1
|
Chen CY. Chromothripsis in myeloid malignancies. Ann Hematol 2024; 103:3955-3962. [PMID: 38814446 PMCID: PMC11512916 DOI: 10.1007/s00277-024-05814-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024]
Abstract
Chromothripsis refers to massive genomic rearrangements developed during a catastrophic event. In total acute myeloid leukemia (AML), the incidence of chromothripsis ranges from 0 to 6.6%, in cases of complex karyotype AML, the incidence of chromothripsis ranges from 27.3 to 100%, whereas in cases of AML with TP53 mutations, the incidence ranges from 11.1 to 90%. For other types of malignancies, the incidence of chromothripsis also varies, from 0 to 10.5% in myelodysplastic syndrome to up to 61.5% in cases of myelodysplastic syndrome with TP53 mutations.Chromothripsis is typically associated with complex karyotypes and TP53 mutations, and monosomal karyotypes are associated with the condition. ERG amplifications are frequently noted in cases of chromothripsis, whereas MYC amplifications are not. Moreover, FLT3 and NPM1 mutations are negatively associated with chromothripsis. Chromothripsis typically occurs in older patients with AML with low leukocyte counts and bone marrow blast counts. Rare cases of patients with chromothripsis who received intensive induction chemotherapy revealed low response rates and poor overall prognosis. Signal pathways in chromothripsis typically involve copy number gain and upregulation of oncogene gene sets that promote cancer growth and a concomitant copy number loss and downregulation of gene sets associated with tumor suppression functions.Patients with chromothripsis showed a trend of lower complete remission rate and worse overall survival in myeloid malignancy. Large-scale studies are required to further elucidate the causes and treatments of the condition.
Collapse
Affiliation(s)
- Chien-Yuan Chen
- Department of Internal Medicine, Division of Hematology, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei, 100, Taiwan.
- Department of Pathology, Cytogenetic laboratory, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
2
|
Murray GF, Bouligny IM, Ho T, Gor J, Zacholski K, Wages NA, Grant S, Maher KR. Clonal Evolution in 207 Cases of Refractory or Relapsed Acute Myeloid Leukemia. Eur J Haematol 2024. [PMID: 39315590 DOI: 10.1111/ejh.14308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/07/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024]
Abstract
Clonal evolution (CE) is a driving force behind the development and progression of acute myeloid leukemia (AML). Advances in molecular and cytogenetic assays have improved the depth and breadth of detection of CE in AML, which is defined here as a detected change in cytogenetic or molecular profile at relapsed or refractory (RR) disease. In this study, we demonstrate the clinical impact of CE in a cohort of patients with RR AML treated between 2013 and 2023. We discovered CE is significantly more frequent in relapsed disease (58.2%, [46.6%, 69.2%]) than in refractory disease (21.1%, [14.4%, 29.2%], p < 0.001). CE negatively impacts prognosis when detected by conventional karyotyping in refractory disease (4.2 vs. 13.9 months, p < 0.011). In contrast with prior literature, CE had no impact on overall survival if detected in relapsed disease. Surprisingly, those who achieved negative measurable residual disease (MRD) were no more likely to eliminate their original clone than those who did not (p = 1). We found several cytogenetic and molecular signatures which may predispose to CE: aberrations of chromosome 17, trisomy 8, TP53, KRAS, and FLT3-TKD. Finally, physicians were less likely to retreat those with CE with IC after receiving IC as first-line therapy (35.0% vs. 70.9%, p = 0.004). This study illustrates the role of CE in chemotherapy-resistant AML; we identify unique cytogenetic and molecular signatures that define a subset of patients associated with a dismal prognosis. As next-generation sequencing panels expand and new methods to characterize cytogenetic abnormalities emerge, our findings establish a basis for future studies investigating the prognostic and therapeutic impact of CE.
Collapse
Affiliation(s)
- Graeme F Murray
- Department of Internal Medicine, Huntington Health, Pasadena, California, USA
| | - Ian M Bouligny
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Thuy Ho
- Division of Hematology and Oncology, Department of Internal Medicine, Virginia Commonwealth University Massey Comprehensive Cancer Center, Richmond, Virginia, USA
| | - Juhi Gor
- Department of Internal Medicine, Virginia Commonwealth University Health, Richmond, Virginia, USA
| | - Kyle Zacholski
- Department of Pharmacy, Virginia Commonwealth University Health, Richmond, Virginia, USA
| | - Nolan A Wages
- Department of Biostatistics, Virginia Commonwealth University School of Population Health, Richmond, Virginia, USA
| | - Steven Grant
- Division of Hematology and Oncology, Department of Internal Medicine, Virginia Commonwealth University Massey Comprehensive Cancer Center, Richmond, Virginia, USA
| | - Keri R Maher
- Division of Hematology and Oncology, Department of Internal Medicine, Virginia Commonwealth University Massey Comprehensive Cancer Center, Richmond, Virginia, USA
| |
Collapse
|
3
|
Yeung T, Zhang Y, Kennedy B, Walsh C, Love T, Xia D, Bhattacharya A, Krishnan RG, Head D, Burack R. Multiplex imaging reveals spatially resolved DNA-damage response neighborhoods in TP53-mutated myelodysplastic neoplasms. J Pathol 2024; 263:386-395. [PMID: 38801208 DOI: 10.1002/path.6292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/18/2024] [Accepted: 04/10/2024] [Indexed: 05/29/2024]
Abstract
While increased DNA damage is a well-described feature of myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML), it is unclear whether all lineages and all regions of the marrow are homogeneously affected. In this study, we performed immunohistochemistry on formalin-fixed, paraffin-embedded whole-section bone marrow biopsies using a well-established antibody to detect pH2A.X (phosphorylated histone variant H2A.X) that recognizes DNA double-strand breaks. Focusing on TP53-mutated and complex karyotype MDS/AML, we find a greater pH2A.X+ DNA damage burden compared to TP53 wild-type neoplastic cases and non-neoplastic controls. To understand how double-strand breaks vary between lineages and spatially in TP53-mutated specimens, we applied a low-multiplex immunofluorescence staining and spatial analysis protocol to visualize pH2A.X+ cells with p53 protein staining and lineage markers. pH2A.X marked predominantly mid- to late-stage erythroids, whereas early erythroids and CD34+ blasts were relatively spared. In a prototypical example, these pH2A.X+ erythroids were organized locally as distinct colonies, and each colony displayed pH2A.X+ puncta at a synchronous level. This highly coordinated immunophenotypic expression was also seen for p53 protein staining and among presumed early myeloid colonies. Neighborhood clustering analysis showed distinct marrow regions differentially enriched in pH2A.X+/p53+ erythroid or myeloid colonies, indicating spatial heterogeneity of DNA-damage response and p53 protein expression. The lineage and architectural context within which DNA damage phenotype and oncogenic protein are expressed is relevant to current therapeutic developments that leverage macrophage phagocytosis to remove leukemic cells in part due to irreparable DNA damage. © 2024 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Tony Yeung
- Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Yi Zhang
- Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Bridget Kennedy
- Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Cara Walsh
- Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Tanzy Love
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY, USA
| | - Daniel Xia
- Department of Pathology, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | | | - Rahul G Krishnan
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Computer Science, University of Toronto, ON, Canada
| | - David Head
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Richard Burack
- Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
4
|
Hattori A, Takamatsu-Ichihara E, Yamamoto Y, Fujita S, Yamagata K, Katsumoto T, Machida Y, Shinohara H, Murakami R, Kitabayashi I. Genetic and chemical targeting of the ATPase complex TIP48 and 49 impairs acute myeloid leukemia. Leukemia 2023; 37:1812-1829. [PMID: 37491463 DOI: 10.1038/s41375-023-01971-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/01/2023] [Accepted: 07/10/2023] [Indexed: 07/27/2023]
Abstract
The chromatin-associated AAA+ ATPases Tip48 and Tip49 are the core components of various complexes implicated in diverse nuclear events such as DNA repair and gene regulation. Although they are frequently overexpressed in many human cancers, their functional significance remains unclear. Here, we show that loss of Tip49 triggered p53-dependent apoptosis and inhibited leukemia development in vivo. To examine the impact of chemical inhibition of this complex on leukemia, we have developed the novel compound DS-4950, which interferes with the ATPase activity of the Tip48/49. Administration of DS-4950 was well-tolerated in healthy mice, and the drug effectively reduced tumor burden and improved survival. We also provide evidence that the dependency on Tip48/49 is widely conserved in non-hematologic malignancies with wild type p53. These results demonstrated that the Tip48/49 ATPases are functionally necessary and therapeutically targetable for the treatment of human cancers.
Collapse
Affiliation(s)
- Ayuna Hattori
- Division of Hematological Malignancy, National Cancer Center Research Institute, Tokyo, Japan.
- Division of Cell Fate Dynamics and Therapeutics, Department of Biosystems Science, Institute for Life and Medical Sciences (LiMe), Kyoto University, Kyoto, Japan.
| | - Emi Takamatsu-Ichihara
- Division of Hematological Malignancy, National Cancer Center Research Institute, Tokyo, Japan
| | - Yoshiki Yamamoto
- Division of Cell Fate Dynamics and Therapeutics, Department of Biosystems Science, Institute for Life and Medical Sciences (LiMe), Kyoto University, Kyoto, Japan
| | - Shuhei Fujita
- Division of Hematological Malignancy, National Cancer Center Research Institute, Tokyo, Japan
| | - Kazutsune Yamagata
- Division of Hematological Malignancy, National Cancer Center Research Institute, Tokyo, Japan
| | - Takuo Katsumoto
- Division of Hematological Malignancy, National Cancer Center Research Institute, Tokyo, Japan
| | - Yukino Machida
- Department of Veterinary Pathology, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Haruka Shinohara
- Division of Hematological Malignancy, National Cancer Center Research Institute, Tokyo, Japan
| | - Ryo Murakami
- Oncology Research Laboratory II, Daiichi Sankyo Co., Ltd, Tokyo, Japan
| | - Issay Kitabayashi
- Division of Hematological Malignancy, National Cancer Center Research Institute, Tokyo, Japan.
| |
Collapse
|
5
|
Kotsiafti A, Giannakas K, Christoforou P, Liapis K. Progress toward Better Treatment of Therapy-Related AML. Cancers (Basel) 2023; 15:cancers15061658. [PMID: 36980546 PMCID: PMC10046015 DOI: 10.3390/cancers15061658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023] Open
Abstract
Therapy-related acute myeloid leukemia (t-AML) comprises 10-20% of all newly diagnosed cases of AML and is related to previous use of chemotherapy or ionizing radiotherapy for an unrelated malignant non-myeloid disorder or autoimmune disease. Classic examples include alkylating agents and topoisomerase II inhibitors, whereas newer targeted therapies such as poly (adenosine diphosphate-ribose) polymerase (PARP) inhibitors have emerged as causative agents. Typically, t-AML is characterized by adverse karyotypic abnormalities and molecular lesions that confer a poor prognosis. Nevertheless, there are also cases of t-AML without poor-risk features. The management of these patients remains controversial. We describe the causes and pathophysiology of t-AML, putting emphasis on its mutational heterogeneity, and present recent advances in its treatment including CPX-351, hypomethylating agent plus venetoclax combination, and novel, molecularly targeted agents that promise to improve the cure rates. Evidence supporting personalized medicine for patients with t-AML is presented, as well as the authors' clinical recommendations.
Collapse
Affiliation(s)
| | | | - Panagiotis Christoforou
- Pathophysiology Department, National and Kapodistrian University of Athens, 157 72 Athens, Greece
| | - Konstantinos Liapis
- Dragana Campus, Democritus University of Thrace Medical School, 681 00 Alexandroupolis, Greece
| |
Collapse
|
6
|
Boila LD, Ghosh S, Bandyopadhyay SK, Jin L, Murison A, Zeng AGX, Shaikh W, Bhowmik S, Muddineni SSNA, Biswas M, Sinha S, Chatterjee SS, Mbong N, Gan OI, Bose A, Chakraborty S, Arruda A, Kennedy JA, Mitchell A, Lechman ER, Banerjee D, Milyavsky M, Minden MD, Dick JE, Sengupta A. KDM6 demethylases integrate DNA repair gene regulation and loss of KDM6A sensitizes human acute myeloid leukemia to PARP and BCL2 inhibition. Leukemia 2023; 37:751-764. [PMID: 36720973 DOI: 10.1038/s41375-023-01833-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/18/2023] [Accepted: 01/23/2023] [Indexed: 02/01/2023]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous, aggressive malignancy with dismal prognosis and with limited availability of targeted therapies. Epigenetic deregulation contributes to AML pathogenesis. KDM6 proteins are histone-3-lysine-27-demethylases that play context-dependent roles in AML. We inform that KDM6-demethylase function critically regulates DNA-damage-repair-(DDR) gene expression in AML. Mechanistically, KDM6 expression is regulated by genotoxic stress, with deficiency of KDM6A-(UTX) and KDM6B-(JMJD3) impairing DDR transcriptional activation and compromising repair potential. Acquired KDM6A loss-of-function mutations are implicated in chemoresistance, although a significant percentage of relapsed-AML has upregulated KDM6A. Olaparib treatment reduced engraftment of KDM6A-mutant-AML-patient-derived xenografts, highlighting synthetic lethality using Poly-(ADP-ribose)-polymerase-(PARP)-inhibition. Crucially, a higher KDM6A expression is correlated with venetoclax tolerance. Loss of KDM6A increased mitochondrial activity, BCL2 expression, and sensitized AML cells to venetoclax. Additionally, BCL2A1 associates with venetoclax resistance, and KDM6A loss was accompanied with a downregulated BCL2A1. Corroborating these results, dual targeting of PARP and BCL2 was superior to PARP or BCL2 inhibitor monotherapy in inducing AML apoptosis, and primary AML cells carrying KDM6A-domain mutations were even more sensitive to the combination. Together, our study illustrates a mechanistic rationale in support of a novel combination therapy for AML based on subtype-heterogeneity, and establishes KDM6A as a molecular regulator for determining therapeutic efficacy.
Collapse
Affiliation(s)
- Liberalis Debraj Boila
- Stem Cell & Leukemia Lab, CSIR-Indian Institute of Chemical Biology, IICB-Translational Research Unit of Excellence, Salt Lake, Kolkata, 700091, West Bengal, India.,Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Subhadeep Ghosh
- Stem Cell & Leukemia Lab, CSIR-Indian Institute of Chemical Biology, IICB-Translational Research Unit of Excellence, Salt Lake, Kolkata, 700091, West Bengal, India.,Academy of Scientific & Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, 700032, West Bengal, India
| | - Subham K Bandyopadhyay
- Stem Cell & Leukemia Lab, CSIR-Indian Institute of Chemical Biology, IICB-Translational Research Unit of Excellence, Salt Lake, Kolkata, 700091, West Bengal, India.,Academy of Scientific & Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, 700032, West Bengal, India
| | - Liqing Jin
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada
| | - Alex Murison
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada
| | - Andy G X Zeng
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Wasim Shaikh
- Stem Cell & Leukemia Lab, CSIR-Indian Institute of Chemical Biology, IICB-Translational Research Unit of Excellence, Salt Lake, Kolkata, 700091, West Bengal, India.,Academy of Scientific & Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, 700032, West Bengal, India
| | - Satyaki Bhowmik
- Stem Cell & Leukemia Lab, CSIR-Indian Institute of Chemical Biology, IICB-Translational Research Unit of Excellence, Salt Lake, Kolkata, 700091, West Bengal, India.,Academy of Scientific & Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, 700032, West Bengal, India
| | | | - Mayukh Biswas
- Stem Cell & Leukemia Lab, CSIR-Indian Institute of Chemical Biology, IICB-Translational Research Unit of Excellence, Salt Lake, Kolkata, 700091, West Bengal, India.,Irving Cancer Research Center, Columbia University Medical Center, New York, NY, 10032, USA
| | - Sayantani Sinha
- Stem Cell & Leukemia Lab, CSIR-Indian Institute of Chemical Biology, IICB-Translational Research Unit of Excellence, Salt Lake, Kolkata, 700091, West Bengal, India.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Shankha Subhra Chatterjee
- Stem Cell & Leukemia Lab, CSIR-Indian Institute of Chemical Biology, IICB-Translational Research Unit of Excellence, Salt Lake, Kolkata, 700091, West Bengal, India.,Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Nathan Mbong
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada
| | - Olga I Gan
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada
| | - Anwesha Bose
- Stem Cell & Leukemia Lab, CSIR-Indian Institute of Chemical Biology, IICB-Translational Research Unit of Excellence, Salt Lake, Kolkata, 700091, West Bengal, India.,Academy of Scientific & Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, 700032, West Bengal, India
| | - Sayan Chakraborty
- Stem Cell & Leukemia Lab, CSIR-Indian Institute of Chemical Biology, IICB-Translational Research Unit of Excellence, Salt Lake, Kolkata, 700091, West Bengal, India
| | - Andrea Arruda
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada
| | - James A Kennedy
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada.,Division of Medical Oncology and Hematology, Department of Medicine, University Health Network, Toronto, ON, M5G 2C4, Canada.,Department of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Amanda Mitchell
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada
| | - Eric R Lechman
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada
| | - Debasis Banerjee
- Park Clinic, Gorky Terrace and Ramakrishna Mission Seva Pratisthan, Kolkata, 700017, West Bengal, India
| | - Michael Milyavsky
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Mark D Minden
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada.,Division of Medical Oncology and Hematology, Department of Medicine, University Health Network, Toronto, ON, M5G 2C4, Canada.,Department of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - John E Dick
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada. .,Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| | - Amitava Sengupta
- Stem Cell & Leukemia Lab, CSIR-Indian Institute of Chemical Biology, IICB-Translational Research Unit of Excellence, Salt Lake, Kolkata, 700091, West Bengal, India. .,Academy of Scientific & Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, 700032, West Bengal, India. .,CSIR-IICB-Cancer Biology & Inflammatory Disorder Division, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, 700032, West Bengal, India.
| |
Collapse
|
7
|
Abbotts R, Dellomo AJ, Rassool FV. Pharmacologic Induction of BRCAness in BRCA-Proficient Cancers: Expanding PARP Inhibitor Use. Cancers (Basel) 2022; 14:2640. [PMID: 35681619 PMCID: PMC9179544 DOI: 10.3390/cancers14112640] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 12/17/2022] Open
Abstract
The poly(ADP-ribose) polymerase (PARP) family of proteins has been implicated in numerous cellular processes, including DNA repair, translation, transcription, telomere maintenance, and chromatin remodeling. Best characterized is PARP1, which plays a central role in the repair of single strand DNA damage, thus prompting the development of small molecule PARP inhibitors (PARPi) with the intent of potentiating the genotoxic effects of DNA damaging agents such as chemo- and radiotherapy. However, preclinical studies rapidly uncovered tumor-specific cytotoxicity of PARPi in a subset of cancers carrying mutations in the BReast CAncer 1 and 2 genes (BRCA1/2), which are defective in the homologous recombination (HR) DNA repair pathway, and several PARPi are now FDA-approved for single agent treatment in BRCA-mutated tumors. This phenomenon, termed synthetic lethality, has now been demonstrated in tumors harboring a number of repair gene mutations that produce a BRCA-like impairment of HR (also known as a 'BRCAness' phenotype). However, BRCA mutations or BRCAness is present in only a small subset of cancers, limiting PARPi therapeutic utility. Fortunately, it is now increasingly recognized that many small molecule agents, targeting a variety of molecular pathways, can induce therapeutic BRCAness as a downstream effect of activity. This review will discuss the potential for targeting a broad range of molecular pathways to therapeutically induce BRCAness and PARPi synthetic lethality.
Collapse
Affiliation(s)
- Rachel Abbotts
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.J.D.); (F.V.R.)
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
| | - Anna J. Dellomo
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.J.D.); (F.V.R.)
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
| | - Feyruz V. Rassool
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.J.D.); (F.V.R.)
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
| |
Collapse
|
8
|
Li L, Han C, Yu X, Shen J, Cao Y. Targeting AraC-Resistant Acute Myeloid Leukemia by Dual Inhibition of CDK9 and Bcl-2: A Systematic Review and Meta-Analysis. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:2842066. [PMID: 35126914 PMCID: PMC8808115 DOI: 10.1155/2022/2842066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/13/2021] [Accepted: 01/03/2022] [Indexed: 12/20/2022]
Abstract
PURPOSE This study aims to determine the influence of targeting araC-resistant acute myeloid leukemia by dual inhibition cyclin-dependent protein kinase (CDK9) and B-cell lymphoma-2 (Bcl-2). METHOD The c-Myc inhibitor 10058-F4 and the CDK9 inhibitor AZD4573 were used to determine the cell cycle arrest and apoptosis. RESULTS 10058-F4 reduces c-Myc protein levels and suppresses HepG2 cell proliferation, possibly by upregulating cyclin-dependent kinase (CDK) inhibitors, p21WAF1, and reducing intracellular alpha-fetal protein (AFP) levels. CONCLUSION The combination of AZD4573 and 10058-F4 has a synergistic anti-araC-resistant AML activity, providing a solid database for the aforementioned scientific hypothesis.
Collapse
Affiliation(s)
- Linzhang Li
- Department of Laboratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Chengwu Han
- Department of Laboratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Xueying Yu
- Department of Laboratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Jun Shen
- Department of Laboratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Yongtong Cao
- Department of Laboratory Medicine, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
9
|
Targeting PARP proteins in acute leukemia: DNA damage response inhibition and therapeutic strategies. J Hematol Oncol 2022; 15:10. [PMID: 35065680 PMCID: PMC8783444 DOI: 10.1186/s13045-022-01228-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/12/2022] [Indexed: 02/06/2023] Open
Abstract
The members of the Poly(ADP‐ribose) polymerase (PARP) superfamily are involved in several biological processes and, in particular, in the DNA damage response (DDR). The most studied members, PARP1, PARP2 and PARP3, act as sensors of DNA damages, in order to activate different intracellular repair pathways, including single-strand repair, homologous recombination, conventional and alternative non-homologous end joining. This review recapitulates the functional role of PARPs in the DDR pathways, also in relationship with the cell cycle phases, which drives our knowledge of the mechanisms of action of PARP inhibitors (PARPi), encompassing inhibition of single-strand breaks and base excision repair, PARP trapping and sensitization to antileukemia immune responses. Several studies have demonstrated a preclinical activity of the current available PARPi, olaparib, rucaparib, niraparib, veliparib and talazoparib, as single agent and/or in combination with cytotoxic, hypomethylating or targeted drugs in acute leukemia, thus encouraging the development of clinical trials. We here summarize the most recent preclinical and clinical findings and discuss the synthetic lethal interactions of PARPi in acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL). Despite the low frequency of genomic alterations of PARP and other DDR-related genes in acute leukemia, selective vulnerabilities have been reported in several disease subgroups, along with a “BRCAness phenotype.” AML carrying the RUNX1-RUNX1T1 or PML-RARA fusion genes or mutations in signaling genes (FLT3-ITD in combination with TET2 or TET2 and DNMT3A deficiency), cohesin complex members (STAG2), TP53 and BCOR as co-occurring lesions, IDH1/2 and ALL cases expressing the TCF3-HLF chimera or TET1 was highly sensitive to PARPi in preclinical studies. These data, along with the warning coming from the observation of cases of therapy-related myeloid malignancies among patients receiving PARPi for solid tumors treatment, indicate that PARPi represents a promising strategy in a personalized medicine setting. The characterization of the clonal and subclonal genetic background and of the DDR functionality is crucial to select acute leukemia patients that will likely benefit of PARPi-based therapeutic regimens.
Collapse
|
10
|
de Oliveira Lisboa M, Brofman PRS, Schmid-Braz AT, Rangel-Pozzo A, Mai S. Chromosomal Instability in Acute Myeloid Leukemia. Cancers (Basel) 2021; 13:cancers13112655. [PMID: 34071283 PMCID: PMC8198625 DOI: 10.3390/cancers13112655] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/23/2021] [Accepted: 05/26/2021] [Indexed: 12/20/2022] Open
Abstract
Chromosomal instability (CIN), the increasing rate in which cells acquire new chromosomal alterations, is one of the hallmarks of cancer. Many studies highlighted CIN as an important mechanism in the origin, progression, and relapse of acute myeloid leukemia (AML). The ambivalent feature of CIN as a cancer-promoting or cancer-suppressing mechanism might explain the prognostic variability. The latter, however, is described in very few studies. This review highlights the important CIN mechanisms in AML, showing that CIN signatures can occur largely in all the three major AML types (de novo AML, secondary-AML, and therapy-related-AML). CIN features in AML could also be age-related and reflect the heterogeneity of the disease. Although most of these abnormalities show an adverse prognostic value, they also offer a strong new perspective on personalized therapy approaches, which goes beyond assessing CIN in vitro in patient tumor samples to predict prognosis. Current and emerging AML therapies are exploring CIN to improve AML treatment, which includes blocking CIN or increasing CIN beyond the limit threshold to induce cell death. We argue that the characterization of CIN features, not included yet in the routine diagnostic of AML patients, might provide a better stratification of patients and be extended to a more personalized therapeutic approach.
Collapse
Affiliation(s)
- Mateus de Oliveira Lisboa
- Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica do Paraná—PUCPR, Curitiba 80215-901, Paraná, Brazil; (M.d.O.L.); (P.R.S.B.)
| | - Paulo Roberto Slud Brofman
- Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica do Paraná—PUCPR, Curitiba 80215-901, Paraná, Brazil; (M.d.O.L.); (P.R.S.B.)
| | - Ana Teresa Schmid-Braz
- Hospital das Clínicas, Universidade Federal do Paraná, Curitiba 80060-240, Paraná, Brazil;
| | - Aline Rangel-Pozzo
- Department of Physiology and Pathophysiology, University of Manitoba, Cell Biology, CancerCare Manitoba Research Institute, Winnipeg, MB R3C 2B7, Canada
- Correspondence: (A.R.-P.); (S.M.); Tel.: +1-(204)787-4125 (S.M.)
| | - Sabine Mai
- Department of Physiology and Pathophysiology, University of Manitoba, Cell Biology, CancerCare Manitoba Research Institute, Winnipeg, MB R3C 2B7, Canada
- Correspondence: (A.R.-P.); (S.M.); Tel.: +1-(204)787-4125 (S.M.)
| |
Collapse
|
11
|
GADD45g acts as a novel tumor suppressor and its activation confers new combination regimens for the treatment of AML. Blood 2021; 138:464-479. [PMID: 33945602 DOI: 10.1182/blood.2020008229] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 04/07/2021] [Indexed: 11/20/2022] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive hematopoietic malignancy for which there is an unmet need for novel treatment strategies. Here, we characterize the growth arrest and DNA damage-inducible gene gamma (GADD45g) as a novel tumor suppressor in AML. We show that GADD45g is preferentially silenced in AML, especially in AML with FMS-like tyrosine kinase 3-internal tandem duplication (FLT3-ITD) mutations and mixed-lineage leukemia (MLL)-rearrangements, and reduced expression of GADD45g is correlated with poor prognosis in AML patients. Upregulation of GADD45g impairs homologous recombination (HR) DNA repair, leading to DNA damage accumulation, and dramatically induces apoptosis, differentiation, growth arrest and increases sensitivity of AML cells to chemotherapeutic drugs, without affecting normal cells. In addition, GADD45g is epigenetically silenced by histone deacetylation in AML, and its expression is further downregulated by oncogenes FLT3-ITD and MLL-AF9 in patients carrying these genetic abnormalities. Combination of histone deacetylase 1/2 inhibitor Romidepsin with FLT3 tyrosine kinase inhibitor AC220 or bromodomain inhibitor JQ1 exert synergistic anti-leukemic effects on FLT3-ITD+ and MLL-AF9+ AML, respectively, by dually activating GADD45g. These findings uncover hitherto unreported evidence for the selective anti-leukemia role of GADD45g and provide novel strategies for the treatment of FLT3-ITD+ and MLL-AF9+ AML.
Collapse
|
12
|
Roux B, Vaganay C, Vargas JD, Alexe G, Benaksas C, Pardieu B, Fenouille N, Ellegast JM, Malolepsza E, Ling F, Sodaro G, Ross L, Pikman Y, Conway AS, Tang Y, Wu T, Anderson DJ, Le Moigne R, Zhou HJ, Luciano F, Hartigan CR, Galinsky I, DeAngelo DJ, Stone RM, Auberger P, Schenone M, Carr SA, Guirouilh-Barbat J, Lopez B, Khaled M, Lage K, Hermine O, Hemann MT, Puissant A, Stegmaier K, Benajiba L. Targeting acute myeloid leukemia dependency on VCP-mediated DNA repair through a selective second-generation small-molecule inhibitor. Sci Transl Med 2021; 13:eabg1168. [PMID: 33790022 PMCID: PMC8672851 DOI: 10.1126/scitranslmed.abg1168] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 03/12/2021] [Indexed: 12/13/2022]
Abstract
The development and survival of cancer cells require adaptive mechanisms to stress. Such adaptations can confer intrinsic vulnerabilities, enabling the selective targeting of cancer cells. Through a pooled in vivo short hairpin RNA (shRNA) screen, we identified the adenosine triphosphatase associated with diverse cellular activities (AAA-ATPase) valosin-containing protein (VCP) as a top stress-related vulnerability in acute myeloid leukemia (AML). We established that AML was the most responsive disease to chemical inhibition of VCP across a panel of 16 cancer types. The sensitivity to VCP inhibition of human AML cell lines, primary patient samples, and syngeneic and xenograft mouse models of AML was validated using VCP-directed shRNAs, overexpression of a dominant-negative VCP mutant, and chemical inhibition. By combining mass spectrometry-based analysis of the VCP interactome and phospho-signaling studies, we determined that VCP is important for ataxia telangiectasia mutated (ATM) kinase activation and subsequent DNA repair through homologous recombination in AML. A second-generation VCP inhibitor, CB-5339, was then developed and characterized. Efficacy and safety of CB-5339 were validated in multiple AML models, including syngeneic and patient-derived xenograft murine models. We further demonstrated that combining DNA-damaging agents, such as anthracyclines, with CB-5339 treatment synergizes to impair leukemic growth in an MLL-AF9-driven AML murine model. These studies support the clinical testing of CB-5339 as a single agent or in combination with standard-of-care DNA-damaging chemotherapy for the treatment of AML.
Collapse
Affiliation(s)
- Blandine Roux
- Université de Paris, INSERM U944 and CNRS UMR 7212, Institut de Recherche Saint Louis, Hôpital Saint Louis, APHP, 75010 Paris, France
| | - Camille Vaganay
- Université de Paris, INSERM U944 and CNRS UMR 7212, Institut de Recherche Saint Louis, Hôpital Saint Louis, APHP, 75010 Paris, France
| | | | - Gabriela Alexe
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA 02215, USA
- Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Chaima Benaksas
- Université de Paris, INSERM U944 and CNRS UMR 7212, Institut de Recherche Saint Louis, Hôpital Saint Louis, APHP, 75010 Paris, France
| | - Bryann Pardieu
- Université de Paris, INSERM U944 and CNRS UMR 7212, Institut de Recherche Saint Louis, Hôpital Saint Louis, APHP, 75010 Paris, France
| | - Nina Fenouille
- Université de Paris, INSERM U944 and CNRS UMR 7212, Institut de Recherche Saint Louis, Hôpital Saint Louis, APHP, 75010 Paris, France
| | - Jana M Ellegast
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA 02215, USA
- Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Edyta Malolepsza
- Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Frank Ling
- Université de Paris, INSERM U944 and CNRS UMR 7212, Institut de Recherche Saint Louis, Hôpital Saint Louis, APHP, 75010 Paris, France
| | - Gaetano Sodaro
- Université de Paris, INSERM U944 and CNRS UMR 7212, Institut de Recherche Saint Louis, Hôpital Saint Louis, APHP, 75010 Paris, France
| | - Linda Ross
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA 02215, USA
- Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Yana Pikman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA 02215, USA
- Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Amy S Conway
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA 02215, USA
- Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | | | - Tony Wu
- Cleave Therapeutics Inc., San Francisco, CA 94105, USA
| | | | | | - Han-Jie Zhou
- Cleave Therapeutics Inc., San Francisco, CA 94105, USA
| | | | - Christina R Hartigan
- Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Ilene Galinsky
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Daniel J DeAngelo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Richard M Stone
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Patrick Auberger
- C3M, INSERM U1065, Team Cell Death, Differentiation, Inflammation and Cancer, 06204 Nice, France
| | - Monica Schenone
- Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Steven A Carr
- Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Josée Guirouilh-Barbat
- Université de Paris, INSERM U1016 and CNRS UMR 8104, Institut Cochin, 75014 Paris, France
| | - Bernard Lopez
- Université de Paris, INSERM U1016 and CNRS UMR 8104, Institut Cochin, 75014 Paris, France
| | - Mehdi Khaled
- INSERM U1186, Gustave-Roussy Cancer Center, Université Paris-Saclay, 94805 Villejuif, France
| | - Kasper Lage
- Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Olivier Hermine
- Université de Paris, INSERM U1163 and CNRS 8254, Institut Imagine, Hôpital Necker, APHP, 75015 Paris, France
| | - Michael T Hemann
- Koch Institute for Integrative Cancer Research at Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Alexandre Puissant
- Université de Paris, INSERM U944 and CNRS UMR 7212, Institut de Recherche Saint Louis, Hôpital Saint Louis, APHP, 75010 Paris, France.
| | - Kimberly Stegmaier
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA 02215, USA.
- Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Lina Benajiba
- Université de Paris, INSERM U944 and CNRS UMR 7212, Institut de Recherche Saint Louis, Hôpital Saint Louis, APHP, 75010 Paris, France.
| |
Collapse
|
13
|
Stoddart A, Wang J, Fernald AA, Davis EM, Johnson CR, Hu C, Cheng JX, McNerney ME, Le Beau MM. Cytotoxic Therapy-Induced Effects on Both Hematopoietic and Marrow Stromal Cells Promotes Therapy-Related Myeloid Neoplasms. Blood Cancer Discov 2020; 1:32-47. [PMID: 32924016 DOI: 10.1158/2643-3230.bcd-19-0028] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Therapy-related myeloid neoplasms (t-MNs) following treatment with alkylating agents are characterized by a del(5q), complex karyotypes, alterations of TP53, and a dismal prognosis. To decipher the molecular pathway(s) leading to the pathogenesis of del(5q) t-MN and the effect(s) of cytotoxic therapy on the marrow microenvironment, we developed a mouse model with loss of two key del(5q) genes, EGR1 and APC, in hematopoietic cells. We used the well-characterized drug, N-ethyl-N-nitrosurea (ENU) to demonstrate that alkylating agent exposure of stromal cells in the microenvironment increases the incidence of myeloid disease. In addition, loss of Trp53 with Egr1 and Apc was required to drive the development of a transplantable leukemia, and accompanied by the acquisition of somatic mutations in DNA damage response genes. ENU treatment of mesenchymal stromal cells induced cellular senescence, and led to the acquisition of a senescence-associated secretory phenotype, which may be a critical microenvironmental alteration in the pathogenesis of myeloid neoplasms.
Collapse
Affiliation(s)
| | - Jianghong Wang
- Department of Medicine, University of Chicago, Chicago, IL
| | | | | | | | - Chunmei Hu
- Department of Medicine, University of Chicago, Chicago, IL
| | - Jason X Cheng
- Department of Pathology, University of Chicago, Chicago, IL.,University of Chicago Medicine Comprehensive Cancer Center, Chicago, IL
| | - Megan E McNerney
- Department of Pathology, University of Chicago, Chicago, IL.,University of Chicago Medicine Comprehensive Cancer Center, Chicago, IL.,Department of Pediatrics, University of Chicago, Chicago IL
| | - Michelle M Le Beau
- Department of Medicine, University of Chicago, Chicago, IL.,University of Chicago Medicine Comprehensive Cancer Center, Chicago, IL
| |
Collapse
|
14
|
DNA damage and repair measured by comet assay in cancer patients. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2019; 843:95-110. [DOI: 10.1016/j.mrgentox.2019.05.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 05/14/2019] [Accepted: 05/18/2019] [Indexed: 02/08/2023]
|
15
|
Memon S, Crump M, Musani R. Rapidly progressive therapy-related myeloid neoplasm in a patient treated for Burkitt lymphoma: A case report. HUMAN PATHOLOGY: CASE REPORTS 2019. [DOI: 10.1016/j.ehpc.2019.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
16
|
Li D, Luo Y, Chen X, Zhang L, Wang T, Zhuang Y, Fan Y, Xu J, Chen Y, Wu L. NF-κB and Poly (ADP-ribose) Polymerase 1 Form a Positive Feedback Loop that Regulates DNA Repair in Acute Myeloid Leukemia Cells. Mol Cancer Res 2018; 17:761-772. [DOI: 10.1158/1541-7786.mcr-18-0523] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 09/20/2018] [Accepted: 12/12/2018] [Indexed: 11/16/2022]
|
17
|
Tyrosine kinase inhibitor-induced defects in DNA repair sensitize FLT3(ITD)-positive leukemia cells to PARP1 inhibitors. Blood 2018; 132:67-77. [PMID: 29784639 DOI: 10.1182/blood-2018-02-834895] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/15/2018] [Indexed: 01/03/2023] Open
Abstract
Mutations in FMS-like tyrosine kinase 3 (FLT3), such as internal tandem duplications (ITDs), can be found in up to 23% of patients with acute myeloid leukemia (AML) and confer a poor prognosis. Current treatment options for FLT3(ITD)-positive AMLs include genotoxic therapy and FLT3 inhibitors (FLT3i's), which are rarely curative. PARP1 inhibitors (PARP1i's) have been successfully applied to induce synthetic lethality in tumors harboring BRCA1/2 mutations and displaying homologous recombination (HR) deficiency. We show here that inhibition of FLT3(ITD) activity by the FLT3i AC220 caused downregulation of DNA repair proteins BRCA1, BRCA2, PALB2, RAD51, and LIG4, resulting in inhibition of 2 major DNA double-strand break (DSB) repair pathways, HR, and nonhomologous end-joining. PARP1i, olaparib, and BMN673 caused accumulation of lethal DSBs and cell death in AC220-treated FLT3(ITD)-positive leukemia cells, thus mimicking synthetic lethality. Moreover, the combination of FLT3i and PARP1i eliminated FLT3(ITD)-positive quiescent and proliferating leukemia stem cells, as well as leukemic progenitors, from human and mouse leukemia samples. Notably, the combination of AC220 and BMN673 significantly delayed disease onset and effectively reduced leukemia-initiating cells in an FLT3(ITD)-positive primary AML xenograft mouse model. In conclusion, we postulate that FLT3i-induced deficiencies in DSB repair pathways sensitize FLT3(ITD)-positive AML cells to synthetic lethality triggered by PARP1i's. Therefore, FLT3(ITD) could be used as a precision medicine marker for identifying AML patients that may benefit from a therapeutic regimen combining FLT3 and PARP1i's.
Collapse
|
18
|
Chromothripsis in acute myeloid leukemia: biological features and impact on survival. Leukemia 2018; 32:1609-1620. [PMID: 29472722 PMCID: PMC6035145 DOI: 10.1038/s41375-018-0035-y] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/31/2017] [Accepted: 11/21/2017] [Indexed: 12/12/2022]
Abstract
Chromothripsis is a one-step genome-shattering catastrophe resulting from disruption of one or few chromosomes in multiple fragments and consequent random rejoining and repair. This study defines incidence of chromothripsis in 395 newly diagnosed adult acute myeloid leukemia (AML) patients from three institutions, its impact on survival and its genomic background. SNP 6.0 or CytoscanHD Array (Affymetrix®) were performed on all samples. We detected chromothripsis with a custom algorithm in 26/395 patients. Patients harboring chromothripsis had higher age (p = 0.002), ELN high risk (HR) (p < 0.001), lower white blood cell (WBC) count (p = 0.040), TP53 loss, and/or mutations (p < 0.001) while FLT3 (p = 0.025), and NPM1 (p = 0.032) mutations were mutually exclusive with chromothripsis. Chromothripsis-positive patients showed a worse overall survival (OS) (p < 0.001) compared with HR patients (p = 0.011) and a poor prognosis in a COX-HR optimal regression model. Chromothripsis presented the hallmarks of chromosome instability [i.e., TP53 alteration, 5q deletion, higher mean of copy number alteration (CNA), complex karyotype, alterations in DNA repair, and cell cycle] and focal deletions on chromosomes 4, 7, 12, 16, and 17. CBA. FISH showed that chromothripsis is associated with marker, derivative, and ring chromosomes. In conclusion, chromothripsis frequently occurs in AML (6.6%) and influences patient prognosis and disease biology.
Collapse
|
19
|
Bertoli S, Sterin A, Tavitian S, Oberic L, Ysebaert L, Bouabdallah R, Vergez F, Sarry A, Bérard E, Huguet F, Laurent G, Prébet T, Vey N, Récher C. Therapy-related acute myeloid leukemia following treatment of lymphoid malignancies. Oncotarget 2018; 7:85937-85947. [PMID: 27852053 PMCID: PMC5349887 DOI: 10.18632/oncotarget.13262] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 11/01/2016] [Indexed: 12/12/2022] Open
Abstract
Therapy-related acute myeloid leukemia (t-AML) is a heterogeneous entity most frequently related to breast cancer or lymphoproliferative diseases (LD). Population-based studies have reported an increased risk of t-AML after treatment of lymphomas. The aim of this study was to describe the characteristics and outcome of 80 consecutive cases of t-AML following treatment of LD. t-AML accounted for 2.3% of all AML cases, occurred 60 months after LD diagnosis, and were characterized by a high frequency of FAB M6 AML and poor-risk cytogenetic abnormalities. Time to t-AML diagnosis was influenced by patient age, type of LD, and treatment. Among the 48 t-AML patients treated with intensive chemotherapy, median overall survival (OS) was 7.7 months compared to 26.1 months in de novo, 4.2 months in post-myeloproliferative neoplasm, 9.4 months in post-myelodysplastic syndrome, 8.6 months in post-chronic myelomonocytic leukemia AML, 13.4 months in t-AML secondary to the treatment of solid cancer, and 14.7 months in breast cancer only. OS of post-LD t-AML patients was significantly influenced by age, performance status, myelodysplastic syndrome prior to LD/t-AML, and treatment regimen for LD. Thus, t-AML following lymphoid malignancies treatment should be considered as very high-risk secondary AML. New treatment strategies in patients with LD/t-AML are needed urgently.
Collapse
Affiliation(s)
- Sarah Bertoli
- Service d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France.,Université Toulouse III Paul Sabatier, Toulouse, France.,Cancer Research Center of Toulouse (CRCT), UMR1037 INSERM, ERL5294 CNRS, Toulouse, France
| | - Arthur Sterin
- Service d'Hématologie, Institut Paoli-Calmettes, Marseille, France
| | - Suzanne Tavitian
- Service d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France
| | - Lucie Oberic
- Service d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France
| | - Loïc Ysebaert
- Service d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France.,Université Toulouse III Paul Sabatier, Toulouse, France.,Cancer Research Center of Toulouse (CRCT), UMR1037 INSERM, ERL5294 CNRS, Toulouse, France
| | - Reda Bouabdallah
- Service d'Hématologie, Institut Paoli-Calmettes, Marseille, France
| | - François Vergez
- Cancer Research Center of Toulouse (CRCT), UMR1037 INSERM, ERL5294 CNRS, Toulouse, France.,Laboratoire d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France
| | - Audrey Sarry
- Service d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France
| | - Emilie Bérard
- Service d'Epidémiologie, Centre Hospitalier Universitaire de Toulouse, Toulouse, France.,UMR 1027, INSERM-Université de Toulouse III, Toulouse, France
| | - Françoise Huguet
- Service d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France
| | - Guy Laurent
- Service d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France.,Université Toulouse III Paul Sabatier, Toulouse, France
| | - Thomas Prébet
- Service d'Hématologie, Institut Paoli-Calmettes, Marseille, France.,Département d'Oncologie Moléculaire, Centre de Recherche en Cancérologie de Marseille (CRCM), Institut Paoli-Calmettes, UMR1068 Inserm, Marseille, France
| | - Norbert Vey
- Service d'Hématologie, Institut Paoli-Calmettes, Marseille, France.,Département d'Oncologie Moléculaire, Centre de Recherche en Cancérologie de Marseille (CRCM), Institut Paoli-Calmettes, UMR1068 Inserm, Marseille, France.,Aix-Marseille University, Marseille, France
| | - Christian Récher
- Service d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France.,Université Toulouse III Paul Sabatier, Toulouse, France.,Cancer Research Center of Toulouse (CRCT), UMR1037 INSERM, ERL5294 CNRS, Toulouse, France
| |
Collapse
|
20
|
Fontana MC, Marconi G, Milosevic Feenstra JD, Fonzi E, Papayannidis C, Ghelli Luserna di Rorá A, Padella A, Solli V, Franchini E, Ottaviani E, Ferrari A, Baldazzi C, Testoni N, Iacobucci I, Soverini S, Haferlach T, Guadagnuolo V, Semerad L, Doubek M, Steurer M, Racil Z, Paolini S, Manfrini M, Cavo M, Simonetti G, Kralovics R, Martinelli G. Chromothripsis in Acute Myeloid Leukemia: biological features and
impact on survival. Leukemia 2017:10.1038/leu.2017.351. [PMCID: PMC5892717 DOI: 10.1038/leu.2017.351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
Chromothripsis is a one-step genome-shattering catastrophe resulting from
disruption of one or few chromosomes in multiple fragments and consequent random
rejoining and repair. This study define incidence of chromothripsis in 395
newly-diagnosed adult acute myeloid leukemia (AML) patients from three
institutions, its impact on survival and its genomic background. SNP 6.0 or
CytoscanHD Array (Affymetrix®) were performed on all samples. We detected
chromothripsis with a custom algorithm in 26/395 patients. Patients harboring
chromothripsis had higher age (p=.002), ELN high risk (HR) (p<.001),
lower white blood cell (WBC) count (p=.040), TP53 loss and/or
mutations (p<.001) while FLT3 (p=.025) and
NPM1 (p=.032) mutations were mutually exclusive with
chromothripsis. Chromothripsis-positive patients showed a worse overall survival
(OS) (p<.001) compared with HR patients (p=.011) and a poor prognosis in
a COX-HR optimal regression model. Chromothripsis presented the hallmarks of
chromosome instability [i.e. TP53 alteration, 5q deletion,
higher mean of copy number alteration (CNA), complex karyotype, alterations in
DNA repair and cell cycle] and focal deletions on chromosomes 4, 7, 12, 16, 17.
CBA. FISH showed that chromothripsis is associated with marker, derivative and
ring chromosomes. In conclusion, chromothripsis frequently occurs in AML (6.6%)
and influences patient prognosis and disease biology.
Collapse
Affiliation(s)
| | - Giovanni Marconi
- Institute of Hematology “L. and A. Seràgnoli”,
University of Bologna, Italy
| | | | - Eugenio Fonzi
- Institute of Hematology “L. and A. Seràgnoli”,
University of Bologna, Italy
| | | | | | - Antonella Padella
- Institute of Hematology “L. and A. Seràgnoli”,
University of Bologna, Italy
| | - Vincenza Solli
- Institute of Hematology “L. and A. Seràgnoli”,
University of Bologna, Italy
| | - Eugenia Franchini
- Institute of Hematology “L. and A. Seràgnoli”,
University of Bologna, Italy
| | - Emanuela Ottaviani
- Institute of Hematology “L. and A. Seràgnoli”,
University of Bologna, Italy
| | - Anna Ferrari
- Institute of Hematology “L. and A. Seràgnoli”,
University of Bologna, Italy
| | - Carmen Baldazzi
- Institute of Hematology “L. and A. Seràgnoli”,
University of Bologna, Italy
| | - Nicoletta Testoni
- Institute of Hematology “L. and A. Seràgnoli”,
University of Bologna, Italy
| | - Ilaria Iacobucci
- Institute of Hematology “L. and A. Seràgnoli”,
University of Bologna, Italy
| | - Simona Soverini
- Institute of Hematology “L. and A. Seràgnoli”,
University of Bologna, Italy
| | | | | | - Lukas Semerad
- Department of Internal Medicine - Hematology and Oncology, Masaryk
University and Hospital, Brno, CR
| | - Michael Doubek
- Department of Internal Medicine - Hematology and Oncology, Masaryk
University and Hospital, Brno, CR
| | - Michael Steurer
- Division of Hematology and Oncology, Medical University of
Innsbruck, Innsbruck, Austria
| | - Zdenek Racil
- Department of Internal Medicine - Hematology and Oncology, Masaryk
University and Hospital, Brno, CR
| | - Stefania Paolini
- Institute of Hematology “L. and A. Seràgnoli”,
University of Bologna, Italy
| | - Marco Manfrini
- Institute of Hematology “L. and A. Seràgnoli”,
University of Bologna, Italy
| | - Michele Cavo
- Institute of Hematology “L. and A. Seràgnoli”,
University of Bologna, Italy
| | - Giorgia Simonetti
- Institute of Hematology “L. and A. Seràgnoli”,
University of Bologna, Italy
| | - Robert Kralovics
- CeMM Research Center for Molecular Medicine of the Austrian Academy
of Sciences, Wien, Austria
| | | |
Collapse
|
21
|
Abstract
Therapy-related myeloid neoplasms (t-MN) arise as a late effect of chemotherapy and/or radiation administered for a primary condition, typically a malignant disease, solid organ transplant or autoimmune disease. Survival is measured in months, not years, making t-MN one of the most aggressive and lethal cancers. In this Review, we discuss recent developments that reframe our understanding of the genetic and environmental aetiology of t-MN. Emerging data are illuminating who is at highest risk of developing t-MN, why t-MN are chemoresistant and how we may use this information to treat and ultimately prevent this lethal disease.
Collapse
MESH Headings
- Antineoplastic Agents, Alkylating/adverse effects
- Bone Marrow Cells
- Chromosome Aberrations
- Chromosomes, Human, Pair 5
- Chromosomes, Human, Pair 7
- Clone Cells/physiology
- Gene-Environment Interaction
- Genetic Predisposition to Disease
- Hematopoiesis
- Humans
- Leukemia, Myeloid, Acute/etiology
- Leukemia, Myeloid, Acute/therapy
- Mutation
- Myelodysplastic Syndromes/etiology
- Myelodysplastic Syndromes/therapy
- Neoplasms, Second Primary/etiology
- Neoplasms, Second Primary/therapy
- Prognosis
- Radiation Exposure/adverse effects
- Risk Factors
Collapse
Affiliation(s)
- Megan E McNerney
- Department of Pathology and the Department of Pediatrics, The University of Chicago, Chicago, Illinois 60637, USA
- University of Chicago Medicine Comprehensive Cancer Center, Chicago, Illinois 60637, USA
| | - Lucy A Godley
- Department of Medicine, The University of Chicago, Chicago, Illinois 60637, USA
- University of Chicago Medicine Comprehensive Cancer Center, Chicago, Illinois 60637, USA
| | - Michelle M Le Beau
- Department of Medicine, The University of Chicago, Chicago, Illinois 60637, USA
- University of Chicago Medicine Comprehensive Cancer Center, Chicago, Illinois 60637, USA
| |
Collapse
|
22
|
Valka J, Vesela J, Votavova H, Dostalova-Merkerova M, Horakova Z, Campr V, Brezinova J, Zemanova Z, Jonasova A, Cermak J, Belickova M. Differential expression of homologous recombination DNA repair genes in the early and advanced stages of myelodysplastic syndrome. Eur J Haematol 2017; 99:323-331. [PMID: 28681469 DOI: 10.1111/ejh.12920] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND The high incidence of mutations and cytogenetic abnormalities in patients with myelodysplastic syndrome (MDS) suggests that defects in DNA repair mechanisms. We monitored DNA repair pathways in MDS and their alterations during disease progression. METHODS Expression profiling of DNA repair genes was performed on CD34+ cells, and paired samples were used for monitoring of RAD51 and XRCC2 gene expression during disease progression. Immunohistochemical staining for RAD51 was done on histology samples. RESULTS RAD51 and XRCC2 showed differential expression between low-risk and high-risk MDS (P<.0001), whereas RPA3 was generally decreased among the entire cohort (FC=-2.65, P<.0001). We demonstrated that RAD51 and XRCC2 expression gradually decreased during the progression of MDS. Down-regulation of XRCC2 and RAD51 expression was connected with abnormalities on chromosome 7 (P=.0858, P=.0457). Immunohistochemical staining revealed the presence of RAD51 only in the cytoplasm in low-risk MDS, while in both the cytoplasm and nucleus in high-risk MDS. The multivariate analysis identified RAD51 expression level (HR 0.49; P=.01) as significant prognostic factor for overall survival of patients with MDS. CONCLUSIONS Our study demonstrates that the expression of DNA repair factors, primarily RAD51 and XRCC2, is deregulated in patients with MDS and presents a specific pattern with respect to prognostic categories.
Collapse
Affiliation(s)
- Jan Valka
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Jitka Vesela
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Hana Votavova
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | | | - Zuzana Horakova
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Vit Campr
- Department of Pathology and Molecular Medicine, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czech Republic
| | - Jana Brezinova
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Zuzana Zemanova
- Center of Oncocytogenetics, General University Hospital and First Faculty of Medicine of Charles University, Prague, Czech Republic
| | - Anna Jonasova
- First Internal Clinic-Clinic of Hematology, General University Hospital, Prague, Czech Republic
| | - Jaroslav Cermak
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Monika Belickova
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| |
Collapse
|
23
|
Nilles N, Fahrenkrog B. Taking a Bad Turn: Compromised DNA Damage Response in Leukemia. Cells 2017; 6:cells6020011. [PMID: 28471392 PMCID: PMC5492015 DOI: 10.3390/cells6020011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/07/2017] [Accepted: 04/25/2017] [Indexed: 02/01/2023] Open
Abstract
Genomic integrity is of outmost importance for the survival at the cellular and the organismal level and key to human health. To ensure the integrity of their DNA, cells have evolved maintenance programs collectively known as the DNA damage response. Particularly challenging for genome integrity are DNA double-strand breaks (DSB) and defects in their repair are often associated with human disease, including leukemia. Defective DSB repair may not only be disease-causing, but further contribute to poor treatment outcome and poor prognosis in leukemia. Here, we review current insight into altered DSB repair mechanisms identified in leukemia. While DSB repair is somewhat compromised in all leukemic subtypes, certain key players of DSB repair are particularly targeted: DNA-dependent protein kinase (DNA-PK) and Ku70/80 in the non-homologous end-joining pathway, as well as Rad51 and breast cancer 1/2 (BRCA1/2), key players in homologous recombination. Defects in leukemia-related DSB repair may not only arise from dysfunctional repair components, but also indirectly from mutations in key regulators of gene expression and/or chromatin structure, such as p53, the Kirsten ras oncogene (K-RAS), and isocitrate dehydrogenase 1 and 2 (IDH1/2). A detailed understanding of the basis for defective DNA damage response (DDR) mechanisms for each leukemia subtype may allow to further develop new treatment methods to improve treatment outcome and prognosis for patients.
Collapse
Affiliation(s)
- Nadine Nilles
- Institute for Molecular Biology and Medicine, Université Libre de Bruxelles, 6041 Charleroi, Belgium.
| | - Birthe Fahrenkrog
- Institute for Molecular Biology and Medicine, Université Libre de Bruxelles, 6041 Charleroi, Belgium.
| |
Collapse
|
24
|
Ramakodi MP, Devarajan K, Blackman E, Gibbs D, Luce D, Deloumeaux J, Duflo S, Liu JC, Mehra R, Kulathinal RJ, Ragin CC. Integrative genomic analysis identifies ancestry-related expression quantitative trait loci on DNA polymerase β and supports the association of genetic ancestry with survival disparities in head and neck squamous cell carcinoma. Cancer 2016; 123:849-860. [PMID: 27906459 DOI: 10.1002/cncr.30457] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 09/26/2016] [Accepted: 10/28/2016] [Indexed: 12/25/2022]
Abstract
BACKGROUND African Americans with head and neck squamous cell carcinoma (HNSCC) have a lower survival rate than whites. This study investigated the functional importance of ancestry-informative single-nucleotide polymorphisms (SNPs) in HNSCC and also examined the effect of functionally important genetic elements on racial disparities in HNSCC survival. METHODS Ancestry-informative SNPs, RNA sequencing, methylation, and copy number variation data for 316 oral cavity and laryngeal cancer patients were analyzed across 178 DNA repair genes. The results of expression quantitative trait locus (eQTL) analyses were also replicated with a Gene Expression Omnibus (GEO) data set. The effects of eQTLs on overall survival (OS) and disease-free survival (DFS) were evaluated. RESULTS Five ancestry-related SNPs were identified as cis-eQTLs in the DNA polymerase β (POLB) gene (false discovery rate [FDR] < 0.01). The homozygous/heterozygous genotypes containing the African allele showed higher POLB expression than the homozygous white allele genotype (P < .001). A replication study using a GEO data set validated all 5 eQTLs and also showed a statistically significant difference in POLB expression based on genetic ancestry (P = .002). An association was observed between these eQTLs and OS (P < .037; FDR < 0.0363) as well as DFS (P = .018 to .0629; FDR < 0.079) for oral cavity and laryngeal cancer patients treated with platinum-based chemotherapy and/or radiotherapy. Genotypes containing the African allele were associated with poor OS/DFS in comparison with homozygous genotypes harboring the white allele. CONCLUSIONS Analyses show that ancestry-related alleles could act as eQTLs in HNSCC and support the association of ancestry-related genetic factors with survival disparities in patients diagnosed with oral cavity and laryngeal cancer. Cancer 2017;123:849-60. © 2016 American Cancer Society.
Collapse
Affiliation(s)
- Meganathan P Ramakodi
- Cancer Prevention and Control Program, Fox Chase Cancer Center-Temple Health, Philadelphia, Pennsylvania.,Department of Biology, Temple University, Philadelphia, Pennsylvania.,Center for Computational Genetics and Genomics, Temple University, Philadelphia, Pennsylvania.,Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, Pennsylvania.,African-Caribbean Cancer Consortium, Philadelphia, Pennsylvania
| | - Karthik Devarajan
- Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center-Temple Health, Philadelphia, Pennsylvania.,Department of Epidemiology and Biostatistics, College of Public Health, Temple University, Philadelphia, Pennsylvania.,Center for High-Dimensional Statistics, Big Data Institute, Temple University, Philadelphia, Pennsylvania
| | - Elizabeth Blackman
- Cancer Prevention and Control Program, Fox Chase Cancer Center-Temple Health, Philadelphia, Pennsylvania.,African-Caribbean Cancer Consortium, Philadelphia, Pennsylvania
| | - Denise Gibbs
- Cancer Prevention and Control Program, Fox Chase Cancer Center-Temple Health, Philadelphia, Pennsylvania.,African-Caribbean Cancer Consortium, Philadelphia, Pennsylvania
| | - Danièle Luce
- African-Caribbean Cancer Consortium, Philadelphia, Pennsylvania.,National Institute for Health and Medical Research (INSERM), Unit 1085;, Institute for Research in Health, Environment, and Work (IRSET), Pointe-à-Pitre, Guadeloupe, French West Indies
| | - Jacqueline Deloumeaux
- African-Caribbean Cancer Consortium, Philadelphia, Pennsylvania.,General Cancer Registry of Guadeloupe, University Hospital of Pointe-à-Pitre, Pointe-a-Pitre, Guadeloupe, French West Indies
| | - Suzy Duflo
- Department of Oto-Rhino-Laryngology and Head and Neck Surgery, University Hospital of Pointe à Pitre, Pointe-a-Pitre, Guadeloupe, French West Indies
| | - Jeffrey C Liu
- Head and Neck Surgery, Fox Chase Cancer Center-Temple Health, Philadelphia, Pennsylvania.,Department of Otolaryngology-Head and Neck Surgery, Lewis Katz School of Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Ranee Mehra
- Department of Hematology/Oncology, Fox Chase Cancer Center-Temple Health, Philadelphia, Pennsylvania
| | - Rob J Kulathinal
- Department of Biology, Temple University, Philadelphia, Pennsylvania.,Center for Computational Genetics and Genomics, Temple University, Philadelphia, Pennsylvania.,Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, Pennsylvania.,African-Caribbean Cancer Consortium, Philadelphia, Pennsylvania
| | - Camille C Ragin
- Cancer Prevention and Control Program, Fox Chase Cancer Center-Temple Health, Philadelphia, Pennsylvania.,African-Caribbean Cancer Consortium, Philadelphia, Pennsylvania.,Department of Epidemiology and Biostatistics, College of Public Health, Temple University, Philadelphia, Pennsylvania.,Department of Otolaryngology-Head and Neck Surgery, Lewis Katz School of Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW Therapy-related myeloid neoplasms (tMN) are increasingly recognized and studied diseases which have traditionally been defined clinically. With advances in methods used to study the genetics of aging and myeloid disease biology, novel insights are emerging which are expected to improve our understanding of the genetics and pathogenesis of tMN. RECENT FINDINGS Clinical outcomes in tMN and de novo MDS/AML appear to be largely determined by genetics, and data are emerging to show how DNA mutations may enhance tMN risk stratification. The discovery of skewed hematopoieses and mutations in healthy older adults suggests an alternate predisposition mechanism for the genesis of tMN. Patients with tMN do respond to standard therapy and can benefit from allogeneic transplant in a manner similar to their genetically matched de novo counterpart. SUMMARY De novo MDS/AML and tMN have shared genetic features, and tMN clinical outcomes may depend more on the genetics at presentation than the clinical history of an antecedent malignancy. Acquired somatic mutations in genes such as TP53 and myeloid skewing with associated mutations in cancer-free older adults may predispose such individuals to tMN under the influence of myelosuppressive therapy, and this may be a route to the development of a subset of tMN.
Collapse
|
26
|
Bueso-Ramos CE, Kanagal-Shamanna R, Routbort MJ, Hanson CA. Therapy-Related Myeloid Neoplasms. Am J Clin Pathol 2015; 144:207-18. [PMID: 26185306 DOI: 10.1309/ajcpu1jo2lytwuav] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVES In the 2008 World Health Organization classification, cases of acute myeloid leukemia (AML) and myelodysplastic syndrome that arise after chemotherapy or radiation therapy for a primary neoplasm are considered together as therapy-related myeloid neoplasms (TR-MNs). This concept, however, is not universally accepted since there are confounding variables in attributing myeloid neoplasms to earlier therapies. METHODS Cases in session 6 of the 2013 Workshop of the Society for Hematopathology/European Association for Haematopathology illustrated myeloid neoplasms thought likely to be TR-MNs, and discussed the differences and biologic similarities with de novo myeloid neoplasms. RESULTS We reviewed data showing that diagnosis of TR-MN alters patient outcome only in specific subsets. The session also included examples of therapy-related AML with recurrent genetic abnormalities, such as t(15;17), inv(16), and t(8;21), and reports were highlighted showing that patients with these neoplasms have clinical outcomes similar to patients with their de novo counterparts. CONCLUSIONS The study of TR-MNs will likely provide insight into the pathogenesis of de novo myeloid disease and may explain why some patients with cancer develop TR-MN and evidently have a higher genetic susceptibility, whereas most patients treated with the same agents do not. These studies will also result in critical reappraisal of current concepts related to TR-MNs.
Collapse
Affiliation(s)
- Carlos E. Bueso-Ramos
- Division of Pathology and Laboratory Medicine, Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston
| | - Rashmi Kanagal-Shamanna
- Division of Pathology and Laboratory Medicine, Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston
| | - Mark J. Routbort
- Division of Pathology and Laboratory Medicine, Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston
| | | |
Collapse
|
27
|
Zahnreich S, Ebersberger A, Kaina B, Schmidberger H. Biodosimetry Based on γ-H2AX Quantification and Cytogenetics after Partial- and Total-Body Irradiation during Fractionated Radiotherapy. Radiat Res 2015; 183:432-46. [DOI: 10.1667/rr13911.1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Sebastian Zahnreich
- Department of Radiation Oncology and Radiotherapy, University Medical Center Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Anne Ebersberger
- Department of Radiation Oncology and Radiotherapy, University Medical Center Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Bernd Kaina
- Department of Toxicology, University Medical Center Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Heinz Schmidberger
- Department of Radiation Oncology and Radiotherapy, University Medical Center Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| |
Collapse
|
28
|
Faraoni I, Compagnone M, Lavorgna S, Angelini DF, Cencioni MT, Piras E, Panetta P, Ottone T, Dolci S, Venditti A, Graziani G, Lo-Coco F. BRCA1, PARP1 and γH2AX in acute myeloid leukemia: Role as biomarkers of response to the PARP inhibitor olaparib. Biochim Biophys Acta Mol Basis Dis 2015; 1852:462-72. [DOI: 10.1016/j.bbadis.2014.12.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 10/24/2014] [Accepted: 12/01/2014] [Indexed: 11/28/2022]
|
29
|
NF-κB-dependent DNA damage-signaling differentially regulates DNA double-strand break repair mechanisms in immature and mature human hematopoietic cells. Leukemia 2015; 29:1543-54. [PMID: 25652738 DOI: 10.1038/leu.2015.28] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 12/30/2014] [Accepted: 01/21/2015] [Indexed: 12/13/2022]
Abstract
Hematopoietic stem and progenitor cells (HSPC), that is, the cell population giving rise not only to all mature hematopoietic lineages but also the presumed target for leukemic transformation, can transmit (adverse) genetic events, such as are acquired from chemotherapy or ionizing radiation. Data on the repair of DNA double-strand-breaks (DSB) and its accuracy in HSPC are scarce, in part contradictory, and mostly obtained in murine models. We explored the activity, quality and molecular components of DSB repair in human HSPC as compared with mature peripheral blood lymphocytes (PBL). To consider chemotherapy/radiation-induced compensatory proliferation, we established cycling HSPC cultures. Comparison of pathway-specific repair activities using reporter systems revealed that HSPC were severely compromised in non-homologous end joining and homologous recombination but not microhomology-mediated end joining. We observed a more pronounced radiation-induced accumulation of nuclear 53BP1 in HSPC relative to PBL, despite evidence for comparable DSB formation from cytogenetic analysis and γH2AX signal quantification, supporting differential pathway usage. Functional screening excluded a major influence of phosphatidylinositol-3-OH-kinase (ATM/ATR/DNA-PK)- and p53-signaling as well as chromatin remodeling. We identified diminished NF-κB signaling as the molecular component underlying the observed differences between HSPC and PBL, limiting the expression of DSB repair genes and bearing the risk of an inaccurate repair.
Collapse
|
30
|
Zhou T, Chen P, Gu J, Bishop AJR, Scott LM, Hasty P, Rebel VI. Potential relationship between inadequate response to DNA damage and development of myelodysplastic syndrome. Int J Mol Sci 2015; 16:966-89. [PMID: 25569081 PMCID: PMC4307285 DOI: 10.3390/ijms16010966] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 12/22/2014] [Indexed: 12/29/2022] Open
Abstract
Hematopoietic stem cells (HSCs) are responsible for the continuous regeneration of all types of blood cells, including themselves. To ensure the functional and genomic integrity of blood tissue, a network of regulatory pathways tightly controls the proliferative status of HSCs. Nevertheless, normal HSC aging is associated with a noticeable decline in regenerative potential and possible changes in other functions. Myelodysplastic syndrome (MDS) is an age-associated hematopoietic malignancy, characterized by abnormal blood cell maturation and a high propensity for leukemic transformation. It is furthermore thought to originate in a HSC and to be associated with the accrual of multiple genetic and epigenetic aberrations. This raises the question whether MDS is, in part, related to an inability to adequately cope with DNA damage. Here we discuss the various components of the cellular response to DNA damage. For each component, we evaluate related studies that may shed light on a potential relationship between MDS development and aberrant DNA damage response/repair.
Collapse
Affiliation(s)
- Ting Zhou
- Greehey Children's Cancer Research Center, University of Texas Health Science Center San Antonio (UTHSCSA), 8403 Floyd Curl Drive, San Antonio, TX 78229, USA.
| | - Peishuai Chen
- Greehey Children's Cancer Research Center, University of Texas Health Science Center San Antonio (UTHSCSA), 8403 Floyd Curl Drive, San Antonio, TX 78229, USA.
| | - Jian Gu
- Department of Hematology, Northern Jiangsu People's Hospital, Yangzhou 225001, China.
| | - Alexander J R Bishop
- Greehey Children's Cancer Research Center, University of Texas Health Science Center San Antonio (UTHSCSA), 8403 Floyd Curl Drive, San Antonio, TX 78229, USA.
| | - Linda M Scott
- The University of Queensland Diamantina Institute, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD 4102, Australia.
| | - Paul Hasty
- The Cancer Therapy Research Center, UTHSCSA, 7979 Wurzbach Road, San Antonio, TX 78229, USA.
| | - Vivienne I Rebel
- Greehey Children's Cancer Research Center, University of Texas Health Science Center San Antonio (UTHSCSA), 8403 Floyd Curl Drive, San Antonio, TX 78229, USA.
| |
Collapse
|
31
|
Caspase-9 is required for normal hematopoietic development and protection from alkylator-induced DNA damage in mice. Blood 2014; 124:3887-95. [PMID: 25349173 DOI: 10.1182/blood-2014-06-582551] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Apoptosis and the DNA damage responses have been implicated in hematopoietic development and differentiation, as well as in the pathogenesis of myelodysplastic syndromes (MDS) and leukemia. However, the importance of late-stage mediators of apoptosis in hematopoiesis and leukemogenesis has not been elucidated. Here, we examine the role of caspase-9 (Casp9), the initiator caspase of the intrinsic apoptotic cascade, in murine fetal and adult hematopoiesis. Casp9 deficiency resulted in decreased erythroid and B-cell progenitor abundance and impaired function of hematopoietic stem cells after transplantation. Mouse bone marrow chimeras lacking Casp9 or its cofactor Apaf1 developed low white blood cell counts, decreased B-cell numbers, anemia, and reduced survival. Defects in apoptosis have also been previously implicated in susceptibility to therapy-related leukemia, a disease caused by exposure to DNA-damaging chemotherapy. We found that the burden of DNA damage was increased in Casp9-deficient cells after exposure to the alkylator, N-ethyl-nitrosourea (ENU). Furthermore, exome sequencing revealed that oligoclonal hematopoiesis emerged in Casp9-deficient bone marrow chimeras after alkylator exposure. Taken together, these findings suggest that defects in apoptosis could be a key step in the pathogenesis of alkylator-associated secondary malignancies.
Collapse
|