1
|
Liongue C, Ratnayake T, Basheer F, Ward AC. Janus Kinase 3 (JAK3): A Critical Conserved Node in Immunity Disrupted in Immune Cell Cancer and Immunodeficiency. Int J Mol Sci 2024; 25:2977. [PMID: 38474223 DOI: 10.3390/ijms25052977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
The Janus kinase (JAK) family is a small group of protein tyrosine kinases that represent a central component of intracellular signaling downstream from a myriad of cytokine receptors. The JAK3 family member performs a particularly important role in facilitating signal transduction for a key set of cytokine receptors that are essential for immune cell development and function. Mutations that impact JAK3 activity have been identified in a number of human diseases, including somatic gain-of-function (GOF) mutations associated with immune cell malignancies and germline loss-of-function (LOF) mutations associated with immunodeficiency. The structure, function and impacts of both GOF and LOF mutations of JAK3 are highly conserved, making animal models highly informative. This review details the biology of JAK3 and the impact of its perturbation in immune cell-related diseases, including relevant animal studies.
Collapse
Affiliation(s)
- Clifford Liongue
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC 3216, Australia
| | | | - Faiza Basheer
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC 3216, Australia
| | - Alister C Ward
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC 3216, Australia
| |
Collapse
|
2
|
Chaimowitz NS, Smith MR, Forbes Satter LR. JAK/STAT defects and immune dysregulation, and guiding therapeutic choices. Immunol Rev 2024; 322:311-328. [PMID: 38306168 DOI: 10.1111/imr.13312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Inborn errors of immunity (IEIs) encompass a diverse spectrum of genetic disorders that disrupt the intricate mechanisms of the immune system, leading to a variety of clinical manifestations. Traditionally associated with an increased susceptibility to recurrent infections, IEIs have unveiled a broader clinical landscape, encompassing immune dysregulation disorders characterized by autoimmunity, severe allergy, lymphoproliferation, and even malignancy. This review delves into the intricate interplay between IEIs and the JAK-STAT signaling pathway, a critical regulator of immune homeostasis. Mutations within this pathway can lead to a wide array of clinical presentations, even within the same gene. This heterogeneity poses a significant challenge, necessitating individually tailored therapeutic approaches to effectively manage the diverse manifestations of these disorders. Additionally, JAK-STAT pathway defects can lead to simultaneous susceptibility to both infection and immune dysregulation. JAK inhibitors, with their ability to suppress JAK-STAT signaling, have emerged as powerful tools in controlling immune dysregulation. However, questions remain regarding the optimal selection and dosing regimens for each specific condition. Hematopoietic stem cell transplantation (HSCT) holds promise as a curative therapy for many JAK-STAT pathway disorders, but this procedure carries significant risks. The use of JAK inhibitors as a bridge to HSCT has been proposed as a potential strategy to mitigate these risks.
Collapse
Affiliation(s)
- Natalia S Chaimowitz
- Department of Immunology, Cook Children's Medical Center, Fort Worth, Texas, USA
| | - Madison R Smith
- UT Health Sciences Center McGovern Medical School, Houston, Texas, USA
| | - Lisa R Forbes Satter
- Department of Pediatrics, Division of Immunology, Allergy and Retrovirology, Baylor College of Medicine, Houston, Texas, USA
- William T. Shearer Texas Children's Hospital Center for Human Immunobiology, Houston, Texas, USA
| |
Collapse
|
3
|
Dong W, Zhao H, Xiao S, Zheng L, Fan T, Wang L, Zhang H, Hu Y, Yang J, Wang T, Xiao W. Single-cell RNA-seq analyses inform necroptosis-associated myeloid lineages influence the immune landscape of pancreas cancer. Front Immunol 2023; 14:1263633. [PMID: 38149248 PMCID: PMC10749962 DOI: 10.3389/fimmu.2023.1263633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/22/2023] [Indexed: 12/28/2023] Open
Abstract
Introduction Tumor-infiltrating myeloid cells (TIMs) are key regulators in tumor progression, but the similarity and distinction of their fundamental properties in pancreatic ductal adenocarcinoma (PDAC) remain elusive. Method In this study, we conducted scRNA-seq data analysis of cells from 12 primary tumor (PT) tissues, 4 metastatic (Met) tumor tissues, 3 adjacent normal pancreas tissues (Para), and PBMC samples across 16 PDAC patients, and revealed a heterogeneous TIMs environment in PDAC. Result Systematic comparisons between tumor and non-tumor samples of myeloid lineages identified 10 necroptosis-associated genes upregulated in PDAC tumors compared to 5 upregulated in paratumor or healthy peripheral blood. A novel RTM (resident tissue macrophages), GLUL-SQSTM1- RTM, was found to act as a positive regulator of immunity. Additionally, HSP90AA1+HSP90AB1+ mast cells exhibited pro-immune characteristics, and JAK3+TLR4+ CD16 monocytes were found to be anti-immune. The findings were validated through clinical outcomes and cytokines analyses. Lastly, intercellular network reconstruction supported the associations between the identified novel clusters, cancer cells, and immune cell populations. Conclusion Our analysis comprehensively characterized major myeloid cell lineages and identified three subsets of myeloid-derived cells associated with necroptosis. These findings not only provide a valuable resource for understanding the multi-dimensional characterization of the tumor microenvironment in PDAC but also offer valuable mechanistic insights that can guide the design of effective immuno-oncology treatment strategies.
Collapse
Affiliation(s)
- Weiwei Dong
- Senior Dept of Oncology, The Fifth Medical Center of People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Huixia Zhao
- Dept of Oncology, The Forth Medical Center of People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Shanshan Xiao
- Department of Research and Development (R&D), Hangzhou Repugene Technology Co., Ltd., Hangzhou, China
| | - Liuqing Zheng
- Department of Research and Development (R&D), Hangzhou Repugene Technology Co., Ltd., Hangzhou, China
| | - Tongqiang Fan
- Department of Research and Development (R&D), Hangzhou Repugene Technology Co., Ltd., Hangzhou, China
| | - Li Wang
- Department of Research and Development (R&D), Hangzhou Repugene Technology Co., Ltd., Hangzhou, China
| | - He Zhang
- Dept of Oncology, The Forth Medical Center of People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Yanyan Hu
- Senior Dept of Oncology, The Fifth Medical Center of People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Jingwen Yang
- Senior Dept of Oncology, The Fifth Medical Center of People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Tao Wang
- Department of Research and Development (R&D), Hangzhou Repugene Technology Co., Ltd., Hangzhou, China
| | - Wenhua Xiao
- Senior Dept of Oncology, The Fifth Medical Center of People's Liberation Army (PLA) General Hospital, Beijing, China
| |
Collapse
|
4
|
Grant AH, Rodriguez AC, Rodriguez Moncivais OJ, Sun S, Li L, Mohl JE, Leung MY, Kirken RA, Rodriguez G. JAK1 Pseudokinase V666G Mutant Dominantly Impairs JAK3 Phosphorylation and IL-2 Signaling. Int J Mol Sci 2023; 24:ijms24076805. [PMID: 37047778 PMCID: PMC10095075 DOI: 10.3390/ijms24076805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/17/2023] [Accepted: 03/24/2023] [Indexed: 04/08/2023] Open
Abstract
Overactive Janus kinases (JAKs) are known to drive leukemia, making them well-suited targets for treatment. We sought to identify new JAK-activating mutations and instead found a JAK1-inactivating pseudokinase mutation, V666G. In contrast to other pseudokinase mutations that canonically lead to an active kinase, the JAK1 V666G mutation led to under-activation seen by reduced phosphorylation. To understand the functional role of JAK1 V666G in modifying kinase activity we investigated its influence on other JAK kinases and within the Interleukin-2 pathway. JAK1 V666G not only inhibited its own activity, but its presence could inhibit other JAK kinases. These findings provide new insights into the potential of JAK1 pseudokinase to modulate its own activity, as well as of other JAK kinases. Thus, the features of the JAK1 V666 region in modifying JAK kinases can be exploited to allosterically inhibit overactive JAKs.
Collapse
Affiliation(s)
- Alice H. Grant
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
- Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Alejandro C. Rodriguez
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
- Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Omar J. Rodriguez Moncivais
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
- Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Shengjie Sun
- Department of Physics, The University of Texas at El Paso, El Paso, TX 79968, USA
- Computational Science Program, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Lin Li
- Department of Physics, The University of Texas at El Paso, El Paso, TX 79968, USA
- Computational Science Program, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Jonathon E. Mohl
- Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
- Department of Mathematical Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Ming-Ying Leung
- Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
- Computational Science Program, The University of Texas at El Paso, El Paso, TX 79968, USA
- Department of Mathematical Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Robert A. Kirken
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
- Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Georgialina Rodriguez
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
- Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| |
Collapse
|
5
|
Mustafa AHM, Krämer OH. Pharmacological Modulation of the Crosstalk between Aberrant Janus Kinase Signaling and Epigenetic Modifiers of the Histone Deacetylase Family to Treat Cancer. Pharmacol Rev 2023; 75:35-61. [PMID: 36752816 DOI: 10.1124/pharmrev.122.000612] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/08/2022] [Accepted: 08/15/2022] [Indexed: 12/13/2022] Open
Abstract
Hyperactivated Janus kinase (JAK) signaling is an appreciated drug target in human cancers. Numerous mutant JAK molecules as well as inherent and acquired drug resistance mechanisms limit the efficacy of JAK inhibitors (JAKi). There is accumulating evidence that epigenetic mechanisms control JAK-dependent signaling cascades. Like JAKs, epigenetic modifiers of the histone deacetylase (HDAC) family regulate the growth and development of cells and are often dysregulated in cancer cells. The notion that inhibitors of histone deacetylases (HDACi) abrogate oncogenic JAK-dependent signaling cascades illustrates an intricate crosstalk between JAKs and HDACs. Here, we summarize how structurally divergent, broad-acting as well as isoenzyme-specific HDACi, hybrid fusion pharmacophores containing JAKi and HDACi, and proteolysis targeting chimeras for JAKs inactivate the four JAK proteins JAK1, JAK2, JAK3, and tyrosine kinase-2. These agents suppress aberrant JAK activity through specific transcription-dependent processes and mechanisms that alter the phosphorylation and stability of JAKs. Pharmacological inhibition of HDACs abrogates allosteric activation of JAKs, overcomes limitations of ATP-competitive type 1 and type 2 JAKi, and interacts favorably with JAKi. Since such findings were collected in cultured cells, experimental animals, and cancer patients, we condense preclinical and translational relevance. We also discuss how future research on acetylation-dependent mechanisms that regulate JAKs might allow the rational design of improved treatments for cancer patients. SIGNIFICANCE STATEMENT: Reversible lysine-ɛ-N acetylation and deacetylation cycles control phosphorylation-dependent Janus kinase-signal transducer and activator of transcription signaling. The intricate crosstalk between these fundamental molecular mechanisms provides opportunities for pharmacological intervention strategies with modern small molecule inhibitors. This could help patients suffering from cancer.
Collapse
Affiliation(s)
- Al-Hassan M Mustafa
- Department of Toxicology, University Medical Center, Mainz, Germany (A.-H.M.M., O.H.K.) and Department of Zoology, Faculty of Science, Aswan University, Aswan, Egypt (A.-H.M.M.)
| | - Oliver H Krämer
- Department of Toxicology, University Medical Center, Mainz, Germany (A.-H.M.M., O.H.K.) and Department of Zoology, Faculty of Science, Aswan University, Aswan, Egypt (A.-H.M.M.)
| |
Collapse
|
6
|
Zebrafish Model of Severe Combined Immunodeficiency (SCID) Due to JAK3 Mutation. Biomolecules 2022; 12:biom12101521. [PMID: 36291730 PMCID: PMC9599616 DOI: 10.3390/biom12101521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 11/18/2022] Open
Abstract
JAK3 is principally activated by members of the interleukin-2 receptor family and plays an essential role in lymphoid development, with inactivating JAK3 mutations causing autosomal-recessive severe combined immunodeficiency (SCID). This study aimed to generate an equivalent zebrafish model of SCID and to characterize the model across the life-course. Genome editing of zebrafish jak3 created mutants similar to those observed in human SCID. Homozygous jak3 mutants showed reduced embryonic T lymphopoiesis that continued through the larval stage and into adulthood, with B cell maturation and adult NK cells also reduced and neutrophils impacted. Mutant fish were susceptible to lymphoid leukemia. This model has many of the hallmarks of human SCID resulting from inactivating JAK3 mutations and will be useful for a variety of pre-clinical applications.
Collapse
|
7
|
In vivo impact of JAK3 A573V mutation revealed using zebrafish. Cell Mol Life Sci 2022; 79:322. [PMID: 35622134 PMCID: PMC9142468 DOI: 10.1007/s00018-022-04361-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/19/2022] [Accepted: 05/09/2022] [Indexed: 12/16/2022]
Abstract
Background Janus kinase 3 (JAK3) acts downstream of the interleukin-2 (IL-2) receptor family to play a pivotal role in the regulation of lymphoid cell development. Activating JAK3 mutations are associated with a number of lymphoid and other malignancies, with mutations within the regulatory pseudokinase domain common. Methods The pseudokinase domain mutations A572V and A573V were separately introduced into the highly conserved zebrafish Jak3 and transiently expressed in cell lines and zebrafish embryos to examine their activity and impact on early T cells. Genome editing was subsequently used to introduce the A573V mutation into the zebrafish genome to study the effects of JAK3 activation on lymphoid cells in a physiologically relevant context throughout the life-course. Results Zebrafish Jak3 A573V produced the strongest activation of downstream STAT5 in vitro and elicited a significant increase in T cells in zebrafish embryos. Zebrafish carrying just a single copy of the Jak3 A573V allele displayed elevated embryonic T cells, which continued into adulthood. Hematopoietic precursors and NK cells were also increased, but not B cells. The lymphoproliferative effects of Jak3 A573V in embryos was shown to be dependent on zebrafish IL-2Rγc, JAK1 and STAT5B equivalents, and could be suppressed with the JAK3 inhibitor Tofacitinib. Conclusions This study demonstrates that a single JAK3 A573V allele expressed from the endogenous locus was able to enhance lymphopoiesis throughout the life-course, which was mediated via an IL-2Rγc/JAK1/JAK3/STAT5 signaling pathway and was sensitive to Tofacitinib. This extends our understanding of oncogenic JAK3 mutations and creates a novel model to underpin further translational investigations. Supplementary Information The online version contains supplementary material available at 10.1007/s00018-022-04361-8.
Collapse
|
8
|
Su W, Chen Z, Liu M, He R, Liu C, Li R, Gao M, Zheng M, Tu Z, Zhang Z, Xu T. Design, synthesis and structure-activity relationship studies of pyrido[2,3-d]pyrimidin-7-ones as potent Janus Kinase 3 (JAK3) covalent inhibitors. Bioorg Med Chem Lett 2022; 64:128680. [PMID: 35306167 DOI: 10.1016/j.bmcl.2022.128680] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/21/2022] [Accepted: 03/14/2022] [Indexed: 11/19/2022]
Abstract
Aberrantly activated Janus kinase 3 (JAK3) has been constantly detected in various immune disorders and hematopoietic cancers, suggesting its potential of being an attractive therapeutic target for these indications. Clinical benefits of drugs selectively targeting JAK3 versus pan-JAK inhibitors remain unclear. In this study, we report the design and synthesis of a new series of JAK3 covalent inhibitors with a pyrido[2,3-d]pyrimidin-7-one scaffold. After the extensive SAR study, compound 10f emerged to be the most potent JAK3 inhibitor with an IC50 value of 2.0 nM. It showed excellent selectively proliferation inhibitory activity against U937 cells harboring JAK3 M511I mutation, while remained weakly active to the other tested cancer cells. Compound 10f also dose-dependently inhibited the phosphorylation of JAK3 and its downstream signal STAT5 in U937 cells. Taken together, 10f may serve as a promising tool molecule for treating cancers with aberrantly activated JAK3.
Collapse
Affiliation(s)
- Wenhong Su
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, China
| | - Zhiwen Chen
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MoE) of People's Republic of China, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Meiying Liu
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Rui He
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MoE) of People's Republic of China, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Chaoyi Liu
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Rui Li
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Mingshan Gao
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Mingyue Zheng
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Zhengchao Tu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou Science Park, Guangzhou 510530, China
| | - Zhang Zhang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MoE) of People's Republic of China, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China.
| | - Tianfeng Xu
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| |
Collapse
|
9
|
Untwining Anti-Tumor and Immunosuppressive Effects of JAK Inhibitors-A Strategy for Hematological Malignancies? Cancers (Basel) 2021; 13:cancers13112611. [PMID: 34073410 PMCID: PMC8197909 DOI: 10.3390/cancers13112611] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/18/2021] [Accepted: 05/22/2021] [Indexed: 01/02/2023] Open
Abstract
Simple Summary The Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway is aberrantly activated in many malignancies. Inhibition of this pathway via JAK inhibitors (JAKinibs) is therefore an attractive therapeutic strategy underlined by Ruxolitinib (JAK1/2 inhibitor) being approved for the treatment of myeloproliferative neoplasms. As a consequence of the crucial role of the JAK-STAT pathway in the regulation of immune responses, inhibition of JAKs suppresses the immune system. This review article provides a thorough overview of the current knowledge on JAKinibs’ effects on immune cells in the context of hematological malignancies. We also discuss the potential use of JAKinibs for the treatment of diseases in which lymphocytes are the source of the malignancy. Abstract The Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway propagates signals from a variety of cytokines, contributing to cellular responses in health and disease. Gain of function mutations in JAKs or STATs are associated with malignancies, with JAK2V617F being the main driver mutation in myeloproliferative neoplasms (MPN). Therefore, inhibition of this pathway is an attractive therapeutic strategy for different types of cancer. Numerous JAK inhibitors (JAKinibs) have entered clinical trials, including the JAK1/2 inhibitor Ruxolitinib approved for the treatment of MPN. Importantly, loss of function mutations in JAK-STAT members are a cause of immune suppression or deficiencies. MPN patients undergoing Ruxolitinib treatment are more susceptible to infections and secondary malignancies. This highlights the suppressive effects of JAKinibs on immune responses, which renders them successful in the treatment of autoimmune diseases but potentially detrimental for cancer patients. Here, we review the current knowledge on the effects of JAKinibs on immune cells in the context of hematological malignancies. Furthermore, we discuss the potential use of JAKinibs for the treatment of diseases in which lymphocytes are the source of malignancies. In summary, this review underlines the necessity of a robust immune profiling to provide the best benefit for JAKinib-treated patients.
Collapse
|
10
|
Deregulation of the Interleukin-7 Signaling Pathway in Lymphoid Malignancies. Pharmaceuticals (Basel) 2021; 14:ph14050443. [PMID: 34066732 PMCID: PMC8151260 DOI: 10.3390/ph14050443] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 12/21/2022] Open
Abstract
The cytokine interleukin-7 (IL-7) and its receptor are critical for lymphoid cell development. The loss of IL-7 signaling causes severe combined immunodeficiency, whereas gain-of-function alterations in the pathway contribute to malignant transformation of lymphocytes. Binding of IL-7 to the IL-7 receptor results in the activation of the JAK-STAT, PI3K-AKT and Ras-MAPK pathways, each contributing to survival, cell cycle progression, proliferation and differentiation. Here, we discuss the role of deregulated IL-7 signaling in lymphoid malignancies of B- and T-cell origin. Especially in T-cell leukemia, more specifically in T-cell acute lymphoblastic leukemia and T-cell prolymphocytic leukemia, a high frequency of mutations in components of the IL-7 signaling pathway are found, including alterations in IL7R, IL2RG, JAK1, JAK3, STAT5B, PTPN2, PTPRC and DNM2 genes.
Collapse
|
11
|
Favoino E, Prete M, Catacchio G, Ruscitti P, Navarini L, Giacomelli R, Perosa F. Working and safety profiles of JAK/STAT signaling inhibitors. Are these small molecules also smart? Autoimmun Rev 2021; 20:102750. [PMID: 33482338 DOI: 10.1016/j.autrev.2021.102750] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 12/14/2020] [Indexed: 12/18/2022]
Abstract
The Janus kinase (JAK)/signal transducers and activators of transcription (STAT) pathway is an important intracellular route through which many different extracellular soluble molecules, by reaching membrane receptors, can signal the nucleus. The spectrum of soluble molecules that use the JAK/STAT pathway through their corresponding receptors is quite large (almost 50 different molecules), and includes some cytokines involved in the pathogenesis of many immune-mediated diseases. Such diseases, when left untreated, present an evident hyperactivation of JAK/STAT signaling. Therefore, given the pathogenetic role of JAK/STAT, drugs known as JAK inhibitors (JAKi), that target one or more JAKs, have been developed to counteract JAK/STAT signal hyperactivation. As some hematological malignancies present an intrinsic JAK/STAT hyperactivation due to a JAK mutation, some JAKi have also been successfully used in this context. Regulatory agencies for drug administration in different countries have already approved a few JAKi in the setting of either immune-mediated diseases or hematological malignancies. Aim of this review is to describe the physiology of intracellular JAK/STAT pathway signaling and the pathological conditions associated to its dysregulation. Then, the rationale for targeting JAK in rheumatic autoimmune diseases is discussed, along with clinical data from registration studies showing the efficacy of these drugs. Finally, the excellent safety profile of JAKi is discussed in the context of the apparent poor specificity of JAK/STAT pathway signal.
Collapse
Affiliation(s)
- Elvira Favoino
- Rheumatic and Systemic Autoimmune Diseases Unit, Department of Biomedical Science and Human Oncology (DIMO), University of Bari Medical School, Italy
| | - Marcella Prete
- Internal Medicine, Department of Biomedical Science and Human Oncology (DIMO), University of Bari Medical School, Italy
| | - Giacomo Catacchio
- Rheumatic and Systemic Autoimmune Diseases Unit, Department of Biomedical Science and Human Oncology (DIMO), University of Bari Medical School, Italy
| | - Piero Ruscitti
- Rheumatology Unit, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Luca Navarini
- Rheumatology and Immunology Unit, Department of Medicine, University of Rome 'Campus Biomedico', Italy
| | - Roberto Giacomelli
- Rheumatology and Immunology Unit, Department of Medicine, University of Rome 'Campus Biomedico', Italy
| | - Federico Perosa
- Rheumatic and Systemic Autoimmune Diseases Unit, Department of Biomedical Science and Human Oncology (DIMO), University of Bari Medical School, Italy.
| |
Collapse
|
12
|
Rummelt C, Gorantla SP, Meggendorfer M, Charlet A, Endres C, Döhner K, Heidel FH, Fischer T, Haferlach T, Duyster J, von Bubnoff N. Activating JAK-mutations confer resistance to FLT3 kinase inhibitors in FLT3-ITD positive AML in vitro and in vivo. Leukemia 2020; 35:2017-2029. [PMID: 33149267 DOI: 10.1038/s41375-020-01077-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 10/13/2020] [Accepted: 10/21/2020] [Indexed: 01/07/2023]
Abstract
An important limitation of FLT3 tyrosine kinase inhibitors (TKIs) in FLT3-ITD positive AML is the development of resistance. To better understand resistance to FLT3 inhibition, we examined FLT3-ITD positive cell lines which had acquired resistance to midostaurin or sorafenib. In 6 out of 23 TKI resistant cell lines we were able to detect a JAK1 V658F mutation, a mutation that led to reactivation of the CSF2RB-STAT5 pathway. Knockdown of JAK1, or treatment with a JAK inhibitor, resensitized cells to FLT3 inhibition. Out of 136 patients with FLT3-ITD mutated AML and exposed to FLT3 inhibitor, we found seven different JAK family mutations in six of the cases (4.4%), including five bona fide, activating mutations. Except for one patient, the JAK mutations occurred de novo (n = 4) or displayed increasing variant allele frequency after exposure to FLT3 TKI (n = 1). In vitro each of the five activating variants were found to induce resistance to FLT3-ITD inhibition, which was then overcome by dual FLT3/JAK inhibition. In conclusion, our data characterize a novel mechanism of resistance to FLT3-ITD inhibition and may offer a potential therapy, using dual JAK and FLT3 inhibition.
Collapse
Affiliation(s)
- Christoph Rummelt
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sivahari P Gorantla
- Department of Hematology and Oncology, Medical Center, University of Schleswig-Holstein, Lübeck, Germany
| | | | - Anne Charlet
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Cornelia Endres
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Konstanze Döhner
- Department of Internal Medicine III, University of Ulm, Ulm, Germany
| | - Florian H Heidel
- Innere Medizin 2, Universitätsklinikum Jena, Jena, Germany.,Innere Medizin C, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Thomas Fischer
- Department of Hematology and Oncology, Medical Center, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | | | - Justus Duyster
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), partner site Freiburg, Freiburg, Germany
| | - Nikolas von Bubnoff
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany. .,Department of Hematology and Oncology, Medical Center, University of Schleswig-Holstein, Lübeck, Germany. .,German Cancer Research Center (DKFZ), Heidelberg, Germany. .,German Cancer Consortium (DKTK), partner site Freiburg, Freiburg, Germany.
| |
Collapse
|
13
|
Wong J, Wall M, Corboy GP, Taubenheim N, Gregory GP, Opat S, Shortt J. Failure of tofacitinib to achieve an objective response in a DDX3X-MLLT10 T-lymphoblastic leukemia with activating JAK3 mutations. Cold Spring Harb Mol Case Stud 2020; 6:mcs.a004994. [PMID: 32843425 PMCID: PMC7476415 DOI: 10.1101/mcs.a004994] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 06/05/2020] [Indexed: 02/01/2023] Open
Abstract
T-cell lymphoblastic lymphoma/T-cell acute lymphoblastic leukemia (T-LBL/T ALL) is an aggressive hematological malignancy arising from malignant transformation of T-cell progenitors with poor prognosis in adult patients. Outcomes are particularly dismal in the relapsed/refractory setting, and therapeutic options are limited in this context. Genomic profiling has shown frequent aberrations in the JAK-STAT pathway, including recurrent mutations in JAK3 (15%–20% of T-ALL cases), suggesting that JAK kinase inhibition may be a promising therapeutic approach. Activating JAK3 mutations are capable of transforming cytokine-dependent progenitor cells in vitro and causing T-ALL-like disease when expressed in hematopoietic progenitors in vivo. We describe a case of relapsed T-ALL in an adult patient, with two JAK3 activating mutations identified by whole-exome sequencing (WES), leading to hypothesis-based treatment with the JAK1 and JAK3 inhibitor, tofacitinib, following failure of salvage chemotherapy reinduction. Despite the molecularly targeted rationale, tofacitinib did not induce an objective clinical response. Our report suggests that the presence of activating JAK3 mutations does not necessarily confer sensitivity to pharmacological JAK3 inhibition.
Collapse
Affiliation(s)
- Jonathan Wong
- Department of Hematology, Monash Health, Clayton, 3168, Victoria, Australia.,School of Clinical Sciences, Monash University, Clayton, 3168, Victoria, Australia
| | - Meaghan Wall
- School of Clinical Sciences, Monash University, Clayton, 3168, Victoria, Australia.,Victorian Cancer Cytogenetics Service, St Vincent's Hospital, Fitzroy, 3065, Victoria, Australia.,St Vincent's Institute, Fitzroy, 3065, Victoria, Australia.,Monash Pathology, Monash Health, Clayton, 3168, Victoria, Australia
| | - Gregory Philip Corboy
- Department of Hematology, Monash Health, Clayton, 3168, Victoria, Australia.,School of Clinical Sciences, Monash University, Clayton, 3168, Victoria, Australia.,Department of Clinical Pathology, The University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Nadine Taubenheim
- Monash Pathology, Monash Health, Clayton, 3168, Victoria, Australia.,Center for Cancer Research, Hudson Institute of Medical Research, Clayton, 3168, Victoria, Australia
| | - Gareth Peter Gregory
- Department of Hematology, Monash Health, Clayton, 3168, Victoria, Australia.,School of Clinical Sciences, Monash University, Clayton, 3168, Victoria, Australia
| | - Stephen Opat
- Department of Hematology, Monash Health, Clayton, 3168, Victoria, Australia.,School of Clinical Sciences, Monash University, Clayton, 3168, Victoria, Australia
| | - Jake Shortt
- Department of Hematology, Monash Health, Clayton, 3168, Victoria, Australia.,School of Clinical Sciences, Monash University, Clayton, 3168, Victoria, Australia
| |
Collapse
|
14
|
Kim B, Yi EH, Jee J, Jeong AJ, Sandoval C, Park I, Baeg GH, Ye S. Tubulosine selectively inhibits JAK3 signalling by binding to the ATP-binding site of the kinase of JAK3. J Cell Mol Med 2020; 24:7427-7438. [PMID: 32558259 PMCID: PMC7339168 DOI: 10.1111/jcmm.15362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/15/2019] [Accepted: 08/22/2019] [Indexed: 12/12/2022] Open
Abstract
Gain- or loss-of-function mutations in Janus kinase 3 (JAK3) contribute to the pathogenesis of various haematopoietic malignancies and immune disorders, suggesting that aberrant JAK3 signalling is an attractive therapeutic target to treat these disorders. In this study, we performed structure-based computational database screening using the 3D structure of the JAK3 kinase domain and the National Cancer Institute diversity set and identified tubulosine as a novel JAK3 inhibitor. Tubulosine directly blocked the catalytic activity of JAK3 by selective interacting with the JAK3 kinase domain. Consistently, tubulosine potently inhibited persistently activated and interleukin-2-dependent JAK3, and JAK3-mediated downstream targets. Importantly, it did not affect the activity of other JAK family members, particularly prolactin-induced JAK2/signal transducer and activator of transcription 5 and interferon alpha-induced JAK1-TYK2/STAT1. Tubulosine specifically decreased survival and proliferation of cancer cells, in which persistently active JAK3 is expressed, by inducing apoptotic and necrotic/autophagic cell death without affecting other oncogenic signalling. Collectively, tubulosine is a potential small-molecule compound that selectively inhibits JAK3 activity, suggesting that it may serve as a promising therapeutic candidate for treating disorders caused by aberrant activation of JAK3 signalling.
Collapse
Affiliation(s)
- Byung‐Hak Kim
- Department of PediatricsNew York Medical CollegeValhallaNYUSA
- Department of PharmacologySeoul National University College of MedicineSeoulRepublic of Korea
- Biomedical Science Project (BK21)Seoul National University College of MedicineSeoulRepublic of Korea
| | - Eun Hee Yi
- Department of PharmacologySeoul National University College of MedicineSeoulRepublic of Korea
- Ischemic/Hypoxic Disease InstituteSeoul National University College of MedicineSeoulRepublic of Korea
| | - Jun‐Goo Jee
- Research Institute of Pharmaceutical ResearchesCollege of PharmacyKyungpook National UniversityDaeguRepublic of Korea
| | - Ae Jin Jeong
- Department of PharmacologySeoul National University College of MedicineSeoulRepublic of Korea
- Biomedical Science Project (BK21)Seoul National University College of MedicineSeoulRepublic of Korea
| | | | - In‐Chul Park
- Division of Basic Radiation BioscienceKorea Institute of Radiological and Medical SciencesSeoulKorea
| | - Gyeong Hun Baeg
- Department of PediatricsNew York Medical CollegeValhallaNYUSA
- School of Life and Health SciencesChinese University of Hong KongShenzhenChina
| | - Sang‐Kyu Ye
- Department of PharmacologySeoul National University College of MedicineSeoulRepublic of Korea
- Biomedical Science Project (BK21)Seoul National University College of MedicineSeoulRepublic of Korea
- Ischemic/Hypoxic Disease InstituteSeoul National University College of MedicineSeoulRepublic of Korea
- Neuro‐Immune Information Storage Network Research CenterSeoul National University College of MedicineSeoulRepublic of Korea
| |
Collapse
|
15
|
Balupuri A, Balasubramanian PK, Cho SJ. 3D-QSAR, docking, molecular dynamics simulation and free energy calculation studies of some pyrimidine derivatives as novel JAK3 inhibitors. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2017.09.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
16
|
van der Zwet JCG, Cordo' V, Canté-Barrett K, Meijerink JPP. Multi-omic approaches to improve outcome for T-cell acute lymphoblastic leukemia patients. Adv Biol Regul 2019; 74:100647. [PMID: 31523030 DOI: 10.1016/j.jbior.2019.100647] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/20/2019] [Accepted: 08/23/2019] [Indexed: 06/10/2023]
Abstract
In the last decade, tremendous progress in curative treatment has been made for T-ALL patients using high-intensive, risk-adapted multi-agent chemotherapy. Further treatment intensification to improve the cure rate is not feasible as it will increase the number of toxic deaths. Hence, about 20% of pediatric patients relapse and often die due to acquired therapy resistance. Personalized medicine is of utmost importance to further increase cure rates and is achieved by targeting specific initiation, maintenance or resistance mechanisms of the disease. Genomic sequencing has revealed mutations that characterize genetic subtypes of many cancers including T-ALL. However, leukemia may have various activated pathways that are not accompanied by the presence of mutations. Therefore, screening for mutations alone is not sufficient to identify all molecular targets and leukemic dependencies for therapeutic inhibition. We review the extent of the driving type A and the secondary type B genomic mutations in pediatric T-ALL that may be targeted by specific inhibitors. Additionally, we review the need for additional screening methods on the transcriptional and protein levels. An integrated 'multi-omic' screening will identify potential targets and biomarkers to establish significant progress in future individualized treatment of T-ALL patients.
Collapse
Affiliation(s)
| | - Valentina Cordo'
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | | | | |
Collapse
|
17
|
|
18
|
Correia NC, Barata JT. MicroRNAs and their involvement in T-ALL: A brief overview. Adv Biol Regul 2019; 74:100650. [PMID: 31548132 PMCID: PMC6899521 DOI: 10.1016/j.jbior.2019.100650] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 08/30/2019] [Accepted: 09/03/2019] [Indexed: 12/19/2022]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignancy in which the transformed clone is arrested during T-cell development. Several genetic and epigenetic events have been implicated in this transformation. MicroRNAs (miRNAs) are small, non-coding RNAs that primarily function as endogenous translational repressors of protein-coding genes. The involvement of miRNAs in the regulation of cancer progression is well-established, namely by down-regulating the expression of key oncogenes or tumor suppressors and thereby preventing or promoting tumorigenesis, respectively. Similar to other cancers, several miRNA genes have been identified and implicated in the context of T-ALL. In this review we focused on the most studied microRNAs associated with T-ALL pathogenesis.
Collapse
Affiliation(s)
- Nádia C Correia
- Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany.
| | - João T Barata
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisbon, Portugal.
| |
Collapse
|
19
|
De Smedt R, Morscio J, Goossens S, Van Vlierberghe P. Targeting steroid resistance in T-cell acute lymphoblastic leukemia. Blood Rev 2019; 38:100591. [PMID: 31353059 DOI: 10.1016/j.blre.2019.100591] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 07/15/2019] [Accepted: 07/18/2019] [Indexed: 12/16/2022]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is characterized by a variable response to steroids during induction and/or consolidation therapy. Notably, recent work suggested that these differences in glucocorticoid sensitivity might, at least in part, be mediated by hyperactivation of specific oncogenic pathways such as RAS/MEK/ERK, PI3K/AKT and IL7R/JAK/STAT. In this review, we elaborate on putative associations between aberrant signaling, therapy resistance, incidence of relapse and clinical outcome in human T-ALL. Furthermore, we emphasize that this potential association with clinical parameters might also be mediated by the tumor microenvironment as a result of increased sensitivity of leukemic T-cells towards cytokine induced signaling pathway activation. With this in mind, we provide an overview of small molecule inhibitors that might have clinical potential for the treatment of human T-ALL in the near future as a result of their ability to overcome steroid resistance thereby potentially increasing survival rates in this aggressive hematological neoplasm.
Collapse
Affiliation(s)
- Renate De Smedt
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Julie Morscio
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Steven Goossens
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Pieter Van Vlierberghe
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| |
Collapse
|
20
|
Hammarén HM, Virtanen AT, Raivola J, Silvennoinen O. The regulation of JAKs in cytokine signaling and its breakdown in disease. Cytokine 2019; 118:48-63. [DOI: 10.1016/j.cyto.2018.03.041] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/29/2018] [Accepted: 03/30/2018] [Indexed: 01/12/2023]
|
21
|
Sharma ND, Nickl CK, Kang H, Ornatowski W, Brown R, Ness SA, Loh ML, Mullighan CG, Winter SS, Hunger SP, Cannon JL, Matlawska‐Wasowska K. Epigenetic silencing of SOCS5 potentiates JAK-STAT signaling and progression of T-cell acute lymphoblastic leukemia. Cancer Sci 2019; 110:1931-1946. [PMID: 30974024 PMCID: PMC6549933 DOI: 10.1111/cas.14021] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 04/03/2019] [Accepted: 04/08/2019] [Indexed: 01/12/2023] Open
Abstract
Activating mutations in cytokine receptors and transcriptional regulators govern aberrant signal transduction in T-cell lineage acute lymphoblastic leukemia (T-ALL). However, the roles played by suppressors of cytokine signaling remain incompletely understood. We examined the regulatory roles of suppressor of cytokine signaling 5 (SOCS5) in T-ALL cellular signaling networks and leukemia progression. We found that SOCS5 was differentially expressed in primary T-ALL and its expression levels were lowered in HOXA-deregulated leukemia harboring KMT2A gene rearrangements. Here, we report that SOCS5 expression is epigenetically regulated by DNA methyltransferase-3A-mediated DNA methylation and methyl CpG binding protein-2-mediated histone deacetylation. We show that SOCS5 negatively regulates T-ALL cell growth and cell cycle progression but has no effect on apoptotic cell death. Mechanistically, SOCS5 silencing induces activation of JAK-STAT signaling, and negatively regulates interleukin-7 and interleukin-4 receptors. Using a human T-ALL murine xenograft model, we show that genetic inactivation of SOCS5 accelerates leukemia engraftment and progression, and leukemia burden. We postulate that SOCS5 is epigenetically deregulated in T-ALL and serves as an important regulator of T-ALL cell proliferation and leukemic progression. Our results link aberrant downregulation of SOCS5 expression to the enhanced activation of the JAK-STAT and cytokine receptor-signaling cascade in T-ALL.
Collapse
Affiliation(s)
- Nitesh D. Sharma
- Department of PediatricsUniversity of New Mexico Health Sciences CenterAlbuquerqueNM
| | - Christian K. Nickl
- Department of PediatricsUniversity of New Mexico Health Sciences CenterAlbuquerqueNM
| | - Huining Kang
- Department of Internal MedicineUniversity of New Mexico Comprehensive Cancer CenterAlbuquerqueNM
| | - Wojciech Ornatowski
- Department of PathologyUniversity of New Mexico Comprehensive Cancer CenterAlbuquerqueNM
| | - Roger Brown
- Department of Internal MedicineUniversity of New Mexico Comprehensive Cancer CenterAlbuquerqueNM
| | - Scott A. Ness
- Department of Internal MedicineUniversity of New Mexico Comprehensive Cancer CenterAlbuquerqueNM
| | - Mignon L. Loh
- Department of PediatricsBenioff Children's HospitalUniversity of California at San FranciscoSan FranciscoCA
| | | | - Stuart S. Winter
- Children's Minnesota Research Institute and Cancer and Blood Disorders ProgramChildren's MinnesotaMinneapolisMN
| | - Stephen P. Hunger
- Department of Pediatrics and the Center for Childhood Cancer ResearchChildren's Hospital of PhiladelphiaPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPA
| | - Judy L. Cannon
- Department of PathologyUniversity of New Mexico Comprehensive Cancer CenterAlbuquerqueNM
- Department of Molecular Genetics and MicrobiologyUniversity of New Mexico Health Sciences CenterAlbuquerqueNMUSA
| | | |
Collapse
|
22
|
Oliveira ML, Akkapeddi P, Ribeiro D, Melão A, Barata JT. IL-7R-mediated signaling in T-cell acute lymphoblastic leukemia: An update. Adv Biol Regul 2019; 71:88-96. [PMID: 30249539 PMCID: PMC6386770 DOI: 10.1016/j.jbior.2018.09.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 01/09/2023]
Abstract
Interleukin 7 (IL-7) and its receptor (IL-7R, a heterodimer of IL-7Rα and γc) are essential for normal lymphoid development. In their absence, severe combined immunodeficiency occurs. By contrast, excessive IL-7/IL-7R-mediated signaling can drive lymphoid leukemia development, disease acceleration and resistance to chemotherapy. IL-7 and IL-7R activate three main pathways: STAT5, PI3K/Akt/mTOR and MEK/Erk, ultimately leading to the promotion of leukemia cell viability, cell cycle progression and growth. However, the contribution of each of these pathways towards particular functional outcomes is still not completely known and appears to differ between normal and malignant states. For example, IL-7 upregulates Bcl-2 in a PI3K/Akt/mTOR-dependent and STAT5-independent manner in T-ALL cells. This is a 'symmetric image' of what apparently happens in normal lymphoid cells, where PI3K/Akt/mTOR does not impact on Bcl-2 and regulates proliferation rather than survival. In this review, we provide an updated summary of the knowledge on IL-7/IL-7R-mediated signaling in the context of cancer, focusing mainly on T-cell acute lymphoblastic leukemia, where this axis has been more extensively studied.
Collapse
Affiliation(s)
- Mariana L Oliveira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| | - Padma Akkapeddi
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| | - Daniel Ribeiro
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| | - Alice Melão
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| | - João T Barata
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal.
| |
Collapse
|
23
|
Yin Y, Chen CJ, Yu RN, Wang ZJ, Zhang TT, Zhang DY. Structure-based design and synthesis of 1H-pyrazolo[3,4-d]pyrimidin-4-amino derivatives as Janus kinase 3 inhibitors. Bioorg Med Chem 2018; 26:4774-4786. [PMID: 30139575 DOI: 10.1016/j.bmc.2018.04.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/30/2018] [Accepted: 04/02/2018] [Indexed: 01/05/2023]
Abstract
Janus kinases (JAKs) regulate various inflammatory and immune responses and are targets for the treatment of inflammatory and immune diseases. Here we report the discovery and optimization of 1H-pyrazolo[3,4-d]pyrimidin-4-amino as covalent JAK3 inhibitors that exploit a unique cysteine (Cys909) residue in JAK3. Our optimization study gave compound 12a, which exhibited potent JAK3 inhibitory activity (IC50 of 6.2 nM) as well as excellent JAK kinase selectivity (>60-fold). In cellular assay, 12a exhibited potent immunomodulating effect on IL-2-stimulated T cell proliferation (IC50 of 9.4 μM). Further, compound 12a showed efficacy in delayed hypersensitivity assay. The data supports the further investigation of these compounds as novel JAKs inhibitors.
Collapse
Affiliation(s)
- Yuan Yin
- Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing, PR China
| | - Cheng-Juan Chen
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| | - Ru-Nan Yu
- Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing, PR China
| | - Zhi-Jian Wang
- Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing, PR China
| | - Tian-Tai Zhang
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China.
| | - Da-Yong Zhang
- Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing, PR China.
| |
Collapse
|
24
|
Siveen KS, Prabhu KS, Achkar IW, Kuttikrishnan S, Shyam S, Khan AQ, Merhi M, Dermime S, Uddin S. Role of Non Receptor Tyrosine Kinases in Hematological Malignances and its Targeting by Natural Products. Mol Cancer 2018; 17:31. [PMID: 29455667 PMCID: PMC5817858 DOI: 10.1186/s12943-018-0788-y] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 02/01/2018] [Indexed: 12/12/2022] Open
Abstract
Tyrosine kinases belong to a family of enzymes that mediate the movement of the phosphate group to tyrosine residues of target protein, thus transmitting signals from the cell surface to cytoplasmic proteins and the nucleus to regulate physiological processes. Non-receptor tyrosine kinases (NRTK) are a sub-group of tyrosine kinases, which can relay intracellular signals originating from extracellular receptor. NRTKs can regulate a huge array of cellular functions such as cell survival, division/propagation and adhesion, gene expression, immune response, etc. NRTKs exhibit considerable variability in their structural make up, having a shared kinase domain and commonly possessing many other domains such as SH2, SH3 which are protein-protein interacting domains. Recent studies show that NRTKs are mutated in several hematological malignancies, including lymphomas, leukemias and myelomas, leading to aberrant activation. It can be due to point mutations which are intragenic changes or by fusion of genes leading to chromosome translocation. Mutations that lead to constitutive kinase activity result in the formation of oncogenes, such as Abl, Fes, Src, etc. Therefore, specific kinase inhibitors have been sought after to target mutated kinases. A number of compounds have since been discovered, which have shown to inhibit the activity of NRTKs, which are remarkably well tolerated. This review covers the role of various NRTKs in the development of hematological cancers, including their deregulation, genetic alterations, aberrant activation and associated mutations. In addition, it also looks at the recent advances in the development of novel natural compounds that can target NRTKs and perhaps in combination with other forms of therapy can show great promise for the treatment of hematological malignancies.
Collapse
Affiliation(s)
- Kodappully S Siveen
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, PO Box 3050, Doha, State of Qatar
| | - Kirti S Prabhu
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, PO Box 3050, Doha, State of Qatar
| | - Iman W Achkar
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, PO Box 3050, Doha, State of Qatar
| | - Shilpa Kuttikrishnan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, PO Box 3050, Doha, State of Qatar
| | - Sunitha Shyam
- Medical Research Center, Hamad Medical Corporation, Doha, State of Qatar
| | - Abdul Q Khan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, PO Box 3050, Doha, State of Qatar
| | - Maysaloun Merhi
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, State of Qatar
| | - Said Dermime
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, State of Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, PO Box 3050, Doha, State of Qatar.
| |
Collapse
|
25
|
Nairismägi ML, Gerritsen ME, Li ZM, Wijaya GC, Chia BKH, Laurensia Y, Lim JQ, Yeoh KW, Yao XS, Pang WL, Bisconte A, Hill RJ, Bradshaw JM, Huang D, Song TLL, Ng CCY, Rajasegaran V, Tang T, Tang QQ, Xia XJ, Kang TB, Teh BT, Lim ST, Ong CK, Tan J. Oncogenic activation of JAK3-STAT signaling confers clinical sensitivity to PRN371, a novel selective and potent JAK3 inhibitor, in natural killer/T-cell lymphoma. Leukemia 2018; 32:1147-1156. [PMID: 29434279 PMCID: PMC5940653 DOI: 10.1038/s41375-017-0004-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 11/17/2017] [Accepted: 12/04/2017] [Indexed: 02/06/2023]
Abstract
Aberrant activation of the JAK3-STAT signaling pathway is a characteristic feature of many hematological malignancies. In particular, hyperactivity of this cascade has been observed in natural killer/T-cell lymphoma (NKTL) cases. Although the first-in-class JAK3 inhibitor tofacitinib blocks JAK3 activity in NKTL both in vitro and in vivo, its clinical utilization in cancer therapy has been limited by the pan-JAK inhibition activity. To improve the therapeutic efficacy of JAK3 inhibition in NKTL, we have developed a highly selective and durable JAK3 inhibitor PRN371 that potently inhibits JAK3 activity over the other JAK family members JAK1, JAK2, and TYK2. PRN371 effectively suppresses NKTL cell proliferation and induces apoptosis through abrogation of the JAK3-STAT signaling. Moreover, the activity of PRN371 has a more durable inhibition on JAK3 compared to tofacitinib in vitro, leading to significant tumor growth inhibition in a NKTL xenograft model harboring JAK3 activating mutation. These findings provide a novel therapeutic approach for the treatment of NKTL.
Collapse
Affiliation(s)
- M -L Nairismägi
- Lymphoma Genomic Translational Research Laboratory, Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | | | - Z M Li
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore.,Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - G C Wijaya
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore.,Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - B K H Chia
- Lymphoma Genomic Translational Research Laboratory, Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Y Laurensia
- Lymphoma Genomic Translational Research Laboratory, Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - J Q Lim
- Lymphoma Genomic Translational Research Laboratory, Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - K W Yeoh
- Department of Radiation Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - X S Yao
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore.,Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - W L Pang
- Lymphoma Genomic Translational Research Laboratory, Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - A Bisconte
- Principia Biopharma, South San Francisco, CA, USA
| | - R J Hill
- Principia Biopharma, South San Francisco, CA, USA
| | - J M Bradshaw
- Principia Biopharma, South San Francisco, CA, USA
| | - D Huang
- Lymphoma Genomic Translational Research Laboratory, Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - T L L Song
- Lymphoma Genomic Translational Research Laboratory, Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - C C Y Ng
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore.,Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - V Rajasegaran
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore.,Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - T Tang
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Q Q Tang
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore.,Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - X J Xia
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - T B Kang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - B T Teh
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore.,Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - S T Lim
- Lymphoma Genomic Translational Research Laboratory, Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore.,Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore.,Office of Education, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - C K Ong
- Lymphoma Genomic Translational Research Laboratory, Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore. .,Genome Institute of Singapore, A*STAR, Singapore, Singapore.
| | - J Tan
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore. .,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
26
|
Abstract
The Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway is central to signaling by receptors of diverse cytokines, growth factors, and other related molecules. Many of these receptors transmit anti-apoptosis, proliferation, and differentiation signals that are critical for normal hematopoiesis and immune response. However, the JAK/STAT signaling pathway is deregulated in many hematologic malignancies, and as such is co-opted by malignant cells to promote their survival and proliferation. It has recently come to light that an alternative mechanism, wherein nuclear JAKs epigenetically modify the chromatin to increase gene expression independent of STATs, also plays an important role in the pathogenesis of many hematologic malignancies. In this review, we will focus on common genetic alterations of the JAK family members in leukemia and lymphoma, and provide examples in which JAKs regulate gene expression by targeting the cancer epigenome.
Collapse
Affiliation(s)
- Amanda C Drennan
- a Department of Medicine and Carbone Cancer Center , University of Wisconsin School of Medicine and Public Health , Madison , WI , USA
| | - Lixin Rui
- a Department of Medicine and Carbone Cancer Center , University of Wisconsin School of Medicine and Public Health , Madison , WI , USA
| |
Collapse
|
27
|
Bongiovanni D, Saccomani V, Piovan E. Aberrant Signaling Pathways in T-Cell Acute Lymphoblastic Leukemia. Int J Mol Sci 2017; 18:ijms18091904. [PMID: 28872614 PMCID: PMC5618553 DOI: 10.3390/ijms18091904] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 08/30/2017] [Accepted: 09/01/2017] [Indexed: 12/12/2022] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive disease caused by the malignant transformation of immature progenitors primed towards T-cell development. Clinically, T-ALL patients present with diffuse infiltration of the bone marrow by immature T-cell blasts high blood cell counts, mediastinal involvement, and diffusion to the central nervous system. In the past decade, the genomic landscape of T-ALL has been the target of intense research. The identification of specific genomic alterations has contributed to identify strong oncogenic drivers and signaling pathways regulating leukemia growth. Notwithstanding, T-ALL patients are still treated with high-dose multiagent chemotherapy, potentially exposing these patients to considerable acute and long-term side effects. This review summarizes recent advances in our understanding of the signaling pathways relevant for the pathogenesis of T-ALL and the opportunities offered for targeted therapy.
Collapse
Affiliation(s)
- Deborah Bongiovanni
- Dipartimento di Scienze Chirurgiche, Oncologiche e Gastroenterologiche, Universita' di Padova, Padova 35128, Italy.
| | - Valentina Saccomani
- Dipartimento di Scienze Chirurgiche, Oncologiche e Gastroenterologiche, Universita' di Padova, Padova 35128, Italy.
| | - Erich Piovan
- Dipartimento di Scienze Chirurgiche, Oncologiche e Gastroenterologiche, Universita' di Padova, Padova 35128, Italy.
- UOC Immunologia e Diagnostica Molecolare Oncologica, Istituto Oncologico Veneto IOV-IRCCS, Padova 35128, Italy.
| |
Collapse
|
28
|
Liu Y, Easton J, Shao Y, Maciaszek J, Wang Z, Wilkinson MR, McCastlain K, Edmonson M, Pounds SB, Shi L, Zhou X, Ma X, Sioson E, Li Y, Rusch M, Gupta P, Pei D, Cheng C, Smith MA, Auvil JG, Gerhard DS, Relling MV, Winick NJ, Carroll AJ, Heerema NA, Raetz E, Devidas M, Willman CL, Harvey RC, Carroll WL, Dunsmore KP, Winter SS, Wood BL, Sorrentino BP, Downing JR, Loh ML, Hunger SP, Zhang J, Mullighan CG. The genomic landscape of pediatric and young adult T-lineage acute lymphoblastic leukemia. Nat Genet 2017; 49:1211-1218. [PMID: 28671688 PMCID: PMC5535770 DOI: 10.1038/ng.3909] [Citation(s) in RCA: 634] [Impact Index Per Article: 90.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 06/09/2017] [Indexed: 12/11/2022]
Abstract
Genetic alterations that activate NOTCH1 signaling and T cell transcription factors, coupled with inactivation of the INK4/ARF tumor suppressors, are hallmarks of T-lineage acute lymphoblastic leukemia (T-ALL), but detailed genome-wide sequencing of large T-ALL cohorts has not been carried out. Using integrated genomic analysis of 264 T-ALL cases, we identified 106 putative driver genes, half of which had not previously been described in childhood T-ALL (for example, CCND3, CTCF, MYB, SMARCA4, ZFP36L2 and MYCN). We describe new mechanisms of coding and noncoding alteration and identify ten recurrently altered pathways, with associations between mutated genes and pathways, and stage or subtype of T-ALL. For example, NRAS/FLT3 mutations were associated with immature T-ALL, JAK3/STAT5B mutations in HOXA1 deregulated ALL, PTPN2 mutations in TLX1 deregulated T-ALL, and PIK3R1/PTEN mutations in TAL1 deregulated ALL, which suggests that different signaling pathways have distinct roles according to maturational stage. This genomic landscape provides a logical framework for the development of faithful genetic models and new therapeutic approaches.
Collapse
Affiliation(s)
- Yu Liu
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
| | - John Easton
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
| | - Ying Shao
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
| | - Jamie Maciaszek
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
| | - Zhaoming Wang
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
| | - Mark R. Wilkinson
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
| | - Kelly McCastlain
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
| | - Michael Edmonson
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
| | - Stanley B. Pounds
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
| | - Lei Shi
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
| | - Xin Zhou
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
| | - Xiaotu Ma
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
| | - Edgar Sioson
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
| | - Yongjin Li
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
| | - Michael Rusch
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
| | - Pankaj Gupta
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
| | - Deqing Pei
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
| | - Cheng Cheng
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
| | - Malcolm A. Smith
- Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, Maryland, United States
| | - Jaime Guidry Auvil
- Office of Cancer Genomics, National Cancer Institute, Bethesda, Maryland United States
| | - Daniela S. Gerhard
- Office of Cancer Genomics, National Cancer Institute, Bethesda, Maryland United States
| | - Mary V. Relling
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
| | - Naomi J. Winick
- University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Andrew J. Carroll
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Nyla A. Heerema
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Elizabeth Raetz
- Department of Pediatrics, Huntsman Cancer Institute and Primary Children’s Hospital, University of Utah, Salt Lake City, Utah, United States
| | - Meenakshi Devidas
- Department of Biostatistics, Colleges of Medicine, Public Health & Health Profession, University of Florida, Gainesville, Florida, United States
| | - Cheryl L. Willman
- Department of Pathology, The Cancer Research and Treatment Center, University of New Mexico, Albuquerque, New Mexico, United States
| | - Richard C. Harvey
- Department of Pathology, The Cancer Research and Treatment Center, University of New Mexico, Albuquerque, New Mexico, United States
| | - William L. Carroll
- Department of Pediatrics, Perlmutter Cancer Center, New York University Medical Center, New York, New York, United States
| | - Kimberly P. Dunsmore
- Health Sciences Center, University of Virginia, Charlottesville, Virginia, United States
| | - Stuart S. Winter
- Department of Pediatrics, University of New Mexico, Albuquerque, New Mexico, United States
| | - Brent L Wood
- Seattle Cancer Care Alliance, Seattle, Washington, United States
| | - Brian P. Sorrentino
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
| | - James R. Downing
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
| | - Mignon L. Loh
- Department of Pediatrics, Benioff Children’s Hospital, University of California at San Francisco, San Francisco, California, United States
| | - Stephen P Hunger
- Department of Pediatrics and the Center for Childhood Cancer Research, Children’s Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
| | - Charles G. Mullighan
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
| |
Collapse
|
29
|
Liu Y, Easton J, Shao Y, Maciaszek J, Wang Z, Wilkinson MR, McCastlain K, Edmonson M, Pounds SB, Shi L, Zhou X, Ma X, Sioson E, Li Y, Rusch M, Gupta P, Pei D, Cheng C, Smith MA, Auvil JG, Gerhard DS, Relling MV, Winick NJ, Carroll AJ, Heerema NA, Raetz E, Devidas M, Willman CL, Harvey RC, Carroll WL, Dunsmore KP, Winter SS, Wood BL, Sorrentino BP, Downing JR, Loh ML, Hunger SP, Zhang J, Mullighan CG. The genomic landscape of pediatric and young adult T-lineage acute lymphoblastic leukemia. Nat Genet 2017; 49. [PMID: 28671688 PMCID: PMC5535770 DOI: 10.1038/ng.3909 10.1182/ng.3909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Genetic alterations that activate NOTCH1 signaling and T cell transcription factors, coupled with inactivation of the INK4/ARF tumor suppressors, are hallmarks of T-lineage acute lymphoblastic leukemia (T-ALL), but detailed genome-wide sequencing of large T-ALL cohorts has not been carried out. Using integrated genomic analysis of 264 T-ALL cases, we identified 106 putative driver genes, half of which had not previously been described in childhood T-ALL (for example, CCND3, CTCF, MYB, SMARCA4, ZFP36L2 and MYCN). We describe new mechanisms of coding and noncoding alteration and identify ten recurrently altered pathways, with associations between mutated genes and pathways, and stage or subtype of T-ALL. For example, NRAS/FLT3 mutations were associated with immature T-ALL, JAK3/STAT5B mutations in HOXA1 deregulated ALL, PTPN2 mutations in TLX1 deregulated T-ALL, and PIK3R1/PTEN mutations in TAL1 deregulated ALL, which suggests that different signaling pathways have distinct roles according to maturational stage. This genomic landscape provides a logical framework for the development of faithful genetic models and new therapeutic approaches.
Collapse
Affiliation(s)
- Yu Liu
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
| | - John Easton
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
| | - Ying Shao
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States,Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
| | - Jamie Maciaszek
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
| | - Zhaoming Wang
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
| | - Mark R. Wilkinson
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
| | - Kelly McCastlain
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
| | - Michael Edmonson
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
| | - Stanley B. Pounds
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
| | - Lei Shi
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
| | - Xin Zhou
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
| | - Xiaotu Ma
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
| | - Edgar Sioson
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
| | - Yongjin Li
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
| | - Michael Rusch
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
| | - Pankaj Gupta
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
| | - Deqing Pei
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
| | - Cheng Cheng
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
| | - Malcolm A. Smith
- Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, Maryland, United States
| | - Jaime Guidry Auvil
- Office of Cancer Genomics, National Cancer Institute, Bethesda, Maryland United States
| | - Daniela S. Gerhard
- Office of Cancer Genomics, National Cancer Institute, Bethesda, Maryland United States
| | - Mary V. Relling
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
| | - Naomi J. Winick
- University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Andrew J. Carroll
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Nyla A. Heerema
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Elizabeth Raetz
- Department of Pediatrics, Huntsman Cancer Institute and Primary Children’s Hospital, University of Utah, Salt Lake City, Utah, United States
| | - Meenakshi Devidas
- Department of Biostatistics, Colleges of Medicine, Public Health & Health Profession, University of Florida, Gainesville, Florida, United States
| | - Cheryl L. Willman
- Department of Pathology, The Cancer Research and Treatment Center, University of New Mexico, Albuquerque, New Mexico, United States
| | - Richard C. Harvey
- Department of Pathology, The Cancer Research and Treatment Center, University of New Mexico, Albuquerque, New Mexico, United States
| | - William L. Carroll
- Department of Pediatrics, Perlmutter Cancer Center, New York University Medical Center, New York, New York, United States
| | - Kimberly P. Dunsmore
- Health Sciences Center, University of Virginia, Charlottesville, Virginia, United States
| | - Stuart S. Winter
- Department of Pediatrics, University of New Mexico, Albuquerque, New Mexico, United States
| | - Brent L Wood
- Seattle Cancer Care Alliance, Seattle, Washington, United States
| | - Brian P. Sorrentino
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
| | - James R. Downing
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
| | - Mignon L. Loh
- Department of Pediatrics, Benioff Children’s Hospital, University of California at San Francisco, San Francisco, California, United States
| | - Stephen P Hunger
- Department of Pediatrics and the Center for Childhood Cancer Research, Children’s Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States,Address for correspondence: Stephen P. Hunger, Children’s Hospital of Philadelphia, CTRB #3060, 3501 Civic Center Boulevard, Philadelphia, PA 19104, ; Jinghui Zhang, St. Jude Children’s Research Hospital, Department of Computational Biology, 262 Danny Thomas Place, Mail Stop 1135, Memphis, TN 38105, T: 1-901-595- 6829, ; Charles G. Mullighan, St. Jude Children’s Research Hospital, Department of Pathology, Mail Stop 342, 262 Danny Thomas Place, Memphis, TN 38105, T: 1-901-595-3387, F: 1-901-595-5947,
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States,Address for correspondence: Stephen P. Hunger, Children’s Hospital of Philadelphia, CTRB #3060, 3501 Civic Center Boulevard, Philadelphia, PA 19104, ; Jinghui Zhang, St. Jude Children’s Research Hospital, Department of Computational Biology, 262 Danny Thomas Place, Mail Stop 1135, Memphis, TN 38105, T: 1-901-595- 6829, ; Charles G. Mullighan, St. Jude Children’s Research Hospital, Department of Pathology, Mail Stop 342, 262 Danny Thomas Place, Memphis, TN 38105, T: 1-901-595-3387, F: 1-901-595-5947,
| | - Charles G. Mullighan
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States,Address for correspondence: Stephen P. Hunger, Children’s Hospital of Philadelphia, CTRB #3060, 3501 Civic Center Boulevard, Philadelphia, PA 19104, ; Jinghui Zhang, St. Jude Children’s Research Hospital, Department of Computational Biology, 262 Danny Thomas Place, Mail Stop 1135, Memphis, TN 38105, T: 1-901-595- 6829, ; Charles G. Mullighan, St. Jude Children’s Research Hospital, Department of Pathology, Mail Stop 342, 262 Danny Thomas Place, Memphis, TN 38105, T: 1-901-595-3387, F: 1-901-595-5947,
| |
Collapse
|
30
|
Oliveira ML, Akkapeddi P, Alcobia I, Almeida AR, Cardoso BA, Fragoso R, Serafim TL, Barata JT. From the outside, from within: Biological and therapeutic relevance of signal transduction in T-cell acute lymphoblastic leukemia. Cell Signal 2017. [PMID: 28645565 DOI: 10.1016/j.cellsig.2017.06.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological cancer that arises from clonal expansion of transformed T-cell precursors. In this review we summarize the current knowledge on the external stimuli and cell-intrinsic lesions that drive aberrant activation of pivotal, pro-tumoral intracellular signaling pathways in T-cell precursors, driving transformation, leukemia expansion, spread or resistance to therapy. In addition to their pathophysiological relevance, receptors and kinases involved in signal transduction are often attractive candidates for targeted drug development. As such, we discuss also the potential of T-ALL signaling players as targets for therapeutic intervention.
Collapse
Affiliation(s)
- Mariana L Oliveira
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Padma Akkapeddi
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Isabel Alcobia
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal; Instituto de Histologia e Biologia do Desenvolvimento, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Afonso R Almeida
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Bruno A Cardoso
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Rita Fragoso
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Teresa L Serafim
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - João T Barata
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal.
| |
Collapse
|
31
|
Li Q, Li B, Hu L, Ning H, Jiang M, Wang D, Liu T, Zhang B, Chen H. Identification of a novel functional JAK1 S646P mutation in acute lymphoblastic leukemia. Oncotarget 2017; 8:34687-34697. [PMID: 28410228 PMCID: PMC5471003 DOI: 10.18632/oncotarget.16670] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 03/17/2017] [Indexed: 01/12/2023] Open
Abstract
The survival rate of childhood acute lymphoblastic leukemia (ALL) is approaching 90%, while the prognosis of adults remains poor due to the limited therapeutic approaches. In order to identify new targets for ALL, we performed whole-exome sequencing on four adults with B-ALL and discovered a somatic JAK1 S646P mutation. Sanger sequencing of JAK1 was conducted on 53 ALL patients, and two cases exhibited A639G and P960S mutations separately. Functional studies demonstrated that only JAK1 S646P mutation could activate multiple signaling pathways, drive cytokine-independent cell growth, and promote proliferation of malignant cells in nude mice. Moreover, a high sensitivity to the JAK1/2 inhibitor ruxolitinib was observed in S646P mutant model. Exploration in a total of 209 ALL cases showed that JAK1 mutations occur at a frequency of 10.5% in T-ALL (2/19) and 1.6% in B-ALL (3/190). Collectively, our results suggested that JAK1 S646P is an activating mutation in vitro and in vivo. JAK-STAT pathway might represent a promising therapeutic target for ALL.
Collapse
Affiliation(s)
- Qian Li
- Department of Hematopoietic Stem Cell Transplantation, Affiliated Hospital of the Academy of Military Medical Sciences, Beijing, China
- Cell and Gene Therapy Center, Affiliated Hospital of the Academy of Military Medical Sciences, Beijing, China
| | - Botao Li
- Department of Hematopoietic Stem Cell Transplantation, Affiliated Hospital of the Academy of Military Medical Sciences, Beijing, China
- Cell and Gene Therapy Center, Affiliated Hospital of the Academy of Military Medical Sciences, Beijing, China
| | - Liangding Hu
- Department of Hematopoietic Stem Cell Transplantation, Affiliated Hospital of the Academy of Military Medical Sciences, Beijing, China
| | - Hongmei Ning
- Department of Hematopoietic Stem Cell Transplantation, Affiliated Hospital of the Academy of Military Medical Sciences, Beijing, China
| | - Min Jiang
- Department of Hematopoietic Stem Cell Transplantation, Affiliated Hospital of the Academy of Military Medical Sciences, Beijing, China
| | - Danhong Wang
- Department of Hematopoietic Stem Cell Transplantation, Affiliated Hospital of the Academy of Military Medical Sciences, Beijing, China
- Cell and Gene Therapy Center, Affiliated Hospital of the Academy of Military Medical Sciences, Beijing, China
| | - Tingting Liu
- Department of Hematopoietic Stem Cell Transplantation, Affiliated Hospital of the Academy of Military Medical Sciences, Beijing, China
| | - Bin Zhang
- Department of Hematopoietic Stem Cell Transplantation, Affiliated Hospital of the Academy of Military Medical Sciences, Beijing, China
- Cell and Gene Therapy Center, Affiliated Hospital of the Academy of Military Medical Sciences, Beijing, China
| | - Hu Chen
- Department of Hematopoietic Stem Cell Transplantation, Affiliated Hospital of the Academy of Military Medical Sciences, Beijing, China
- Cell and Gene Therapy Center, Affiliated Hospital of the Academy of Military Medical Sciences, Beijing, China
| |
Collapse
|
32
|
Genomic and transcriptional landscape of P2RY8-CRLF2-positive childhood acute lymphoblastic leukemia. Leukemia 2016; 31:1491-1501. [PMID: 27899802 PMCID: PMC5508072 DOI: 10.1038/leu.2016.365] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 11/07/2016] [Accepted: 11/18/2016] [Indexed: 12/12/2022]
Abstract
Children with P2RY8-CRLF2-positive acute lymphoblastic leukemia have an increased relapse risk. Their mutational and transcriptional landscape, as well as the respective patterns at relapse remain largely elusive. We, therefore, performed an integrated analysis of whole-exome and RNA sequencing in 41 major clone fusion-positive cases including 19 matched diagnosis/relapse pairs. We detected a variety of frequently subclonal and highly instable JAK/STAT but also RTK/Ras pathway-activating mutations in 76% of cases at diagnosis and virtually all relapses. Unlike P2RY8-CRLF2 that was lost in 32% of relapses, all other genomic alterations affecting lymphoid development (58%) and cell cycle (39%) remained stable. Only IKZF1 alterations predominated in relapsing cases (P=0.001) and increased from initially 36 to 58% in matched cases. IKZF1's critical role is further corroborated by its specific transcriptional signature comprising stem cell features with signs of impaired lymphoid differentiation, enhanced focal adhesion, activated hypoxia pathway, deregulated cell cycle and increased drug resistance. Our findings support the notion that P2RY8-CRLF2 is dispensable for relapse development and instead highlight the prominent rank of IKZF1 for relapse development by mediating self-renewal and homing to the bone marrow niche. Consequently, reverting aberrant IKAROS signaling or its disparate programs emerges as an attractive potential treatment option in these leukemias.
Collapse
|
33
|
Therapeutic targeting of IL-7Rα signaling pathways in ALL treatment. Blood 2016; 128:473-8. [PMID: 27268088 DOI: 10.1182/blood-2016-03-679209] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 05/27/2016] [Indexed: 01/06/2023] Open
Abstract
Increased understanding of pediatric acute lymphoblastic leukemia (ALL) pathobiology has led to dramatic improvements in patient survival. However, there is still a need to develop targeted therapies to enable reduced chemotherapy intensity and to treat relapsed patients. The interleukin-7 receptor α (IL-7Rα) signaling pathways are prime therapeutic targets because these pathways harbor genetic aberrations in both T-cell ALL and B-cell precursor ALL. Therapeutic targeting of the IL-7Rα signaling pathways may lead to improved outcomes in a subset of patients.
Collapse
|
34
|
Gianfelici V, Chiaretti S, Demeyer S, Di Giacomo F, Messina M, La Starza R, Peragine N, Paoloni F, Geerdens E, Pierini V, Elia L, Mancini M, De Propris MS, Apicella V, Gaidano G, Testi AM, Vitale A, Vignetti M, Mecucci C, Guarini A, Cools J, Foà R. RNA sequencing unravels the genetics of refractory/relapsed T-cell acute lymphoblastic leukemia. Prognostic and therapeutic implications. Haematologica 2016; 101:941-50. [PMID: 27151993 DOI: 10.3324/haematol.2015.139410] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 04/29/2016] [Indexed: 01/12/2023] Open
Abstract
Despite therapeutic improvements, a sizable number of patients with T-cell acute lymphoblastic leukemia still have a poor outcome. To unravel the genomic background associated with refractoriness, we evaluated the transcriptome of 19 cases of refractory/early relapsed T-cell acute lymphoblastic leukemia (discovery cohort) by performing RNA-sequencing on diagnostic material. The incidence and prognostic impact of the most frequently mutated pathways were validated by Sanger sequencing on genomic DNA from diagnostic samples of an independent cohort of 49 cases (validation cohort), including refractory, relapsed and responsive cases. Combined gene expression and fusion transcript analyses in the discovery cohort revealed the presence of known oncogenes and identified novel rearrangements inducing overexpression, as well as inactivation of tumor suppressor genes. Mutation analysis identified JAK/STAT and RAS/PTEN as the most commonly disrupted pathways in patients with chemorefractory disease or early relapse, frequently in association with NOTCH1/FBXW7 mutations. The analysis on the validation cohort documented a significantly higher risk of relapse, inferior overall survival, disease-free survival and event-free survival in patients with JAK/STAT or RAS/PTEN alterations. Conversely, a significantly better survival was observed in patients harboring only NOTCH1/FBXW7 mutations: this favorable prognostic effect was abrogated by the presence of concomitant mutations. Preliminary in vitro assays on primary cells demonstrated sensitivity to specific inhibitors. These data document the negative prognostic impact of JAK/STAT and RAS/PTEN mutations in T-cell acute lymphoblastic leukemia and suggest the potential clinical application of JAK and PI3K/mTOR inhibitors in patients harboring mutations in these pathways.
Collapse
Affiliation(s)
- Valentina Gianfelici
- Hematology, Department of Cellular Biotechnologies and Hematology, Sapienza University, Rome, Italy
| | - Sabina Chiaretti
- Hematology, Department of Cellular Biotechnologies and Hematology, Sapienza University, Rome, Italy
| | - Sofie Demeyer
- Center for Human Genetics, KU Leuven, Belgium Center for the Biology of Disease, VIB, Leuven, Belgium
| | - Filomena Di Giacomo
- Hematology, Department of Cellular Biotechnologies and Hematology, Sapienza University, Rome, Italy Department of Molecular Biotechnology and Health Science and Center for Experimental Research and Medical Studies (CeRMS), University of Turin, Italy
| | - Monica Messina
- Hematology, Department of Cellular Biotechnologies and Hematology, Sapienza University, Rome, Italy
| | - Roberta La Starza
- Hematology and Bone Marrow Transplantation Unit, Department of Medicine, University of Perugia, Italy
| | - Nadia Peragine
- Hematology, Department of Cellular Biotechnologies and Hematology, Sapienza University, Rome, Italy
| | | | - Ellen Geerdens
- Center for Human Genetics, KU Leuven, Belgium Center for the Biology of Disease, VIB, Leuven, Belgium
| | - Valentina Pierini
- Hematology and Bone Marrow Transplantation Unit, Department of Medicine, University of Perugia, Italy
| | - Loredana Elia
- Hematology, Department of Cellular Biotechnologies and Hematology, Sapienza University, Rome, Italy
| | - Marco Mancini
- Hematology, Department of Cellular Biotechnologies and Hematology, Sapienza University, Rome, Italy
| | | | - Valerio Apicella
- Hematology, Department of Cellular Biotechnologies and Hematology, Sapienza University, Rome, Italy
| | - Gianluca Gaidano
- Division of Hematology, Department of Translational Medicine, Amedeo Avogadro University of Eastern Piedmont, Novara, Italy
| | - Anna Maria Testi
- Hematology, Department of Cellular Biotechnologies and Hematology, Sapienza University, Rome, Italy
| | - Antonella Vitale
- Hematology, Department of Cellular Biotechnologies and Hematology, Sapienza University, Rome, Italy
| | - Marco Vignetti
- Hematology, Department of Cellular Biotechnologies and Hematology, Sapienza University, Rome, Italy GIMEMA Data Center, Rome, Italy
| | - Cristina Mecucci
- Hematology and Bone Marrow Transplantation Unit, Department of Medicine, University of Perugia, Italy
| | - Anna Guarini
- Hematology, Department of Cellular Biotechnologies and Hematology, Sapienza University, Rome, Italy
| | - Jan Cools
- Center for Human Genetics, KU Leuven, Belgium Center for the Biology of Disease, VIB, Leuven, Belgium
| | - Robin Foà
- Hematology, Department of Cellular Biotechnologies and Hematology, Sapienza University, Rome, Italy
| |
Collapse
|
35
|
MEK and PI3K-AKT inhibitors synergistically block activated IL7 receptor signaling in T-cell acute lymphoblastic leukemia. Leukemia 2016; 30:1832-43. [PMID: 27174491 PMCID: PMC5240021 DOI: 10.1038/leu.2016.83] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 03/02/2016] [Accepted: 03/14/2016] [Indexed: 02/06/2023]
Abstract
We identified mutations in the IL7Ra gene or in genes encoding the downstream signaling molecules JAK1, JAK3, STAT5B, N-RAS, K-RAS, NF1, AKT and PTEN in 49% of patients with pediatric T-cell acute lymphoblastic leukemia (T-ALL). Strikingly, these mutations (except RAS/NF1) were mutually exclusive, suggesting that they each cause the aberrant activation of a common downstream target. Expressing these mutant signaling molecules—but not their wild-type counterparts—rendered Ba/F3 cells independent of IL3 by activating the RAS-MEK-ERK and PI3K-AKT pathways. Interestingly, cells expressing either IL7Ra or JAK mutants are sensitive to JAK inhibitors, but respond less robustly to inhibitors of the downstream RAS-MEK-ERK and PI3K-AKT-mTOR pathways, indicating that inhibiting only one downstream pathway is not sufficient. Here, we show that inhibiting both the MEK and PI3K-AKT pathways synergistically prevents the proliferation of BaF3 cells expressing mutant IL7Ra, JAK and RAS. Furthermore, combined inhibition of MEK and PI3K/AKT was cytotoxic to samples obtained from 6 out of 11 primary T-ALL patients, including 1 patient who had no mutations in the IL7R signaling pathway. Taken together, these results suggest that the potent cytotoxic effects of inhibiting both MEK and PI3K/AKT should be investigated further as a therapeutic option using leukemia xenograft models.
Collapse
|
36
|
López C, Bergmann AK, Paul U, Murga Penas EM, Nagel I, Betts MJ, Johansson P, Ritgen M, Baumann T, Aymerich M, Jayne S, Russell RB, Campo E, Dyer MJS, Dürig J, Siebert R. Genes encoding members of the JAK-STAT pathway or epigenetic regulators are recurrently mutated in T-cell prolymphocytic leukaemia. Br J Haematol 2016; 173:265-73. [DOI: 10.1111/bjh.13952] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 12/07/2015] [Indexed: 01/02/2023]
Affiliation(s)
- Cristina López
- Institute for Human Genetics; Christian-Albrechts-University Kiel & University Hospital Schleswig Holstein; Kiel Germany
| | - Anke K. Bergmann
- Institute for Human Genetics; Christian-Albrechts-University Kiel & University Hospital Schleswig Holstein; Kiel Germany
- Department of Paediatrics; Christian-Albrechts-University Kiel & University Hospital Schleswig Holstein; Kiel Germany
| | - Ulrike Paul
- Institute for Human Genetics; Christian-Albrechts-University Kiel & University Hospital Schleswig Holstein; Kiel Germany
| | - Eva M. Murga Penas
- Institute for Human Genetics; Christian-Albrechts-University Kiel & University Hospital Schleswig Holstein; Kiel Germany
| | - Inga Nagel
- Institute for Human Genetics; Christian-Albrechts-University Kiel & University Hospital Schleswig Holstein; Kiel Germany
| | - Matthew J. Betts
- Cell Networks; Bioquant; University of Heidelberg; Heidelberg Germany
| | - Patricia Johansson
- Department of Haematology; University Hospital Essen; University of Duisburg-Essen; Essen Germany
- Faculty of Medicine; Institute of Cell Biology (Cancer Research); University of Duisburg-Essen; Essen Germany
| | - Matthias Ritgen
- Second Department of Medicine; University Hospital of Schleswig-Holstein; Kiel Germany
| | - Tycho Baumann
- Department of Haematology; Hospital Clínic; Institut d′Investigaciones Biomèdiques August Pi I Sunyer (IDIBAPS); Barcelona Spain
| | - Marta Aymerich
- Haematopathology Unit; Hospital Clínic; Institut d′Investigaciones Biomèdiques August Pi I Sunyer (IDIBAPS); University of Barcelona; Barcelona Spain
| | - Sandrine Jayne
- Ernest and Helen Scott Haematological Research Institute; University of Leicester; Leicester UK
| | - Robert B. Russell
- Cell Networks; Bioquant; University of Heidelberg; Heidelberg Germany
| | - Elias Campo
- Haematopathology Unit; Hospital Clínic; Institut d′Investigaciones Biomèdiques August Pi I Sunyer (IDIBAPS); University of Barcelona; Barcelona Spain
| | - Martin JS Dyer
- Ernest and Helen Scott Haematological Research Institute; University of Leicester; Leicester UK
| | - Jan Dürig
- Department of Haematology; University Hospital Essen; University of Duisburg-Essen; Essen Germany
- German Cancer Consortium (DKTK); Heidelberg Germany
| | - Reiner Siebert
- Institute for Human Genetics; Christian-Albrechts-University Kiel & University Hospital Schleswig Holstein; Kiel Germany
| |
Collapse
|
37
|
Goh TS, Hong C. New insights of common gamma chain in hematological malignancies. Cytokine 2015; 89:179-184. [PMID: 26748725 DOI: 10.1016/j.cyto.2015.12.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 12/02/2015] [Accepted: 12/10/2015] [Indexed: 01/07/2023]
Abstract
The common gamma chain (γc) receptor family of cytokines including interleukin-2 (IL-2), IL-4, IL-7, IL-9, IL-15, and IL-21 has the common feature of sharing γc signaling subunit of their receptors. The γc cytokines have unique biological effects that regulate differentiation, survival and activation of multiple lymphocyte lineages and control proliferation of malignant cell by influencing tumor environment. It has been also described that different types of lymphoid leukemia and lymphoma exhibit expression of divergent γc cytokines and their receptors, as they may promote malignant transformation of lymphoid cells or on the contrary lead to tumor regression by inducing cell-cycle arrest. Therefore, cytokine-based or cytokine-directed blockade in cancer immunotherapy has currently revolutionized the development of cancer treatment. In this review, we will discuss about the role of γc cytokines and their signaling pathways in hematological malignancies and also propose a novel alternative approach that regulates γc cytokine responsiveness by γc in hematological malignancies.
Collapse
Affiliation(s)
- Tae Sik Goh
- Department of Anatomy, Pusan National University School of Medicine, Yangsan, Republic of Korea; Department of Orthopaedic Surgery, Medical Research Institute, Pusan National University School of Medicine, Busan, Republic of Korea
| | - Changwan Hong
- Department of Anatomy, Pusan National University School of Medicine, Yangsan, Republic of Korea.
| |
Collapse
|
38
|
Losdyck E, Hornakova T, Springuel L, Degryse S, Gielen O, Cools J, Constantinescu SN, Flex E, Tartaglia M, Renauld JC, Knoops L. Distinct Acute Lymphoblastic Leukemia (ALL)-associated Janus Kinase 3 (JAK3) Mutants Exhibit Different Cytokine-Receptor Requirements and JAK Inhibitor Specificities. J Biol Chem 2015; 290:29022-34. [PMID: 26446793 DOI: 10.1074/jbc.m115.670224] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Indexed: 01/22/2023] Open
Abstract
JAK1 and JAK3 are recurrently mutated in acute lymphoblastic leukemia. These tyrosine kinases associate with heterodimeric cytokine receptors such as IL-7 receptor or IL-9 receptor, in which JAK1 is appended to the specific chain, and JAK3 is appended to the common gamma chain. Here, we studied the role of these receptor complexes in mediating the oncogenic activity of JAK3 mutants. Although JAK3(V674A) and the majority of other JAK3 mutants needed to bind to a functional cytokine receptor complex to constitutively activate STAT5, JAK3(L857P) was unexpectedly found to not depend on such receptor complexes for its activity, which was induced without receptor or JAK1 co-expression. Introducing a mutation in the FERM domain that abolished JAK-receptor interaction did not affect JAK3(L857P) activity, whereas it inhibited the other receptor-dependent mutants. The same cytokine receptor independence as for JAK3(L857P) was observed for homologous Leu(857) mutations of JAK1 and JAK2 and for JAK3(L875H). This different cytokine receptor requirement correlated with different functional properties in vivo and with distinct sensitivity to JAK inhibitors. Transduction of murine hematopoietic cells with JAK3(V674A) led homogenously to lymphoblastic leukemias in BALB/c mice. In contrast, transduction with JAK3(L857P) induced various types of lymphoid and myeloid leukemias. Moreover, ruxolitinib, which preferentially blocks JAK1 and JAK2, abolished the proliferation of cells transformed by the receptor-dependent JAK3(V674A), yet proved much less potent on cells expressing JAK3(L857P). These particular cells were, in contrast, more sensitive to JAK3-specific inhibitors. Altogether, our results showed that different JAK3 mutations induce constitutive activation through distinct mechanisms, pointing to specific therapeutic perspectives.
Collapse
Affiliation(s)
- Elisabeth Losdyck
- From the Ludwig Institute for Cancer Research, Brussels Branch and the de Duve Institute, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Tekla Hornakova
- From the Ludwig Institute for Cancer Research, Brussels Branch and the de Duve Institute, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Lorraine Springuel
- From the Ludwig Institute for Cancer Research, Brussels Branch and the de Duve Institute, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Sandrine Degryse
- the VIB Center for the Biology of Disease, K.U. Leuven, 3000 Leuven, Belgium, the K.U. Leuven Center for Human Genetics, K.U. Leuven, 3000 Leuven, Belgium
| | - Olga Gielen
- the VIB Center for the Biology of Disease, K.U. Leuven, 3000 Leuven, Belgium, the K.U. Leuven Center for Human Genetics, K.U. Leuven, 3000 Leuven, Belgium
| | - Jan Cools
- the VIB Center for the Biology of Disease, K.U. Leuven, 3000 Leuven, Belgium, the K.U. Leuven Center for Human Genetics, K.U. Leuven, 3000 Leuven, Belgium
| | - Stefan N Constantinescu
- From the Ludwig Institute for Cancer Research, Brussels Branch and the de Duve Institute, Université Catholique de Louvain, 1200 Brussels, Belgium
| | | | - Marco Tartaglia
- the Genetic Disorders and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesu' IRCCS, Viale di San Paolo 15, 00146 Rome, Italy
| | - Jean-Christophe Renauld
- From the Ludwig Institute for Cancer Research, Brussels Branch and the de Duve Institute, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Laurent Knoops
- From the Ludwig Institute for Cancer Research, Brussels Branch and the de Duve Institute, Université Catholique de Louvain, 1200 Brussels, Belgium, the Hematology Unit, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium, and
| |
Collapse
|
39
|
Springuel L, Renauld JC, Knoops L. JAK kinase targeting in hematologic malignancies: a sinuous pathway from identification of genetic alterations towards clinical indications. Haematologica 2015; 100:1240-53. [PMID: 26432382 PMCID: PMC4591756 DOI: 10.3324/haematol.2015.132142] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 07/17/2015] [Indexed: 12/16/2022] Open
Abstract
Constitutive JAK-STAT pathway activation occurs in most myeloproliferative neoplasms as well as in a significant proportion of other hematologic malignancies, and is frequently a marker of poor prognosis. The underlying molecular alterations are heterogeneous as they include activating mutations in distinct components (cytokine receptor, JAK, STAT), overexpression (cytokine receptor, JAK) or rare JAK2 fusion proteins. In some cases, concomitant loss of negative regulators contributes to pathogenesis by further boosting the activation of the cascade. Exploiting the signaling bottleneck provided by the limited number of JAK kinases is an attractive therapeutic strategy for hematologic neoplasms driven by constitutive JAK-STAT pathway activation. However, given the conserved nature of the kinase domain among family members and the interrelated roles of JAK kinases in many physiological processes, including hematopoiesis and immunity, broad usage of JAK inhibitors in hematology is challenged by their narrow therapeutic window. Novel therapies are, therefore, needed. The development of more selective inhibitors is a questionable strategy as such inhibitors might abrogate the beneficial contribution of alleviating the cancer-related pro-inflammatory microenvironment and raise selective pressure to a threshold that allows the emergence of malignant subclones harboring drug-resistant mutations. In contrast, synergistic combinations of JAK inhibitors with drugs targeting cascades that work in concert with JAK-STAT pathway appear to be promising therapeutic alternatives to JAK inhibitors as monotherapies.
Collapse
Affiliation(s)
- Lorraine Springuel
- de Duve Institute, Université Catholique de Louvain, Brussels, Belgium Ludwig Institute for Cancer Research, Brussels, Belgium
| | - Jean-Christophe Renauld
- de Duve Institute, Université Catholique de Louvain, Brussels, Belgium Ludwig Institute for Cancer Research, Brussels, Belgium
| | - Laurent Knoops
- de Duve Institute, Université Catholique de Louvain, Brussels, Belgium Ludwig Institute for Cancer Research, Brussels, Belgium Hematology Unit, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| |
Collapse
|
40
|
Genetic mutational profiling analysis of T cell acute lymphoblastic leukemia reveal mutant FBXW7 as a prognostic indicator for inferior survival. Ann Hematol 2015; 94:1817-28. [PMID: 26341754 DOI: 10.1007/s00277-015-2474-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 08/06/2015] [Indexed: 10/23/2022]
Abstract
T cell acute lymphoblastic leukemia (T-ALL) is an aggressive neoplasm for which there are currently no adequate biomarkers for developing risk-adapted therapeutic regimens to improve the treatment outcome. In this prospective study of 83 Chinese patients (54 children and 29 adults) with de novo T-ALL, we analyzed mutations in 11 T-ALL genes: NOTCH1, FBXW7, PHF6, PTEN, N-RAS, K-RAS, WT1, IL7R, PIK3CA, PIK3RA, and AKT1. NOTCH1 mutations were identified in 51.9 and 37.9 % of pediatric and adult patients, respectively, and these patients showed improved overall survival (OS) and event-free survival (EFS). The FBXW7 mutant was present in 25.9 and 6.9 % of pediatric and adult patients, respectively, and was associated with inferior OS and EFS in pediatric T-ALL. Multivariate analysis revealed that mutant FBXW7 was an independent prognostic indicator for inferior EFS (hazard ratio [HR] 4.38; 95 % confidence interval [CI] 1.15-16.71; p = 0.03) and tended to be associated with reduced OS (HR 2.81; 95 % CI 0.91-8.69; p = 0.074) in pediatric T-ALL. Mutant PHF6 was present in 13 and 20.7 % of our childhood and adult cohorts, respectively, while PTEN mutations were noted in 11.1 % of the pediatric patients. PTEN and NOTCH1 mutations were almost mutually exclusive, while IL7R and WT1 mutations were rare in pediatric T-ALL and PTPN11 and AKT1 mutations were infrequent in adult T-ALL. This study revealed differences in the mutational profiles of pediatric and adult T-ALL and suggests mutant FBXW7 as an independent prognostic indicator for inferior survival in pediatric T-ALL.
Collapse
|
41
|
Kunz JB, Rausch T, Bandapalli OR, Eilers J, Pechanska P, Schuessele S, Assenov Y, Stütz AM, Kirschner-Schwabe R, Hof J, Eckert C, von Stackelberg A, Schrappe M, Stanulla M, Koehler R, Avigad S, Elitzur S, Handgretinger R, Benes V, Weischenfeldt J, Korbel JO, Muckenthaler MU, Kulozik AE. Pediatric T-cell lymphoblastic leukemia evolves into relapse by clonal selection, acquisition of mutations and promoter hypomethylation. Haematologica 2015; 100:1442-50. [PMID: 26294725 DOI: 10.3324/haematol.2015.129692] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 08/11/2015] [Indexed: 11/09/2022] Open
Abstract
Relapsed precursor T-cell acute lymphoblastic leukemia is characterized by resistance against chemotherapy and is frequently fatal. We aimed at understanding the molecular mechanisms resulting in relapse of T-cell acute lymphoblastic leukemia and analyzed 13 patients at first diagnosis, remission and relapse by whole exome sequencing, targeted ultra-deep sequencing, multiplex ligation dependent probe amplification and DNA methylation array. Compared to primary T-cell acute lymphoblastic leukemia, in relapse the number of single nucleotide variants and small insertions and deletions approximately doubled from 11.5 to 26. Targeted ultra-deep sequencing sensitively detected subclones that were selected for in relapse. The mutational pattern defined two types of relapses. While both are characterized by selection of subclones and acquisition of novel mutations, 'type 1' relapse derives from the primary leukemia whereas 'type 2' relapse originates from a common pre-leukemic ancestor. Relapse-specific changes included activation of the nucleotidase NT5C2 resulting in resistance to chemotherapy and mutations of epigenetic modulators, exemplified by SUZ12, WHSC1 and SMARCA4. While mutations present in primary leukemia and in relapse were enriched for known drivers of leukemia, relapse-specific changes revealed an association with general cancer-promoting mechanisms. This study thus identifies mechanisms that drive progression of pediatric T-cell acute lymphoblastic leukemia to relapse and may explain the characteristic treatment resistance of this condition.
Collapse
Affiliation(s)
- Joachim B Kunz
- Department of Pediatric Oncology, Hematology and Immunology, Children's Hospital, University of Heidelberg, Germany Molecular Medicine Partnership Unit, EMBL-University of Heidelberg, Germany German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Tobias Rausch
- Molecular Medicine Partnership Unit, EMBL-University of Heidelberg, Germany European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany European Molecular Biology Laboratory (EMBL), Genomics Core Facility, Heidelberg, Germany
| | - Obul R Bandapalli
- Department of Pediatric Oncology, Hematology and Immunology, Children's Hospital, University of Heidelberg, Germany Molecular Medicine Partnership Unit, EMBL-University of Heidelberg, Germany German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Juliane Eilers
- Department of Pediatric Oncology, Hematology and Immunology, Children's Hospital, University of Heidelberg, Germany Molecular Medicine Partnership Unit, EMBL-University of Heidelberg, Germany
| | - Paulina Pechanska
- Department of Pediatric Oncology, Hematology and Immunology, Children's Hospital, University of Heidelberg, Germany Molecular Medicine Partnership Unit, EMBL-University of Heidelberg, Germany
| | - Stephanie Schuessele
- Department of Pediatric Oncology, Hematology and Immunology, Children's Hospital, University of Heidelberg, Germany Molecular Medicine Partnership Unit, EMBL-University of Heidelberg, Germany
| | - Yassen Assenov
- Division of Epigenomics and Cancer Risk Factors, The German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Adrian M Stütz
- Molecular Medicine Partnership Unit, EMBL-University of Heidelberg, Germany European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | | | - Jana Hof
- Department of Pediatric Oncology/Hematology, Charité - Universitätsmedizin Berlin, Germany German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Cornelia Eckert
- Department of Pediatric Oncology/Hematology, Charité - Universitätsmedizin Berlin, Germany
| | - Arend von Stackelberg
- Department of Pediatric Oncology/Hematology, Charité - Universitätsmedizin Berlin, Germany
| | - Martin Schrappe
- Pediatrics, University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | - Martin Stanulla
- Department of Pediatric Hematology/Oncology, Medical School Hannover, Germany
| | - Rolf Koehler
- Department of Human Genetics, University of Heidelberg, Germany
| | - Smadar Avigad
- Molecular Oncology, Felsenstein Medical Research Center and Pediatric Hematology Oncology, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
| | - Sarah Elitzur
- Molecular Oncology, Felsenstein Medical Research Center and Pediatric Hematology Oncology, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
| | | | - Vladimir Benes
- European Molecular Biology Laboratory (EMBL), Genomics Core Facility, Heidelberg, Germany
| | - Joachim Weischenfeldt
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Jan O Korbel
- Molecular Medicine Partnership Unit, EMBL-University of Heidelberg, Germany European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Martina U Muckenthaler
- Department of Pediatric Oncology, Hematology and Immunology, Children's Hospital, University of Heidelberg, Germany Molecular Medicine Partnership Unit, EMBL-University of Heidelberg, Germany
| | - Andreas E Kulozik
- Department of Pediatric Oncology, Hematology and Immunology, Children's Hospital, University of Heidelberg, Germany Molecular Medicine Partnership Unit, EMBL-University of Heidelberg, Germany German Cancer Consortium (DKTK), Heidelberg, Germany
| |
Collapse
|
42
|
Tan L, Akahane K, McNally R, Reyskens KMSE, Ficarro SB, Liu S, Herter-Sprie GS, Koyama S, Pattison MJ, Labella K, Johannessen L, Akbay EA, Wong KK, Frank DA, Marto JA, Look TA, Arthur JSC, Eck MJ, Gray NS. Development of Selective Covalent Janus Kinase 3 Inhibitors. J Med Chem 2015; 58:6589-606. [PMID: 26258521 DOI: 10.1021/acs.jmedchem.5b00710] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The Janus kinases (JAKs) and their downstream effectors, signal transducer and activator of transcription proteins (STATs), form a critical immune cell signaling circuit, which is of fundamental importance in innate immunity, inflammation, and hematopoiesis, and dysregulation is frequently observed in immune disease and cancer. The high degree of structural conservation of the JAK ATP binding pockets has posed a considerable challenge to medicinal chemists seeking to develop highly selective inhibitors as pharmacological probes and as clinical drugs. Here we report the discovery and optimization of 2,4-substituted pyrimidines as covalent JAK3 inhibitors that exploit a unique cysteine (Cys909) residue in JAK3. Investigation of structure-activity relationship (SAR) utilizing biochemical and transformed Ba/F3 cellular assays resulted in identification of potent and selective inhibitors such as compounds 9 and 45. A 2.9 Å cocrystal structure of JAK3 in complex with 9 confirms the covalent interaction. Compound 9 exhibited decent pharmacokinetic properties and is suitable for use in vivo. These inhibitors provide a set of useful tools to pharmacologically interrogate JAK3-dependent biology.
Collapse
Affiliation(s)
- Li Tan
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School , Boston, Massachusetts 02115, United States
| | | | - Randall McNally
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School , Boston, Massachusetts 02115, United States
| | - Kathleen M S E Reyskens
- Division of Cell Signaling and Immunology, College of Life Sciences, University of Dundee , Dundee DD1 5EH. U.K
| | - Scott B Ficarro
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School , Boston, Massachusetts 02115, United States
| | | | | | | | - Michael J Pattison
- Division of Cell Signaling and Immunology, College of Life Sciences, University of Dundee , Dundee DD1 5EH. U.K
| | | | - Liv Johannessen
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School , Boston, Massachusetts 02115, United States
| | | | | | | | - Jarrod A Marto
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School , Boston, Massachusetts 02115, United States
| | | | - J Simon C Arthur
- Division of Cell Signaling and Immunology, College of Life Sciences, University of Dundee , Dundee DD1 5EH. U.K
| | - Michael J Eck
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School , Boston, Massachusetts 02115, United States
| | - Nathanael S Gray
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School , Boston, Massachusetts 02115, United States
| |
Collapse
|
43
|
Damlaj M, Sulai NH, Oliveira JL, Ketterling RP, Hashmi S, Witzig T, Nowakowski G, Call TG, Shanafelt TD, Ding W, Hogan WJ, Litzow MR, Patnaik MM. Impact of Alemtuzumab Therapy and Route of Administration in T-Prolymphocytic Leukemia: A Single-Center Experience. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2015; 15:699-704. [PMID: 26422251 DOI: 10.1016/j.clml.2015.07.643] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 07/06/2015] [Accepted: 07/28/2015] [Indexed: 12/22/2022]
Abstract
OBJECTIVE We conducted a single-center retrospective analysis to determine the impact of the anti-CD52 monoclonal antibody alemtuzumab including route of administration compared to non-alemtuzumab-containing regimens in T-prolymphocytic leukemia (T-PLL). PATIENTS AND METHODS The study was a retrospective analysis of a consecutive cohort of adult patients diagnosed with T-PLL at Mayo Clinic Rochester from January 1, 1997, through September 30, 2014. RESULTS A total of 41 patients were diagnosed with T-PLL per the World Health Organization 2008 classification. The median age was 66 years, and 23 (56%) were male. After a median follow-up of 18 months (range, 0.4-66.1 months), 32 patients (78%) had died, with a median overall survival of 16.9 months. Approximately half the cohort was treated with alemtuzumab, almost exclusively after 2004. Median survival for patients receiving intravenous alemtuzumab-based therapy was 40.5 versus 10.3 months for all other therapies (P = .0004). A significant survival difference between intravenous versus subcutaneous alemtuzumab administration of 40.5 versus 13.7 months was noted (P = .0014). Only 4 (14%) of 28 patients aged < 70 years underwent hematopoietic stem cell transplantation, with a median survival after transplantation of 4 months. CONCLUSION In this large series of T-PLL patients treated at a single tertiary-care center, we confirmed the prior observation of the superiority of intravenous alemtuzumab over other therapies. Hematopoietic stem cell transplantation was feasible in a minority of potentially eligible patients. Early transplant referral should be considered for all eligible patients.
Collapse
Affiliation(s)
- Moussab Damlaj
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN.
| | - Nanna H Sulai
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Jennifer L Oliveira
- Division of Hematopathology, Department of Laboratory Medicine, Mayo Clinic, Rochester, MN
| | - Rhett P Ketterling
- Division of Hematopathology, Department of Laboratory Medicine, Mayo Clinic, Rochester, MN
| | - Shahrukh Hashmi
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Thomas Witzig
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN
| | | | - Timothy G Call
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Tait D Shanafelt
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Wei Ding
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN
| | - William J Hogan
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Mark R Litzow
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Mrinal M Patnaik
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN
| |
Collapse
|
44
|
PAX5 is a tumor suppressor in mouse mutagenesis models of acute lymphoblastic leukemia. Blood 2015; 125:3609-17. [PMID: 25855603 DOI: 10.1182/blood-2015-02-626127] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 03/31/2015] [Indexed: 12/13/2022] Open
Abstract
Alterations of genes encoding transcriptional regulators of lymphoid development are a hallmark of B-progenitor acute lymphoblastic leukemia (B-ALL) and most commonly involve PAX5, encoding the DNA-binding transcription factor paired-box 5. The majority of PAX5 alterations in ALL are heterozygous, and key PAX5 target genes are expressed in leukemic cells, suggesting that PAX5 may be a haploinsufficient tumor suppressor. To examine the role of PAX5 alterations in leukemogenesis, we performed mutagenesis screens of mice heterozygous for a loss-of-function Pax5 allele. Both chemical and retroviral mutagenesis resulted in a significantly increased penetrance and reduced latency of leukemia, with a shift to B-lymphoid lineage. Genomic profiling identified a high frequency of secondary genomic mutations, deletions, and retroviral insertions targeting B-lymphoid development, including Pax5, and additional genes and pathways mutated in ALL, including tumor suppressors, Ras, and Janus kinase-signal transducer and activator of transcription signaling. These results show that in contrast to simple Pax5 haploinsufficiency, multiple sequential alterations targeting lymphoid development are central to leukemogenesis and contribute to the arrest in lymphoid maturation characteristic of ALL. This cross-species analysis also validates the importance of concomitant alterations of multiple cellular growth, signaling, and tumor suppression pathways in the pathogenesis of B-ALL.
Collapse
|
45
|
Abstract
The acquisition of growth signal self-sufficiency is 1 of the hallmarks of cancer. We previously reported that the murine interleukin-9-dependent TS1 cell line gives rise to growth factor-independent clones with constitutive activation of the Janus kinase (JAK)- signal transducer and activator of transcription (STAT) pathway. Here, we show that this transforming event results from activating mutations either in JAK1, JAK3, or in both kinases. Transient and stable expression of JAK1 and/or JAK3 mutants showed that each mutant induces STAT activation and that their coexpression further increases this activation. The proliferation of growth factor-independent TS1 clones can be efficiently blocked by JAK inhibitors such as ruxolitinib or CMP6 in short-term assays. However, resistant clones occur upon long-term culture in the presence of inhibitors. Surprisingly, resistance to CMP6 was not caused by the acquisition of secondary mutations in the adenosine triphosphate-binding pocket of the JAK mutant. Indeed, cells that originally showed a JAK1-activating mutation became resistant to inhibitors by acquiring another activating mutation in JAK3, whereas cells that originally showed a JAK3-activating mutation became resistant to inhibitors by acquiring another activating mutation in JAK1. These observations underline the cooperation between JAK1 and JAK3 mutants in T-cell transformation and represent a new mechanism of acquisition of resistance against JAK inhibitors.
Collapse
|
46
|
Sarmento LM, Póvoa V, Nascimento R, Real G, Antunes I, Martins LR, Moita C, Alves PM, Abecasis M, Moita LF, Parkhouse RME, Meijerink JPP, Barata JT. CHK1 overexpression in T-cell acute lymphoblastic leukemia is essential for proliferation and survival by preventing excessive replication stress. Oncogene 2014; 34:2978-90. [PMID: 25132270 DOI: 10.1038/onc.2014.248] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 06/05/2014] [Accepted: 06/26/2014] [Indexed: 12/22/2022]
Abstract
Checkpoint kinase 1 (CHK1) is a key component of the ATR (ataxia telangiectasia-mutated and Rad3-related)-dependent DNA damage response pathway that protect cells from replication stress, a cell intrinsic phenomenon enhanced by oncogenic transformation. Here, we show that CHK1 is overexpressed and hyperactivated in T-cell acute lymphoblastic leukemia (T-ALL). CHEK1 mRNA is highly abundant in patients of the proliferative T-ALL subgroup and leukemia cells exhibit constitutively elevated levels of the replication stress marker phospho-RPA32 and the DNA damage marker γH2AX. Importantly, pharmacologic inhibition of CHK1 using PF-004777736 or CHK1 short hairpin RNA-mediated silencing impairs T-ALL cell proliferation and viability. CHK1 inactivation results in the accumulation of cells with incompletely replicated DNA, ensuing DNA damage, ATM/CHK2 activation and subsequent ATM- and caspase-3-dependent apoptosis. In contrast to normal thymocytes, primary T-ALL cells are sensitive to therapeutic doses of PF-004777736, even in the presence of stromal or interleukin-7 survival signals. Moreover, CHK1 inhibition significantly delays in vivo growth of xenotransplanted T-ALL tumors. We conclude that CHK1 is critical for T-ALL proliferation and viability by downmodulating replication stress and preventing ATM/caspase-3-dependent cell death. Pharmacologic inhibition of CHK1 may be a promising therapeutic alternative for T-ALL treatment.
Collapse
Affiliation(s)
- L M Sarmento
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - V Póvoa
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - R Nascimento
- Infections and Immunity Laboratory, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - G Real
- 1] iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal [2] Instituto de Tecnologia Química e Biológica, Oeiras, Portugal
| | - I Antunes
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - L R Martins
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - C Moita
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - P M Alves
- 1] iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal [2] Instituto de Tecnologia Química e Biológica, Oeiras, Portugal
| | - M Abecasis
- Cardiologia Pediátrica Medico-Cirúrgica, Hospital Sta. Cruz, Carnaxide, Lisbon, Portugal
| | - L F Moita
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - R M E Parkhouse
- Infections and Immunity Laboratory, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - J P P Meijerink
- Department of Pediatric Oncology/Hematology, Erasmus MC/Sophia Children's Hospital, Rotterdam, The Netherlands
| | - J T Barata
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
47
|
Agarwal A, MacKenzie RJ, Eide CA, Davare MA, Watanabe-Smith K, Tognon CE, Mongoue-Tchokote S, Park B, Braziel RM, Tyner JW, Druker BJ. Functional RNAi screen targeting cytokine and growth factor receptors reveals oncorequisite role for interleukin-2 gamma receptor in JAK3-mutation-positive leukemia. Oncogene 2014; 34:2991-9. [PMID: 25109334 PMCID: PMC4324389 DOI: 10.1038/onc.2014.243] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 05/23/2014] [Accepted: 06/15/2014] [Indexed: 01/25/2023]
Abstract
To understand the role of cytokine and growth factor receptor-mediated signaling in leukemia pathogenesis, we designed a functional RNA interference (RNAi) screen targeting 188 cytokine and growth factor receptors that we found highly expressed in primary leukemia specimens. Using this screen, we identified interleukin-2 gamma receptor (IL2Rγ) as a critical growth determinant for a JAK3(A572V) mutation-positive acute myeloid leukemia cell line. We observed that knockdown of IL2Rγ abrogates phosphorylation of JAK3 and downstream signaling molecules, JAK1, STAT5, MAPK and pS6 ribosomal protein. Overexpression of IL2Rγ in murine cells increased the transforming potential of activating JAK3 mutations, whereas absence of IL2Rγ completely abrogated the clonogenic potential of JAK3(A572V), as well as the transforming potential of additional JAK3-activating mutations such as JAK3(M511I). In addition, mutation at the IL2Rγ interaction site in the FERM domain of JAK3 (Y100C) completely abrogated JAK3-mediated leukemic transformation. Mechanistically, we found IL2Rγ contributes to constitutive JAK3 mutant signaling by increasing JAK3 expression and phosphorylation. Conversely, we found that mutant, but not wild-type JAK3, increased the expression of IL2Rγ, indicating IL2Rγ and JAK3 contribute to constitutive JAK/STAT signaling through their reciprocal regulation. Overall, we demonstrate a novel role for IL2Rγ in potentiating oncogenesis in the setting of JAK3-mutation-positive leukemia. In addition, our study highlights an RNAi-based functional assay that can be used to facilitate the identification of non-kinase cytokine and growth factor receptor targets for inhibiting leukemic cell growth.
Collapse
Affiliation(s)
- A Agarwal
- 1] Division of Hematology and Medical Oncology, Oregon Health & Science University, Portland, OR, USA [2] Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - R J MacKenzie
- 1] Division of Hematology and Medical Oncology, Oregon Health & Science University, Portland, OR, USA [2] Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - C A Eide
- 1] Division of Hematology and Medical Oncology, Oregon Health & Science University, Portland, OR, USA [2] Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA [3] Howard Hughes Medical Institute, Portland, OR, USA
| | - M A Davare
- Department of Pediatrics, Oregon Health & Science University, Portland, OR, USA
| | - K Watanabe-Smith
- 1] Division of Hematology and Medical Oncology, Oregon Health & Science University, Portland, OR, USA [2] Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - C E Tognon
- 1] Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA [2] Howard Hughes Medical Institute, Portland, OR, USA
| | - S Mongoue-Tchokote
- 1] Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA [2] Biostatistics Shared Resource, Oregon Health & Science University, Portland, OR, USA
| | - B Park
- 1] Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA [2] Biostatistics Shared Resource, Oregon Health & Science University, Portland, OR, USA
| | - R M Braziel
- Department of Pathology, Oregon Health & Science University, Portland, OR, USA
| | - J W Tyner
- 1] Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA [2] Department of Cell & Developmental Biology, Oregon Health & Science University, Portland, OR, USA
| | - B J Druker
- 1] Division of Hematology and Medical Oncology, Oregon Health & Science University, Portland, OR, USA [2] Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA [3] Howard Hughes Medical Institute, Portland, OR, USA
| |
Collapse
|
48
|
Evangelisti C, Evangelisti C, Chiarini F, Lonetti A, Buontempo F, Bressanin D, Cappellini A, Orsini E, McCubrey JA, Martelli AM. Therapeutic potential of targeting mTOR in T-cell acute lymphoblastic leukemia (review). Int J Oncol 2014; 45:909-18. [PMID: 24968804 DOI: 10.3892/ijo.2014.2525] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 06/12/2014] [Indexed: 11/05/2022] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a heterogeneous neoplastic disorder of immature hematopoietic precursors committed to the T-cell lineage. T-ALL comprises about 15% of pediatric and 25% of adult ALL cases. Even if the prognosis of T-ALL has improved especially in the childhood due to the use of new intensified treatment protocols, the outcome of relapsed patients who are resistant to conventional chemotherapeutic drugs or who relapse is still poor. For this reason, there is a need for novel and less toxic targeted therapies against signaling pathways aberrantly activated in T-ALL, such as the phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR). Small molecules designed to target key components of this signaling axis have proven their efficacy both in vitro and in vivo in pre-clinical settings of T-ALL. In particular, different classes of mTOR inhibitors have been disclosed by pharmaceutical companies, and they are currently being tested in clinical trials for treating T-ALL patients. One of the most promising approaches for the treatment of T-ALL seems to be the combination of mTOR inhibitors with traditional chemotherapeutic agents. This could lead to a lower drug dosage that may circumvent the systemic side effects of chemotherapeutics. In this review, we focus on the different classes of mTOR inhibitors that will possibly have an impact on the therapeutic arsenal we have at our disposal against T-ALL.
Collapse
Affiliation(s)
- Camilla Evangelisti
- Institute of Molecular Genetics, National Research Council, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Cecilia Evangelisti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Francesca Chiarini
- Institute of Molecular Genetics, National Research Council, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Annalisa Lonetti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Francesca Buontempo
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Daniela Bressanin
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Alessandra Cappellini
- Department of Human Social and Health Sciences, University of Cassino, Cassino, Italy
| | - Ester Orsini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
49
|
Sakata-Yanagimoto M, Enami T, Yokoyama Y, Chiba S. Disease-specific mutations in mature lymphoid neoplasms: recent advances. Cancer Sci 2014; 105:623-9. [PMID: 24689848 PMCID: PMC4317900 DOI: 10.1111/cas.12408] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 03/27/2014] [Accepted: 03/28/2014] [Indexed: 12/28/2022] Open
Abstract
Mature lymphoid neoplasms (MLN) are clinically and pathologically more complex than precursor lymphoid neoplasms. Until recently, molecular characterization of MLN was mainly based on cytogenetics/fluorescence in situ hybridization, allele copy number, and mRNA expression, approaches that yielded scanty gene mutation information. Use of massive parallel sequencing technologies has changed this outcome, and now many gene mutations have been discovered. Some of these are considerably frequent in, and substantially specific to, distinct MLN subtypes, and occur at single or several hotspots. They include the V600E BRAF mutation in hairy cell leukemia, the L265P MYD88 mutation in Waldenström macroglobulinemia, the G17V RHOA mutation in angioimmunoblastic T-cell lymphoma and peripheral T-cell lymphoma, not otherwise specified, and the Y640F//D661Y/V/H/I//N647I STAT3 mutations in T-cell large granular lymphocytic leukemia. Detecting these mutations is highly valuable in diagnosing MLN subtypes. Defining these mutations also sheds light on the molecular pathogenesis of MLN, furthering development of molecular targeting therapies. In this review, we focus on the disease-specific gene mutations in MLN discovered by recent massive sequencing technologies.
Collapse
Affiliation(s)
- Mamiko Sakata-Yanagimoto
- Department of Hematology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan; Department of Hematology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan; Department of Hematology, University of Tsukuba Hospital, Tsukuba, Japan
| | | | | | | |
Collapse
|
50
|
Novel activating STAT5B mutations as putative drivers of T-cell acute lymphoblastic leukemia. Leukemia 2014; 28:1738-42. [PMID: 24573384 DOI: 10.1038/leu.2014.89] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|