1
|
Yabushita T, Goyama S. Nucleic acid metabolism: the key therapeutic target for myeloid tumors. Exp Hematol 2025; 142:104693. [PMID: 39647658 DOI: 10.1016/j.exphem.2024.104693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/26/2024] [Revised: 11/20/2024] [Accepted: 11/26/2024] [Indexed: 12/10/2024]
Abstract
Nucleic acid analogs, including cytarabine, decitabine, and azacitidine, have significantly advanced therapeutic approaches for myeloid tumors over the past five decades. Nucleic acid metabolism is a crucial pathway driving myeloid tumorigenesis, with emerging evidence indicating that myeloid tumors are particularly dependent on the de novo nucleotide synthesis pathway, underscoring its potential as a therapeutic target. This review provides a comprehensive overview of nucleic acid metabolism, focusing on de novo nucleotide synthesis. We then described the range of clinically utilized agents targeting nucleic acid metabolism and discussed our recent findings on the nonepigenetic actions of decitabine, as well as the therapeutic effects of inosine monophosphate dehydrogenase (IMPDH) inhibitors in the treatment of myeloid tumors.
Collapse
Affiliation(s)
- Tomohiro Yabushita
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Susumu Goyama
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Japan.
| |
Collapse
|
2
|
Zhou H, Xiang W, Zhou G, Rodrigues-Lima F, Guidez F, Wang L. Metabolic dysregulation in myelodysplastic neoplasm: impact on pathogenesis and potential therapeutic targets. Med Oncol 2024; 42:23. [PMID: 39644425 DOI: 10.1007/s12032-024-02575-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/09/2024] [Accepted: 11/23/2024] [Indexed: 12/09/2024]
Abstract
Despite significant advancements in the research of the pathogenesis mechanisms of Myelodysplastic Neoplasm (MDS) in recent years, there are still many gaps to fill. The advancement of metabolomics studies has led to a research booming in clarifying the impact of metabolic abnormalities during the pathogenesis of MDS. The present review primarily focuses on the dysregulated metabolic pathways, exploring the influences on the pathogenesis of MDS and their roles during the course of the disease. Furthermore, we discuss the potential of relevant metabolic pathways as therapeutic targets, along with the latest metabolic-related treatment drugs and approaches.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Wenqiong Xiang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Guangyu Zhou
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Fernando Rodrigues-Lima
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle Et Adaptative, 75013, Paris, France
| | - Fabien Guidez
- Université Paris Cité, Institut de Recherche Saint Louis INSERM UMR_S1131, 75010, Paris, France
| | - Li Wang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
3
|
Mishra R, Zokaei Nikoo M, Veeraballi S, Singh A. Venetoclax and Hypomethylating Agent Combination in Myeloid Malignancies: Mechanisms of Synergy and Challenges of Resistance. Int J Mol Sci 2023; 25:484. [PMID: 38203655 PMCID: PMC10778677 DOI: 10.3390/ijms25010484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/29/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
There has been a widespread adoption of hypomethylating agents (HMA: 5-Azacytidine (5-Aza)/decitabine) and venetoclax (Ven) for the treatment of acute myeloid leukemia (AML); however, the mechanisms behind the combination's synergy are poorly understood. Monotherapy often encounters resistance, leading to suboptimal outcomes; however, the combination of HMA and Ven has demonstrated substantial improvements in treatment responses. This study elucidates multiple synergistic pathways contributing to this enhanced therapeutic effect. Key mechanisms include HMA-mediated downregulation of anti-apoptotic proteins, notably MCL-1, and the priming of cells for Ven through the induction of genes encoding pro-apoptotic proteins such as Noxa. Moreover, Ven induces sensitization to HMA, induces overcoming resistance by inhibiting the DHODH enzyme, and disrupts antioxidant pathways (Nrf2) induced by HMA. The combination further disrupts oxidative phosphorylation in leukemia stem cells, amplifying the therapeutic impact. Remarkably, clinical studies have revealed a favorable response, particularly in patients harboring specific mutations, such as IDH1/2, NPM1, CEBPA, or ASXL1. This prompts future studies to explore the nuanced underpinnings of these synergistic mechanisms in AML patients with these molecular signatures.
Collapse
Affiliation(s)
- Rahul Mishra
- Department of Internal Medicine, Anne Arundel Medical Center, Annapolis, MD 21401, USA;
| | - Maedeh Zokaei Nikoo
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (M.Z.N.); (S.V.)
| | - Sindhusha Veeraballi
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (M.Z.N.); (S.V.)
| | - Abhay Singh
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (M.Z.N.); (S.V.)
| |
Collapse
|
4
|
Yabushita T, Chinen T, Nishiyama A, Asada S, Shimura R, Isobe T, Yamamoto K, Sato N, Enomoto Y, Tanaka Y, Fukuyama T, Satoh H, Kato K, Saitoh K, Ishikawa T, Soga T, Nannya Y, Fukagawa T, Nakanishi M, Kitagawa D, Kitamura T, Goyama S. Mitotic perturbation is a key mechanism of action of decitabine in myeloid tumor treatment. Cell Rep 2023; 42:113098. [PMID: 37714156 DOI: 10.1016/j.celrep.2023.113098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/20/2022] [Revised: 06/22/2023] [Accepted: 08/21/2023] [Indexed: 09/17/2023] Open
Abstract
Decitabine (DAC) is clinically used to treat myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). Our genome-wide CRISPR-dCas9 activation screen using MDS-derived AML cells indicates that mitotic regulation is critical for DAC resistance. DAC strongly induces abnormal mitosis (abscission failure or tripolar mitosis) in human myeloid tumors at clinical concentrations, especially in those with TP53 mutations or antecedent hematological disorders. This DAC-induced mitotic disruption and apoptosis are significantly attenuated in DNMT1-depleted cells. In contrast, overexpression of Dnmt1, but not the catalytically inactive mutant, enhances DAC-induced mitotic defects in myeloid tumors. We also demonstrate that DAC-induced mitotic disruption is enhanced by pharmacological inhibition of the ATR-CLSPN-CHK1 pathway. These data challenge the current assumption that DAC inhibits leukemogenesis through DNMT1 inhibition and subsequent DNA hypomethylation and highlight the potent activity of DAC to disrupt mitosis through aberrant DNMT1-DNA covalent bonds.
Collapse
Affiliation(s)
- Tomohiro Yabushita
- Division of Cellular Therapy, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Takumi Chinen
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Atsuya Nishiyama
- Division of Cancer Cell Biology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Shuhei Asada
- Division of Cellular Therapy, Institute of Medical Science, The University of Tokyo, Tokyo, Japan; The Institute of Laboratory Animals, Tokyo Women's Medical University, Tokyo, Japan
| | - Ruka Shimura
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Tomoya Isobe
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan; Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Keita Yamamoto
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Naru Sato
- Division of Cellular Therapy, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yutaka Enomoto
- Division of Cellular Therapy, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yosuke Tanaka
- Division of Cellular Therapy, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Tomofusa Fukuyama
- Division of Cellular Therapy, Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Department of Hematology, International University of Health and Welfare Hospital, Tochigi, Japan
| | - Hitoshi Satoh
- Division of Medical Genome Sciences, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Keiko Kato
- Infinity Lab, INC, Yamagata, Japan; Institute for Advanced Biosciences, Keio University, Yamagata, Japan
| | - Kaori Saitoh
- Infinity Lab, INC, Yamagata, Japan; Institute for Advanced Biosciences, Keio University, Yamagata, Japan
| | - Takamasa Ishikawa
- Infinity Lab, INC, Yamagata, Japan; Institute for Advanced Biosciences, Keio University, Yamagata, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Yamagata, Japan
| | - Yasuhito Nannya
- Division of Hematopoietic Disease Control, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Tatsuo Fukagawa
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Makoto Nakanishi
- Division of Cancer Cell Biology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Daiju Kitagawa
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Toshio Kitamura
- Division of Cellular Therapy, Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Hyogo, Japan
| | - Susumu Goyama
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
5
|
Lang TJL, Damm F, Bullinger L, Frick M. Mechanisms of Resistance to Small Molecules in Acute Myeloid Leukemia. Cancers (Basel) 2023; 15:4573. [PMID: 37760544 PMCID: PMC10526197 DOI: 10.3390/cancers15184573] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/30/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
In recent years, great progress has been made in the therapy of AML by targeting cellular processes associated with specific molecular features of the disease. Various small molecules inhibiting FLT3, IDH1/IDH2, and BCL2 have already gained approval from the respective authorities and are essential parts of personalized therapeutic regimens in modern therapy of AML. Unfortunately, primary and secondary resistance to these inhibitors is a frequent problem. Here, we comprehensively review the current state of knowledge regarding molecular processes involved in primary and secondary resistance to these agents, covering both genetic and nongenetic mechanisms. In addition, we introduce concepts and strategies for how these resistance mechanisms might be overcome.
Collapse
Affiliation(s)
- Tonio Johannes Lukas Lang
- Department of Hematology, Oncology and Cancer Immunology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, 13353 Berlin, Germany
| | - Frederik Damm
- Department of Hematology, Oncology and Cancer Immunology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, 13353 Berlin, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Lars Bullinger
- Department of Hematology, Oncology and Cancer Immunology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, 13353 Berlin, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Mareike Frick
- Department of Hematology, Oncology and Cancer Immunology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, 13353 Berlin, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
6
|
Kagan AB, Garrison DA, Anders NM, Webster J, Baker SD, Yegnasubramanian S, Rudek MA. DNA methyltransferase inhibitor exposure-response: Challenges and opportunities. Clin Transl Sci 2023; 16:1309-1322. [PMID: 37345219 PMCID: PMC10432879 DOI: 10.1111/cts.13548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/22/2023] [Revised: 05/04/2023] [Accepted: 05/10/2023] [Indexed: 06/23/2023] Open
Abstract
Although DNA methyltransferase inhibitors (DNMTis), such as azacitidine and decitabine, are used extensively in the treatment of myelodysplastic syndromes and acute myeloid leukemia, there remain unanswered questions about DNMTi's mechanism of action and predictors of clinical response. Because patients often remain on single-agent DNMTis or DNMTi-containing regimens for several months before knowing whether clinical benefit can be achieved, the development and clinical validation of response-predictive biomarkers represents an important unmet need in oncology. In this review, we will summarize the clinical studies that led to the approval of azacitidine and decitabine, as well as the real-world experience with these drugs. We will then focus on biomarker development for DNMTis-specifically, efforts at determining exposure-response relationships and challenges that remain impacting the broader clinical translation of these methods. We will highlight recent progress in liquid-chromatography tandem mass spectrometry technology that has allowed for the simultaneous measurement of decitabine genomic incorporation and global DNA methylation, which has significant potential as a mechanism-of-action based biomarker in patients on DNMTis. Last, we will cover important research questions that need to be addressed in order to optimize this potential biomarker for clinical use.
Collapse
Affiliation(s)
- Amanda B. Kagan
- Department of Oncology, School of MedicineJohns Hopkins UniversityBaltimoreMarylandUSA
- Department of Medicine, School of MedicineJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Dominique A. Garrison
- Department of Medicine, School of MedicineJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Nicole M. Anders
- Department of Oncology, School of MedicineJohns Hopkins UniversityBaltimoreMarylandUSA
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins UniversityBaltimoreMarylandUSA
| | - Jonathan A. Webster
- Department of Oncology, School of MedicineJohns Hopkins UniversityBaltimoreMarylandUSA
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins UniversityBaltimoreMarylandUSA
| | - Sharyn D. Baker
- Division of Pharmaceutics and Pharmacology, College of PharmacyThe Ohio State UniversityColumbusOhioUSA
| | - Srinivasan Yegnasubramanian
- Department of Oncology, School of MedicineJohns Hopkins UniversityBaltimoreMarylandUSA
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins UniversityBaltimoreMarylandUSA
| | - Michelle A. Rudek
- Department of Oncology, School of MedicineJohns Hopkins UniversityBaltimoreMarylandUSA
- Department of Medicine, School of MedicineJohns Hopkins UniversityBaltimoreMarylandUSA
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins UniversityBaltimoreMarylandUSA
| |
Collapse
|
7
|
Karantanos T, Teodorescu P, Arvanitis M, Perkins B, Jain T, DeZern AE, Dalton WB, Christodoulou I, Paun BC, Varadhan R, Esteb C, Rajkhowa T, Bonifant C, Gondek LP, Levis MJ, Yegnasubramanian S, Ghiaur G, Jones RJ. CCRL2 affects the sensitivity of myelodysplastic syndrome and secondary acute myeloid leukemia cells to azacitidine. Haematologica 2023; 108:1886-1899. [PMID: 36519323 PMCID: PMC10316237 DOI: 10.3324/haematol.2022.281444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/24/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
Better understanding of the biology of resistance to DNA methyltransferase (DNMT) inhibitors is required to identify therapies that can improve their efficacy for patients with high-risk myelodysplastic syndrome (MDS). CCRL2 is an atypical chemokine receptor that is upregulated in CD34+ cells from MDS patients and induces proliferation of MDS and secondary acute myeloid leukemia (sAML) cells. In this study, we evaluated any role that CCRL2 may have in the regulation of pathways associated with poor response or resistance to DNMT inhibitors. We found that CCRL2 knockdown in TF-1 cells downregulated DNA methylation and PRC2 activity pathways and increased DNMT suppression by azacitidine in MDS/sAML cell lines (MDS92, MDS-L and TF-1). Consistently, CCRL2 deletion increased the sensitivity of these cells to azacitidine in vitro and the efficacy of azacitidine in an MDS-L xenograft model. Furthermore, CCRL2 overexpression in MDS-L and TF-1 cells decreased their sensitivity to azacitidine. Finally, CCRL2 levels were higher in CD34+ cells from MDS and MDS/myeloproliferative neoplasm patients with poor response to DNMT inhibitors. In conclusion, we demonstrated that CCRL2 modulates epigenetic regulatory pathways, particularly DNMT levels, and affects the sensitivity of MDS/sAML cells to azacitidine. These results support CCRL2 targeting as having therapeutic potential in MDS/sAML.
Collapse
Affiliation(s)
- Theodoros Karantanos
- Division of Hematological Malignancies, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore.
| | - Patric Teodorescu
- Division of Hematological Malignancies, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore
| | - Marios Arvanitis
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore
| | - Brandy Perkins
- Division of Hematological Malignancies, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore
| | - Tania Jain
- Division of Hematological Malignancies, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore
| | - Amy E DeZern
- Division of Hematological Malignancies, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore
| | - W Brian Dalton
- Division of Hematological Malignancies, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore
| | - Ilias Christodoulou
- Division of Hematological Malignancies, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore
| | - Bogdan C Paun
- Division of Hematological Malignancies, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore
| | - Ravi Varadhan
- Division of Biostatistics and Bioinformatics, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore
| | - Christopher Esteb
- Division of Hematological Malignancies, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore
| | - Trivikram Rajkhowa
- Division of Hematological Malignancies, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore
| | - Challice Bonifant
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD; Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore
| | - Lukasz P Gondek
- Division of Hematological Malignancies, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore
| | - Mark J Levis
- Division of Hematological Malignancies, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore
| | - Srinivasan Yegnasubramanian
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore
| | - Gabriel Ghiaur
- Division of Hematological Malignancies, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore
| | - Richard J Jones
- Division of Hematological Malignancies, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore
| |
Collapse
|
8
|
Šimoničová K, Janotka L, Kavcova H, Sulova Z, Messingerova L, Breier A. Resistance of Leukemia Cells to 5-Azacytidine: Different Responses to the Same Induction Protocol. Cancers (Basel) 2023; 15:cancers15113063. [PMID: 37297025 DOI: 10.3390/cancers15113063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/03/2023] [Revised: 05/26/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
Three AML cell variants (M/A, M/A* from MOLM-13 and S/A from SKM-1) were established for resistance by the same protocol using 5-azacytidine (AZA) as a selection agent. These AZA-resistant variants differ in their responses to other cytosine nucleoside analogs, including 5-aza-2'-deoxycytidine (DAC), as well as in some molecular features. Differences in global DNA methylation, protein levels of DNA methyltransferases, and phosphorylation of histone H2AX were observed in response to AZA and DAC treatment in these cell variants. This could be due to changes in the expression of uridine-cytidine kinases 1 and 2 (UCK1 and UCK2) demonstrated in our cell variants. In the M/A variant that retained sensitivity to DAC, we detected a homozygous point mutation in UCK2 resulting in an amino acid substitution (L220R) that is likely responsible for AZA resistance. Cells administered AZA treatment can switch to de novo synthesis of pyrimidine nucleotides, which could be blocked by inhibition of dihydroorotate dehydrogenase by teriflunomide (TFN). This is shown by the synergistic effect of AZA and TFN in those variants that were cross-resistant to DAC and did not have a mutation in UCK2.
Collapse
Affiliation(s)
- Kristína Šimoničová
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 84005 Bratislava, Slovakia
| | - Lubos Janotka
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 84005 Bratislava, Slovakia
- Department of Biology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, 77515 Olomouc, Czech Republic
| | - Helena Kavcova
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 84005 Bratislava, Slovakia
| | - Zdena Sulova
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 84005 Bratislava, Slovakia
| | - Lucia Messingerova
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 84005 Bratislava, Slovakia
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 81237 Bratislava, Slovakia
| | - Albert Breier
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 84005 Bratislava, Slovakia
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 81237 Bratislava, Slovakia
| |
Collapse
|
9
|
Pophali P, Desai SR, Shastri A. Therapeutic Targets in Myelodysplastic Neoplasms: Beyond Hypomethylating Agents. Curr Hematol Malig Rep 2023; 18:56-67. [PMID: 37052811 DOI: 10.1007/s11899-023-00693-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 03/13/2023] [Indexed: 04/14/2023]
Abstract
PURPOSE OF REVIEW To discuss novel targeted therapies under investigation for treatment of myelodysplastic neoplasms (MDS). RECENT FINDINGS Over the last few years, results of phase 3 trials assessing novel therapies for high-risk MDS have been largely disappointing. Pevonedistat (NEDD-8 inhibitor) and APR-246 (TP53 reactivator) both did not meet trial endpoints. However, early phase trials of BCL-2, TIM3, and CD47 inhibitors have shown exciting data and are currently under phase 3 investigation. Moreover, combination of hypomethylating agents (HMA) with novel therapies targeting the mutational (IDH, FLT3, spliceosome complex) or immune (PD-1/PDL-1, TIM-3, IRAK-4) pathways are being investigated in early phase clinical trials and have shown adequate safety and promising efficacy. Myelodysplastic neoplasms (MDS) are a group of hematopoietic neoplasms defined by cytopenias and morphological dysplasia. They are characterized by clonal proliferation of aberrant hematopoietic stem cells caused by recurrent genetic abnormalities. This leads to ineffective erythropoiesis, peripheral blood cytopenias, abnormal cell maturation, and a high risk of transformation into acute myeloid leukemia (AML). Allogeneic hematopoietic stem cell transplantation is the only curative therapy; however, it is not a suitable option for majority patients due to their age, comorbidities, and the high rate of treatment-related complications. HMAs remain the only FDA-approved treatment option for high-risk MDS. Due to intolerance, primary, and secondary resistance to HMA, there is a large unmet need to develop new safe and effective therapies for patients with MDS. In this review, we focus on the current management strategies and novel therapies in development for treatment of high-risk MDS.
Collapse
Affiliation(s)
- Prateek Pophali
- Division of Hematology and Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Sudhamsh Reddy Desai
- Department of Medicine, Jacobi Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Aditi Shastri
- Department of Oncology, Department of Developmental & Molecular Biology, Montefiore Medical Center & Albert Einstein College of Medicine, Chanin 302A, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
| |
Collapse
|
10
|
Awada H, Gurnari C, Xie Z, Bewersdorf JP, Zeidan AM. What's Next after Hypomethylating Agents Failure in Myeloid Neoplasms? A Rational Approach. Cancers (Basel) 2023; 15:2248. [PMID: 37190176 PMCID: PMC10137017 DOI: 10.3390/cancers15082248] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/05/2023] [Revised: 04/07/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023] Open
Abstract
Hypomethylating agents (HMA) such as azacitidine and decitabine are a mainstay in the current management of patients with myelodysplastic syndromes/neoplasms (MDS) and acute myeloid leukemia (AML) as either single agents or in multidrug combinations. Resistance to HMA is not uncommon, and it can result due to several tumor cellular adaptations. Several clinical and genomic factors have been identified as predictors of HMA resistance. However, the management of MDS/AML patients after the failure of HMA remains challenging in the absence of standardized guidelines. Indeed, this is an area of active research with several potential therapeutic agents currently under development, some of which have demonstrated therapeutic potential in early clinical trials, especially in cases with particular mutational characteristics. Here, we review the latest findings and give a rational approach for such a challenging scenario.
Collapse
Affiliation(s)
- Hussein Awada
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Carmelo Gurnari
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Zhuoer Xie
- Department of Hematology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Jan Philipp Bewersdorf
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Comprehensive Cancer Center, New York, NY 10065, USA
| | - Amer M. Zeidan
- Section of Hematology, Department of Internal Medicine, Yale University and Yale Cancer Center, New Haven, CT 06511, USA
| |
Collapse
|
11
|
Ren X, Jiang M, Ding P, Zhang X, Zhou X, Shen J, Liu D, Yan X, Ma Z. Ubiquitin-specific protease 28: the decipherment of its dual roles in cancer development. Exp Hematol Oncol 2023; 12:27. [PMID: 36879346 PMCID: PMC9990303 DOI: 10.1186/s40164-023-00389-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/02/2022] [Accepted: 02/15/2023] [Indexed: 03/08/2023] Open
Abstract
As significant posttranslational modifications, ubiquitination and deubiquitination, whose balance is modulated by ubiquitin-conjugating enzymes and deubiquitinating enzymes (DUBs), can regulate many biological processes, such as controlling cell cycle progression, signal transduction and transcriptional regulation. Belonging to DUBs, ubiquitin-specific protease 28 (USP28) plays an essential role in turning over ubiquitination and then contributing to the stabilization of quantities of substrates, including several cancer-related proteins. In previous studies, USP28 has been demonstrated to participate in the progression of various cancers. Nevertheless, several reports have recently shown that in addition to promoting cancers, USP28 can also play an oncostatic role in some cancers. In this review, we summarize the correlation between USP28 and tumor behaviors. We initially give a brief introduction of the structure and related biological functions of USP28, and we then introduce some concrete substrates of USP28 and the underlying molecular mechanisms. In addition, the regulation of the actions and expression of USP28 is also discussed. Moreover, we concentrate on the impacts of USP28 on diverse hallmarks of cancer and discuss whether USP28 can accelerate or inhibit tumor progression. Furthermore, clinical relevance, including impacting clinical prognosis, influencing therapy resistance and being the therapy target in some cancers, is depicted systematically. Thus, assistance may be given to future experimental designs by the information provided here, and the potential of targeting USP28 for cancer therapy is emphasized.
Collapse
Affiliation(s)
- Xiaoya Ren
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, 1 Xinsi Road, Xi'an, 710038, China.,Department of Medical Oncology, Senior Department of Oncology, Chinese PLA General Hospital, The Fifth Medical Center, 28 Fuxing Road, Beijing, 100853, China
| | - Menglong Jiang
- Department of Thoracic Surgery, 1st Affiliated Hospital of Anhui Medical University, Hefei City, China
| | - Peng Ding
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, 1 Xinsi Road, Xi'an, 710038, China
| | - Xiaoyan Zhang
- Department of Aerospace Medicine, Air Force Medical University, Xi'an, China
| | - Xin Zhou
- Department of Medical Oncology, Senior Department of Oncology, Chinese PLA General Hospital, The Fifth Medical Center, 28 Fuxing Road, Beijing, 100853, China
| | - Jian Shen
- Senior Department of Cardiology, The Sixth Medical Center, Chinese PLA General Hospital and Chinese PLA Medical School, 28 Fuxing Road, Beijing, 100853, China
| | - Dong Liu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, 167 Beilishi Road, Beijing, 100037, China.
| | - Xiaolong Yan
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, 1 Xinsi Road, Xi'an, 710038, China.
| | - Zhiqiang Ma
- Department of Medical Oncology, Senior Department of Oncology, Chinese PLA General Hospital, The Fifth Medical Center, 28 Fuxing Road, Beijing, 100853, China.
| |
Collapse
|
12
|
Zavras PD, Sinanidis I, Tsakiroglou P, Karantanos T. Understanding the Continuum between High-Risk Myelodysplastic Syndrome and Acute Myeloid Leukemia. Int J Mol Sci 2023; 24:5018. [PMID: 36902450 PMCID: PMC10002503 DOI: 10.3390/ijms24055018] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/31/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Myelodysplastic syndrome (MDS) is a clonal hematopoietic neoplasm characterized by bone marrow dysplasia, failure of hematopoiesis and variable risk of progression to acute myeloid leukemia (AML). Recent large-scale studies have demonstrated that distinct molecular abnormalities detected at earlier stages of MDS alter disease biology and predict progression to AML. Consistently, various studies analyzing these diseases at the single-cell level have identified specific patterns of progression strongly associated with genomic alterations. These pre-clinical results have solidified the conclusion that high-risk MDS and AML arising from MDS or AML with MDS-related changes (AML-MRC) represent a continuum of the same disease. AML-MRC is distinguished from de novo AML by the presence of certain chromosomal abnormalities, such as deletion of 5q, 7/7q, 20q and complex karyotype and somatic mutations, which are also present in MDS and carry crucial prognostic implications. Recent changes in the classification and prognostication of MDS and AML by the International Consensus Classification (ICC) and the World Health Organization (WHO) reflect these advances. Finally, a better understanding of the biology of high-risk MDS and the mechanisms of disease progression have led to the introduction of novel therapeutic approaches, such as the addition of venetoclax to hypomethylating agents and, more recently, triplet therapies and agents targeting specific mutations, including FLT3 and IDH1/2. In this review, we analyze the pre-clinical data supporting that high-risk MDS and AML-MRC share the same genetic abnormalities and represent a continuum, describe the recent changes in the classification of these neoplasms and summarize the advances in the management of patients with these neoplasms.
Collapse
Affiliation(s)
| | | | | | - Theodoros Karantanos
- Division of Hematologic Malignancies and Bone Marrow Transplantation, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21231, USA
| |
Collapse
|
13
|
Solute Carrier Family 29A1 Mediates In Vitro Resistance to Azacitidine in Acute Myeloid Leukemia Cell Lines. Int J Mol Sci 2023; 24:ijms24043553. [PMID: 36834962 PMCID: PMC9965596 DOI: 10.3390/ijms24043553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/20/2023] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Azacitidine (AZA) is commonly used hypomethylating agent for higher risk myelodysplastic syndromes and acute myeloid leukemia (AML). Although some patients achieve remission, eventually most patients fail AZA therapy. Comprehensive analysis of intracellular uptake and retention (IUR) of carbon-labeled AZA (14C-AZA), gene expression, transporter pump activity with or without inhibitors, and cytotoxicity in naïve and resistant cell lines provided insight into the mechanism of AZA resistance. AML cell lines were exposed to increasing concentrations of AZA to create resistant clones. 14C-AZA IUR was significantly lower in MOLM-13- (1.65 ± 0.08 ng vs. 5.79 ± 0.18 ng; p < 0.0001) and SKM-1- (1.10 ± 0.08 vs. 5.08 ± 0.26 ng; p < 0.0001) resistant cells compared to respective parental cells. Importantly, 14C-AZA IUR progressively reduced with downregulation of SLC29A1 expression in MOLM-13- and SKM-1-resistant cells. Furthermore, nitrobenzyl mercaptopurine riboside, an SLC29A inhibitor, reduced 14C-AZA IUR in MOLM-13 (5.79 ± 0.18 vs. 2.07 ± 0.23, p < 0.0001) and SKM-1-naive cells (5.08 ± 2.59 vs. 1.39 ± 0.19, p = 0.0002) and reduced efficacy of AZA. As the expression of cellular efflux pumps such as ABCB1 and ABCG2 did not change in AZA-resistant cells, they are unlikely contribute to AZA resistance. Therefore, the current study provides a causal link between in vitro AZA resistance and downregulation of cellular influx transporter SLC29A1.
Collapse
|
14
|
Nayak D, Weadick B, Govindarajan R. Combination of Tissue Microarray Profiling and Multiplexed IHC Approaches to Investigate Transport Mechanism of Nucleoside Analog Drug Resistance. Methods Mol Biol 2023; 2660:95-121. [PMID: 37191793 PMCID: PMC10311792 DOI: 10.1007/978-1-0716-3163-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 05/17/2023]
Abstract
Nucleoside analogs (NAs) are an established class of anticancer agents being used clinically for the treatment of diverse cancers, either as monotherapy or in combination with other established anticancer or pharmacological agents. To date, nearly a dozen anticancer NAs are approved by the FDA, and several novel NAs are being tested in preclinical and clinical trials for future applications. However, improper delivery of NAs into tumor cells because of alterations in expression of one or more drug carrier proteins (e.g., solute carrier (SLC) transporters) within tumor cells or cells surrounding the tumor microenvironment stands as one of the primary reasons for therapeutic drug resistance. The combination of tissue microarray (TMA) and multiplexed immunohistochemistry (IHC) is an advanced, high-throughput approach over conventional IHC that enables researchers to effectively investigate alterations to numerous such chemosensitivity determinants simultaneously in hundreds of tumor tissues derived from patients. In this chapter, taking an example of a TMA from pancreatic cancer patients treated with gemcitabine (a NA chemotherapeutic agent), we describe the step-by-step procedure of performing multiplexed IHC, imaging of TMA slides, and quantification of expression of some relevant markers in these tissue sections as optimized in our laboratory and discuss considerations while designing and carrying out this experiment.
Collapse
Affiliation(s)
- Debasis Nayak
- Division of Pharmaceutics and Pharmacology, The Ohio State University College of Pharmacy, Columbus, OH, USA
| | - Brenna Weadick
- Division of Pharmaceutics and Pharmacology, The Ohio State University College of Pharmacy, Columbus, OH, USA
| | - Rajgopal Govindarajan
- Division of Pharmaceutics and Pharmacology, The Ohio State University College of Pharmacy, Columbus, OH, USA.
- Translational Therapeutics, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA.
| |
Collapse
|
15
|
Ye G, Wang J, Yang W, Li J, Ye M, Jin X. The roles of KLHL family members in human cancers. Am J Cancer Res 2022; 12:5105-5139. [PMID: 36504893 PMCID: PMC9729911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/14/2022] [Accepted: 11/08/2022] [Indexed: 12/15/2022] Open
Abstract
The Kelch-like (KLHL) family members consist of three domains: bric-a-brac, tramtrack, broad complex/poxvirus and zinc finger domain, BACK domain and Kelch domain, which combine and interact with Cullin3 to form an E3 ubiquitin ligase. Research has indicated that KLHL family members ubiquitinate target substrates to regulate physiological and pathological processes, including tumorigenesis and progression. KLHL19, a member of the KLHL family, is associated with tumorigenesis and drug resistance. However, the regulation and cross talks of other KLHL family members, which also play roles in cancer, are still unclear. Our review mainly explores studies concerning the roles of other KLHL family members in tumor-related regulation to provide novel insights into KLHL family members.
Collapse
Affiliation(s)
- Ganghui Ye
- The Affiliated Hospital of Medical School, Ningbo UniversityNingbo 315020, Zhejiang, P. R. China,Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
| | - Jie Wang
- The Affiliated Hospital of Medical School, Ningbo UniversityNingbo 315020, Zhejiang, P. R. China,Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
| | - Weili Yang
- Yinzhou People’s Hospital of Medical School, Ningbo UniversityNingbo 315040, Zhejiang, P. R. China
| | - Jinyun Li
- The Affiliated Hospital of Medical School, Ningbo UniversityNingbo 315020, Zhejiang, P. R. China,Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
| | - Meng Ye
- The Affiliated Hospital of Medical School, Ningbo UniversityNingbo 315020, Zhejiang, P. R. China,Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
| | - Xiaofeng Jin
- The Affiliated Hospital of Medical School, Ningbo UniversityNingbo 315020, Zhejiang, P. R. China,Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
| |
Collapse
|
16
|
Different Gene Sets Are Associated With Azacitidine Response In Vitro Versus in Myelodysplastic Syndrome Patients. Hemasphere 2022; 6:e792. [PMID: 36310757 PMCID: PMC9605795 DOI: 10.1097/hs9.0000000000000792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/25/2022] [Accepted: 09/22/2022] [Indexed: 11/05/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are a heterogeneous group of hematopoietic disorders characterized by dysplasia, ineffective hematopoiesis, and predisposition to secondary acute myeloid leukemias (sAML). Azacitidine (AZA) is the standard care for high-risk MDS patients not eligible for allogenic bone marrow transplantation. However, only half of the patients respond to AZA and eventually all patients relapse. Response-predicting biomarkers and combinatorial drugs targets enhancing therapy response and its duration are needed. Here, we have taken a dual approach. First, we have evaluated genes encoding chromatin regulators for their capacity to modulate AZA response. We were able to validate several genes, whose genetic inhibition affected the cellular AZA response, including 4 genes encoding components of Imitation SWItch chromatin remodeling complex pointing toward a specific function and co-vulnerability. Second, we have used a classical cohort analysis approach measuring the expression of a gene panel in bone marrow samples from 36 MDS patients subsequently receiving AZA. The gene panel included the identified AZA modulators, genes known to be involved in AZA metabolism and previously identified candidate modulators. In addition to confirming a number of previously made observations, we were able to identify several new associations, such as NSUN3 that correlated with increased overall survival. Taken together, we have identified a number of genes associated with AZA response in vitro and in patients. These groups of genes are largely nonoverlapping suggesting that different gene sets need to be exploited for the development of combinatorial drug targets and response-predicting biomarkers.
Collapse
|
17
|
Yurttaş NÖ, Eşkazan AE. Clinical Application of Biomarkers for Hematologic Malignancies. Biomark Med 2022. [DOI: 10.2174/9789815040463122010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022] Open
Abstract
Over the last decade, significant advancements have been made in the
molecular mechanisms, diagnostic methods, prognostication, and treatment options in
hematologic malignancies. As the treatment landscape continues to expand,
personalized treatment is much more important.
With the development of new technologies, more sensitive evaluation of residual
disease using flow cytometry and next generation sequencing is possible nowadays.
Although some conventional biomarkers preserve their significance, novel potential
biomarkers accurately detect the mutational landscape of different cancers, and also,
serve as prognostic and predictive biomarkers, which can be used in evaluating therapy
responses and relapses. It is likely that we will be able to offer a more targeted and
risk-adapted therapeutic approach to patients with hematologic malignancies guided by
these potential biomarkers. This chapter summarizes the biomarkers used (or proposed
to be used) in the diagnosis and/or monitoring of hematologic neoplasms.;
Collapse
Affiliation(s)
- Nurgül Özgür Yurttaş
- Division of Hematology, Department of Internal Medicine, Cerrahpasa Faculty of Medicine,
Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Ahmet Emre Eşkazan
- Division of Hematology, Department of Internal Medicine, Cerrahpasa Faculty of Medicine,
Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
18
|
Lee P, Yim R, Miu KK, Fung SH, Liao JJ, Wang Z, Li J, Yung Y, Chu HT, Yip PK, Lee E, Tse E, Kwong YL, Gill H. Epigenetic Silencing of PTEN and Epi-Transcriptional Silencing of MDM2 Underlied Progression to Secondary Acute Myeloid Leukemia in Myelodysplastic Syndrome Treated with Hypomethylating Agents. Int J Mol Sci 2022; 23:5670. [PMID: 35628480 PMCID: PMC9144309 DOI: 10.3390/ijms23105670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/08/2022] [Revised: 05/07/2022] [Accepted: 05/17/2022] [Indexed: 02/04/2023] Open
Abstract
In myelodysplastic syndrome (MDS), resistance to hypomethylating agents (HMA) portends a poor prognosis, underscoring the importance of understanding the molecular mechanisms leading to HMA-resistance. In this study, P39 and Kasumi-1 cells and their azacitidine-resistant and decitabine-resistant sublines were evaluated comparatively with transcriptomic and methylomic analyses. Expression profiling and genome-wide methylation microarray showed downregulation of PTEN associated with DNA hypermethylation in P39 cell lines resistant to azacitidine and decitabine. This pattern of PTEN dysregulation was also confirmed in a cohort of patients failing treatment with HMA. DNA hypomethylation of MDM2 was detected with downregulation of MDM2 in HMA resistant cell lines. Long-read sequencing revealed significant RNA hypomethylation of MDM2 resulting in alternative splicing and production of a truncated MDM2 transcript in azacitidine-resistant P39 cells. The expression of this MDM2 truncated transcript was also significantly increased in HMA-resistant patients compared with HMA-responsive patients. In conclusion, epigenetic and epi-transcriptomic dysregulation of PTEN and MDM2 were associated with resistance to hypomethylating agents.
Collapse
Affiliation(s)
- Paul Lee
- Department of Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (P.L.); (R.Y.); (Y.Y.); (H.-T.C.); (P.-K.Y.); (E.L.); (E.T.); (Y.-L.K.)
| | - Rita Yim
- Department of Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (P.L.); (R.Y.); (Y.Y.); (H.-T.C.); (P.-K.Y.); (E.L.); (E.T.); (Y.-L.K.)
| | - Kai-Kei Miu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; (K.-K.M.); (S.-H.F.); (Z.W.)
| | - Sin-Hang Fung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; (K.-K.M.); (S.-H.F.); (Z.W.)
| | - Jason Jinyue Liao
- Department of Chemical Pathology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China;
| | - Zhangting Wang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; (K.-K.M.); (S.-H.F.); (Z.W.)
| | - Jun Li
- Department of Infectious Diseases and Public Health, The City University of Hong Kong, Hong Kong, China;
| | - Yammy Yung
- Department of Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (P.L.); (R.Y.); (Y.Y.); (H.-T.C.); (P.-K.Y.); (E.L.); (E.T.); (Y.-L.K.)
| | - Hiu-Tung Chu
- Department of Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (P.L.); (R.Y.); (Y.Y.); (H.-T.C.); (P.-K.Y.); (E.L.); (E.T.); (Y.-L.K.)
| | - Pui-Kwan Yip
- Department of Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (P.L.); (R.Y.); (Y.Y.); (H.-T.C.); (P.-K.Y.); (E.L.); (E.T.); (Y.-L.K.)
| | - Emily Lee
- Department of Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (P.L.); (R.Y.); (Y.Y.); (H.-T.C.); (P.-K.Y.); (E.L.); (E.T.); (Y.-L.K.)
| | - Eric Tse
- Department of Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (P.L.); (R.Y.); (Y.Y.); (H.-T.C.); (P.-K.Y.); (E.L.); (E.T.); (Y.-L.K.)
| | - Yok-Lam Kwong
- Department of Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (P.L.); (R.Y.); (Y.Y.); (H.-T.C.); (P.-K.Y.); (E.L.); (E.T.); (Y.-L.K.)
| | - Harinder Gill
- Department of Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (P.L.); (R.Y.); (Y.Y.); (H.-T.C.); (P.-K.Y.); (E.L.); (E.T.); (Y.-L.K.)
| |
Collapse
|
19
|
Šimoničová K, Janotka Ľ, Kavcová H, Sulová Z, Breier A, Messingerova L. Different mechanisms of drug resistance to hypomethylating agents in the treatment of myelodysplastic syndromes and acute myeloid leukemia. Drug Resist Updat 2022; 61:100805. [DOI: 10.1016/j.drup.2022.100805] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/17/2021] [Revised: 01/13/2022] [Accepted: 01/15/2022] [Indexed: 12/11/2022]
|
20
|
Yoshida-Sakai N, Watanabe T, Yamamoto Y, Ureshino H, Kamachi K, Kurahashi Y, Fukuda-Kurahashi Y, Kimura S. Adult T-cell leukemia-lymphoma acquires resistance to DNA demethylating agents through dysregulation of enzymes involved in pyrimidine metabolism. Int J Cancer 2021; 150:1184-1197. [PMID: 34913485 PMCID: PMC9303000 DOI: 10.1002/ijc.33901] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/12/2021] [Revised: 11/22/2021] [Accepted: 11/29/2021] [Indexed: 01/05/2023]
Abstract
Adult T-cell leukemia-lymphoma (ATL) is an aggressive neoplasm derived from T-cells transformed by human T-cell lymphotropic virus-1 (HTLV-1). Recently, we reported that regional DNA hypermethylation in HTLV-1-infected T-cells reflects the disease status of ATL and the anti-ATL effects of DNA demethylating agents, including azacitidine (AZA), decitabine (DAC) and a new DAC prodrug, OR-2100 (OR21), which we developed. Here, to better understand the mechanisms underlying drug resistance, we generated AZA-, DAC- and OR21-resistant (AZA-R, DAC-R and OR21-R, respectively) cells from the ATL cell line TL-Om1 and the HTLV-1-infected cell line MT-2 via long-term drug exposure. The efficacy of OR21 was almost the same as that of DAC, indicating that the pharmacodynamics of OR21 were due to release of DAC from OR21. Resistant cells did not show cellular responses observed in parental cells induced by treatment with drugs, including growth suppression, depletion of DNA methyltransferase DNMT1 and DNA hypomethylation. We also found that reduced expression of deoxycytidine kinase (DCK) correlated with lower susceptibility to DAC/OR21 and that reduced expression of uridine cytidine kinase2 (UCK2) correlated with reduced susceptibility to AZA. DCK and UCK2 catalyze phosphorylation of DAC and AZA, respectively; reconstitution of expression reversed the resistant phenotypes. A large homozygous deletion in DCK and a homozygous splice donor site mutation in UCK2 were identified in DAC-R TL-Om1 and AZA-R TL-Om1, respectively. Both genomic mutations might lead to loss of protein expression. Thus, inactivation of UCK2 and DCK might be a putative cause of phenotypes that are resistant to AZA and DAC/OR21, respectively.
Collapse
Affiliation(s)
- Nao Yoshida-Sakai
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga, Japan.,Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Tatsuro Watanabe
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga, Japan
| | - Yuta Yamamoto
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga, Japan
| | - Hiroshi Ureshino
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga, Japan.,Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Kazuharu Kamachi
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga, Japan.,Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Yuki Kurahashi
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga, Japan.,Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan.,OHARA Pharmaceutical Co, Ltd, Tokyo, Japan
| | - Yuki Fukuda-Kurahashi
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga, Japan.,OHARA Pharmaceutical Co, Ltd, Tokyo, Japan
| | - Shinya Kimura
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga, Japan.,Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| |
Collapse
|
21
|
Kontandreopoulou CN, Diamantopoulos PT, Giannopoulos A, Symeonidis A, Kotsianidis I, Pappa V, Galanopoulos A, Panayiotidis P, Dimou M, Solomou E, Loupis T, Zoi K, Giannakopoulou N, Dryllis G, Hatzidavid S, Viniou NA. Bone marrow ribonucleotide reductase mRNA levels and methylation status as prognostic factors in patients with myelodysplastic syndrome treated with 5-Azacytidine. Leuk Lymphoma 2021; 63:729-737. [PMID: 34738857 DOI: 10.1080/10428194.2021.1998484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/19/2022]
Abstract
Ribonucleotide Reductase (RNR) is a two-subunit (RRM1, RRM2) enzyme, responsible for the conversion of ribonucleotides to deoxyribonucleotides required for DNA replication. To evaluate RNR as a biomarker of response to 5-azacytidine, we measured RNR mRNA levels by a quantitative real-time PCR in bone marrow samples of 98 patients with myelodysplastic syndrome (MDS) treated with 5-azacytidine with parallel quantification of the gene promoter's methylation. Patients with low RRM1 levels had a high RRM1 methylation status (p = 0.005) and a better response to treatment with 5-azacytidine (p = 0.019). A next-generation sequencing for genes of interest in MDS was also carried out in a subset of 61 samples. Splicing factor mutations were correlated with lower RRM1 mRNA levels (p = 0.044). Our results suggest that the expression of RNR is correlated with clinical outcomes, thus its expression could be used as a prognostic factor for response to 5-azacytidine and a possible therapeutic target in MDS.
Collapse
Affiliation(s)
- Christina-Nefeli Kontandreopoulou
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis T Diamantopoulos
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas Giannopoulos
- Haematology Research Lab, Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation, Athens, Greece
| | - Argiris Symeonidis
- Department of Internal Medicine, University Hospital of Patras, Rio, Greece
| | - Ioannis Kotsianidis
- Department of Hematology, University Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - Vasiliki Pappa
- Haematology Division, Second Department of Internal Medicine, Attikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanasios Galanopoulos
- Department of Clinical Hematology, 'G. Gennimatas' District General Hospital, Athens, Greece
| | - Panayiotis Panayiotidis
- First Department of Propedeutic Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Dimou
- First Department of Propedeutic Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Elena Solomou
- Department of Internal Medicine, University Hospital of Patras, Rio, Greece
| | - Theodoros Loupis
- Haematology Research Lab, Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation, Athens, Greece
| | - Katerina Zoi
- Haematology Research Lab, Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation, Athens, Greece
| | - Nefeli Giannakopoulou
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios Dryllis
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Sevastianos Hatzidavid
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Nora-Athina Viniou
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | | |
Collapse
|
22
|
Abstract
Epigenetic mechanisms such as DNA methylation (DNAm) have been associated with stress responses and increased vulnerability to depression. Abnormal DNAm is observed in stressed animals and depressed individuals. Antidepressant treatment modulates DNAm levels and regulates gene expression in diverse tissues, including the brain and the blood. Therefore, DNAm could be a potential therapeutic target in depression. Here, we reviewed the current knowledge about the involvement of DNAm in the behavioural and molecular changes associated with stress exposure and depression. We also evaluated the possible use of DNAm changes as biomarkers of depression. Finally, we discussed current knowledge limitations and future perspectives.
Collapse
|
23
|
Lee P, Yim R, Yung Y, Chu HT, Yip PK, Gill H. Molecular Targeted Therapy and Immunotherapy for Myelodysplastic Syndrome. Int J Mol Sci 2021; 22:10232. [PMID: 34638574 PMCID: PMC8508686 DOI: 10.3390/ijms221910232] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/31/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 12/22/2022] Open
Abstract
Myelodysplastic syndrome (MDS) is a heterogeneous, clonal hematological disorder characterized by ineffective hematopoiesis, cytopenia, morphologic dysplasia, and predisposition to acute myeloid leukemia (AML). Stem cell genomic instability, microenvironmental aberrations, and somatic mutations contribute to leukemic transformation. The hypomethylating agents (HMAs), azacitidine and decitabine are the standard of care for patients with higher-risk MDS. Although these agents induce responses in up to 40-60% of patients, primary or secondary drug resistance is relatively common. To improve the treatment outcome, combinational therapies comprising HMA with targeted therapy or immunotherapy are being evaluated and are under continuous development. This review provides a comprehensive update of the molecular pathogenesis and immune-dysregulations involved in MDS, mechanisms of resistance to HMA, and strategies to overcome HMA resistance.
Collapse
Affiliation(s)
| | | | | | | | | | - Harinder Gill
- Division of Haematology, Medical Oncology and Haemopoietic Stem Cell Transplantation, Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (P.L.); (R.Y.); (Y.Y.); (H.-T.C.); (P.-K.Y.)
| |
Collapse
|
24
|
Ureshino H, Kurahashi Y, Watanabe T, Yamashita S, Kamachi K, Yamamoto Y, Fukuda-Kurahashi Y, Yoshida-Sakai N, Hattori N, Hayashi Y, Kawaguchi A, Tohyama K, Okada S, Harada H, Ushijima T, Kimura S. Silylation of Deoxynucleotide Analog Yields an Orally Available Drug with Antileukemia Effects. Mol Cancer Ther 2021; 20:1412-1421. [PMID: 34045225 PMCID: PMC9398096 DOI: 10.1158/1535-7163.mct-20-1125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/28/2020] [Revised: 03/15/2021] [Accepted: 05/25/2021] [Indexed: 01/07/2023]
Abstract
DNA methyltransferase inhibitors have improved the prognosis of myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). However, because these agents are easily degraded by cytidine deaminase (CDA), they must be administered intravenously or subcutaneously. Recently, two orally bioavailable DNA methyltransferase inhibitors, CC-486 and ASTX727, were approved. In previous work, we developed 5-O-trialkylsilylated decitabines that resist degradation by CDA. However, the effects of silylation of a deoxynucleotide analog and enzymatic cleavage of silylation have not been fully elucidated. Enteric administration of OR21 in a cynomolgus monkey model led to high plasma concentrations and hypomethylation, and in a mouse model, oral administration of enteric-coated OR21 led to high plasma concentrations. The drug became biologically active after release of decitabine (DAC) from OR21 following removal of the 5'-O-trisilylate substituent. Toxicities were tolerable and lower than those of DAC. Transcriptome and methylome analysis of MDS and AML cell lines revealed that OR21 increased expression of genes associated with tumor suppression, cell differentiation, and immune system processes by altering regional promoter methylation, indicating that these pathways play pivotal roles in the action of hypomethylating agents. OR21 induced cell differentiation via upregulation of the late cell differentiation drivers CEBPE and GATA-1 Thus, silylation of a deoxynucleotide analog can confer oral bioavailability without new toxicities. Both in vivo and in vitro, OR21 exerted antileukemia effects, and had a better safety profile than DAC. Together, our findings indicate that OR21 is a promising candidate drug for phase I study as an alternative to azacitidine or decitabine.
Collapse
Affiliation(s)
- Hiroshi Ureshino
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga, Japan.,Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Yuki Kurahashi
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga, Japan
| | - Tatsuro Watanabe
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga, Japan
| | - Satoshi Yamashita
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Kazuharu Kamachi
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga, Japan.,Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Yuta Yamamoto
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga, Japan
| | - Yuki Fukuda-Kurahashi
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga, Japan
| | - Nao Yoshida-Sakai
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga, Japan.,Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Naoko Hattori
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Yoshihiro Hayashi
- Laboratory of Oncology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Atsushi Kawaguchi
- Center for Comprehensive Community Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Kaoru Tohyama
- Department of Laboratory Medicine, Kawasaki Medical School, Kurashiki, Japan
| | - Seiji Okada
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto, Japan
| | - Hironori Harada
- Laboratory of Oncology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Toshikazu Ushijima
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Shinya Kimura
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Saga, Japan.,Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan.,Corresponding Author: Shinya Kimura, Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Saga University School of Medicine, 5-1-1 Nabeshima, Saga 849-8501, Japan. Phone: 81-952-34-2366; Fax: 81-952-34-2017; E-mail:
| |
Collapse
|
25
|
Bouchla A, Thomopoulos TP, Papageorgiou SG, Apostolopoulou C, Loucari C, Mpazani E, Pappa V. Predicting outcome in higher-risk myelodysplastic syndrome patients treated with azacitidine. Epigenomics 2021; 13:1129-1143. [PMID: 34291653 DOI: 10.2217/epi-2021-0124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/17/2022] Open
Abstract
5-Azacitidine (5-AZA) is widely used for the treatment of higher-risk myelodysplastic syndromes. However, response and survival rates vary considerably, while indicated treatment duration remains undefined. For these reasons, factors determining response and survival are of major importance. Clinical, morphological, flow cytometry, cytogenetic and molecular factors are discussed in this review. Biomarkers predictive of response and prognosis, as well as their link to the mode of action of 5-AZA are also addressed, shifting the focus from clinical practice to investigational research. Their use could further improve prognostic classification of 5-AZA treated higher-risk myelodysplastic syndromes in the near future.
Collapse
Affiliation(s)
- Anthi Bouchla
- Second Department of Internal Medicine & Research Unit Hematology Unit, University General Hospital Attikon, Rimini, 12462 Chaidari, Athens, Greece
| | - Thomas P Thomopoulos
- Second Department of Internal Medicine & Research Unit Hematology Unit, University General Hospital Attikon, Rimini, 12462 Chaidari, Athens, Greece
| | - Sotirios G Papageorgiou
- Second Department of Internal Medicine & Research Unit Hematology Unit, University General Hospital Attikon, Rimini, 12462 Chaidari, Athens, Greece
| | - Christina Apostolopoulou
- Second Department of Internal Medicine & Research Unit Hematology Unit, University General Hospital Attikon, Rimini, 12462 Chaidari, Athens, Greece
| | - Constantinos Loucari
- Second Department of Internal Medicine & Research Unit Hematology Unit, University General Hospital Attikon, Rimini, 12462 Chaidari, Athens, Greece
| | - Efthimia Mpazani
- Second Department of Internal Medicine & Research Unit Hematology Unit, University General Hospital Attikon, Rimini, 12462 Chaidari, Athens, Greece
| | - Vasiliki Pappa
- Second Department of Internal Medicine & Research Unit Hematology Unit, University General Hospital Attikon, Rimini, 12462 Chaidari, Athens, Greece
| |
Collapse
|
26
|
Stomper J, Rotondo JC, Greve G, Lübbert M. Hypomethylating agents (HMA) for the treatment of acute myeloid leukemia and myelodysplastic syndromes: mechanisms of resistance and novel HMA-based therapies. Leukemia 2021; 35:1873-1889. [PMID: 33958699 PMCID: PMC8257497 DOI: 10.1038/s41375-021-01218-0] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/14/2020] [Revised: 02/01/2021] [Accepted: 03/04/2021] [Indexed: 02/03/2023]
Abstract
Aberrant DNA methylation plays a pivotal role in tumor development and progression. DNA hypomethylating agents (HMA) constitute a class of drugs which are able to reverse DNA methylation, thereby triggering the re-programming of tumor cells. The first-generation HMA azacitidine and decitabine have now been in standard clinical use for some time, offering a valuable alternative to previous treatments in acute myeloid leukemia and myelodysplastic syndromes, so far particularly in older, medically non-fit patients. However, the longer we use these drugs, the more we are confronted with the (almost inevitable) development of resistance. This review provides insights into the mode of action of HMA, mechanisms of resistance to this treatment, and strategies to overcome HMA resistance including next-generation HMA and HMA-based combination therapies.
Collapse
Affiliation(s)
- Julia Stomper
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - John Charles Rotondo
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Gabriele Greve
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Research Consortium (DKTK), Freiburg, Germany
| | - Michael Lübbert
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- German Cancer Research Consortium (DKTK), Freiburg, Germany.
| |
Collapse
|
27
|
Saliba AN, John AJ, Kaufmann SH. Resistance to venetoclax and hypomethylating agents in acute myeloid leukemia. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2021; 4:125-142. [PMID: 33796823 PMCID: PMC8011583 DOI: 10.20517/cdr.2020.95] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Indexed: 12/15/2022]
Abstract
Despite the success of the combination of venetoclax with the hypomethylating agents (HMA) decitabine or azacitidine in inducing remission in older, previously untreated patients with acute myeloid leukemia (AML), resistance - primary or secondary - still constitutes a significant roadblock in the quest to prolong the duration of response. Here we review the proposed and proven mechanisms of resistance to venetoclax monotherapy, HMA monotherapy, and the doublet of venetoclax and HMA for the treatment of AML. We approach the mechanisms of resistance to HMAs and venetoclax in the light of the agents' mechanisms of action. We briefly describe potential therapeutic strategies to circumvent resistance to this promising combination, including alternative scheduling or the addition of other agents to the HMA and venetoclax backbone. Understanding the mechanisms of action and evolving resistance in AML remains a priority in order to maximize the benefit from novel drugs and combinations, identify new therapeutic targets, define potential prognostic markers, and avoid treatment failure.
Collapse
Affiliation(s)
- Antoine N Saliba
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - August J John
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Scott H Kaufmann
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA.,Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA.,Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
28
|
Gu X, Tohme R, Tomlinson B, Sakre N, Hasipek M, Durkin L, Schuerger C, Grabowski D, Zidan AM, Radivoyevitch T, Hong C, Carraway H, Hamilton B, Sobecks R, Patel B, Jha BK, Hsi ED, Maciejewski J, Saunthararajah Y. Decitabine- and 5-azacytidine resistance emerges from adaptive responses of the pyrimidine metabolism network. Leukemia 2021; 35:1023-1036. [PMID: 32770088 PMCID: PMC7867667 DOI: 10.1038/s41375-020-1003-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/06/2020] [Revised: 07/13/2020] [Accepted: 07/22/2020] [Indexed: 01/10/2023]
Abstract
Mechanisms-of-resistance to decitabine and 5-azacytidine, mainstay treatments for myeloid malignancies, require investigation and countermeasures. Both are nucleoside analog pro-drugs processed by pyrimidine metabolism into a deoxynucleotide analog that depletes the key epigenetic regulator DNA methyltranseferase 1 (DNMT1). Here, upon serial analyses of DNMT1 levels in patients' bone marrows on-therapy, we found DNMT1 was not depleted at relapse. Showing why, bone marrows at relapse exhibited shifts in expression of key pyrimidine metabolism enzymes in directions adverse to pro-drug activation. Further investigation revealed the origin of these shifts. Pyrimidine metabolism is a network that senses and regulates deoxynucleotide amounts. Deoxynucleotide amounts were disturbed by single exposures to decitabine or 5-azacytidine, via off-target depletion of thymidylate synthase and ribonucleotide reductase respectively. Compensating pyrimidine metabolism shifts peaked 72-96 h later. Continuous pro-drug exposures stabilized these adaptive metabolic responses to thereby prevent DNMT1-depletion and permit exponential leukemia out-growth as soon as day 40. The consistency of the acute metabolic responses enabled exploitation: simple treatment modifications in xenotransplant models of chemorefractory leukemia extended noncytotoxic DNMT1-depletion and leukemia control by several months. In sum, resistance to decitabine and 5-azacytidine originates from adaptive responses of the pyrimidine metabolism network; these responses can be anticipated and thus exploited.
Collapse
Affiliation(s)
- Xiaorong Gu
- Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Rita Tohme
- Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Benjamin Tomlinson
- Department of Hematology and Oncology, University Hospitals, Cleveland, OH, USA
| | - Nneha Sakre
- Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Metis Hasipek
- Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Lisa Durkin
- Department of Clinical Pathology, Tomsich Pathology Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Caroline Schuerger
- Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Dale Grabowski
- Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Asmaa M Zidan
- Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Tomas Radivoyevitch
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - Changjin Hong
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - Hetty Carraway
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Betty Hamilton
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Ronald Sobecks
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Bhumika Patel
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Babal K Jha
- Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Eric D Hsi
- Department of Clinical Pathology, Tomsich Pathology Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jaroslaw Maciejewski
- Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Yogen Saunthararajah
- Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA.
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
29
|
Diamantopoulos PT, Viniou NA. Factors affecting response to 5-azacytidine and prognosis of myelodysplastic syndrome. Is long-term survival a realistic goal? Leuk Res 2021; 103:106543. [PMID: 33640709 DOI: 10.1016/j.leukres.2021.106543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/09/2020] [Revised: 02/15/2021] [Accepted: 02/18/2021] [Indexed: 12/14/2022]
Abstract
The introduction of hypomethylating agents (HMAs) 5-azacytidine and decitabine has altered the prognosis of patients with myelodysplastic syndrome (MDS). Over the past few years, the International Prognostic Scoring System (IPSS) and the revised IPSS (IPSS-R) have been used both to define the prognosis of patients with MDS and to select patients to be treated with HMAs. Nevertheless, the prognosis of individual patients with MDS can differ considerably from the one calculated with the use of the above-mentioned prognostic systems. Thus, some patients may achieve long-term survival irrespective of their initial prognostic score. Several factors besides those used to define the IPSS/IPSS-R are analyzed in this review article; these include age and gender, the baseline hematologic characteristics, the comorbidities, the cytogenetic and molecular profile of the patients, as well as their response to treatment with 5-azacytidine. Thus, insight into a more personalized way of managing patients with MDS is given and long-term survival is set as a more realistic goal of treatment with 5-azacytidine.
Collapse
Affiliation(s)
- Panagiotis T Diamantopoulos
- First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece.
| | - Nora-Athina Viniou
- First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
30
|
Lamprianidou E, Kordella C, Kazachenka A, Zoulia E, Bernard E, Filia A, Laidou S, Garantziotis P, Vassilakopoulos TP, Papageorgiou SG, Pappa V, Galanopoulos AG, Viniou N, Nakou E, Kalafati L, Chatzidimitriou A, Kassiotis G, Papaemmanuil E, Mitroulis I, Kotsianidis I. Modulation of IL-6/STAT3 signaling axis in CD4+FOXP3- T cells represents a potential antitumor mechanism of azacitidine. Blood Adv 2021; 5:129-142. [PMID: 33570632 PMCID: PMC7805308 DOI: 10.1182/bloodadvances.2020002351] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/14/2020] [Accepted: 11/30/2020] [Indexed: 02/06/2023] Open
Abstract
CD4+ T cells orchestrate immune responses and are actively engaged in shaping tumor immunity. Signal transducer and activator of transcription (STAT) signaling controls the epigenetic tuning of CD4+ T-cell differentiation and polarization, and perturbed STAT signaling networks in CD4+ T cells subvert antitumor immunity in malignancies. Azacitidine (AZA), the mainstay therapy for high-risk myelodysplastic syndromes (HR-MDS), affects CD4+ T-cell polarization and function, but whether this contributes to AZA efficacy is currently unknown. By using functional proteomic, transcriptomic, and mutational analyses in 73 HR-MDS patients undergoing AZA therapy, we demonstrate that responding patients exhibited a coordinated CD4+ T-cell immune response and downregulated the inflammatory cytokine signaling pathways in CD4+ T cells after AZA, in contrast to nonresponders who upregulated the same pathways. We further observed an AZA-mediated downregulation of intereukin-6 (IL-6)-induced STAT3 phosphorylation in CD4+FOXP3- conventional T cells (Tcons) that correlated independently with better response and survival, whereas it was also not associated with the mutation number and profile of the patients. The AZA-induced downregulation of IL-6/STAT3 axis in Tcons restored the STAT signaling architecture in CD4+ T-cell subsets, whereas STAT signaling networks remained disorganized in patients who upregulated IL-6/STAT3 activity in Tcons. Given the pivotal role of CD4+ T cells in adaptive immunity, our findings suggest that the downregulation of the IL-6/STAT3 pathway in Tcons potentially constitutes a previously unrecognized immune-mediated mechanism of action of AZA and sets the scene for developing rational strategies of AZA combinations with IL-6/STAT3 axis inhibitors.
Collapse
Affiliation(s)
- Eleftheria Lamprianidou
- Department of Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Chryssoula Kordella
- Department of Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | | | - Emmanouela Zoulia
- Department of Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Elsa Bernard
- Center for Computational Oncology, Center for Heme Malignancies, Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Anastasia Filia
- Laboratory of Immune Regulation and Tolerance, Autoimmunity and Inflammation, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Stamatia Laidou
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Panayiotis Garantziotis
- Laboratory of Immune Regulation and Tolerance, Autoimmunity and Inflammation, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Theodoros P Vassilakopoulos
- Department of Hematology, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Sotirios G Papageorgiou
- Hematology Unit, Second Department of Internal Medicine, Attikon University General Hospital, Athens, Greece
| | - Vassiliki Pappa
- Hematology Unit, Second Department of Internal Medicine, Attikon University General Hospital, Athens, Greece
| | | | - Nora Viniou
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelia Nakou
- Department of Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Lydia Kalafati
- National Center for Tumor Diseases, Partner Site Dresden, Germany and German Cancer Research Center, Heidelberg, Germany; and
| | | | - George Kassiotis
- Retroviral Immunology, The Francis Crick Institute, London, United Kingdom
- Department of Medicine, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Elli Papaemmanuil
- Center for Computational Oncology, Center for Heme Malignancies, Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Ioannis Mitroulis
- Department of Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
- National Center for Tumor Diseases, Partner Site Dresden, Germany and German Cancer Research Center, Heidelberg, Germany; and
| | - Ioannis Kotsianidis
- Department of Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|
31
|
Lambrou GI, Adamaki M, Hatziagapiou K, Vlahopoulos S. Gene Expression and Resistance to Glucocorticoid-Induced Apoptosis in Acute Lymphoblastic Leukemia: A Brief Review and Update. Curr Drug Res Rev 2021; 12:131-149. [PMID: 32077838 DOI: 10.2174/2589977512666200220122650] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/02/2019] [Revised: 12/29/2019] [Accepted: 01/23/2020] [Indexed: 01/18/2023]
Abstract
BACKGROUND Resistance to glucocorticoid (GC)-induced apoptosis in Acute Lymphoblastic Leukemia (ALL), is considered one of the major prognostic factors for the disease. Prednisolone is a corticosteroid and one of the most important agents in the treatment of acute lymphoblastic leukemia. The mechanics of GC resistance are largely unknown and intense ongoing research focuses on this topic. AIM The aim of the present study is to review some aspects of GC resistance in ALL, and in particular of Prednisolone, with emphasis on previous and present knowledge on gene expression and signaling pathways playing a role in the phenomenon. METHODS An electronic literature search was conducted by the authors from 1994 to June 2019. Original articles and systematic reviews selected, and the titles and abstracts of papers screened to determine whether they met the eligibility criteria, and full texts of the selected articles were retrieved. RESULTS Identification of gene targets responsible for glucocorticoid resistance may allow discovery of drugs, which in combination with glucocorticoids may increase the effectiveness of anti-leukemia therapies. The inherent plasticity of clinically evolving cancer justifies approaches to characterize and prevent undesirable activation of early oncogenic pathways. CONCLUSION Study of the pattern of intracellular signal pathway activation by anticancer drugs can lead to development of efficient treatment strategies by reducing detrimental secondary effects.
Collapse
Affiliation(s)
- George I Lambrou
- First Department of Pediatrics, National and Kapodistrian University of Athens, Choremeio Research Laboratory, Athens, Greece
| | - Maria Adamaki
- First Department of Pediatrics, National and Kapodistrian University of Athens, Choremeio Research Laboratory, Athens, Greece
| | - Kyriaki Hatziagapiou
- First Department of Pediatrics, National and Kapodistrian University of Athens, Choremeio Research Laboratory, Athens, Greece
| | - Spiros Vlahopoulos
- First Department of Pediatrics, National and Kapodistrian University of Athens, Choremeio Research Laboratory, Athens, Greece
| |
Collapse
|
32
|
Mpakou V, Spathis A, Bouchla A, Tsakiraki Z, Kontsioti F, Papageorgiou S, Bazani E, Gkontopoulos K, Thomopoulos T, Glezou I, Galanopoulos A, Symeonidis A, Diamantopoulos PT, Viniou NA, Kontandreopoulou CN, Zafeiropoulou K, Kotsianidis I, Lamprianidou E, Foukas P, Mpamias A, Pappa V. Upregulated hypoxia inducible factor 1α signaling pathway in high risk myelodysplastic syndrome and acute myeloid leukemia patients is associated with better response to 5-azacytidine-data from the Hellenic myelodysplastic syndrome study group. Hematol Oncol 2021; 39:231-242. [PMID: 33332639 DOI: 10.1002/hon.2834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/30/2020] [Revised: 10/09/2020] [Accepted: 12/15/2020] [Indexed: 11/07/2022]
Abstract
5-azacytidine (5-AZA) is considered the standard of care for patients with high-risk myelodysplastic syndromes (MDS) and patients with acute myeloid leukemia (AML) not candidate for intensive chemotherapy. However, even after an initial favorable response, almost all patients relapse, with the exact mechanisms underlying primary or secondary 5-AZA resistance remaining largely unknown. Several reports have previously demonstrated the significance of hypoxia in the regulation of both physiological and malignant hematopoiesis. In MDS, high hypoxia inducible factor 1α (Hif-1α) expression has been correlated with poor overall survival and disease progression, while its involvement in the disease's pathogenesis was recently reported. We herein investigated the possible association of the Hif-1α signaling pathway with response to 5-AZA therapy in MDS/AML patients. Our data demonstrated that 5-AZA-responders present with higher Hif-1α mRNA and protein expression compared to 5-AZA-non-responders/stable disease patients, before the initiation of therapy, while, interestingly, no significant differences in Hif-1α mRNA expression at the 6-month follow-up were observed. Moreover, we found that 5-AZA-responders exhibited elevated mRNA levels of the Hif-1α downstream targets lactate dehydrogenase a (LDHa) and BCL2 interacting protein 3 like (BNIP3L), a further indication of an overactivated Hif-1a signaling pathway in these patients. Kaplan-Meier survival analysis revealed a significant correlation between high Hif-1α mRNA expression and better survival rates, while logistic regression analysis showed that Hif-1α mRNA expression is an independent predictor of response to 5-AZA therapy. From the clinical point of view, apart from proposing Hif-1α mRNA expression as a significant predictive factor for response to 5-AZA, our data offer new perspectives on MDS combinational therapies, suggesting a potential synergistic activity of 5-AZA and Hif-1α inducers, such as propyl hydroxylases inhibitors (PHDi).
Collapse
Affiliation(s)
- Vassiliki Mpakou
- Second Department of Internal Medicine and Research Institute, National and Kapodistrian University of Athens, Attikon University General Hospital, Athens, Greece
| | - Aris Spathis
- Second Department of Pathology, National and Kapodistrian University of Athens, Attikon University General Hospital, Athens, Greece
| | - Anthi Bouchla
- Second Department of Internal Medicine and Research Institute, National and Kapodistrian University of Athens, Attikon University General Hospital, Athens, Greece
| | - Zoi Tsakiraki
- Second Department of Pathology, National and Kapodistrian University of Athens, Attikon University General Hospital, Athens, Greece
| | - Frieda Kontsioti
- Second Department of Internal Medicine and Research Institute, National and Kapodistrian University of Athens, Attikon University General Hospital, Athens, Greece
| | - Sotirios Papageorgiou
- Second Department of Internal Medicine and Research Institute, National and Kapodistrian University of Athens, Attikon University General Hospital, Athens, Greece
| | - Efthymia Bazani
- Second Department of Internal Medicine and Research Institute, National and Kapodistrian University of Athens, Attikon University General Hospital, Athens, Greece
| | - Konstantinos Gkontopoulos
- Second Department of Internal Medicine and Research Institute, National and Kapodistrian University of Athens, Attikon University General Hospital, Athens, Greece
| | - Thomas Thomopoulos
- Second Department of Internal Medicine and Research Institute, National and Kapodistrian University of Athens, Attikon University General Hospital, Athens, Greece
| | - Irene Glezou
- Second Department of Internal Medicine and Research Institute, National and Kapodistrian University of Athens, Attikon University General Hospital, Athens, Greece
| | - Athanasios Galanopoulos
- Department of Clinical Hematology, G. Gennimatas District General Hospital, Athens, Greece.,The Hellenic MDS Study Group, Hellenic Society of Haematology, Athens, Greece
| | - Argiris Symeonidis
- The Hellenic MDS Study Group, Hellenic Society of Haematology, Athens, Greece.,Hematology Division, Dept of Int. Medicine, University of Patras Medical School, Patras, Greece
| | - Panagiotis T Diamantopoulos
- First Department of Internal Medicine, Hematology Unit, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - Nora-Athina Viniou
- The Hellenic MDS Study Group, Hellenic Society of Haematology, Athens, Greece.,First Department of Internal Medicine, Hematology Unit, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - Christina-Nefeli Kontandreopoulou
- First Department of Internal Medicine, Hematology Unit, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - Kalliopi Zafeiropoulou
- Hematology Division, Dept of Int. Medicine, University of Patras Medical School, Patras, Greece
| | - Ioannis Kotsianidis
- The Hellenic MDS Study Group, Hellenic Society of Haematology, Athens, Greece.,Department of Hematology, Democritus University of Thrace, Medical School, Alexandroupolis, Greece
| | - Eleftheria Lamprianidou
- Department of Hematology, Democritus University of Thrace, Medical School, Alexandroupolis, Greece
| | - Periklis Foukas
- Second Department of Pathology, National and Kapodistrian University of Athens, Attikon University General Hospital, Athens, Greece
| | - Aristoteles Mpamias
- Second Department of Internal Medicine and Research Institute, National and Kapodistrian University of Athens, Attikon University General Hospital, Athens, Greece
| | - Vasiliki Pappa
- Second Department of Internal Medicine and Research Institute, National and Kapodistrian University of Athens, Attikon University General Hospital, Athens, Greece.,The Hellenic MDS Study Group, Hellenic Society of Haematology, Athens, Greece
| |
Collapse
|
33
|
Gonzalez-Lugo JD, Chakraborty S, Verma A, Shastri A. The evolution of epigenetic therapy in myelodysplastic syndromes and acute myeloid leukemia. Semin Hematol 2020; 58:56-65. [PMID: 33509444 DOI: 10.1053/j.seminhematol.2020.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/12/2020] [Revised: 12/11/2020] [Accepted: 12/19/2020] [Indexed: 01/03/2023]
Abstract
Mutations in the group of epigenetic modifiers are the largest group of mutated genes in Myelodysplastic Syndromes (MDS) and are very frequently found in Acute Myeloid Leukemia (AML). Our advancements in the understanding of epigenetics in these diseases have helped develop groundbreaking therapeutics that have changed the treatment landscape of MDS and AML, significantly improving outcomes. In this review we describe the most common epigenetic aberrations in MDS and AML, and current treatments that target mutations in epigenetic modifiers, as well as novel treatment combinations, from standard therapies to investigational treatments.
Collapse
Affiliation(s)
- Jesus D Gonzalez-Lugo
- Division of Hematologic Malignancies, Department of Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY
| | - Samarpana Chakraborty
- Division of Hematologic Malignancies, Department of Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY; Department of Molecular & Developmental Biology, Albert Einstein College of Medicine, Bronx, NY
| | - Amit Verma
- Division of Hematologic Malignancies, Department of Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY; Department of Molecular & Developmental Biology, Albert Einstein College of Medicine, Bronx, NY
| | - Aditi Shastri
- Division of Hematologic Malignancies, Department of Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY; Department of Molecular & Developmental Biology, Albert Einstein College of Medicine, Bronx, NY.
| |
Collapse
|
34
|
Gruber E, Franich RL, Shortt J, Johnstone RW, Kats LM. Distinct and overlapping mechanisms of resistance to azacytidine and guadecitabine in acute myeloid leukemia. Leukemia 2020; 34:3388-3392. [PMID: 32655143 DOI: 10.1038/s41375-020-0973-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/07/2020] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 11/09/2022]
Affiliation(s)
- Emily Gruber
- The Peter MacCallum Cancer Centre, Melbourne, 3000, VIC, Australia.,The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, 3052, VIC, Australia
| | - Rheana L Franich
- The Peter MacCallum Cancer Centre, Melbourne, 3000, VIC, Australia
| | - Jake Shortt
- The Peter MacCallum Cancer Centre, Melbourne, 3000, VIC, Australia.,Monash Haematology, Monash Health, Clayton, 3168, VIC, Australia.,School of Clinical Sciences at Monash Health, Monash University, Clayton, 3168, VIC, Australia
| | - Ricky W Johnstone
- The Peter MacCallum Cancer Centre, Melbourne, 3000, VIC, Australia.,The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, 3052, VIC, Australia
| | - Lev M Kats
- The Peter MacCallum Cancer Centre, Melbourne, 3000, VIC, Australia. .,The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, 3052, VIC, Australia.
| |
Collapse
|
35
|
Zhang H, Huang H, Feng X, Song H, Zhang Z, Shen A, Qiu X. Deubiquitinase USP28 inhibits ubiquitin ligase KLHL2-mediated uridine-cytidine kinase 1 degradation and confers sensitivity to 5'-azacytidine-resistant human leukemia cells. Theranostics 2020; 10:1046-1059. [PMID: 31938050 PMCID: PMC6956814 DOI: 10.7150/thno.36503] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/08/2019] [Accepted: 10/26/2019] [Indexed: 12/11/2022] Open
Abstract
Resistance to the chemotherapeutic drug 5'-azacytidine (5'-AZA) is a major obstacle in the treatment of patients with acute myeloid leukemia (AML). The uridine-cytidine kinase 1 (UCK1) has an established role in activating 5'-AZA and its protein level is significantly downregulated in patients resistant to the drug. However, the underlying molecular mechanism for the reduced UCK1 expression remains to be elucidated. Methods: Using mass spectrometry and molecular biochemistry analyses, we identified specific enzymes mediating UCK1 degradation. Human AML cell lines and murine AML model were used to characterize the effects of these enzymes on 5'-AZA resistance. Results: We demonstrated that the ubiquitin E3 ligase KLHL2 interacted with UCK1 and mediated its polyubiquitination at the K81 residue and degradation. We showed that deubiquitinase USP28 antagonized KLHL2-mediated polyubiquitylation of UCK1. We also provided evidence that ATM-mediated phosphorylation of USP28 resulted in its disassociation from KLHL2 and UCK1 destabilization. Conversely, UCK1 phosphorylation by 5'-AZA-activated ATM enhanced the KLHL2-UCK1 complex formation. Importantly, silencing KLHL2 or USP28 overexpression not only inhibited AML cell proliferation but also sensitized AML cells to 5'-AZA-induced apoptosis in vitro and in vivo. These results were no longer observed in USP28-deficient cells. Conclusions: Our study revealed a novel mechanism by which the KLHL2/USP28/ATM axis mediates resistance of AML cells to 5'-AZA by regulating UCK1 ubiquitination and phosphorylation. These results have direct clinical implications and provide a rationale for the combination drug treatment of AML patients.
Collapse
|
36
|
Kazachenka A, Young GR, Attig J, Kordella C, Lamprianidou E, Zoulia E, Vrachiolias G, Papoutselis M, Bernard E, Papaemmanuil E, Kotsianidis I, Kassiotis G. Epigenetic therapy of myelodysplastic syndromes connects to cellular differentiation independently of endogenous retroelement derepression. Genome Med 2019; 11:86. [PMID: 31870430 PMCID: PMC6929315 DOI: 10.1186/s13073-019-0707-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/07/2019] [Accepted: 12/15/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Myelodysplastic syndromes (MDS) and acute myeloid leukaemia (AML) are characterised by abnormal epigenetic repression and differentiation of bone marrow haematopoietic stem cells (HSCs). Drugs that reverse epigenetic repression, such as 5-azacytidine (5-AZA), induce haematological improvement in half of treated patients. Although the mechanisms underlying therapy success are not yet clear, induction of endogenous retroelements (EREs) has been hypothesised. METHODS Using RNA sequencing (RNA-seq), we compared the transcription of EREs in bone marrow HSCs from a new cohort of MDS and chronic myelomonocytic leukaemia (CMML) patients before and after 5-AZA treatment with HSCs from healthy donors and AML patients. We further examined ERE transcription using the most comprehensive annotation of ERE-overlapping transcripts expressed in HSCs, generated here by de novo transcript assembly and supported by full-length RNA-seq. RESULTS Consistent with prior reports, we found that treatment with 5-AZA increased the representation of ERE-derived RNA-seq reads in the transcriptome. However, such increases were comparable between treatment responses and failures. The extended view of HSC transcriptional diversity offered by de novo transcript assembly argued against 5-AZA-responsive EREs as determinants of the outcome of therapy. Instead, it uncovered pre-treatment expression and alternative splicing of developmentally regulated gene transcripts as predictors of the response of MDS and CMML patients to 5-AZA treatment. CONCLUSIONS Our study identifies the developmentally regulated transcriptional signatures of protein-coding and non-coding genes, rather than EREs, as correlates of a favourable response of MDS and CMML patients to 5-AZA treatment and offers novel candidates for further evaluation.
Collapse
Affiliation(s)
- Anastasiya Kazachenka
- Retroviral Immunology, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - George R Young
- Retrovirus-Host Interactions, The Francis Crick Institute, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Jan Attig
- Retroviral Immunology, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Chrysoula Kordella
- Department of Haematology, Democritus University of Thrace Medical School, Alexandroupolis, Greece
| | - Eleftheria Lamprianidou
- Department of Haematology, Democritus University of Thrace Medical School, Alexandroupolis, Greece
| | - Emmanuela Zoulia
- Department of Haematology, Democritus University of Thrace Medical School, Alexandroupolis, Greece
| | - George Vrachiolias
- Department of Haematology, Democritus University of Thrace Medical School, Alexandroupolis, Greece
| | - Menelaos Papoutselis
- Department of Haematology, Democritus University of Thrace Medical School, Alexandroupolis, Greece
| | - Elsa Bernard
- Center for Molecular Oncology, Center for Heme Malignancies and Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Elli Papaemmanuil
- Center for Molecular Oncology, Center for Heme Malignancies and Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Ioannis Kotsianidis
- Department of Haematology, Democritus University of Thrace Medical School, Alexandroupolis, Greece
| | - George Kassiotis
- Retroviral Immunology, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
- Department of Medicine, Faculty of Medicine, Imperial College London, London, W2 1PG, UK.
| |
Collapse
|
37
|
Clinical, molecular, and prognostic correlates of number, type, and functional localization of TET2 mutations in chronic myelomonocytic leukemia (CMML)-a study of 1084 patients. Leukemia 2019; 34:1407-1421. [PMID: 31836856 DOI: 10.1038/s41375-019-0690-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/16/2019] [Revised: 11/18/2019] [Accepted: 12/05/2019] [Indexed: 12/17/2022]
Abstract
Loss-of-function TET2 mutations (TET2MT) are frequent early clonal events in myeloid neoplasms and are thought to confer a fitness advantage to hematopoietic precursors. This large, multi-institutional study (n = 1084), investigated the TET2 mutational landscape and prognostic implications of the number, type, and location of TET2MT and the epistatic relationship with other somatic events in chronic myelomonocytic leukemia (CMML). Nine hundred and forty-two TET2MT were identified in 604 (56%) patients, of which 710 (75%) were predicted to be truncating (involving the catalytic domain). Three hundred and sixteen (29%) patients had ≥1 TET2MT, with 28%, 1%, and 0.2% harboring 2, 3, and 5 mutations, respectively. In comparison to TET2WT, TET2MT patients were older in age, more likely to have dysplastic CMML, a higher number of co-occurring mutations, and lower-risk stratification. Importantly, TET2MT were associated with a survival advantage (49 vs. 30 months, p < 0.0001), especially in the context of multiple TET2MT (≥2; 57 months, p < 0.001), and truncating TET2MT (51 months, p < 0.001). In addition, the adverse prognostic impact of ASXL1MT was partially mitigated by concurrent TET2MT, with the ASXL1WT/TET2MT genotype having better outcomes and resulting in further risk stratification of ASXL1 inclusive CMML prognostic models, in comparison to ASXL1MT alone.
Collapse
|
38
|
Sarmento-Ribeiro AB, Scorilas A, Gonçalves AC, Efferth T, Trougakos IP. The emergence of drug resistance to targeted cancer therapies: Clinical evidence. Drug Resist Updat 2019; 47:100646. [PMID: 31733611 DOI: 10.1016/j.drup.2019.100646] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/21/2019] [Revised: 09/23/2019] [Accepted: 09/25/2019] [Indexed: 12/14/2022]
Abstract
For many decades classical anti-tumor therapies included chemotherapy, radiation and surgery; however, in the last two decades, following the identification of the genomic drivers and main hallmarks of cancer, the introduction of therapies that target specific tumor-promoting oncogenic or non-oncogenic pathways, has revolutionized cancer therapeutics. Despite the significant progress in cancer therapy, clinical oncologists are often facing the primary impediment of anticancer drug resistance, as many cancer patients display either intrinsic chemoresistance from the very beginning of the therapy or after initial responses and upon repeated drug treatment cycles, acquired drug resistance develops and thus relapse emerges, resulting in increased mortality. Our attempts to understand the molecular basis underlying these drug resistance phenotypes in pre-clinical models and patient specimens revealed the extreme plasticity and adaptive pathways employed by tumor cells, being under sustained stress and extensive genomic/proteomic instability due to the applied therapeutic regimens. Subsequent efforts have yielded more effective inhibitors and combinatorial approaches (e.g. the use of specific pharmacologic inhibitors with immunotherapy) that exhibit synergistic effects against tumor cells, hence enhancing therapeutic indices. Furthermore, new advanced methodologies that allow for the early detection of genetic/epigenetic alterations that lead to drug chemoresistance and prospective validation of biomarkers which identify patients that will benefit from certain drug classes, have started to improve the clinical outcome. This review discusses emerging principles of drug resistance to cancer therapies targeting a wide array of oncogenic kinases, along with hedgehog pathway and the proteasome and apoptotic inducers, as well as epigenetic and metabolic modulators. We further discuss mechanisms of resistance to monoclonal antibodies, immunomodulators and immune checkpoint inhibitors, potential biomarkers of drug response/drug resistance, along with possible new therapeutic avenues for the clinicians to combat devastating drug resistant malignancies. It is foreseen that these topics will be major areas of focused multidisciplinary translational research in the years to come.
Collapse
Affiliation(s)
- Ana Bela Sarmento-Ribeiro
- Laboratory of Oncobiology and Hematology and University Clinic of Hematology and Coimbra Institute for Clinical and Biomedical Research - Group of Environment Genetics and Oncobiology (iCBR/CIMAGO), Faculty of Medicine, University of Coimbra (FMUC), Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Hematology Department, Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal.
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Ana Cristina Gonçalves
- Laboratory of Oncobiology and Hematology and University Clinic of Hematology and Coimbra Institute for Clinical and Biomedical Research - Group of Environment Genetics and Oncobiology (iCBR/CIMAGO), Faculty of Medicine, University of Coimbra (FMUC), Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| | - Ioannis P Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Greece.
| |
Collapse
|
39
|
Duchmann M, Itzykson R. Clinical update on hypomethylating agents. Int J Hematol 2019; 110:161-169. [PMID: 31020568 DOI: 10.1007/s12185-019-02651-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/01/2019] [Revised: 04/11/2019] [Accepted: 04/15/2019] [Indexed: 12/19/2022]
Abstract
Hypomethylating agents (HMAs), azacitidine and decitabine, are standards of care in higher-risk myelodysplastic syndromes and in acute myeloid leukemia patients ineligible for intensive therapy. Over the last 10 years, research efforts have sought to better understand their mechanism of action, both at the molecular and cellular level. These efforts have yet to robustly identify biomarkers for these agents. The clinical activity of HMAs in myeloid neoplasms has been firmly established now but still remains of limited magnitude. Besides optimized use at different stages of the disease, most of the expected clinical progress with HMAs will come from the development of second-generation compounds orally available and/or with improved pharmacokinetics, and from the search, so far mostly empirical, of HMA-based synergistic drug combinations.
Collapse
MESH Headings
- Antimetabolites, Antineoplastic/administration & dosage
- Antimetabolites, Antineoplastic/pharmacology
- Antimetabolites, Antineoplastic/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Azacitidine/administration & dosage
- Azacitidine/analogs & derivatives
- Azacitidine/pharmacology
- Azacitidine/therapeutic use
- Clinical Trials as Topic
- DNA Methylation/drug effects
- Decitabine/chemistry
- Decitabine/pharmacology
- Decitabine/therapeutic use
- Drug Administration Schedule
- Drug Combinations
- Gene Expression Regulation, Leukemic/drug effects
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myelomonocytic, Chronic/drug therapy
- Leukemia, Myelomonocytic, Chronic/genetics
- Myelodysplastic Syndromes/drug therapy
- Myelodysplastic Syndromes/genetics
- Uridine/administration & dosage
- Uridine/analogs & derivatives
- Uridine/pharmacology
- Uridine/therapeutic use
Collapse
Affiliation(s)
- Matthieu Duchmann
- INSERM/CNRS UMR 944/7212, Saint-Louis Research Institute, Paris Diderot University, Paris, France
- Hematology Laboratory, Hôpital Saint-Louis, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Raphael Itzykson
- INSERM/CNRS UMR 944/7212, Saint-Louis Research Institute, Paris Diderot University, Paris, France.
- Clinical Hematology Department, Hôpital Saint-Louis, Assistance Publique Hôpitaux de Paris, Avenue Claude Vellefaux, 75010, Paris, France.
| |
Collapse
|
40
|
Lamprianidou E, Zoulia E, Bernard E, Kordella C, Papoutselis M, Bezirgiannidou Z, Vrachiolias G, Papaemmanuil E, Kotsianidis I. Multifaceted modes of action of azacytidine: a riddle wrapped up in an enigma. Leuk Lymphoma 2019; 60:3277-3281. [PMID: 31185765 DOI: 10.1080/10428194.2019.1627542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/07/2023]
Affiliation(s)
- Eleftheria Lamprianidou
- Department of Hematology, Democritus University of Thrace Medical School, Alexandroupolis, Greece
| | - Emmanouela Zoulia
- Department of Hematology, Democritus University of Thrace Medical School, Alexandroupolis, Greece
| | - Elsa Bernard
- Center for Molecular Oncology, Center for Heme Malignancies and Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Chryssoula Kordella
- Department of Hematology, Democritus University of Thrace Medical School, Alexandroupolis, Greece
| | - Menelaos Papoutselis
- Department of Hematology, Democritus University of Thrace Medical School, Alexandroupolis, Greece
| | - Zoi Bezirgiannidou
- Department of Hematology, Democritus University of Thrace Medical School, Alexandroupolis, Greece
| | - George Vrachiolias
- Department of Hematology, Democritus University of Thrace Medical School, Alexandroupolis, Greece
| | - Elli Papaemmanuil
- Center for Molecular Oncology, Center for Heme Malignancies and Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ioannis Kotsianidis
- Department of Hematology, Democritus University of Thrace Medical School, Alexandroupolis, Greece
| |
Collapse
|
41
|
Gil-Perez A, Montalban-Bravo G. Management of myelodysplastic syndromes after failure of response to hypomethylating agents. Ther Adv Hematol 2019; 10:2040620719847059. [PMID: 31156799 PMCID: PMC6515843 DOI: 10.1177/2040620719847059] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/21/2019] [Accepted: 04/02/2019] [Indexed: 02/06/2023] Open
Abstract
Hypomethylating agents (HMAs) are the standard of care for patients with myelodysplastic syndrome (MDS). However, only around 50% of patients respond to these agents, and responses tend to be transient, with loss of response frequently happening within 2 years and being associated with very poor prognosis and limited therapeutic options. Identification of patients who will respond to HMAs is challenging. Mechanisms underlying resistance to HMAs are not clear yet. Recently, absence of response has been associated with increased cell-cycle quiescence among the hematopoietic progenitor cells. There are no standard-of-care options for patients after HMA failure. However, the increasing knowledge of MDS pathogenesis has led to the development of new potential therapies, including HMAs with longer half-life and exposure, inhibition of the antiapoptotic BCL2 protein with venetoclax or inhibition of immune-checkpoint regulatory proteins such as PD-1 or CTLA-4, innate immunity and targeting of CD33/CD3 with multiple monoclonal antibodies. In addition, multiple targeted agents are opening opportunities to treat subgroups of patients whose disease harbors mutations in TP53, IDH, FLT3, and genes involved in splicing machinery. Newer formulations of intensive chemotherapy and its different combinations may be considered a valid option in selected patients after HMA failure. Finally, decision making at the time of failure of response to HMAs should be personalized, taking into account that allogenic stem-cell transplantation remains the only therapeutic approach with curative potential in these patients. In the current review, we will focus on all the above aspects.
Collapse
Affiliation(s)
| | - Guillermo Montalban-Bravo
- Department of Leukemia, University of Texas, MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77015, USA
| |
Collapse
|
42
|
Bone marrow PARP1 mRNA levels predict response to treatment with 5-azacytidine in patients with myelodysplastic syndrome. Ann Hematol 2019; 98:1383-1392. [DOI: 10.1007/s00277-019-03650-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/10/2018] [Accepted: 03/02/2019] [Indexed: 01/13/2023]
|
43
|
Huang S, Li J, Tam NL, Sun C, Hou Y, Hughes B, Wang Z, Zhou Q, He X, Wu L. Uridine-cytidine kinase 2 upregulation predicts poor prognosis of hepatocellular carcinoma and is associated with cancer aggressiveness. Mol Carcinog 2019; 58:603-615. [PMID: 30556610 DOI: 10.1002/mc.22954] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/19/2018] [Revised: 12/07/2018] [Accepted: 12/12/2018] [Indexed: 12/16/2022]
Abstract
Patients with advanced hepatocellular carcinoma (HCC) continue to have a dismal prognosis. Potential biomarkers to determine prognosis and select targeted therapies are urgently needed for patients with HCC. This study aimed to elucidate the role of UCK2 in HCC prognosis and tumor progression. We performed a screen of public databases to identify functional genes associated with HCC tumorigenesis, progression, and outcome. We identified uridine-cytidine kinase 2 (UCK2) as a gene of interest for further study. UCK2 promoting HCC aggressiveness was demonstrated by evaluation of clinical samples, in vitro experiments, in vivo tumorigenicity, and transcript analysis. UCK2 expression was generally elevated in HCC and was significantly correlated with poor survival and inferior clinicopathological characteristics of HCC patients. A multivariate analysis revealed that high UCK2 expression was an independent factor for poor prognosis. In HCC cell lines, UCK2 knockdown suppressed cell migration and invasion and inhibited cell proliferation, while UCK2 overexpression had an opposite effect. Animal model experiments confirmed that knockdown of UCK2 suppressed tumor growth in vivo. The bioinformatics analysis demonstrated that UCK2 might associated with metabolsim, splicesome, and adherens junction. UCK2 is highly associated with HCC malignant behavior and is a potential prognostic predictor for HCC patients in the clinic.
Collapse
Affiliation(s)
- Shanzhou Huang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jian Li
- Deptartment of Hepatobiliary Surgery, The 5th Affiliated Hospital, Sun Yat-Sen University, Zhuhai, China
| | - Nga Lei Tam
- Department of Digestive Medicine Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Chengjun Sun
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yuchen Hou
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Bridget Hughes
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zekang Wang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Qi Zhou
- Department of Liver Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.,Department of General Surgery, Hui Ya Hospital of The First Affiliated Hospital, Sun Yat-Sen University, Huizhou, Guangdong, China
| | - Xiaoshun He
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Linwei Wu
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
44
|
Abstract
Hypomethylating agents (HMA) azacitidine and decitabine are standard of care for myelodysplastic syndrome (MDS). Response to these agents occurs in ∼50% of treated patients, and duration of response, although variable, is transient. Prediction of response to HMAs is possible with clinical and molecular parameters, but alternative approved treatments are not available, and in the case of HMA failure, there are no standard therapeutic opportunities. It is important to develop a reasoned choice of therapy after HMA failure. This choice should be based on evaluation of type of resistance (primary vs secondary, progression of disease [acute leukemia or higher risk MDS] vs absence of hematological improvement) as well as on molecular and cytogenetic characteristics reassessed at the moment of HMA failure. Rescue strategies may include stem-cell transplantation, which remains the only curative option, and chemotherapy, both of which are feasible in only a minority of cases, and experimental agents. Patients experiencing HMA failure should be recruited to clinical experimental trials as often as possible. Several novel agents with different mechanisms of action are currently being tested in this setting. Drugs targeting molecular alterations (IDH2 mutations, spliceosome gene mutations) or altered signaling pathways (BCL2 inhibitors) seem to be the most promising.
Collapse
|
45
|
Imanishi S, Umezu T, Kobayashi C, Ohta T, Ohyashiki K, Ohyashiki JH. Chromatin Regulation by HP1γ Contributes to Survival of 5-Azacytidine-Resistant Cells. Front Pharmacol 2018; 9:1166. [PMID: 30386240 PMCID: PMC6198088 DOI: 10.3389/fphar.2018.01166] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/30/2018] [Accepted: 09/26/2018] [Indexed: 12/20/2022] Open
Abstract
Recent investigations of the treatment for hematologic neoplasms have focused on targeting epigenetic regulators. The DNA methyltransferase inhibitor 5-azacytidine (AZA) has produced good results in the treatment of patients with myelodysplastic syndromes. The mechanism underlying its pharmacological activity involves many cellular processes including histone modifications, but chromatin regulation in AZA-resistant cells is still largely unknown. Therefore, we compared human leukemia cells with AZA resistance and their AZA-sensitive counterparts with regard to the response of histone modifications and their readers to AZA treatment to identify novel molecular target(s) in hematologic neoplasms with AZA resistance. We observed an a decrease of HP1γ, a methylated lysine 9 of histone H3-specific reader protein, in AZA-sensitive cells after treatment, whereas AZA treatment did not affect HP1 family proteins in AZA-resistant cells. The expression of shRNA targeting HP1γ reduced viability and induced apoptosis specifically in AZA-resistant cells, which accompanied with down-regulation of ATM/BRCA1 signaling, indicating that chromatin regulation by HP1γ plays a key role in the survival of AZA-resistant cells. In addition, the amount of HP1γ protein in AZA-sensitive and AZA-resistant cells was decreased after treatment with the bromodomain inhibitor I-BET151 at a dose that inhibited the growth of AZA-resistant cells more strongly than that of AZA-sensitive cells. Our findings demonstrate that treatment with AZA, which affects an epigenetic reader protein and targets HP1γ, or a bromodomain inhibitor is a novel strategy that can be used to treat patients with hematopoietic neoplasms with AZA resistance.
Collapse
Affiliation(s)
- Satoshi Imanishi
- Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Tomohiro Umezu
- Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Chiaki Kobayashi
- Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Tomohiko Ohta
- Department of Translational Oncology, St. Marianna University Graduate School of Medicine, Kawasaki, Japan
| | - Kazuma Ohyashiki
- Department of Hematology, Tokyo Medical University, Tokyo, Japan
| | - Junko H Ohyashiki
- Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
46
|
Marchal C, de Dieuleveult M, Saint-Ruf C, Guinot N, Ferry L, Olalla Saad ST, Lazarini M, Defossez PA, Miotto B. Depletion of ZBTB38 potentiates the effects of DNA demethylating agents in cancer cells via CDKN1C mRNA up-regulation. Oncogenesis 2018; 7:82. [PMID: 30310057 PMCID: PMC6182000 DOI: 10.1038/s41389-018-0092-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/04/2018] [Accepted: 08/22/2018] [Indexed: 11/09/2022] Open
Abstract
DNA methyltransferase inhibitor (DNMTi) treatments have been used for patients with myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML), and have shown promising beneficial effects in some other types of cancers. Here, we demonstrate that the transcriptional repressor ZBTB38 is a critical regulator of the cellular response to DNMTi. Treatments with 5-azacytidine, or its derivatives decitabine and zebularine, lead to down-regulation of ZBTB38 protein expression in cancer cells, in parallel with cellular damage. The depletion of ZBTB38 by RNA interference enhances the toxicity of DNMTi in cell lines from leukemia and from various solid tumor types. Further we observed that inactivation of ZBTB38 causes the up-regulation of CDKN1C mRNA, a previously described indirect target of DNMTi. We show that CDKN1C is a key actor of DNMTi toxicity in cells lacking ZBTB38. Finally, in patients with MDS a high level of CDKN1C mRNA expression before treatment correlates with a better clinical response to a drug regimen combining 5-azacytidine and histone deacetylase inhibitors. Collectively, our results suggest that the ZBTB38 protein is a target of DNMTi and that its depletion potentiates the toxicity of DNMT inhibitors in cancer cells, providing new opportunities to enhance the response to DNMT inhibitor therapies in patients with MDS and other cancers.
Collapse
Affiliation(s)
- Claire Marchal
- INSERM, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Department of Biological Science, Florida State University, Tallahassee, FL, 32306-4295, USA
| | - Maud de Dieuleveult
- INSERM, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Claude Saint-Ruf
- INSERM, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Nadège Guinot
- INSERM, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Laure Ferry
- Université Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216 CNRS, 75013, Paris, France
| | - Sara T Olalla Saad
- Hematology and Blood Transfusion Center-University of Campinas/Hemocentro-Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, Brazil
| | - Mariana Lazarini
- Department of Biological Sciences, Federal University of São Paulo, Diadema, Brazil
| | - Pierre-Antoine Defossez
- Université Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216 CNRS, 75013, Paris, France
| | - Benoit Miotto
- INSERM, U1016, Institut Cochin, Paris, France. .,CNRS, UMR8104, Paris, France. .,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
47
|
Predictors of clinical responses to hypomethylating agents in acute myeloid leukemia or myelodysplastic syndromes. Ann Hematol 2018; 97:2025-2038. [DOI: 10.1007/s00277-018-3464-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/13/2017] [Accepted: 07/27/2018] [Indexed: 12/18/2022]
|
48
|
|
49
|
Santini V. Society of Hematologic Oncology (SOHO) State of the Art Updates and Next Questions: Myelodysplastic Syndromes. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2018; 18:495-500. [PMID: 29907542 DOI: 10.1016/j.clml.2018.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 05/11/2018] [Accepted: 05/17/2018] [Indexed: 10/16/2022]
Abstract
In the past few months, 2 main streams of research have dominated the panorama of myelodysplastic syndrome (MDS) investigations: deepening the insight into the pathogenic role, hierarchy, and prognostic effect of somatic mutations and, as a consequence, into the effect of inherited congenital predisposing conditions and the second, quite interlinked with the first, analyzing inflammation and innate immunity in patients with MDS. The research devoted to clarifying the mechanisms of action and mechanisms of resistance to hypomethylating agents has also advanced, mostly resulting from different approaches to the study of DNA methylation. Recent observations have reinforced support for targeted therapies for selected subgroups of MDS patients.
Collapse
Affiliation(s)
- Valeria Santini
- MDS Unit, Azienda Ospedaliero Universitaria Careggi, University of Florence, Florence, Italy.
| |
Collapse
|
50
|
Abstract
INTRODUCTION The majority of patients with acute myeloid leukemia (AML) are older and exhibit a poor prognosis even after intensive therapy. Inducing differentiation and apoptosis of leukemic blasts by DNA-hypomethylating agents, like e.g. azacytidine (AZA) and decitabine (DAC), represent well-tolerated alternative treatment approaches. Both agents show convincing response as single agents in AML. However, there is a lack of knowledge regarding molecular mechanisms and predictive biomarkers for these agents. Areas covered: This review will (i) provide an overview of the current knowledge of molecular mechanisms underlying the action of these drugs, (ii) report promising predictive biomarkers, (iii) elude on new combined treatment options, and (iv) discuss novel approaches to improve outcomes. A literature search was performed using PubMed to find recent major publications, which provide biological and clinical research about epigenetic therapy in AML patients. Expert commentary: Numerous studies have demonstrated that HMA therapy with AZA or DAC may lead to significant response rates, even in pre-treated patients. Nevertheless, there is still an unmet need to further improve outcome in elderly AML patients. Therefore, novel treatment combinations are needed and some of them, such as AZA plus venetoclax, already show promising results.
Collapse
Affiliation(s)
- Stephan R Bohl
- a Department of Internal Medicine III , University Hospital Ulm , Ulm , Germany
| | - Lars Bullinger
- a Department of Internal Medicine III , University Hospital Ulm , Ulm , Germany.,b Department of Hematology, Oncology and Tumorimmunology , Charité University Medicine Berlin , Berlin , Germany
| | - Frank G Rücker
- a Department of Internal Medicine III , University Hospital Ulm , Ulm , Germany
| |
Collapse
|