a substantial cleavage bias of DNase and its negative impact on predictive performance of footprinting. To assess the potential for using DNase-seq to identify individual binding sites, we performed DNase-seq on deproteinized genomic DNA and determined sequence cleavage bias. This allowed us to build bias corrected and TF-specific footprint models. The predictive performance of these models demonstrated that predicted footprints corresponded to high-confidence TF-DNA interactions. DNase-seq footprints were absent under a fraction of ChIP-seq peaks, which we show to be indicative of weaker binding, indirect TF-DNA interactions or possible ChIP artifacts. The modeling approach was also able to detect variation in the consensus motifs that TFs bind to. Finally, cell type specific footprints were detected within DNase hypersensitive sites that are present in multiple cell types, further supporting that footprints can identify changes in TF binding that are not detectable using other strategies.
Collapse
Affiliation(s)
- Galip Gürkan Yardımcı
- Computational Biology and Bioinformatics Program, Duke University, Durham, NC 27708, USA Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA
| | - Christopher L Frank
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27708, USA
| | - Gregory E Crawford
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, NC 27708, USA
| | - Uwe Ohler
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC 27708, USA Max Delbruck Center for Molecular Medicine, 13125 Berlin, Germany
| |
Collapse
|
50
|
Hajingabo LJ, Daakour S, Martin M, Grausenburger R, Panzer-Grümayer R, Dequiedt F, Simonis N, Twizere JC. Predicting interactome network perturbations in human cancer: application to gene fusions in acute lymphoblastic leukemia. Mol Biol Cell 2014; 25:3973-85. [PMID: 25273558 PMCID: PMC4244205 DOI: 10.1091/mbc.e14-06-1038] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Genomic variations such as gene fusions are directly or indirectly associated with human diseases. A method is presented combining gene expression and interactome data analyses to identify specific targets in leukemia. The Myc network and the mRNA export machinery are perturbed in ETV6-RUNX1 and TCF3-PBX1 subtypes of leukemia. Genomic variations such as point mutations and gene fusions are directly or indirectly associated with human diseases. They are recognized as diagnostic, prognostic markers and therapeutic targets. However, predicting the functional effect of these genetic alterations beyond affected genes and their products is challenging because diseased phenotypes are likely dependent of complex molecular interaction networks. Using as models three different chromosomal translocations—ETV6-RUNX1 (TEL-AML1), BCR-ABL1, and TCF3-PBX1 (E2A-PBX1)—frequently found in precursor-B-cell acute lymphoblastic leukemia (preB-ALL), we develop an approach to extract perturbed molecular interactions from gene expression changes. We show that the MYC and JunD transcriptional circuits are specifically deregulated after ETV6-RUNX1 and TCF3-PBX1 gene fusions, respectively. We also identified the bulk mRNA NXF1-dependent machinery as a direct target for the TCF3-PBX1 fusion protein. Through a novel approach combining gene expression and interactome data analysis, we provide new insight into TCF3-PBX1 and ETV6-RUNX1 acute lymphoblastic leukemia.
Collapse
Affiliation(s)
- Leon Juvenal Hajingabo
- Laboratoire de Bioinformatique des Génomes et des Réseaux, Université Libre de Bruxelles, B-1050 Bruxelles, Belgium
| | - Sarah Daakour
- Laboratory of Protein Signaling and Interactions, GIGA-Research, University of Liège, B-4000 Liège, Belgium
| | - Maud Martin
- Laboratory of Protein Signaling and Interactions, GIGA-Research, University of Liège, B-4000 Liège, Belgium
| | - Reinhard Grausenburger
- Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, 1180 Vienna, Austria
| | - Renate Panzer-Grümayer
- Children's Cancer Research Institute, St Anna Kinderkrebsforschung, 1090 Vienna, Austria
| | - Franck Dequiedt
- Laboratory of Protein Signaling and Interactions, GIGA-Research, University of Liège, B-4000 Liège, Belgium
| | - Nicolas Simonis
- Laboratoire de Bioinformatique des Génomes et des Réseaux, Université Libre de Bruxelles, B-1050 Bruxelles, Belgium
| | - Jean-Claude Twizere
- Laboratory of Protein Signaling and Interactions, GIGA-Research, University of Liège, B-4000 Liège, Belgium
| |
Collapse
|