1
|
Sobczyńska-Konefał A, Jasek M, Karabon L, Jaskuła E. Insights into genetic aberrations and signalling pathway interactions in chronic lymphocytic leukemia: from pathogenesis to treatment strategies. Biomark Res 2024; 12:162. [PMID: 39732734 DOI: 10.1186/s40364-024-00710-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 12/17/2024] [Indexed: 12/30/2024] Open
Abstract
Chronic lymphocytic leukemia (CLL) is prevalent in adults and is characterized by the accumulation of mature B cells in the blood, bone marrow, lymph nodes, and spleens. Recent progress in therapy and the introduction of targeted treatments [inhibitors of Bruton's tyrosine kinase (BTKi) or inhibitor of anti-apoptotic B-cell lymphoma-2 (Bcl-2i) protein (venetoclax)] in place of chemoimmunotherapy have significantly improved the outcomes of patients with CLL. These advancements have shifted the importance of traditional predictive markers, leading to a greater focus on resistance genes and reducing the significance of mutations, such as TP53 and del(17p). Despite the significant progress in CLL treatment, some patients still experience disease relapse. This is due to the substantial heterogeneity of CLL as well as the interconnected genetic resistance mechanisms and pathway adaptive resistance mechanisms to targeted therapies in CLL. Although the knowledge of the pathomechanism of CLL has expanded significantly in recent years, the precise origins of CLL and the interplay between various genetic factors remain incompletely understood, necessitating further research. This review enhances the molecular understanding of CLL by describing how BCR signalling, NF-κB PI3K/AKT, and ROR1 pathways sustain CLL cell survival, proliferation, and resistance to apoptosis. It also presents genetic and pathway-adaptive resistance mechanisms in CLL. Identifying B-cell receptor (BCR) signalling as a pivotal driver of CLL progression, the findings advocate personalized treatment strategies based on molecular profiling, emphasizing the need for further research to unravel the complex interplay between BCR signalling and its associated pathways to improve patient outcomes.
Collapse
Affiliation(s)
- Anna Sobczyńska-Konefał
- L. Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolf Weigl 12, 53-114, Wroclaw, Poland
- Lower Silesian Oncology Hematology and Pulmonology Center, Ludwik Hirszfeld square 12, 53-413, Wroclaw, Poland
| | - Monika Jasek
- L. Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolf Weigl 12, 53-114, Wroclaw, Poland
| | - Lidia Karabon
- L. Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolf Weigl 12, 53-114, Wroclaw, Poland
| | - Emilia Jaskuła
- L. Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolf Weigl 12, 53-114, Wroclaw, Poland.
- Lower Silesian Oncology Hematology and Pulmonology Center, Ludwik Hirszfeld square 12, 53-413, Wroclaw, Poland.
| |
Collapse
|
2
|
Turk A, Čeh E, Calin GA, Kunej T. Multiple omics levels of chronic lymphocytic leukemia. Cell Death Discov 2024; 10:293. [PMID: 38906881 PMCID: PMC11192936 DOI: 10.1038/s41420-024-02068-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 06/23/2024] Open
Abstract
Chronic lymphocytic leukemia (CLL) is a lymphoproliferative malignancy characterized by the proliferation of functionally mature but incompetent B cells. It is the most prevalent type of leukemia in Western populations, accounting for approximately 25% of new leukemia cases. While recent advances, such as ibrutinib and venetoclax treatment have improved patient outlook, aggressive forms of CLL such as Richter transformation still pose a significant challenge. This discrepancy may be due to the heterogeneity of factors contributing to CLL development at multiple -omics levels. However, information on the omics of CLL is fragmented, hindering multi-omics-based research into potential treatment options. To address this, we aggregated and presented a selection of important aspects of various omics levels of the disease in this review. The purpose of the present literature analysis is to portray examples of CLL studies from different omics levels, including genomics, epigenomics, transcriptomics, epitranscriptomics, proteomics, epiproteomics, metabolomics, glycomics and lipidomics, as well as those identified by multi-omics approaches. The review includes the list of 102 CLL-associated genes with relevant genomics information. While single-omics studies yield substantial and useful data, they omit a significant level of complex biological interplay present in the disease. As multi-omics studies integrate several different layers of data, they may be better suited for complex diseases such as CLL and have thus far yielded promising results. Future multi-omics studies may assist clinicians in improved treatment choices based on CLL subtypes as well as allow the identification of novel biomarkers and targets for treatments.
Collapse
Grants
- P4-0220 Javna Agencija za Raziskovalno Dejavnost RS (Slovenian Research Agency)
- Dr. Calin is the Felix L. Haas Endowed Professor in Basic Science. Work in G.A.C.’s laboratory is supported by NCI grants 1R01 CA182905-01 and 1R01CA222007-01A1, NIGMS grant 1R01GM122775-01, DoD Idea Award W81XWH-21-1-0030, a Team DOD grant in Gastric Cancer W81XWH-21-1-0715, a Chronic Lymphocytic Leukemia Moonshot Flagship project, a CLL Global Research Foundation 2019 grant, a CLL Global Research Foundation 2020 grant, a CLL Global Research Foundation 2022 grant, The G. Harold & Leila Y. Mathers Foundation, two grants from Torrey Coast Foundation, an Institutional Research Grant and Development Grant associated with the Brain SPORE 2P50CA127001.
Collapse
Affiliation(s)
- Aleksander Turk
- Clinical Institute of Genomic Medicine, University Clinical Centre Ljubljana, Ljubljana, Slovenia
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Eva Čeh
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - George A Calin
- Department of Translational Molecular Pathology, Division of Pathology, MD Anderson Cancer Center, University of Texas, Houston, TX, 77030, USA.
| | - Tanja Kunej
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
3
|
Simon-Molas H, Montironi C, Kabanova A, Eldering E. Metabolic reprogramming in the CLL TME; potential for new therapeutic targets. Semin Hematol 2024; 61:155-162. [PMID: 38493076 DOI: 10.1053/j.seminhematol.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/28/2024] [Accepted: 02/12/2024] [Indexed: 03/18/2024]
Abstract
Chronic lymphocytic leukemia (CLL) cells circulate between peripheral (PB) blood and lymph node (LN) compartments, and strictly depend on microenvironmental factors for proliferation, survival and drug resistance. All cancer cells display metabolic reprogramming and CLL is no exception - though the inert status of the PB CLL cells has hampered detailed insight into these processes. We summarize previous work on reactive oxygen species (ROS), oxidative stress, and hypoxia, as well as the important roles of Myc, and PI3K/Akt/mTor pathways. In vitro co-culture systems and gene expression analyses have provided a partial picture of CLL LN metabolism. New broad omics techniques allow to obtain molecular and also single-cell level understanding of CLL plasticity and metabolic reprogramming. We summarize recent developments and describe the new concept of glutamine addiction for CLL, which may hold therapeutic promise.
Collapse
Affiliation(s)
- Helga Simon-Molas
- Department of Experimental Immunology, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands; Cancer Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands; Cancer Immunology, Cancer Center Amsterdam, Amsterdam, the Netherlands; Department of Hematology, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands
| | - Chiara Montironi
- Department of Experimental Immunology, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands; Cancer Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands; Cancer Immunology, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Anna Kabanova
- Tumour Immunology Unit, Toscana Life Sciences Foundation, Siena, Italy
| | - Eric Eldering
- Department of Experimental Immunology, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands; Cancer Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands; Cancer Immunology, Cancer Center Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
4
|
Vom Stein AF, Hallek M, Nguyen PH. Role of the tumor microenvironment in CLL pathogenesis. Semin Hematol 2024; 61:142-154. [PMID: 38220499 DOI: 10.1053/j.seminhematol.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/02/2023] [Accepted: 12/23/2023] [Indexed: 01/16/2024]
Abstract
Chronic lymphocytic leukemia (CLL) cells extensively interact with and depend on their surrounding tumor microenvironment (TME). The TME encompasses a heterogeneous array of cell types, soluble signals, and extracellular vesicles, which contribute significantly to CLL pathogenesis. CLL cells and the TME cooperatively generate a chronic inflammatory milieu, which reciprocally reprograms the TME and activates a signaling network within CLL cells, promoting their survival and proliferation. Additionally, the inflammatory milieu exerts chemotactic effects, attracting CLL cells and other immune cells to the lymphoid tissues. The intricate CLL-TME interactions also facilitate immune evasion and compromise leukemic cell surveillance. We also review recent advances that have shed light on additional aspects that are substantially influenced by the CLL-TME interplay.
Collapse
Affiliation(s)
- Alexander F Vom Stein
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf; Center for Molecular Medicine Cologne; CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, Cologne, Germany
| | - Michael Hallek
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf; Center for Molecular Medicine Cologne; CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, Cologne, Germany
| | - Phuong-Hien Nguyen
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf; Center for Molecular Medicine Cologne; CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, Cologne, Germany.
| |
Collapse
|
5
|
Sud A, Parry EM, Wu CJ. The molecular map of CLL and Richter's syndrome. Semin Hematol 2024; 61:73-82. [PMID: 38368146 PMCID: PMC11653080 DOI: 10.1053/j.seminhematol.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/16/2024] [Accepted: 01/20/2024] [Indexed: 02/19/2024]
Abstract
Clonal expansion of B-cells, from the early stages of monoclonal B-cell lymphocytosis through to chronic lymphocytic leukemia (CLL), and then in some cases to Richter's syndrome (RS) provides a comprehensive model of cancer evolution, notable for the marked morphological transformation and distinct clinical phenotypes. High-throughput sequencing of large cohorts of patients and single-cell studies have generated a molecular map of CLL and more recently, of RS, yielding fundamental insights into these diseases and of clonal evolution. A selection of CLL driver genes have been functionally interrogated to yield novel insights into the biology of CLL. Such findings have the potential to impact patient care through risk stratification, treatment selection and drug discovery. However, this molecular map remains incomplete, with extant questions concerning the origin of the B-cell clone, the role of the TME, inter- and intra-compartmental heterogeneity and of therapeutic resistance mechanisms. Through the application of multi-modal single-cell technologies across tissues, disease states and clinical contexts, these questions can now be addressed with the answers holding great promise of generating translatable knowledge to improve patient care.
Collapse
Affiliation(s)
- Amit Sud
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA; Harvard Medical School, Boston, MA; Broad Institute of MIT and Harvard, Cambridge, MA; Department of Immuno-Oncology, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Erin M Parry
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA; Harvard Medical School, Boston, MA; Broad Institute of MIT and Harvard, Cambridge, MA.
| | - Catherine J Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA; Harvard Medical School, Boston, MA; Broad Institute of MIT and Harvard, Cambridge, MA; Department of Medicine, Brigham and Women's Hospital, Boston, MA
| |
Collapse
|
6
|
Pagliaro L, Cerretani E, Vento F, Montanaro A, Moron Dalla Tor L, Simoncini E, Giaimo M, Gherli A, Zamponi R, Tartaglione I, Lorusso B, Scita M, Russo F, Sammarelli G, Todaro G, Silini EM, Rigolin GM, Quaini F, Cuneo A, Roti G. CAD204520 Targets NOTCH1 PEST Domain Mutations in Lymphoproliferative Disorders. Int J Mol Sci 2024; 25:766. [PMID: 38255842 PMCID: PMC10815907 DOI: 10.3390/ijms25020766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/01/2024] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
NOTCH1 PEST domain mutations are often seen in hematopoietic malignancies, including T-cell acute lymphoblastic leukemia (T-ALL), chronic lymphocytic leukemia (CLL), splenic marginal zone lymphoma (SMZL), mantle cell lymphoma (MCL), and diffuse large B-cell lymphoma (DLBCL). These mutations play a key role in the development and progression of lymphoproliferative tumors by increasing the Notch signaling and, consequently, promoting cell proliferation, survival, migration, and suppressing apoptosis. There is currently no specific treatment available for cancers caused by NOTCH1 PEST domain mutations. However, several NOTCH1 inhibitors are in development. Among these, inhibition of the Sarco-endoplasmic Ca2+-ATPase (SERCA) showed a greater effect in NOTCH1-mutated tumors compared to the wild-type ones. One example is CAD204520, a benzimidazole derivative active in T-ALL cells harboring NOTCH1 mutations. In this study, we preclinically assessed the effect of CAD204520 in CLL and MCL models and showed that NOTCH1 PEST domain mutations sensitize cells to the anti-leukemic activity mediated by CAD204520. Additionally, we tested the potential of CAD204520 in combination with the current first-line treatment of CLL, venetoclax, and ibrutinib. CAD204520 enhanced the synergistic effect of this treatment regimen only in samples harboring the NOTCH1 PEST domain mutations, thus supporting a role for Notch inhibition in these tumors. In summary, our work provides strong support for the development of CAD204520 as a novel therapeutic approach also in chronic lymphoproliferative disorders carrying NOTCH1 PEST domain mutations, emerging as a promising molecule for combination treatment in this aggressive subset of patients.
Collapse
Affiliation(s)
- Luca Pagliaro
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (L.P.); (A.M.); (L.M.D.T.); (E.S.); (M.G.); (A.G.); (R.Z.); (B.L.); (E.M.S.); (F.Q.)
- Translational Hematology and Chemogenomics (THEC), University of Parma, 43126 Parma, Italy; (E.C.); (F.V.); (I.T.)
- Hematology and BMT Unit, University Hospital of Parma, 43126 Parma, Italy; (F.R.); (G.S.); (G.T.)
| | - Elisa Cerretani
- Translational Hematology and Chemogenomics (THEC), University of Parma, 43126 Parma, Italy; (E.C.); (F.V.); (I.T.)
- Department of Medical Science, University of Ferrara, 44121 Ferrara, Italy; (M.S.); (G.M.R.); (A.C.)
| | - Federica Vento
- Translational Hematology and Chemogenomics (THEC), University of Parma, 43126 Parma, Italy; (E.C.); (F.V.); (I.T.)
- Department of Medical Science, University of Ferrara, 44121 Ferrara, Italy; (M.S.); (G.M.R.); (A.C.)
| | - Anna Montanaro
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (L.P.); (A.M.); (L.M.D.T.); (E.S.); (M.G.); (A.G.); (R.Z.); (B.L.); (E.M.S.); (F.Q.)
- Translational Hematology and Chemogenomics (THEC), University of Parma, 43126 Parma, Italy; (E.C.); (F.V.); (I.T.)
| | - Lucas Moron Dalla Tor
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (L.P.); (A.M.); (L.M.D.T.); (E.S.); (M.G.); (A.G.); (R.Z.); (B.L.); (E.M.S.); (F.Q.)
- Translational Hematology and Chemogenomics (THEC), University of Parma, 43126 Parma, Italy; (E.C.); (F.V.); (I.T.)
| | - Elisa Simoncini
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (L.P.); (A.M.); (L.M.D.T.); (E.S.); (M.G.); (A.G.); (R.Z.); (B.L.); (E.M.S.); (F.Q.)
- Translational Hematology and Chemogenomics (THEC), University of Parma, 43126 Parma, Italy; (E.C.); (F.V.); (I.T.)
| | - Mariateresa Giaimo
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (L.P.); (A.M.); (L.M.D.T.); (E.S.); (M.G.); (A.G.); (R.Z.); (B.L.); (E.M.S.); (F.Q.)
- Translational Hematology and Chemogenomics (THEC), University of Parma, 43126 Parma, Italy; (E.C.); (F.V.); (I.T.)
- Hematology and BMT Unit, University Hospital of Parma, 43126 Parma, Italy; (F.R.); (G.S.); (G.T.)
| | - Andrea Gherli
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (L.P.); (A.M.); (L.M.D.T.); (E.S.); (M.G.); (A.G.); (R.Z.); (B.L.); (E.M.S.); (F.Q.)
- Translational Hematology and Chemogenomics (THEC), University of Parma, 43126 Parma, Italy; (E.C.); (F.V.); (I.T.)
- Hematology and BMT Unit, University Hospital of Parma, 43126 Parma, Italy; (F.R.); (G.S.); (G.T.)
| | - Raffaella Zamponi
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (L.P.); (A.M.); (L.M.D.T.); (E.S.); (M.G.); (A.G.); (R.Z.); (B.L.); (E.M.S.); (F.Q.)
- Translational Hematology and Chemogenomics (THEC), University of Parma, 43126 Parma, Italy; (E.C.); (F.V.); (I.T.)
- Hematology and BMT Unit, University Hospital of Parma, 43126 Parma, Italy; (F.R.); (G.S.); (G.T.)
| | - Isotta Tartaglione
- Translational Hematology and Chemogenomics (THEC), University of Parma, 43126 Parma, Italy; (E.C.); (F.V.); (I.T.)
| | - Bruno Lorusso
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (L.P.); (A.M.); (L.M.D.T.); (E.S.); (M.G.); (A.G.); (R.Z.); (B.L.); (E.M.S.); (F.Q.)
| | - Matteo Scita
- Department of Medical Science, University of Ferrara, 44121 Ferrara, Italy; (M.S.); (G.M.R.); (A.C.)
| | - Filomena Russo
- Hematology and BMT Unit, University Hospital of Parma, 43126 Parma, Italy; (F.R.); (G.S.); (G.T.)
| | - Gabriella Sammarelli
- Hematology and BMT Unit, University Hospital of Parma, 43126 Parma, Italy; (F.R.); (G.S.); (G.T.)
| | - Giannalisa Todaro
- Hematology and BMT Unit, University Hospital of Parma, 43126 Parma, Italy; (F.R.); (G.S.); (G.T.)
| | - Enrico Maria Silini
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (L.P.); (A.M.); (L.M.D.T.); (E.S.); (M.G.); (A.G.); (R.Z.); (B.L.); (E.M.S.); (F.Q.)
| | - Gian Matteo Rigolin
- Department of Medical Science, University of Ferrara, 44121 Ferrara, Italy; (M.S.); (G.M.R.); (A.C.)
- Hematology Unit, University Hospital of Ferrara, 44121 Ferrara, Italy
| | - Federico Quaini
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (L.P.); (A.M.); (L.M.D.T.); (E.S.); (M.G.); (A.G.); (R.Z.); (B.L.); (E.M.S.); (F.Q.)
| | - Antonio Cuneo
- Department of Medical Science, University of Ferrara, 44121 Ferrara, Italy; (M.S.); (G.M.R.); (A.C.)
- Hematology Unit, University Hospital of Ferrara, 44121 Ferrara, Italy
| | - Giovanni Roti
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (L.P.); (A.M.); (L.M.D.T.); (E.S.); (M.G.); (A.G.); (R.Z.); (B.L.); (E.M.S.); (F.Q.)
- Translational Hematology and Chemogenomics (THEC), University of Parma, 43126 Parma, Italy; (E.C.); (F.V.); (I.T.)
- Hematology and BMT Unit, University Hospital of Parma, 43126 Parma, Italy; (F.R.); (G.S.); (G.T.)
| |
Collapse
|
7
|
López-Oreja I, Gohr A, Playa-Albinyana H, Giró A, Arenas F, Higashi M, Tripathi R, López-Guerra M, Irimia M, Aymerich M, Valcárcel J, Bonnal S, Colomer D. SF3B1 mutation-mediated sensitization to H3B-8800 splicing inhibitor in chronic lymphocytic leukemia. Life Sci Alliance 2023; 6:e202301955. [PMID: 37562845 PMCID: PMC10415613 DOI: 10.26508/lsa.202301955] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023] Open
Abstract
Splicing factor 3B subunit 1 (SF3B1) is involved in pre-mRNA branch site recognition and is the target of antitumor-splicing inhibitors. Mutations in SF3B1 are observed in 15% of patients with chronic lymphocytic leukemia (CLL) and are associated with poor prognosis, but their pathogenic mechanisms remain poorly understood. Using deep RNA-sequencing data from 298 CLL tumor samples and isogenic SF3B1 WT and K700E-mutated CLL cell lines, we characterize targets and pre-mRNA sequence features associated with the selection of cryptic 3' splice sites upon SF3B1 mutation, including an event in the MAP3K7 gene relevant for activation of NF-κB signaling. Using the H3B-8800 splicing modulator, we show, for the first time in CLL, cytotoxic effects in vitro in primary CLL samples and in SF3B1-mutated isogenic CLL cell lines, accompanied by major splicing changes and delayed leukemic infiltration in a CLL xenotransplant mouse model. H3B-8800 displayed preferential lethality towards SF3B1-mutated cells and synergism with the BCL2 inhibitor venetoclax, supporting the potential use of SF3B1 inhibitors as a novel therapeutic strategy in CLL.
Collapse
Affiliation(s)
- Irene López-Oreja
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Hematopathology Section, Department of Pathology, Hospital Clínic, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Oncologia, Madrid, Spain
| | - André Gohr
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Heribert Playa-Albinyana
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Oncologia, Madrid, Spain
| | - Ariadna Giró
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Fabian Arenas
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Oncologia, Madrid, Spain
| | - Morihiro Higashi
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Rupal Tripathi
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Mònica López-Guerra
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Hematopathology Section, Department of Pathology, Hospital Clínic, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Oncologia, Madrid, Spain
| | - Manuel Irimia
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Marta Aymerich
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Hematopathology Section, Department of Pathology, Hospital Clínic, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Oncologia, Madrid, Spain
| | - Juan Valcárcel
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Sophie Bonnal
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Dolors Colomer
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Hematopathology Section, Department of Pathology, Hospital Clínic, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Oncologia, Madrid, Spain
- Universitat Barcelona, Barcelona, Spain
| |
Collapse
|
8
|
O’Donnell A, Pepper C, Mitchell S, Pepper A. NF-kB and the CLL microenvironment. Front Oncol 2023; 13:1169397. [PMID: 37064123 PMCID: PMC10098180 DOI: 10.3389/fonc.2023.1169397] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is the most prevalent type of leukemia in the western world. Despite the positive clinical effects of new targeted therapies, CLL still remains an incurable and refractory disease and resistance to treatments are commonly encountered. The Nuclear Factor-Kappa B (NF-κB) transcription factor has been implicated in the pathology of CLL, with high levels of NF-κB associated with disease progression and drug resistance. This aberrant NF-κB activation can be caused by genetic mutations in the tumor cells and microenvironmental factors, which promote NF-κB signaling. Activation can be induced via two distinct pathways, the canonical and non-canonical pathway, which result in tumor cell proliferation, survival and drug resistance. Therefore, understanding how the CLL microenvironment drives NF-κB activation is important for deciphering how CLL cells evade treatment and may aid the development of novel targeting therapeutics. The CLL microenvironment is comprised of various cells, including nurse like cells, mesenchymal stromal cells, follicular dendritic cells and CD4+ T cells. By activating different receptors, including the B cell receptor and CD40, these cells cause overactivity of the canonical and non-canonical NF-κB pathways. Within this review, we will explore the different components of the CLL microenvironment that drive the NF-κB pathway, investigating how this knowledge is being translated in the development of new therapeutics.
Collapse
Affiliation(s)
- Alice O’Donnell
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Brighton, United Kingdom
- Royal Sussex County Hospital, University Hospitals Sussex, Brighton, United Kingdom
| | - Chris Pepper
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Brighton, United Kingdom
| | - Simon Mitchell
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Brighton, United Kingdom
| | - Andrea Pepper
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Brighton, United Kingdom
| |
Collapse
|
9
|
Abolhasani S, Hejazian SS, Karpisheh V, Khodakarami A, Mohammadi H, Gholizadeh Navashenaq J, Hojjat-Farsangi M, Jadidi-Niaragh F. The role of SF3B1 and NOTCH1 in the pathogenesis of leukemia. IUBMB Life 2023; 75:257-278. [PMID: 35848163 DOI: 10.1002/iub.2660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/18/2022] [Indexed: 11/09/2022]
Abstract
The discovery of new genes/pathways improves our knowledge of cancer pathogenesis and presents novel potential therapeutic options. For instance, splicing factor 3b subunit 1 (SF3B1) and NOTCH1 genetic alterations have been identified at a high frequency in hematological malignancies, such as leukemia, and may be related to the prognosis of involved patients because they change the nature of malignancies in different ways like mediating therapeutic resistance; therefore, studying these gene/pathways is essential. This review aims to discuss SF3B1 and NOTCH1 roles in the pathogenesis of various types of leukemia and the therapeutic potential of targeting these genes or their mutations to provide a foundation for leukemia treatment.
Collapse
Affiliation(s)
- Shiva Abolhasani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Vahid Karpisheh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Atefeh Khodakarami
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Mohammadi
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | | | - Mohammad Hojjat-Farsangi
- Bioclinicum, Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden.,The Persian Gulf Marine Biotechnology Medicine Research Center, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
10
|
Zhao Y, Siddiqi I, Wildes TJ, McCracken J, Deak K, Rehder C, Wang E. Chronic Lymphocytic Leukemia With Two B-Cell Populations of Discordant Light Chain Restrictions in Individual Patients. Am J Clin Pathol 2023; 159:337-351. [PMID: 36749322 DOI: 10.1093/ajcp/aqac165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 12/01/2022] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVES To evaluate clinicopathologic characteristics of biclonal chronic lymphocytic leukemia (CLL). METHODS Retrospectively analyze clinical data and pathologic features. RESULTS Ten cases were identified in which flow cytometry demonstrated an abnormal B-cell population with a CLL-like immunophenotype but showed no definitive light chain restriction. All had cytogenetic abnormalities detected, including seven with two CLL-related abnormalities. Four of these showed features suggestive of clonal evolution, all having del(13q) as a "stem-line" abnormality and three showing del(11q) as a "side-line" abnormality. Five (50%) cases demonstrated deleterious NOTCH1 mutations, in contrast to 11.8% in a control group of monoclonal CLL (P < .05). Of the 10 patients, 5 received treatment, with good/partial response in three cases and therapeutic resistance in one case. The median treatment-free survival was estimated at 68 months. CONCLUSIONS Despite a polytypic pattern of light chain expression, the neoplastic nature of biclonal CLL is suggested by a characteristic CLL phenotype and can be confirmed by cytogenetic and genomic analyses. The two clones with discordant light chain isotypes may share a "stem-line" cytogenetic abnormality, suggesting possible clonal evolution. Biclonal CLL is associated with NOTCH1 mutations, which may occur in a small subclone and gradually evolve in clonal size. Genomic analysis on light chain-sorted and/or chronologically collected samples may provide insight into clonal evolution in CLL.
Collapse
Affiliation(s)
- Yue Zhao
- Department of Pathology, The First Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China.,Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - Imran Siddiqi
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Tyler J Wildes
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - Jenna McCracken
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - Kristen Deak
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - Catherine Rehder
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - Endi Wang
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
11
|
Mangolini M, Maiques-Diaz A, Charalampopoulou S, Gerhard-Hartmann E, Bloehdorn J, Moore A, Giachetti G, Lu J, Roamio Franklin VN, Chilamakuri CSR, Moutsopoulos I, Rosenwald A, Stilgenbauer S, Zenz T, Mohorianu I, D'Santos C, Deaglio S, Hodson DJ, Martin-Subero JI, Ringshausen I. Viral transduction of primary human lymphoma B cells reveals mechanisms of NOTCH-mediated immune escape. Nat Commun 2022; 13:6220. [PMID: 36266281 PMCID: PMC9585083 DOI: 10.1038/s41467-022-33739-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 09/30/2022] [Indexed: 12/24/2022] Open
Abstract
Hotspot mutations in the PEST-domain of NOTCH1 and NOTCH2 are recurrently identified in B cell malignancies. To address how NOTCH-mutations contribute to a dismal prognosis, we have generated isogenic primary human tumor cells from patients with Chronic Lymphocytic Leukemia (CLL) and Mantle Cell Lymphoma (MCL), differing only in their expression of the intracellular domain (ICD) of NOTCH1 or NOTCH2. Our data demonstrate that both NOTCH-paralogs facilitate immune-escape of malignant B cells by up-regulating PD-L1, partly dependent on autocrine interferon-γ signaling. In addition, NOTCH-activation causes silencing of the entire HLA-class II locus via epigenetic regulation of the transcriptional co-activator CIITA. Notably, while NOTCH1 and NOTCH2 govern similar transcriptional programs, disease-specific differences in their expression levels can favor paralog-specific selection. Importantly, NOTCH-ICD also strongly down-regulates the expression of CD19, possibly limiting the effectiveness of immune-therapies. These NOTCH-mediated immune escape mechanisms are associated with the expansion of exhausted CD8+ T cells in vivo.
Collapse
Affiliation(s)
- Maurizio Mangolini
- Wellcome/MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, CB2 0AW, UK
- Department of Haematology, University of Cambridge, Cambridge, CB2 0AH, UK
| | - Alba Maiques-Diaz
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | | | - Johannes Bloehdorn
- Department of Internal Medicine III, Division of CLL, Ulm University, Ulm, Germany
| | - Andrew Moore
- Wellcome/MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, CB2 0AW, UK
- Department of Haematology, University of Cambridge, Cambridge, CB2 0AH, UK
| | - Giorgia Giachetti
- Wellcome/MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, CB2 0AW, UK
- Department of Haematology, University of Cambridge, Cambridge, CB2 0AH, UK
| | - Junyan Lu
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany
| | | | | | - Ilias Moutsopoulos
- Wellcome/MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Andreas Rosenwald
- Pathologisches Institut Universität Würzburg, 97080, Würzburg, Germany
| | - Stephan Stilgenbauer
- Department of Internal Medicine III, Division of CLL, Ulm University, Ulm, Germany
| | - Thorsten Zenz
- Department of Medical Oncology and Hematology, University Hospital Zürich and University of Zürich, Zürich, Switzerland
- Molecular Therapy in Hematology and Oncology, National Center for Tumor Diseases and German Cancer, Research Centre, Heidelberg, Germany
| | - Irina Mohorianu
- Wellcome/MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Clive D'Santos
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Silvia Deaglio
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Daniel J Hodson
- Wellcome/MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, CB2 0AW, UK
- Department of Haematology, University of Cambridge, Cambridge, CB2 0AH, UK
| | - Jose I Martin-Subero
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Ingo Ringshausen
- Wellcome/MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, CB2 0AW, UK.
- Department of Haematology, University of Cambridge, Cambridge, CB2 0AH, UK.
| |
Collapse
|
12
|
De Falco F, Rompietti C, Sorcini D, Esposito A, Scialdone A, Baldoni S, Del Papa B, Adamo FM, Silva Barcelos EC, Dorillo E, Stella A, Di Ianni M, Screpanti I, Sportoletti P, Rosati E. GSK3β is a critical, druggable component of the network regulating the active NOTCH1 protein and cell viability in CLL. Cell Death Dis 2022; 13:755. [PMID: 36050315 PMCID: PMC9436923 DOI: 10.1038/s41419-022-05178-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 01/21/2023]
Abstract
NOTCH1 alterations have been associated with chronic lymphocytic leukemia (CLL), but the molecular mechanisms underlying NOTCH1 activation in CLL cells are not completely understood. Here, we show that GSK3β downregulates the constitutive levels of the active NOTCH1 intracellular domain (N1-ICD) in CLL cells. Indeed, GSK3β silencing by small interfering RNA increases N1-ICD levels, whereas expression of an active GSK3β mutant reduces them. Additionally, the GSK3β inhibitor SB216763 enhances N1-ICD stability at a concentration at which it also increases CLL cell viability. We also show that N1-ICD is physically associated with GSK3β in CLL cells. SB216763 reduces GSK3β/N1-ICD interactions and the levels of ubiquitinated N1-ICD, indicating a reduction in N1-ICD proteasomal degradation when GSK3β is less active. We then modulated the activity of two upstream regulators of GSK3β and examined the impact on N1-ICD levels and CLL cell viability. Specifically, we inhibited AKT that is a negative regulator of GSK3β and is constitutively active in CLL cells. Furthermore, we activated the protein phosphatase 2 A (PP2A) that is a positive regulator of GSK3β, and has an impaired activity in CLL. Results show that either AKT inhibition or PP2A activation reduce N1-ICD expression and CLL cell viability in vitro, through mechanisms mediated by GSK3β activity. Notably, for PP2A activation, we used the highly specific activator DT-061, that also reduces leukemic burden in peripheral blood, spleen and bone marrow in the Eµ-TCL1 adoptive transfer model of CLL, with a concomitant decrease in N1-ICD expression. Overall, we identify in GSK3β a key component of the network regulating N1-ICD stability in CLL, and in AKT and PP2A new druggable targets for disrupting NOTCH1 signaling with therapeutic potential.
Collapse
Affiliation(s)
- Filomena De Falco
- grid.9027.c0000 0004 1757 3630Department of Medicine and Surgery, Institute of Hematology, Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, Italy
| | - Chiara Rompietti
- grid.9027.c0000 0004 1757 3630Department of Medicine and Surgery, Institute of Hematology, Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, Italy
| | - Daniele Sorcini
- grid.9027.c0000 0004 1757 3630Department of Medicine and Surgery, Institute of Hematology, Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, Italy
| | - Angela Esposito
- grid.9027.c0000 0004 1757 3630Department of Medicine and Surgery, Institute of Hematology, Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, Italy
| | - Annarita Scialdone
- grid.9027.c0000 0004 1757 3630Department of Medicine and Surgery, Institute of Hematology, Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, Italy
| | - Stefano Baldoni
- grid.9027.c0000 0004 1757 3630Department of Medicine and Surgery, Institute of Hematology, Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, Italy ,grid.412451.70000 0001 2181 4941Department of Medicine and Sciences of Aging, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Beatrice Del Papa
- grid.9027.c0000 0004 1757 3630Department of Medicine and Surgery, Institute of Hematology, Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, Italy
| | - Francesco Maria Adamo
- grid.9027.c0000 0004 1757 3630Department of Medicine and Surgery, Institute of Hematology, Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, Italy
| | - Estevão Carlos Silva Barcelos
- grid.9027.c0000 0004 1757 3630Department of Medicine and Surgery, Institute of Hematology, Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, Italy
| | - Erica Dorillo
- grid.9027.c0000 0004 1757 3630Department of Medicine and Surgery, Institute of Hematology, Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, Italy
| | - Arianna Stella
- grid.9027.c0000 0004 1757 3630Department of Medicine and Surgery, Institute of Hematology, Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, Italy
| | - Mauro Di Ianni
- grid.412451.70000 0001 2181 4941Department of Medicine and Sciences of Aging, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy ,grid.461844.bDepartment of Oncology and Hematology, Ospedale Civile “Santo Spirito”, ASL Pescara, Pescara, Italy
| | - Isabella Screpanti
- grid.7841.aDepartment of Molecular Medicine, University of Rome “La Sapienza”, Rome, Italy
| | - Paolo Sportoletti
- grid.9027.c0000 0004 1757 3630Department of Medicine and Surgery, Institute of Hematology, Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, Italy
| | - Emanuela Rosati
- grid.9027.c0000 0004 1757 3630Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
13
|
Multiple Mechanisms of NOTCH1 Activation in Chronic Lymphocytic Leukemia: NOTCH1 Mutations and Beyond. Cancers (Basel) 2022; 14:cancers14122997. [PMID: 35740661 PMCID: PMC9221163 DOI: 10.3390/cancers14122997] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 11/20/2022] Open
Abstract
Simple Summary Mutations of the NOTCH1 gene are a validated prognostic marker in chronic lymphocytic leukemia and a potential predictive marker for anti-CD20-based therapies. At present, the most frequent pathological alteration of the NOTCH1 gene is due to somatic genetic mutations, which have a multifaceted functional impact. However, beside NOTCH1 mutations, other factors may lead to activation of the NOTCH1 pathway, and these include mutations of FBXW7, MED12, SPEN, SF3B1 as well as other B-cell pathways. Understanding the preferential strategies though which CLL cells hijack NOTCH1 signaling may present important clues for designing targeted treatment strategies for the management of CLL. Abstract The Notch signaling pathway plays a fundamental role for the terminal differentiation of multiple cell types, including B and T lymphocytes. The Notch receptors are transmembrane proteins that, upon ligand engagement, undergo multiple processing steps that ultimately release their intracytoplasmic portion. The activated protein ultimately operates as a nuclear transcriptional co-factor, whose stability is finely regulated. The Notch pathway has gained growing attention in chronic lymphocytic leukemia (CLL) because of the high rate of somatic mutations of the NOTCH1 gene. In CLL, NOTCH1 mutations represent a validated prognostic marker and a potential predictive marker for anti-CD20-based therapies, as pathological alterations of the Notch pathway can provide significant growth and survival advantage to neoplastic clone. However, beside NOTCH1 mutation, other events have been demonstrated to perturb the Notch pathway, namely somatic mutations of upstream, or even apparently unrelated, proteins such as FBXW7, MED12, SPEN, SF3B1, as well as physiological signals from other pathways such as the B-cell receptor. Here we review these mechanisms of activation of the NOTCH1 pathway in the context of CLL; the resulting picture highlights how multiple different mechanisms, that might occur under specific genomic, phenotypic and microenvironmental contexts, ultimately result in the same search for proliferative and survival advantages (through activation of MYC), as well as immune escape and therapy evasion (from anti-CD20 biological therapies). Understanding the preferential strategies through which CLL cells hijack NOTCH1 signaling may present important clues for designing targeted treatment strategies for the management of CLL.
Collapse
|
14
|
TGF-β/SMAD Pathway Is Modulated by miR-26b-5p: Another Piece in the Puzzle of Chronic Lymphocytic Leukemia Progression. Cancers (Basel) 2022; 14:cancers14071676. [PMID: 35406446 PMCID: PMC8997107 DOI: 10.3390/cancers14071676] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary TGF-β is a key immunoregulatory pathway that can limit the proliferation of B-lymphocytes. Chronic lymphocytic leukemia (CLL) has been historically conceptualized as a neoplasm characterized by accumulation of mature B cells escaping programmed cell death and undergoing cell-cycle arrest in the G0/G1 phase. However, new evidence indicates that tumor expansion is in fact a dynamic process in which cell proliferation also plays an important role. In general, cancers progress by the emergence of subclones with genomic aberrations distinct from the initial tumor. Often, these subclones are selected for advantages in cell survival and/or growth. Here, we provide novel evidence to explain, at least in part, the origins of CLL progression in a subgroup of patients with a poor clinical outcome. In this cohort, the immunoregulatory pathway TGF-β/SMAD is modulated by miR-26b-5p and the impairment of this axis bypasses cell cycle arrest in CLL cells facilitating disease progression. Abstract Clinical and molecular heterogeneity are hallmarks of chronic lymphocytic leukemia (CLL), a neoplasm characterized by accumulation of mature and clonal long-lived CD5 + B-lymphocytes. Mutational status of the IgHV gene of leukemic clones is a powerful prognostic tool in CLL, and it is well established that unmutated CLLs (U-CLLs) have worse evolution than mutated cases. Nevertheless, progression and treatment requirement of patients can evolve independently from the mutational status. Microenvironment signaling or epigenetic changes partially explain this different behavior. Thus, we think that detailed characterization of the miRNAs landscape from patients with different clinical evolution could facilitate the understanding of this heterogeneity. Since miRNAs are key players in leukemia pathogenesis and evolution, we aim to better characterize different CLL behaviors by comparing the miRNome of clinically progressive U-CLLs vs. stable U-CLLs. Our data show up-regulation of miR-26b-5p, miR-106b-5p, and miR-142-5p in progressive cases and indicate a key role for miR-26b-5p during CLL progression. Specifically, up-regulation of miR-26b-5p in CLL cells blocks TGF-β/SMAD pathway by down-modulation of SMAD-4, resulting in lower expression of p21−Cip1 kinase inhibitor and higher expression of c-Myc oncogene. This work describes a new molecular mechanism linking CLL progression with TGF-β modulation and proposes an alternative strategy to explore in CLL therapy.
Collapse
|
15
|
Isik S, Gunden G, Gunduz E, Akay OM, Aslan A, Ozen H, Cilingir O, Erzurumluoglu Gokalp E, Kocagil S, Artan S, Gulbas Z, Durak Aras B. An Anomaly with Potential as a New Prognostic Marker in CLL with del(13q): Gain of 16p13.3. Cytogenet Genome Res 2021; 161:479-487. [PMID: 34915466 DOI: 10.1159/000520242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/15/2021] [Indexed: 11/19/2022] Open
Abstract
Deletion 13q [del(13q)] is a favorable prognostic marker if it is detected as a sole abnormality in chronic lymphocytic leukemia (CLL). However the clinical courses of cases with isolated del(13q) are quite heterogeneous. In our study, we investigated copy number variations (CNVs), loss of heterozygosity (LOH), and the size of del(13q) in 30 CLL patients with isolated del(13q). We used CGH+SNP microarrays in order to understand the cause of this clinical heterogeneity. We detected del(13q) in 28/30 CLL cases. The size of the deletion varied from 0.34 to 28.81 Mb, and there was no clinical effect of the deletion size. We found new prognostic markers, especially the gain of 16p13.3. These markers have statistically significant associations with short time to first treatment and advanced disease stage. Detecting both CNVs and LOH at the same time is an advantageous feature of aCGH+SNP. However, it is very challenging for the array analysis to detect mosaic anomalies. Therefore, it is very important to confirm the results by FISH. In our study, we detected approximately 9% mosaic del(13q) by microarray. In addition, the gain of 16p13.3 may affect the disease prognosis in CLL. However, additional studies with more patients are needed to confirm these results.
Collapse
Affiliation(s)
- Sevgi Isik
- Department of Medical Genetics, Faculty of Medicine, University of Eskisehir Osmangazi, Eskisehir, Turkey
| | - Gulcin Gunden
- Department of Medical Genetics, Faculty of Medicine, University of Eskisehir Osmangazi, Eskisehir, Turkey
| | - Eren Gunduz
- Department of Hematology, Faculty of Medicine, University of Eskisehir Osmangazi, Eskisehir, Turkey
| | - Olga Meltem Akay
- Department of Hematology, Faculty of Medicine, University of Koc, Istanbul, Turkey
| | - Abdulvahap Aslan
- Department of Hematology, Private Umit Hospital, Eskisehir, Turkey
| | - Hulya Ozen
- Department of Biostatistics, Faculty of Medicine, University of Eskisehir Osmangazi, Eskisehir, Turkey
| | - Oguz Cilingir
- Department of Medical Genetics, Faculty of Medicine, University of Eskisehir Osmangazi, Eskisehir, Turkey
| | - Ebru Erzurumluoglu Gokalp
- Department of Medical Genetics, Faculty of Medicine, University of Eskisehir Osmangazi, Eskisehir, Turkey
| | - Sinem Kocagil
- Department of Medical Genetics, Faculty of Medicine, University of Eskisehir Osmangazi, Eskisehir, Turkey
| | - Sevilhan Artan
- Department of Medical Genetics, Faculty of Medicine, University of Eskisehir Osmangazi, Eskisehir, Turkey
| | - Zafer Gulbas
- Department of Hematology, Anadolu Medical Center, İzmit, Turkey
| | - Beyhan Durak Aras
- Department of Medical Genetics, Faculty of Medicine, University of Eskisehir Osmangazi, Eskisehir, Turkey.,Translational Medicine Research and Clinical Center, University of Eskisehir Osmangazi, Eskisehir, Turkey
| |
Collapse
|
16
|
Li Z, Yu F, Ye W, Mao L, Huang J, Shao Y, Yan J, Yu W, Jin J, Wang J. Clinical Features and Prognostic Significance of NOTCH1 Mutations in Diffuse Large B-Cell Lymphoma. Front Oncol 2021; 11:746577. [PMID: 34956871 PMCID: PMC8695434 DOI: 10.3389/fonc.2021.746577] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 11/12/2021] [Indexed: 01/06/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a heterogeneous group of large lymphoid B cell malignancy with distinct clinical and genetic features. Recently, NOTCH1 mutations were identified in DLBCL cases by Next-generation sequencing (NGS), but the clinical features and prognostic impact were not systematically studied. Here, NOTCH1 genes in 161 DLBCL samples were sequenced by NGS. The prognostic value of NOTCH1 mutations was assessed in the context of clinical and laboratory factors, such as international prognostic index (IPI), cell-of-origin classification, double expression of BCL2 and c-MYC. The combined data from three Western cohorts were used to validate these results. As a result, NOTCH1 mutations were found in 17(10.6%) patients, and three patients had a hotspot mutation of c.7541_7542delCT. The presence of NOTCH1 mutations was significantly associated with poor complete response and progression free survival(PFS), which was independent of established clinical and laboratory parameters. In addition, 30 (1.92%) of 1562 patients treated with R-CHOP regimen in those combined Western cohorts had NOTCH1 mutations. Meta-analysis of the Western cohorts confirmed that NOTCH1 mutations were also associated with poor PFS and OS. In conclusion, DLBCL patients with the NOTCH1 mutations have worse PFS and OS, and the NOTCH1 mutations can be used as an independent predictor for patients with DLBCL.
Collapse
Affiliation(s)
- Zhongqi Li
- The Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Fang Yu
- Department of Pathology, The First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Wenle Ye
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China
| | - Liping Mao
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China
- The First Affiliated Hospital of Zhejiang University, Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Jiansong Huang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China
- The First Affiliated Hospital of Zhejiang University, Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Yang Shao
- Medical Department, Nanjing Geneseeq Technology Inc., Nanjing, China
| | - Junrong Yan
- Medical Department, Nanjing Geneseeq Technology Inc., Nanjing, China
| | - Wenjuan Yu
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China
- The First Affiliated Hospital of Zhejiang University, Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China
- The First Affiliated Hospital of Zhejiang University, Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
- *Correspondence: Jinghan Wang, ; Jie Jin,
| | - Jinghan Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China
- The First Affiliated Hospital of Zhejiang University, Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
- *Correspondence: Jinghan Wang, ; Jie Jin,
| |
Collapse
|
17
|
Mansouri L, Thorvaldsdottir B, Laidou S, Stamatopoulos K, Rosenquist R. Precision diagnostics in lymphomas - Recent developments and future directions. Semin Cancer Biol 2021; 84:170-183. [PMID: 34699973 DOI: 10.1016/j.semcancer.2021.10.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 01/03/2023]
Abstract
Genetics is an integral part of the clinical diagnostics of lymphomas that improves disease subclassification and patient risk-stratification. With the introduction of high-throughput sequencing technologies, a rapid, in-depth portrayal of the genomic landscape in major lymphoma entities was achieved. Whilst a few lymphoma entities were characterized by a predominant gene mutation (e.g. Waldenström's macroglobulinemia and hairy cell leukemia), the vast majority demonstrated a very diverse genetic landscape with a high number of recurrent gene mutations (e.g. chronic lymphocytic leukemia and diffuse large B cell lymphoma), indeed reflecting the great clinical heterogeneity among lymphomas. These studies have allowed better understanding of the ontogeny and evolution of different lymphomas, while also identifying new genetic markers that can complement lymphoma diagnostics and improve prognostication. However, despite these efforts, there is still a limited number of gene mutations with predictive impact that can guide treatment selection. In this review, we will highlight clinically relevant diagnostic, prognostic and predictive markers in lymphomas that are used today in routine diagnostics. We will also discuss how comprehensive genomic characterization using broad sequencing panels, allowing for the simultaneous detection of different types of genetic aberrations, may aid future development of precision diagnostics in lymphomas. This may in turn pave the way for the implementation of tailored precision therapy strategies at the individual patient level.
Collapse
Affiliation(s)
- Larry Mansouri
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Birna Thorvaldsdottir
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Stamatia Laidou
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Kostas Stamatopoulos
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Richard Rosenquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Clinical Genetics, Karolinska University Laboratory, Karolinska University Hospital, Solna, Sweden.
| |
Collapse
|
18
|
Bloehdorn J, Braun A, Taylor-Weiner A, Jebaraj BMC, Robrecht S, Krzykalla J, Pan H, Giza A, Akylzhanova G, Holzmann K, Scheffold A, Johnston HE, Yeh RF, Klymenko T, Tausch E, Eichhorst B, Bullinger L, Fischer K, Weisser M, Robak T, Schneider C, Gribben J, Dahal LN, Carter MJ, Elemento O, Landau DA, Neuberg DS, Cragg MS, Benner A, Hallek M, Wu CJ, Döhner H, Stilgenbauer S, Mertens D. Multi-platform profiling characterizes molecular subgroups and resistance networks in chronic lymphocytic leukemia. Nat Commun 2021; 12:5395. [PMID: 34518531 PMCID: PMC8438057 DOI: 10.1038/s41467-021-25403-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 08/03/2021] [Indexed: 02/07/2023] Open
Abstract
Knowledge of the genomic landscape of chronic lymphocytic leukemia (CLL) grows increasingly detailed, providing challenges in contextualizing the accumulated information. To define the underlying networks, we here perform a multi-platform molecular characterization. We identify major subgroups characterized by genomic instability (GI) or activation of epithelial-mesenchymal-transition (EMT)-like programs, which subdivide into non-inflammatory and inflammatory subtypes. GI CLL exhibit disruption of genome integrity, DNA-damage response and are associated with mutagenesis mediated through activation-induced cytidine deaminase or defective mismatch repair. TP53 wild-type and mutated/deleted cases constitute a transcriptionally uniform entity in GI CLL and show similarly poor progression-free survival at relapse. EMT-like CLL exhibit high genomic stability, reduced benefit from the addition of rituximab and EMT-like differentiation is inhibited by induction of DNA damage. This work extends the perspective on CLL biology and risk categories in TP53 wild-type CLL. Furthermore, molecular targets identified within each subgroup provide opportunities for new treatment approaches.
Collapse
Affiliation(s)
| | - Andrejs Braun
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | | | | | - Sandra Robrecht
- Department I for Internal Medicine and Centre for Integrated Oncology, University of Cologne, Cologne, Germany
| | - Julia Krzykalla
- Division of Biostatistics, German Cancer Research Center, Heidelberg, Germany
| | - Heng Pan
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Adam Giza
- Department I for Internal Medicine and Centre for Integrated Oncology, University of Cologne, Cologne, Germany
| | - Gulnara Akylzhanova
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | | | - Annika Scheffold
- Department of Internal Medicine III, University of Ulm, Ulm, Germany
| | - Harvey E Johnston
- Centre for Cancer Immunology, Cancer Sciences, Faculty of Medicine, Cancer Research UK Centre and Experimental Cancer Medicine Centre, University of Southampton, Southampton, UK
| | - Ru-Fang Yeh
- Biostatistics, Genentech Inc., South San Francisco, CA, USA
| | - Tetyana Klymenko
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Eugen Tausch
- Department of Internal Medicine III, University of Ulm, Ulm, Germany
| | - Barbara Eichhorst
- Department I for Internal Medicine and Centre for Integrated Oncology, University of Cologne, Cologne, Germany
| | - Lars Bullinger
- Medical Clinic for Hematology, Oncology and Tumor Biology, Charité University Hospital, Berlin, Germany
| | - Kirsten Fischer
- Department I for Internal Medicine and Centre for Integrated Oncology, University of Cologne, Cologne, Germany
| | - Martin Weisser
- Roche Pharma Research and Early Development, Penzberg, Germany
| | - Tadeusz Robak
- Department of Hematology, Medical University of Lodz, Lodz, Poland
| | | | - John Gribben
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Lekh N Dahal
- Centre for Cancer Immunology, Cancer Sciences, Faculty of Medicine, Cancer Research UK Centre and Experimental Cancer Medicine Centre, University of Southampton, Southampton, UK
- Department of Pharmacology and Therapeutics, Faculty of Life and Health Sciences, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Mathew J Carter
- Centre for Cancer Immunology, Cancer Sciences, Faculty of Medicine, Cancer Research UK Centre and Experimental Cancer Medicine Centre, University of Southampton, Southampton, UK
| | - Olivier Elemento
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Dan A Landau
- Cancer Genomics and Evolutionary Dynamics, Weill Cornell Medicine, New York, NY, USA
- New York Genome Center, New York, NY, USA
| | - Donna S Neuberg
- Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Mark S Cragg
- Centre for Cancer Immunology, Cancer Sciences, Faculty of Medicine, Cancer Research UK Centre and Experimental Cancer Medicine Centre, University of Southampton, Southampton, UK
| | - Axel Benner
- Division of Biostatistics, German Cancer Research Center, Heidelberg, Germany
| | - Michael Hallek
- Department I for Internal Medicine and Centre for Integrated Oncology, University of Cologne, Cologne, Germany
| | - Catherine J Wu
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Internal Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Hartmut Döhner
- Department of Internal Medicine III, University of Ulm, Ulm, Germany
| | | | - Daniel Mertens
- Department of Internal Medicine III, University of Ulm, Ulm, Germany.
- German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
19
|
Putowski M, Giannopoulos K. Perspectives on Precision Medicine in Chronic Lymphocytic Leukemia: Targeting Recurrent Mutations-NOTCH1, SF3B1, MYD88, BIRC3. J Clin Med 2021; 10:jcm10163735. [PMID: 34442029 PMCID: PMC8396993 DOI: 10.3390/jcm10163735] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 12/15/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) is highly heterogeneous, with extremely variable clinical course. The clinical heterogeneity of CLL reflects differences in the biology of the disease, including chromosomal alterations, specific immunophenotypic patterns and serum markers. The application of next-generation sequencing techniques has demonstrated the high genetic and epigenetic heterogeneity in CLL. The novel mutations could be pharmacologically targeted for individualized approach in some of the CLL patients. Potential neurogenic locus notch homolog protein 1 (NOTCH1) signalling targeting mechanisms in CLL include secretase inhibitors and specific antibodies to block NOTCH ligand/receptor interactions. In vitro studies characterizing the effect of the splicing inhibitors resulted in increased apoptosis of CLL cells regardless of splicing factor 3B subunit 1 (SF3B1) status. Several therapeutic strategies have been also proposed to directly or indirectly inhibit the toll-like receptor/myeloid differentiation primary response gene 88 (TLR/MyD88) pathway. Another potential approach is targeting nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and inhibition of this prosurvival pathway. Newly discovered mutations and their signalling pathways play key roles in the course of the disease. This opens new opportunities in the management and treatment of CLL.
Collapse
Affiliation(s)
- Maciej Putowski
- Department of Experimental Hematooncology, Medical University of Lublin, 20-093 Lublin, Poland;
- Correspondence: ; Tel.: +48-81-448-66-32
| | - Krzysztof Giannopoulos
- Department of Experimental Hematooncology, Medical University of Lublin, 20-093 Lublin, Poland;
- Department of Hematology, St. John’s Cancer Center, 20-090 Lublin, Poland
| |
Collapse
|
20
|
Genetics of Chronic Lymphocytic Leukemia. ACTA ACUST UNITED AC 2021; 27:259-265. [PMID: 34398552 DOI: 10.1097/ppo.0000000000000538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
ABSTRACT During the past 10 years, relevant advances have been made in the understanding of the pathogenesis of chronic lymphocytic leukemia via the integrated analysis of its genome and related epigenome, and transcriptome. These analyses also had an impact on our understanding of the initiation, as well as of the evolution of chronic lymphocytic leukemia, including resistance to chemotherapy and sensitivity and resistance to novel targeted therapies. This chapter will review the current state of the art in this field, with emphasis on the genetic heterogeneity of the disease and the biological pathways that are altered by the genetic lesions.
Collapse
|
21
|
The Biology of Chronic Lymphocytic Leukemia: Diagnostic and Prognostic Implications. ACTA ACUST UNITED AC 2021; 27:266-274. [PMID: 34398553 DOI: 10.1097/ppo.0000000000000534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
ABSTRACT The high degree of clinical heterogeneity of chronic lymphocytic leukemia (CLL) is influenced by the disease molecular complexity. Genetic studies have allowed to better understand CLL biology and to identify molecular biomarkers of clinical relevance. TP53 disruption represents the strongest prognosticator of chemorefractoriness and indicates the use of Bruton tyrosine kinase inhibitors (BTKis) and BCL2 inhibitors. Unmutated IGHV (immunoglobulin heavy variable) genes also predict refractoriness to chemoimmunotherapy; importantly, when treated with B-cell receptor inhibitors or BCL2 inhibitors, IGHV unmutated patients display an outcome similar to that of IGHV mutated CLL. Before choosing treatment, a comprehensive assessment of TP53 and IGHV status is recommended by all guidelines for CLL clinical management. In case of fixed-duration therapeutic strategies, monitoring of minimal residual disease may provide a tool to decide treatment duration. The current precision medicine management of CLL patients might be further improved by the adoption of novel biomarkers that are emerging as clinically meaningful for this disease.
Collapse
|
22
|
López-Oreja I, Playa-Albinyana H, Arenas F, López-Guerra M, Colomer D. Challenges with Approved Targeted Therapies against Recurrent Mutations in CLL: A Place for New Actionable Targets. Cancers (Basel) 2021; 13:3150. [PMID: 34202439 PMCID: PMC8269088 DOI: 10.3390/cancers13133150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 12/17/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) is characterized by a high degree of genetic variability and interpatient heterogeneity. In the last decade, novel alterations have been described. Some of them impact on the prognosis and evolution of patients. The approval of BTK inhibitors, PI3K inhibitors and Bcl-2 inhibitors has drastically changed the treatment of patients with CLL. The effect of these new targeted therapies has been widely analyzed in TP53-mutated cases, but few data exist about the response of patients carrying other recurrent mutations. In this review, we describe the biological pathways recurrently altered in CLL that might have an impact on the response to these new therapies together with the possibility to use new actionable targets to optimize treatment responses.
Collapse
Affiliation(s)
- Irene López-Oreja
- Experimental Therapies in Lymphoid Neoplasms, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (I.L.-O.); (H.P.-A.); (F.A.); (M.L.-G.)
- Centro de Investigación Biomédica en Red en Oncología (CIBERONC), 28029 Madrid, Spain
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
- Universitat Pompeu Fabra, 08005 Barcelona, Spain
| | - Heribert Playa-Albinyana
- Experimental Therapies in Lymphoid Neoplasms, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (I.L.-O.); (H.P.-A.); (F.A.); (M.L.-G.)
- Centro de Investigación Biomédica en Red en Oncología (CIBERONC), 28029 Madrid, Spain
| | - Fabián Arenas
- Experimental Therapies in Lymphoid Neoplasms, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (I.L.-O.); (H.P.-A.); (F.A.); (M.L.-G.)
- Centro de Investigación Biomédica en Red en Oncología (CIBERONC), 28029 Madrid, Spain
| | - Mónica López-Guerra
- Experimental Therapies in Lymphoid Neoplasms, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (I.L.-O.); (H.P.-A.); (F.A.); (M.L.-G.)
- Centro de Investigación Biomédica en Red en Oncología (CIBERONC), 28029 Madrid, Spain
- Hematopathology Section, Hospital Clínic, University of Barcelona, 08036 Barcelona, Spain
| | - Dolors Colomer
- Experimental Therapies in Lymphoid Neoplasms, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (I.L.-O.); (H.P.-A.); (F.A.); (M.L.-G.)
- Centro de Investigación Biomédica en Red en Oncología (CIBERONC), 28029 Madrid, Spain
- Hematopathology Section, Hospital Clínic, University of Barcelona, 08036 Barcelona, Spain
| |
Collapse
|
23
|
Baldoni S, Del Papa B, De Falco F, Dorillo E, Sorrentino C, Rompietti C, Adamo FM, Nogarotto M, Cecchini D, Mondani E, Silva Barcelos EC, Moretti L, Mameli MG, Fabi B, Sorcini D, Stella A, Giancola R, Guardalupi F, Ulbar F, Plebani S, Guarente V, Rosati E, Di Nicola M, Marchioni M, Di Ianni M, Sportoletti P. NOTCH1 Activation Negatively Impacts on Chronic Lymphocytic Leukemia Outcome and Is Not Correlated to the NOTCH1 and IGHV Mutational Status. Front Oncol 2021; 11:668573. [PMID: 34123837 PMCID: PMC8187905 DOI: 10.3389/fonc.2021.668573] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/04/2021] [Indexed: 11/13/2022] Open
Abstract
NOTCH1 mutations and deregulated signal have been commonly found in chronic lymphocytic leukemia (CLL) patients. Whereas the impact of NOTCH1 mutations on clinical course of CLL has been widely studied, the prognostic role of NOTCH1 activation in CLL remains to be defined. Here, we analyzed the activation of NOTCH1/NOTCH2 (ICN1/ICN2) and the expression of JAGGED1 (JAG1) in 163 CLL patients and evaluated their impact on TTFT (Time To First Treatment) and OS (Overall Survival). NOTCH1 activation (ICN1+) was found in 120/163 (73.6%) patients. Among them, 63 (52.5%) were NOTCH1 mutated (ICN1+/mutated) and 57 (47.5%) were NOTCH1 wild type (ICN1+/WT). ICN1+ patients had a significant reduction of TTFT compared to ICN1-negative (ICN1-). In the absence of NOTCH1 mutations, we found that the ICN1+/WT group had a significantly reduced TTFT compared to ICN1- patients. The analysis of IGHV mutational status showed that the distribution of the mutated/unmutated IGHV pattern was similar in ICN1+/WT and ICN1- patients. Additionally, TTFT was significantly reduced in ICN1+/ICN2+ and ICN1+/JAG1+ patients compared to ICN1-/ICN2- and ICN1-/JAG1- groups. Our data revealed for the first time that NOTCH1 activation is a negative prognosticator in CLL and is not correlated to NOTCH1 and IGHV mutational status. Activation of NOTCH2 and JAGGED1 expression might also influence clinical outcomes in this group, indicating the need for further dedicated studies. The evaluation of different NOTCH network components might represent a new approach to refine CLL risk stratification.
Collapse
Affiliation(s)
- Stefano Baldoni
- Institute of Hematology-Centro di Ricerca Emato-Oncologica (CREO), Department of Medicine and Surgery, University of Perugia, Perugia, Italy.,Department of Medicine and Aging Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Beatrice Del Papa
- Institute of Hematology-Centro di Ricerca Emato-Oncologica (CREO), Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Filomena De Falco
- Institute of Hematology-Centro di Ricerca Emato-Oncologica (CREO), Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Erica Dorillo
- Institute of Hematology-Centro di Ricerca Emato-Oncologica (CREO), Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Carlo Sorrentino
- Department of Medicine and Aging Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Chiara Rompietti
- Institute of Hematology-Centro di Ricerca Emato-Oncologica (CREO), Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Francesco Maria Adamo
- Institute of Hematology-Centro di Ricerca Emato-Oncologica (CREO), Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Manuel Nogarotto
- Institute of Hematology-Centro di Ricerca Emato-Oncologica (CREO), Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Debora Cecchini
- Institute of Hematology-Centro di Ricerca Emato-Oncologica (CREO), Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Elena Mondani
- Institute of Hematology-Centro di Ricerca Emato-Oncologica (CREO), Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Estevao Carlos Silva Barcelos
- Institute of Hematology-Centro di Ricerca Emato-Oncologica (CREO), Department of Medicine and Surgery, University of Perugia, Perugia, Italy.,Department of Biological Sciences, Postgraduate Program in Biotechnology (UFES), Federal University of Espirito Santo, Vitoria, Brazil
| | - Lorenzo Moretti
- Institute of Hematology-Centro di Ricerca Emato-Oncologica (CREO), Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Maria Grazia Mameli
- Institute of Hematology-Centro di Ricerca Emato-Oncologica (CREO), Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Bianca Fabi
- Department of Medicine and Aging Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Daniele Sorcini
- Institute of Hematology-Centro di Ricerca Emato-Oncologica (CREO), Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Arianna Stella
- Institute of Hematology-Centro di Ricerca Emato-Oncologica (CREO), Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Raffaella Giancola
- Department of Oncology and Hematology, "Santo Spirito" Hospital, Pescara, Italy
| | - Francesco Guardalupi
- Department of Medicine and Aging Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Francesca Ulbar
- Department of Medicine and Aging Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Sara Plebani
- Hematology Unit, "San Salvatore" Hospital, L'Aquila, Italy
| | - Valerio Guarente
- Institute of Hematology-Centro di Ricerca Emato-Oncologica (CREO), Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Emanuela Rosati
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Marta Di Nicola
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Michele Marchioni
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Mauro Di Ianni
- Department of Medicine and Aging Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Department of Oncology and Hematology, "Santo Spirito" Hospital, Pescara, Italy
| | - Paolo Sportoletti
- Institute of Hematology-Centro di Ricerca Emato-Oncologica (CREO), Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
24
|
Pagliaro L, Marchesini M, Roti G. Targeting oncogenic Notch signaling with SERCA inhibitors. J Hematol Oncol 2021; 14:8. [PMID: 33407740 PMCID: PMC7789735 DOI: 10.1186/s13045-020-01015-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/02/2020] [Indexed: 12/26/2022] Open
Abstract
P-type ATPase inhibitors are among the most successful and widely prescribed therapeutics in modern pharmacology. Clinical transition has been safely achieved for H+/K+ ATPase inhibitors such as omeprazole and Na+/K+-ATPase inhibitors like digoxin. However, this is more challenging for Ca2+-ATPase modulators due to the physiological role of Ca2+ in cardiac dynamics. Over the past two decades, sarco-endoplasmic reticulum Ca2+-ATPase (SERCA) modulators have been studied as potential chemotherapy agents because of their Ca2+-mediated pan-cancer lethal effects. Instead, recent evidence suggests that SERCA inhibition suppresses oncogenic Notch1 signaling emerging as an alternative to γ-secretase modulators that showed limited clinical activity due to severe side effects. In this review, we focus on how SERCA inhibitors alter Notch1 signaling and show that Notch on-target-mediated antileukemia properties of these molecules can be achieved without causing overt Ca2+ cellular overload.
Collapse
Affiliation(s)
- Luca Pagliaro
- Department of Medicine and Surgery, University of Parma, 43126, Parma, Italy
| | - Matteo Marchesini
- Department of Medicine and Surgery, University of Parma, 43126, Parma, Italy
| | - Giovanni Roti
- Department of Medicine and Surgery, University of Parma, 43126, Parma, Italy.
| |
Collapse
|
25
|
Kikushige Y. Pathogenesis of chronic lymphocytic leukemia and the development of novel therapeutic strategies. J Clin Exp Hematop 2020; 60:146-158. [PMID: 33148933 PMCID: PMC7810248 DOI: 10.3960/jslrt.20036] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/15/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) is the most common adult leukemia in Western countries and is characterized by the clonal expansion of mature CD5+ B cells. There have been substantial advances in the field of CLL research in the last decade, including the identification of recurrent mutations, and clarification of clonal architectures, signaling molecules, and the multistep leukemogenic process, providing a comprehensive understanding of CLL pathogenesis. Furthermore, the development of therapeutic approaches, especially that of molecular target therapies against CLL, has markedly improved the standard of care for CLL. This review focuses on the recent insights made in CLL leukemogenesis and the development of novel therapeutic strategies.
Collapse
MESH Headings
- Adult
- Carcinogenesis/genetics
- Carcinogenesis/metabolism
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Molecular Targeted Therapy
- Mutation
Collapse
|
26
|
Srivastava S, Kulshreshtha R. Insights into the regulatory role and clinical relevance of mediator subunit, MED12, in human diseases. J Cell Physiol 2020; 236:3163-3177. [PMID: 33174211 DOI: 10.1002/jcp.30099] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/15/2020] [Accepted: 09/28/2020] [Indexed: 12/13/2022]
Abstract
Transcriptional dysregulation is central to many diseases including cancer. Mutation or deregulated expression of proteins involved in transcriptional machinery leads to aberrant gene expression that disturbs intricate cellular processes of division and differentiation. The subunits of the mediator complex are master regulators of stimuli-derived transcription and are essential for transcription by RNA polymerase II. MED12 is a part of the CDK8 kinase module of the mediator complex and is essential for kinase assembly and function. Other than its function in activation of the kinase activity of CDK8 mediator, it also brings about transcription repression or activation, in response to several signalling pathways, a function that is independent of its role as a part of kinase assembly. Accumulating evidence suggests that MED12 controls complex transcription programs that are defining in cell fate determination, differentiation, and carcinogenesis. Mutations or differential expression of MED12 manifest in several human disorders and diseases. For instance, MED12 mutations are the gold standard for the diagnosis of several X-linked intellectual disability syndromes. Further, certain MED12 mutations are categorised as driver mutations in carcinogenesis as well. This is a timely review that provides for the first time a wholesome view on the critical roles and pathways regulated by MED12, its interactions along with the implications of MED12 alterations/mutations in various cancers and nonneoplastic disorders. Based on the preclinical studies, MED12 indeed emerges as an attractive novel therapeutic target for various diseases and intellectual disorders.
Collapse
Affiliation(s)
- Srishti Srivastava
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - Ritu Kulshreshtha
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
27
|
Gharaibeh L, Elmadany N, Alwosaibai K, Alshaer W. Notch1 in Cancer Therapy: Possible Clinical Implications and Challenges. Mol Pharmacol 2020; 98:559-576. [PMID: 32913140 DOI: 10.1124/molpharm.120.000006] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 08/10/2020] [Indexed: 12/19/2022] Open
Abstract
The Notch family consists of four highly conserved transmembrane receptors. The release of the active intracellular domain requires the enzymatic activity of γ-secretase. Notch is involved in embryonic development and in many physiologic processes of normal cells, in which it regulates growth, apoptosis, and differentiation. Notch1, a member of the Notch family, is implicated in many types of cancer, including breast cancer (especially triple-negative breast cancer), leukemias, brain tumors, and many others. Notch1 is tightly connected to many signaling pathways that are therapeutically involved in tumorigenesis. Together, they impact apoptosis, proliferation, chemosensitivity, immune response, and the population of cancer stem cells. Notch1 inhibition can be achieved through various and diverse methods, the most common of which are the γ-secretase inhibitors, which produce a pan-Notch inhibition, or the use of Notch1 short interference RNA or Notch1 monoclonal antibodies, which produce a more specific blockade. Downregulation of Notch1 can be used alone or in combination with chemotherapy, which can achieve a synergistic effect and a decrease in chemoresistance. Targeting Notch1 in cancers that harbor high expression levels of Notch1 offers an addition to therapeutic strategies recruited for managing cancer. Considering available evidence, Notch1 offers a legitimate target that might be incorporated in future strategies for combating cancer. In this review, the possible clinical applications of Notch1 inhibition and the obstacles that hinder its clinical application are discussed. SIGNIFICANCE STATEMENT: Notch1 plays an important role in different types of cancer. Numerous approaches of Notch1 inhibition possess potential benefits in the management of various clinical aspects of cancer. The application of different Notch1 inhibition modalities faces many challenges.
Collapse
Affiliation(s)
- L Gharaibeh
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan (L.G); Cellular Neurosciences, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (N.E.); Research Center, King Fahad Specialist Hospital, Dammam, Saudi Arabia (K.A.); and Cell Therapy Center, The University of Jordan, Amman, Jordan (W.A.)
| | - N Elmadany
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan (L.G); Cellular Neurosciences, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (N.E.); Research Center, King Fahad Specialist Hospital, Dammam, Saudi Arabia (K.A.); and Cell Therapy Center, The University of Jordan, Amman, Jordan (W.A.)
| | - K Alwosaibai
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan (L.G); Cellular Neurosciences, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (N.E.); Research Center, King Fahad Specialist Hospital, Dammam, Saudi Arabia (K.A.); and Cell Therapy Center, The University of Jordan, Amman, Jordan (W.A.)
| | - W Alshaer
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan (L.G); Cellular Neurosciences, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (N.E.); Research Center, King Fahad Specialist Hospital, Dammam, Saudi Arabia (K.A.); and Cell Therapy Center, The University of Jordan, Amman, Jordan (W.A.)
| |
Collapse
|
28
|
Pagliaro L, Sorrentino C, Roti G. Targeting Notch Trafficking and Processing in Cancers. Cells 2020; 9:E2212. [PMID: 33003595 PMCID: PMC7600097 DOI: 10.3390/cells9102212] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/02/2020] [Accepted: 09/08/2020] [Indexed: 02/06/2023] Open
Abstract
The Notch family comprises a group of four ligand-dependent receptors that control evolutionarily conserved developmental and homeostatic processes and transmit signals to the microenvironment. NOTCH undergoes remodeling, maturation, and trafficking in a series of post-translational events, including glycosylation, ubiquitination, and endocytosis. The regulatory modifications occurring in the endoplasmic reticulum/Golgi precede the intramembrane γ-secretase proteolysis and the transfer of active NOTCH to the nucleus. Hence, NOTCH proteins coexist in different subcellular compartments and undergo continuous relocation. Various factors, including ion concentration, enzymatic activity, and co-regulatory elements control Notch trafficking. Interfering with these regulatory mechanisms represents an innovative therapeutic way to bar oncogenic Notch signaling. In this review, we briefly summarize the role of Notch signaling in cancer and describe the protein modifications required for NOTCH to relocate across different subcellular compartments. We focus on the functional relationship between these modifications and the corresponding therapeutic options, and our findings could support the development of trafficking modulators as a potential alternative to the well-known γ-secretase inhibitors.
Collapse
Affiliation(s)
| | | | - Giovanni Roti
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (L.P.); (C.S.)
| |
Collapse
|
29
|
Clonal dynamics in chronic lymphocytic leukemia. Blood Adv 2020; 3:3759-3769. [PMID: 31770443 DOI: 10.1182/bloodadvances.2019000367] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 08/20/2019] [Indexed: 12/28/2022] Open
Abstract
Chronic lymphocytic leukemia has a highly variable disease course across patients, thought to be driven by the vast inter- and intrapatient molecular heterogeneity described in several large-scale DNA-sequencing studies conducted over the past decade. Although the last 5 years have seen a dramatic shift in the therapeutic landscape for chronic lymphocytic leukemia, including the regulatory approval of several potent targeted agents (ie, idelalisib, ibrutinib, venetoclax), the vast majority of patients still inevitably experience disease recurrence or persistence. Recent genome-wide sequencing approaches have helped to identify subclonal populations within tumors that demonstrate a broad spectrum of somatic mutations, diverse levels of response to therapy, patterns of repopulation, and growth kinetics. Understanding the impact of genetic, epigenetic, and transcriptomic features on clonal growth dynamics and drug response will be an important step toward the selection and timing of therapy.
Collapse
|
30
|
Moia R, Patriarca A, Mahmoud AM, Ferri V, Favini C, Rasi S, Deambrogi C, Gaidano G. Assessing prognosis of chronic lymphocytic leukemia using biomarkers and genetics. Expert Opin Orphan Drugs 2020. [DOI: 10.1080/21678707.2020.1804860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Riccardo Moia
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale and Azienda Ospedaliero-Universitaria Maggiore della Carità, Novara, Italy
| | - Andrea Patriarca
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale and Azienda Ospedaliero-Universitaria Maggiore della Carità, Novara, Italy
| | - Abdurraouf Mokhtar Mahmoud
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale and Azienda Ospedaliero-Universitaria Maggiore della Carità, Novara, Italy
| | - Valentina Ferri
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale and Azienda Ospedaliero-Universitaria Maggiore della Carità, Novara, Italy
| | - Chiara Favini
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale and Azienda Ospedaliero-Universitaria Maggiore della Carità, Novara, Italy
| | - Silvia Rasi
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale and Azienda Ospedaliero-Universitaria Maggiore della Carità, Novara, Italy
| | - Clara Deambrogi
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale and Azienda Ospedaliero-Universitaria Maggiore della Carità, Novara, Italy
| | - Gianluca Gaidano
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale and Azienda Ospedaliero-Universitaria Maggiore della Carità, Novara, Italy
| |
Collapse
|
31
|
Aref S, Rizk R, El Agdar M, Fakhry W, El Zafrany M, Sabry M. NOTCH-1 Gene Mutations Influence Survival in Acute Myeloid Leukemia Patients. Asian Pac J Cancer Prev 2020; 21:1987-1992. [PMID: 32711424 PMCID: PMC7573420 DOI: 10.31557/apjcp.2020.21.7.1987] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 07/23/2020] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Although NOTCH-1 gene mutations were reported to contributes to leukemogenesis in lymphocytic leukemias, its role in acute myeloid leukemia (AML) remains unclear. Therefor; this study was designed to determine the prevalence and clinical impact of NOTCH-1 mutations in AML patients. MATERIALS AND METHODS In the current study, NOTCH-1 gene mutations were identified in Bone Marrow samples obtained from fifty primary AML patients before start of therapy using Sanger sequencing. RESULTS NOTCH-1 gene mutations were detected in 6 out of 50 AML cases (12%). The three mutations were (two mutations C7318A in the Pest domain exon 34); (another 2 in the Pest domain Del 7,344, ins C7349, G7356A and the last ones in the HD-N exon-26 (Del A4609). The clinical findings in the mutant AML (mu AML) patients did not significantly different as compared to the un mutated (unmut) AML patients. There is significant association between CD7 aberrant expression and NOTCH-1 mutations. The complete remission was significantly higher in unmut AML cases as compared to mut AML ones (P=0.024). Multivariate (Age; Gender; Bone Marrow Blast cells; NOTCH-1 mutations) Cox regression analysis revealed that NOTCH-1 mutation is an independent risk factor for AML overall survival (P<0.001). The OS in unmut AML group (21.2 months) was significantly longer as compared to mut AML one (1.2 months) (P<0.001). CONCLUSION Our data indicate that NOTCH-1 gene mutations were detected in 12% of AML patients. These mutations displayed bad clinical outcome on AML patients. Therapeutic targeting of NOTCH-1 could be a potentially effective approach to combat master oncogenic drivers in AML.
Collapse
Affiliation(s)
- Salah Aref
- Hematology Unit, Clinical Pathology Department, Mansoura University Faculty of Medicine, Mansoura, Egypt.
| | - Rasha Rizk
- Hematology Unit, Clinical Pathology Department, Mansoura University Faculty of Medicine, Mansoura, Egypt.
| | - Mohamed El Agdar
- Hematology Unit, Clinical Pathology Department, Mansoura University Faculty of Medicine, Mansoura, Egypt.
| | - Wafaa Fakhry
- Hematology Unit, Clinical Pathology Department, Mansoura University Faculty of Medicine, Mansoura, Egypt.
| | - Maha El Zafrany
- Medical Oncology Unit, Mansoura University Oncology Center, Mansoura University, Egypt.
| | - Mohamed Sabry
- Hematology Unit, Clinical Pathology Department, Mansoura University Faculty of Medicine, Mansoura, Egypt.
| |
Collapse
|
32
|
Lee J, Wang YL. Prognostic and Predictive Molecular Biomarkers in Chronic Lymphocytic Leukemia. J Mol Diagn 2020; 22:1114-1125. [PMID: 32615167 DOI: 10.1016/j.jmoldx.2020.06.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 05/29/2020] [Accepted: 06/08/2020] [Indexed: 12/30/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) is a malignancy of B cells with a variable clinical course. Prognostication is important to place patients into different risk categories for guiding decisions on clinical management, to treat or not to treat. Although several clinical, cytogenetic, and molecular parameters have been established, in the past decade, a tremendous understanding of molecular lesions has been obtained with the advent of high-throughput sequencing. Meanwhile, rapid advances in the understanding of the CLL oncogenic pathways have led to the development of small-molecule targeting signal transducers, Bruton tyrosine kinase and phosphatidylinositol 3-kinase, as well as anti-apoptotic protein BCL2 apoptosis regulator. After an initial response to these targeted therapies, some patients develop resistance and experience disease progression. Novel gene mutations have been identified that account for some of the drug resistance mechanisms. This article focuses on the prognostic and predictive molecular biomarkers in CLL relevant to the molecular pathology practice, beginning with a review of well-established prognostic markers that have already been incorporated into major clinical guidelines, which will be followed by a discussion of emerging biomarkers that are expected to impact clinical practice soon in the future. Special emphasis will be put on predictive biomarkers related to newer targeted therapies in hopes that this review will serve as a useful reference for molecular diagnostic professionals, clinicians, as well as laboratory investigators and trainees.
Collapse
Affiliation(s)
- Jimmy Lee
- Ben May Department for Cancer Research, University of Chicago, Chicago, Illinois
| | - Y Lynn Wang
- Department of Pathology, Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania.
| |
Collapse
|
33
|
Marchesini M, Gherli A, Montanaro A, Patrizi L, Sorrentino C, Pagliaro L, Rompietti C, Kitara S, Heit S, Olesen CE, Møller JV, Savi M, Bocchi L, Vilella R, Rizzi F, Baglione M, Rastelli G, Loiacono C, La Starza R, Mecucci C, Stegmaier K, Aversa F, Stilli D, Lund Winther AM, Sportoletti P, Bublitz M, Dalby-Brown W, Roti G. Blockade of Oncogenic NOTCH1 with the SERCA Inhibitor CAD204520 in T Cell Acute Lymphoblastic Leukemia. Cell Chem Biol 2020; 27:678-697.e13. [PMID: 32386594 PMCID: PMC7305996 DOI: 10.1016/j.chembiol.2020.04.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 02/14/2020] [Accepted: 03/31/2020] [Indexed: 12/14/2022]
Abstract
The identification of SERCA (sarco/endoplasmic reticulum calcium ATPase) as a target for modulating gain-of-function NOTCH1 mutations in Notch-dependent cancers has spurred the development of this compound class for cancer therapeutics. Despite the innate toxicity challenge associated with SERCA inhibition, we identified CAD204520, a small molecule with better drug-like properties and reduced off-target Ca2+ toxicity compared with the SERCA inhibitor thapsigargin. In this work, we describe the properties and complex structure of CAD204520 and show that CAD204520 preferentially targets mutated over wild-type NOTCH1 proteins in T cell acute lymphoblastic leukemia (T-ALL) and mantle cell lymphoma (MCL). Uniquely among SERCA inhibitors, CAD204520 suppresses NOTCH1-mutated leukemic cells in a T-ALL xenografted model without causing cardiac toxicity. This study supports the development of SERCA inhibitors for Notch-dependent cancers and extends their application to cases with isolated mutations in the PEST degradation domain of NOTCH1, such as MCL or chronic lymphocytic leukemia (CLL).
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/chemical synthesis
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/pharmacology
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Drug Screening Assays, Antitumor
- Enzyme Inhibitors/chemical synthesis
- Enzyme Inhibitors/chemistry
- Enzyme Inhibitors/pharmacology
- Female
- Humans
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred ICR
- Mice, Inbred NOD
- Mice, SCID
- Molecular Structure
- Mutation
- Neoplasms, Experimental/drug therapy
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/pathology
- Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy
- Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism
- Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology
- Receptor, Notch1/antagonists & inhibitors
- Receptor, Notch1/genetics
- Receptor, Notch1/metabolism
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Matteo Marchesini
- University of Parma, Department of Medicine and Surgery, Parma 43126, Italy
| | - Andrea Gherli
- University of Parma, Department of Medicine and Surgery, Parma 43126, Italy
| | - Anna Montanaro
- University of Parma, Department of Medicine and Surgery, Parma 43126, Italy
| | - Laura Patrizi
- University of Perugia, Department of Medicine, Hematology and Clinical Immunology, Perugia 06123, Italy
| | - Claudia Sorrentino
- University of Parma, Department of Medicine and Surgery, Parma 43126, Italy
| | - Luca Pagliaro
- University of Parma, Department of Medicine and Surgery, Parma 43126, Italy
| | - Chiara Rompietti
- University of Perugia, Department of Medicine, Hematology and Clinical Immunology, Perugia 06123, Italy
| | - Samuel Kitara
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Sabine Heit
- University of Oxford, Department of Biochemistry, Oxford OX1 3QU, UK
| | - Claus E Olesen
- Aarhus University, Department of Biomedicine, 8000 Aarhus C, Denmark
| | - Jesper V Møller
- Aarhus University, Department of Biomedicine, 8000 Aarhus C, Denmark
| | - Monia Savi
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parma 43124, Italy
| | - Leonardo Bocchi
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parma 43124, Italy
| | - Rocchina Vilella
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parma 43124, Italy
| | - Federica Rizzi
- University of Parma, Department of Medicine and Surgery, Parma 43126, Italy; INBB - Biostructures and Biosystems National Institute, Rome 00136, Italy
| | - Marilena Baglione
- University of Parma, Department of Medicine and Surgery, Parma 43126, Italy
| | - Giorgia Rastelli
- University of Parma, Department of Medicine and Surgery, Parma 43126, Italy
| | - Caterina Loiacono
- University of Parma, Department of Medicine and Surgery, Parma 43126, Italy
| | - Roberta La Starza
- University of Perugia, Department of Medicine, Hematology and Clinical Immunology, Perugia 06123, Italy
| | - Cristina Mecucci
- University of Perugia, Department of Medicine, Hematology and Clinical Immunology, Perugia 06123, Italy
| | - Kimberly Stegmaier
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; The Broad Institute, Cambridge, MA 02142, USA
| | - Franco Aversa
- University of Parma, Department of Medicine and Surgery, Parma 43126, Italy
| | - Donatella Stilli
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parma 43124, Italy
| | | | - Paolo Sportoletti
- University of Perugia, Department of Medicine, Hematology and Clinical Immunology, Perugia 06123, Italy
| | - Maike Bublitz
- University of Oxford, Department of Biochemistry, Oxford OX1 3QU, UK
| | | | - Giovanni Roti
- University of Parma, Department of Medicine and Surgery, Parma 43126, Italy.
| |
Collapse
|
34
|
Down-regulation of lncRNA MALAT1 alleviates vascular lesion and vascular remodeling of rats with hypertension. Aging (Albany NY) 2020; 11:5192-5205. [PMID: 31343412 PMCID: PMC6682528 DOI: 10.18632/aging.102113] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/16/2019] [Indexed: 12/28/2022]
Abstract
Objective: Recently, the effect of long non-coding RNAs (lncRNAs) in hypertension (HTN) has been identified. This study aims to explore the expression of lncRNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) in HTN and its role in vascular lesion and remodeling of HTN rats. Results: LncRNA MALAT1 expression was up-regulated in HTN patients, and lncRNA MALAT1 could be an effective index of HTN diagnosis. Down-regulated MALAT1 and inhibited Notch-1 could reduce relative factor expression, including inflammation-related factors, endothelial function-related factors and oxidative stress-related factors, and inhibit apoptosis of aortic endothelial cells of HTN rats. Methods: LncRNA MALAT1 expression in HTN patients and healthy controls was detected by reverse transcription quantitative polymerase chain reaction (RT-qPCR). Angiotensin II (Ang II)-induced HTN rat models were injected with MALAT1-siRNA, empty lentivirus vector, Notch pathway inhibitor (DAPT) and dimethyl sulphoxide (DMSO) via caudal vein. After three-week treatment, changes of blood pressure, inflammatory factor levels, endothelial function-related factors, oxidative stress indices and apoptosis of vascular endothelial cells were determined by a series of assays. Conclusion: This study revealed that down-regulated lncRNA MALAT1 could alleviate the vascular lesion and remodeling of HTN rats, the mechanism may be related to the inhibited activation of Notch signaling pathway.
Collapse
|
35
|
Precision Medicine Management of Chronic Lymphocytic Leukemia. Cancers (Basel) 2020; 12:cancers12030642. [PMID: 32164276 PMCID: PMC7139574 DOI: 10.3390/cancers12030642] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/06/2020] [Accepted: 03/08/2020] [Indexed: 11/21/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) is the most common type of leukemia in western countries, with an incidence of approximately 5.1/100,000 new cases per year. Some patients may never require treatment, whereas others relapse early after front line therapeutic approaches. Recent whole genome and whole exome sequencing studies have allowed a better understanding of CLL pathogenesis and the identification of genetic lesions with potential clinical relevance. Consistently, precision medicine plays a pivotal role in the treatment algorithm of CLL, since the integration of molecular biomarkers with the clinical features of the disease may guide treatment choices. Most CLL patients present at the time of diagnosis with an early stage disease and are managed with a watch and wait strategy. For CLL patients requiring therapy, the CLL treatment armamentarium includes both chemoimmunotherapy strategies and biological drugs. The efficacy of these treatment strategies relies upon specific molecular features of the disease. TP53 disruption (including both TP53 mutation and 17p deletion) is the strongest predictor of chemo-refractoriness, and the assessment of TP53 status is the first and most important decisional node in the first line treatment algorithm. The presence of TP53 disruption mandates treatment with biological drugs that inhibit the B cell receptor or, alternatively, the B-cell lymphoma 2 (BCL2) pathway and can, at least in part, circumvent the chemorefractoriness of TP53-disrupted patients. Beside TP53 disruption, the mutational status of immunoglobulin heavy variable (IGHV) genes also helps clinicians to improve treatment tailoring. In fact, patients carrying mutated IGHV genes in the absence of TP53 disruption experience a long-lasting and durable response to chemoimmunotherapy after fludarabine, cyclophosphamide, and rituximab (FCR) treatment with a survival superimposable to that of a matched general population. In contrast, patients with unmutated IGHV genes respond poorly to chemoimmunotherapy and deserve treatment with B cell receptor inhibitors. Minimal residual disease is also emerging as a relevant biomarker with potential clinical implications. Overall, precision medicine is now a mainstay in the management and treatment stratification of CLL. The identification of novel predictive biomarkers will allow further improvements in the treatment tailoring of this leukemia.
Collapse
|
36
|
Zhang S, O'Regan R, Xu W. The emerging role of mediator complex subunit 12 in tumorigenesis and response to chemotherapeutics. Cancer 2019; 126:939-948. [PMID: 31869450 DOI: 10.1002/cncr.32672] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 11/07/2019] [Accepted: 11/22/2019] [Indexed: 12/18/2022]
Abstract
Transcriptional dysregulation induced by disease-defining genetic alterations of proteins in transcriptional machinery is a key feature of cancers. Mediator complex subunit 12 (MED12) is the central architectural subunit in the kinase module of Mediator, a large transcriptional regulatory complex that controls essential steps of transcription. Emerging evidence links deregulated MED12 to human cancers. MED12 is frequently mutated in benign tumors and cancers. Although the missense mutations of MED12 in benign tumors disrupt the kinase activity of Mediator, MED12 mutations in cancers could eliminate the interaction between Mediator complex and RNA polymerase II, leading to severe transcriptional misregulation. Aberrant expression of MED12 is associated with the prognosis of various types of human cancers. Loss of MED12 function has been associated with the development of resistance to chemotherapeutics. Moreover, MED12 is modified by posttranscriptional regulations. Arginine methylation of MED12 has been shown to regulate MED12-mediated transcriptional regulation and response to chemotherapeutics in human cancer cell lines. In this mini-review, the authors provide an overview of the roles of MED12 in the development of benign and malignant tumors as well as its roles in chemoresistance. The studies of MED12 exemplify that aberrant transcriptional programming is a therapeutic vulnerability for certain types of cancer.
Collapse
Affiliation(s)
- Shengjie Zhang
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin.,Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Ruth O'Regan
- Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin
| | - Wei Xu
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
37
|
Gutierrez C, Wu CJ. Clonal dynamics in chronic lymphocytic leukemia. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2019; 2019:466-475. [PMID: 31808879 PMCID: PMC6913465 DOI: 10.1182/hematology.2019000367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Chronic lymphocytic leukemia has a highly variable disease course across patients, thought to be driven by the vast inter- and intrapatient molecular heterogeneity described in several large-scale DNA-sequencing studies conducted over the past decade. Although the last 5 years have seen a dramatic shift in the therapeutic landscape for chronic lymphocytic leukemia, including the regulatory approval of several potent targeted agents (ie, idelalisib, ibrutinib, venetoclax), the vast majority of patients still inevitably experience disease recurrence or persistence. Recent genome-wide sequencing approaches have helped to identify subclonal populations within tumors that demonstrate a broad spectrum of somatic mutations, diverse levels of response to therapy, patterns of repopulation, and growth kinetics. Understanding the impact of genetic, epigenetic, and transcriptomic features on clonal growth dynamics and drug response will be an important step toward the selection and timing of therapy.
Collapse
MESH Headings
- Adenine/analogs & derivatives
- Bridged Bicyclo Compounds, Heterocyclic/therapeutic use
- Epigenesis, Genetic
- Gene Expression Regulation, Leukemic
- Genome-Wide Association Study
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Male
- Middle Aged
- Mutation
- Piperidines
- Purines/therapeutic use
- Pyrazoles/therapeutic use
- Pyrimidines/therapeutic use
- Quinazolinones/therapeutic use
- Sulfonamides/therapeutic use
- Transcriptome
- Whole Genome Sequencing
Collapse
Affiliation(s)
- Catherine Gutierrez
- Harvard Medical School, Boston, MA; and Dana-Farber Cancer Institute, Boston, MA
| | - Catherine J Wu
- Harvard Medical School, Boston, MA; and Dana-Farber Cancer Institute, Boston, MA
| |
Collapse
|
38
|
Kikushige Y. Pathophysiology of chronic lymphocytic leukemia and human B1 cell development. Int J Hematol 2019; 111:634-641. [PMID: 31797231 DOI: 10.1007/s12185-019-02788-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/28/2019] [Accepted: 11/28/2019] [Indexed: 12/22/2022]
Abstract
Chronic lymphocytic leukemia (CLL), the most frequent type of leukemia in adults, is a lymphoproliferative disease characterized by the clonal expansion of mature CD5+ B cells in peripheral blood, bone marrow, and secondary lymphoid tissues. Over the past decade, substantial advances have been made in understanding the pathogenesis of CLL, including the identification of recurrent mutations, and clarification of clonal architectures, transcriptome analyses, and the multistep leukemogenic process. The biology of CLL is now better understood. The present review focuses on recent insights into CLL leukemogenesis, emphasizing the role of genetic lesions, and the multistep process initiating from very immature hematopoietic stem cells. Finally, we also review progress in the study of human B1 B cells, the putative normal counterparts of CLL cells.
Collapse
Affiliation(s)
- Yoshikane Kikushige
- Department of Medicine and Biosystemic Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
39
|
Abstract
Chronic lymphocytic leukaemia (CLL), the most frequent type of leukaemia in adults, is a lymphoproliferative disorder that is characterized by the expansion of monoclonal, mature CD5+CD23+ B cells in the peripheral blood, secondary lymphoid tissues and bone marrow. CLL is an incurable disease with a heterogeneous clinical course, for which the treatment decision still relies on conventional parameters (such as clinical stage and lymphocyte doubling time). During the past 5 years, relevant advances have been made in understanding CLL biology. Indeed, substantial progress has been made in the identification of the putative cell of origin of CLL, and comprehensive studies have dissected the genomic, epigenomic and transcriptomic landscape of CLL. Advances in clinical management include improvements in our understanding of the prognostic value of different genetic lesions, particularly those associated with chemoresistance and progression to highly aggressive forms of CLL, and the advent of new therapies targeting crucial biological pathways. In this Review, we discuss new insights into the genetic lesions involved in the pathogenesis of CLL and how these genetic insights influence clinical management and the development of new therapeutic strategies for this disease.
Collapse
|
40
|
Specific NOTCH1 antibody targets DLL4-induced proliferation, migration, and angiogenesis in NOTCH1-mutated CLL cells. Oncogene 2019; 39:1185-1197. [PMID: 31616059 PMCID: PMC7002297 DOI: 10.1038/s41388-019-1053-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 09/10/2019] [Accepted: 10/01/2019] [Indexed: 11/30/2022]
Abstract
Targeting Notch signaling has emerged as a promising therapeutic strategy for chronic lymphocytic leukemia (CLL), particularly in NOTCH1-mutated patients. We provide first evidence that the Notch ligand DLL4 is a potent stimulator of Notch signaling in NOTCH1-mutated CLL cells while increases cell proliferation. Importantly, DLL4 is expressed in histiocytes from the lymph node, both in NOTCH1-mutated and -unmutated cases. We also show that the DLL4-induced activation of the Notch signaling pathway can be efficiently blocked with the specific anti-Notch1 antibody OMP-52M51. Accordingly, OMP-52M51 also reverses Notch-induced MYC, CCND1, and NPM1 gene expression as well as cell proliferation in NOTCH1-mutated CLL cells. In addition, DLL4 stimulation triggers the expression of protumor target genes, such as CXCR4, NRARP, and VEGFA, together with an increase in cell migration and angiogenesis. All these events can be antagonized by OMP-52M51. Collectively, our results emphasize the role of DLL4 stimulation in NOTCH1-mutated CLL and confirm the specific therapeutic targeting of Notch1 as a promising approach for this group of poor prognosis CLL patients.
Collapse
|
41
|
Del Papa B, Baldoni S, Dorillo E, De Falco F, Rompietti C, Cecchini D, Cantelmi MG, Sorcini D, Nogarotto M, Adamo FM, Mezzasoma F, Silva Barcelos EC, Albi E, Iacucci Ostini R, Di Tommaso A, Marra A, Montanaro G, Martelli MP, Falzetti F, Di Ianni M, Rosati E, Sportoletti P. Decreased NOTCH1 Activation Correlates with Response to Ibrutinib in Chronic Lymphocytic Leukemia. Clin Cancer Res 2019; 25:7540-7553. [PMID: 31578228 DOI: 10.1158/1078-0432.ccr-19-1009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 08/02/2019] [Accepted: 09/24/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Ibrutinib, a Bruton tyrosine kinase inhibitor (BTKi), has improved the outcomes of chronic lymphocytic leukemia (CLL), but primary resistance or relapse are issues of increasing significance. While the predominant mechanism of action of BTKi is the B-cell receptor (BCR) blockade, many off-target effects are unknown. We investigated potential interactions between BCR pathway and NOTCH1 activity in ibrutinib-treated CLL to identify new mechanisms of therapy resistance and markers to monitor disease response. EXPERIMENTAL DESIGN NOTCH activations was evaluated either in vitro and ex vivo in CLL samples after ibrutinib treatment by Western blotting. Confocal proximity ligation assay (PLA) experiments and analyses of down-targets of NOTCH1 by qRT-PCR were used to investigate the cross-talk between BTK and NOTCH1. RESULTS In vitro ibrutinib treatment of CLL significantly reduced activated NOTCH1/2 and induced dephosphorylation of eIF4E, a NOTCH target in CLL. BCR stimulation increased the expression of activated NOTCH1 that accumulated in the nucleus leading to HES1, DTX1, and c-MYC transcription. Results of in situ PLA experiments revealed the presence of NOTCH1-ICD/BTK complexes, whose number was reduced after ibrutinib treatment. In ibrutinib-treated CLL patients, leukemic cells showed NOTCH1 activity downregulation that deepened over time. The NOTCH1 signaling was restored at relapse and remained activated in ibrutinib-resistant CLL cells. CONCLUSIONS We demonstrated a strong clinical activity of ibrutinib in a real-life context. The ibrutinib clinical efficacy was associated with NOTCH1 activity downregulation that deepened over time. Our data point to NOTCH1 as a new molecular partner in BCR signaling with potential to further improve CLL-targeted treatments.
Collapse
Affiliation(s)
- Beatrice Del Papa
- Institute of Hematology-Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, Italy
| | - Stefano Baldoni
- Institute of Hematology-Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, Italy.,Department of Life, Health and Environmental Sciences, Hematology Section, University of L'Aquila, L'Aquila, Italy
| | - Erica Dorillo
- Institute of Hematology-Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, Italy
| | - Filomena De Falco
- Institute of Hematology-Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, Italy
| | - Chiara Rompietti
- Institute of Hematology-Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, Italy
| | - Debora Cecchini
- Institute of Hematology-Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, Italy
| | - Maria Grazia Cantelmi
- Institute of Hematology-Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, Italy
| | - Daniele Sorcini
- Institute of Hematology-Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, Italy
| | - Manuel Nogarotto
- Institute of Hematology-Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, Italy
| | - Francesco Maria Adamo
- Institute of Hematology-Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, Italy
| | - Federica Mezzasoma
- Institute of Hematology-Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, Italy
| | - Estevão Carlos Silva Barcelos
- Institute of Hematology-Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, Italy.,Department of Biological Sciences, Postgraduate Program in Biotechnology (UFES), Federal University of Espirito Santo, Vitória-ES, Brazil
| | - Elisa Albi
- Institute of Hematology-Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, Italy
| | - Roberta Iacucci Ostini
- Institute of Hematology-Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, Italy
| | - Ambra Di Tommaso
- Department of Life, Health and Environmental Sciences, Hematology Section, University of L'Aquila, L'Aquila, Italy
| | - Andrea Marra
- Institute of Hematology-Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, Italy
| | - Guido Montanaro
- Institute of Hematology-Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, Italy.,Department of Hematology, Transfusion Medicine and Biotechnologies, Ospedale Civile, Pescara, Italy
| | - Maria Paola Martelli
- Institute of Hematology-Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, Italy
| | - Franca Falzetti
- Institute of Hematology-Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, Italy
| | - Mauro Di Ianni
- Department of Hematology, Transfusion Medicine and Biotechnologies, Ospedale Civile, Pescara, Italy.,Department of Medicine and Aging Sciences, University of Chieti Pescara, Chieti, Italy
| | - Emanuela Rosati
- Department of Experimental Medicine, Biosciences and Medical Embriology Section, University of Perugia, Perugia, Italy
| | - Paolo Sportoletti
- Institute of Hematology-Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, Italy.
| |
Collapse
|
42
|
B cells with aberrant activation of Notch1 signaling promote Treg and Th2 cell-dominant T-cell responses via IL-33. Blood Adv 2019; 2:2282-2295. [PMID: 30213787 DOI: 10.1182/bloodadvances.2018019919] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 08/19/2018] [Indexed: 01/14/2023] Open
Abstract
The Notch-signaling pathway in a variety of mature B-cell neoplasms is often activated by gene alterations, but its role remains unclear. Here, we show that B cells harboring dysregulated activation of Notch1 signaling have an immunomodulatory effect on T cells by amplifying regulatory T (Treg) and T helper 2 (Th2) cell responses in an interleukin-33 (IL-33)-dependent manner. A conditional mouse model, in which constitutive expression of an active form of Notch1 is induced in B cells by Aicda gene promoter-driven Cre recombinase, revealed no obvious phenotypic changes in B cells; however, mice demonstrated an expansion of Treg and Th2 cell subsets and a decrease in cytokine production by Th1 and CD8+ T cells. The mice were susceptible to soft tissue sarcoma and defective production of CD8+ T cells specific for inoculated tumor cells, suggesting impaired antitumor T-cell activity. Gene-expression microarray revealed that altered T-cell responses were due to increased IL-33 production by Notch1-activated B cells. Knockout of IL33 or blockade of IL-33 by a receptor-blocking antibody abrogated the Treg and Th2 cell-dominant T-cell response triggered by B cells. Gene-expression data derived from human diffuse large B-cell lymphoma (DLBCL) samples showed that an activated Notch-signaling signature correlates positively with IL33 expression and Treg cell-rich gene-expression signatures. These findings indicate that B cells harboring dysregulated Notch signaling alter T-cell responses via IL-33, and suggest that aberrant activation of Notch signaling plays a role in fostering immune privilege in mature B-cell neoplasms.
Collapse
|
43
|
Pelullo M, Zema S, Nardozza F, Checquolo S, Screpanti I, Bellavia D. Wnt, Notch, and TGF-β Pathways Impinge on Hedgehog Signaling Complexity: An Open Window on Cancer. Front Genet 2019; 10:711. [PMID: 31552081 PMCID: PMC6736567 DOI: 10.3389/fgene.2019.00711] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/05/2019] [Indexed: 12/22/2022] Open
Abstract
Constitutive activation of the Hedgehog (Hh) signaling pathway is associated with increased risk of developing several malignancies. The biological and pathogenic importance of Hh signaling emphasizes the need to control its action tightly, both physiologically and therapeutically. Evidence of crosstalk between Hh and other signaling pathways is reported in many tumor types. Here, we provide an overview of the current knowledge about the communication between Hh and major signaling pathways, such as Notch, Wnt, and transforming growth factor β (TGF-β), which play critical roles in both embryonic and adult life. When these pathways are unbalanced, impaired crosstalk contributes to disease development. It is reported that more than one of these pathways are active in different type of tumors, at the same time. Therefore, starting from a plethora of stimuli that activate multiple signaling pathways, we describe the signals that preferentially converge on the Hh signaling cascade that influence its activity. Moreover, we highlight several connection points between Hh and Notch, Wnt, or TGF-β pathways, showing a reciprocal synergism that contributes to tumorigenesis, supporting a more malignant behavior by tumor cells, such as in leukemia and brain tumors. Understanding the importance of these molecular interlinking networks will provide a rational basis for combined anticancer drug development.
Collapse
Affiliation(s)
- Maria Pelullo
- Center of Life Nano Science Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Sabrina Zema
- Department of Molecular Medicine, Sapienza University, Rome, Italy
| | | | - Saula Checquolo
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University, Latina, Italy
| | | | - Diana Bellavia
- Department of Molecular Medicine, Sapienza University, Rome, Italy
| |
Collapse
|
44
|
Therapeutic Targeting of Notch Signaling Pathway in Hematological Malignancies. Mediterr J Hematol Infect Dis 2019; 11:e2019037. [PMID: 31308913 PMCID: PMC6613627 DOI: 10.4084/mjhid.2019.037] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 05/18/2019] [Indexed: 12/16/2022] Open
Abstract
The Notch pathway plays a key role in several processes, including stem-cell self-renewal, proliferation, and cell differentiation. Several studies identified recurrent mutations in hematological malignancies making Notch one of the most desirable targets in leukemia and lymphoma. The Notch signaling mediates resistance to therapy and controls cancer stem cells supporting the development of on-target therapeutic strategies to improve patients’ outcome. In this brief review, we outline the therapeutic potential of targeting Notch pathway in T-cell acute jlymphoblastic leukemia, chronic lymphocytic leukemia, and mantle cell lymphoma.
Collapse
|
45
|
Alsagaby SA, Alhumaydhi FA. Proteomics insights into the pathology and prognosis of chronic lymphocytic leukemia. Saudi Med J 2019; 40:317-327. [PMID: 30957124 PMCID: PMC6506661 DOI: 10.15537/smj.2019.4.23598] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is an incurable malignant disease of B-lymphocytes characterized by drastically heterogeneous clinical courses. Proteomics is an advanced approach that allows a global profiling of protein expression, providing a valuable chance for the discovery of disease-related proteins. In the last 2 decades, several proteomics studies were conducted on CLL to identify aberrant protein expression underpinning the malignant transformation and progression of the disease. Overall, these studies provided insights into the pathology and prognosis of CLL and reveal protein candidates with the potential to serve as biomarkers and/or therapeutic targets of the tumor. The major findings reported in these studies are discussed here.
Collapse
MESH Headings
- Biomarkers, Tumor
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/pathology
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Molecular Targeted Therapy
- Prognosis
- Proteomics/trends
Collapse
Affiliation(s)
- Suliman A Alsagaby
- Department of Medical Laboratories Sciences, Faculty of Applied Medical Sciences, Majmaah University, Majmaah, Kingdom of Saudi Arabia. E-mail.
| | | |
Collapse
|
46
|
Arruga F, Deaglio S. Mechanisms of Resistance to Targeted Therapies in Chronic Lymphocytic Leukemia. Handb Exp Pharmacol 2019; 249:203-229. [PMID: 28275912 DOI: 10.1007/164_2017_12] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Even if treatment options for Chronic Lymphocytic Leukemia (CLL) patients have changed dramatically in the past few years, with the approval of targeted therapeutic agents, the disease remains incurable. Beside intrinsic genetic features characterizing the leukemic cell, signals coming from the microenvironment have a key role in promoting cell survival and in protecting CLL cells from the action of drugs. Consequently, the identification of previously unrecognized genetic lesions is important in risk-stratification of CLL patients and is progressively becoming a critical tool for choosing the best therapeutic strategy. Significant efforts have also been dedicated to define microenvironment-dependent mechanisms that sustain leukemic cells favoring survival, proliferation, and accumulation of additional genetic lesions. Furthermore, understanding the molecular and biological mechanisms, potentially driving disease progression and chemoresistance, is the first step to design therapies that could be effective in high-risk patients. Significant progress has been made in the identification of the different mechanisms through which patients relapse after "new" and "old" therapies. These studies have led to the development of targeted strategies to overcome, or even prevent, resistance through the design of novel agents or their combination.In this chapter we will give an overview of the main therapeutic options for CLL patients and review the mechanisms of resistance responsible for treatment failure. Potential strategies to overcome or prevent resistance will be also discussed.
Collapse
Affiliation(s)
| | - Silvia Deaglio
- Human Genetics Foundation, via Nizza 52, Turin, 10126, Italy.,Department of Medical Sciences, University of Turin, Turin, Italy
| |
Collapse
|
47
|
Thierauf J, Ramamurthy N, Jo VY, Robinson H, Frazier RP, Gonzalez J, Pacula M, Dominguez Meneses E, Nose V, Nardi V, Dias-Santagata D, Le LP, Lin DT, Faquin WC, Wirth LJ, Hess J, Iafrate AJ, Lennerz JK. Clinically Integrated Molecular Diagnostics in Adenoid Cystic Carcinoma. Oncologist 2019; 24:1356-1367. [PMID: 30926674 PMCID: PMC6795155 DOI: 10.1634/theoncologist.2018-0515] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 02/27/2019] [Indexed: 01/29/2023] Open
Abstract
Adenoid cystic carcinoma is a rare but aggressive type of salivary gland malignancy. This article addresses the need for more effective, biomarker‐informed therapies in rare cancers, focusing on clinical utility and financial sustainability of integrated next‐generation sequencing in routine practice. Background. Adenoid cystic carcinoma (ACC) is an aggressive salivary gland malignancy without effective systemic therapies. Delineation of molecular profiles in ACC has led to an increased number of biomarker‐stratified clinical trials; however, the clinical utility and U.S.‐centric financial sustainability of integrated next‐generation sequencing (NGS) in routine practice has, to our knowledge, not been assessed. Materials and Methods. In our practice, NGS genotyping was implemented at the discretion of the primary clinician. We combined NGS‐based mutation and fusion detection, with MYB break‐apart fluorescent in situ hybridization (FISH) and MYB immunohistochemistry. Utility was defined as the fraction of patients with tumors harboring alterations that are potentially amenable to targeted therapies. Financial sustainability was assessed using the fraction of global reimbursement. Results. Among 181 consecutive ACC cases (2011–2018), prospective genotyping was performed in 11% (n = 20/181; n = 8 nonresectable). Testing identified 5/20 (25%) NOTCH1 aberrations, 6/20 (30%) MYB‐NFIB fusions (all confirmed by FISH), and 2/20 (10%) MYBL1‐NFIB fusions. Overall, these three alterations (MYB/MYBL1/NOTCH1) made up 65% of patients, and this subset had a more aggressive course with significantly shorter progression‐free survival. In 75% (n = 6/8) of nonresectable patients, we detected potentially actionable alterations. Financial analysis of the global charges, including NGS codes, indicated 63% reimbursement, which is in line with national (U.S.‐based) and international levels of reimbursement. Conclusion. Prospective routine clinical genotyping in ACC can identify clinically relevant subsets of patients and is approaching financial sustainability. Demonstrating clinical utility and financial sustainability in an orphan disease (ACC) requires a multiyear and multidimensional program. Implications for Practice. Delineation of molecular profiles in adenoid cystic carcinoma (ACC) has been accomplished in the research setting; however, the ability to identify relevant patient subsets in clinical practice has not been assessed. This work presents an approach to perform integrated molecular genotyping of patients with ACC with nonresectable, recurrent, or systemic disease. It was determined that 75% of nonresectable patients harbor potentially actionable alterations and that 63% of charges are reimbursed. This report outlines that orphan diseases such as ACC require a multiyear, multidimensional program to demonstrate utility in clinical practice.
Collapse
Affiliation(s)
- Julia Thierauf
- Department of Pathology, Center for Integrated Diagnostics, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
- Department of Otorhinolaryngology, Head and Neck Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Nisha Ramamurthy
- Department of Pathology, Center for Integrated Diagnostics, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Vickie Y Jo
- Department of Pathology, Brigham and Women's Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Hayley Robinson
- Department of Pathology, Center for Integrated Diagnostics, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Ryan P Frazier
- Department of Pathology, Center for Integrated Diagnostics, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Jonathan Gonzalez
- Department of Pathology, Center for Integrated Diagnostics, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Maciej Pacula
- Department of Pathology, Computational Pathology, Boston, Massachusetts, USA
| | | | - Vania Nose
- Department of Pathology, Head and Neck Pathology, Boston, Massachusetts, USA
- Department of Pathology, Surgical Pathology, Boston, Massachusetts, USA
| | - Valentina Nardi
- Department of Pathology, Center for Integrated Diagnostics, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Dora Dias-Santagata
- Department of Pathology, Center for Integrated Diagnostics, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Long P Le
- Department of Pathology, Center for Integrated Diagnostics, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
- Department of Pathology, Computational Pathology, Boston, Massachusetts, USA
| | - Derrick T Lin
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA
| | - William C Faquin
- Department of Pathology, Surgical Pathology, Boston, Massachusetts, USA
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA
| | - Lori J Wirth
- Cancer Center, Massachusetts General Hospital, Boston, Massachusetts, USA
- Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA
| | - Jochen Hess
- Department of Otorhinolaryngology, Head and Neck Surgery, Heidelberg University Hospital, Heidelberg, Germany
- Research Group Molecular Mechanisms of Head and Neck Tumors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - A John Iafrate
- Department of Pathology, Center for Integrated Diagnostics, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Jochen K Lennerz
- Department of Pathology, Center for Integrated Diagnostics, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
48
|
Gohil SH, Wu CJ. Dissecting CLL through high-dimensional single-cell technologies. Blood 2019; 133:1446-1456. [PMID: 30728142 PMCID: PMC6440295 DOI: 10.1182/blood-2018-09-835389] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 11/07/2018] [Indexed: 12/11/2022] Open
Abstract
We now have the potential to undertake detailed analysis of the inner workings of thousands of cancer cells, one cell at a time, through the emergence of a range of techniques that probe the genome, transcriptome, and proteome combined with the development of bioinformatics pipelines that enable their interpretation. This provides an unprecedented opportunity to better understand the heterogeneity of chronic lymphocytic leukemia and how mutations, activation states, and protein expression at the single-cell level have an impact on disease course, response to treatment, and outcomes. Herein, we review the emerging application of these new techniques to chronic lymphocytic leukemia and examine the insights already attained through this transformative technology.
Collapse
Affiliation(s)
- Satyen H Gohil
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA
| | - Catherine J Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA
- Harvard Medical School, Boston, MA; and
- Department of Medicine, Brigham and Women's Hospital, Boston, MA
| |
Collapse
|
49
|
The frequency of NOTCH1 variants in T-acute lymphoblastic leukemia/lymphoma and chronic lymphocytic leukemia/small lymphocytic lymphoma among Jordanian patients. Ann Diagn Pathol 2019; 39:53-58. [PMID: 30718223 DOI: 10.1016/j.anndiagpath.2019.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 01/13/2019] [Accepted: 01/21/2019] [Indexed: 11/23/2022]
Abstract
The transmembrane receptor NOTCH1 is thought to be associated with the development and progression of T-acute lymphoblastic leukemia (T-ALL)/T-lymphoblastic lymphoma (T-LBL) and chronic lymphocytic leukemia (CLL)/small lymphocytic lymphoma (SLL). The current study aimed to characterize NOTCH1 expression and elucidate the variants in the functional PEST domain of the receptor in T-ALL/LBL and CLL/SLL. The nuclear expression of NOTCH1 protein was detected in 25% and 5% of cases of T-ALL/LBL and CLL/SLL, respectively, whereas cytoplasmic expression was detected in 33.3% and 15% cases, respectively. The frequency of variants in T-ALL/LBL was 33%, whereas 40% of CLL/SLL cases possessed variants. Four novel variants were identified; three of which were non-synonymous and one common variant c.7280_7280delG between T-ALL/LBL and CLL/SLL cases. The previously described variant, c.7541_7542delCT, was detected in 3 cases of CLL/SLL. These results provide support for the contribution of NOTCH1 in the etiology of these types of cancers.
Collapse
|
50
|
Spina V, Rossi D. Overview of non-coding mutations in chronic lymphocytic leukemia. Mol Oncol 2019; 13:99-106. [PMID: 30520556 PMCID: PMC6322188 DOI: 10.1002/1878-0261.12416] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/29/2018] [Accepted: 11/30/2018] [Indexed: 12/15/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) is the most frequent leukemia type in which the genetic alterations influencing the clinico‐biological course are not entirely understood. CLL has a heterogeneous course, with some patients showing an indolent course and others experiencing an aggressive course. Whole‐genome sequencing and whole‐exome sequencing studies identified recurrently mutated genes in CLL and profiled its clonal evolution patterns. However, more recent whole‐genome sequencing studies also identified variants in non‐coding sequences of the CLL genome, revealing important lesions outside the protein‐coding regions. Here we describe the most representative non‐coding lesion of the CLL genome, including lesions in the 3′‐UTR region of NOTCH1 which result in the truncation of the NOTCH1 protein PEST domain, and non‐coding mutations in an enhancer region on chromosome 9p13 which result in reduced expression of the PAX5 transcription factor. In addition, we describe the role of microRNA in CLL, in particular the miR15a/miR16‐1 microRNA recurrently affected by deletions of chromosome 13q14. Together, new findings in non‐coding genome genetic lesions provide a more complete portrait of the genomic landscape of CLL with clinical implications.
Collapse
Affiliation(s)
- Valeria Spina
- Laboratory of Experimental Hematology, Institute of Oncology Research, Bellinzona, Switzerland
| | - Davide Rossi
- Laboratory of Experimental Hematology, Institute of Oncology Research, Bellinzona, Switzerland.,Division of Hematology, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| |
Collapse
|