1
|
Xu X, Huang Z, Ding C, Deng S, Ou J, Cai Z, Zhou Y, Liang H, Chen J, Wang Z, Liu X, Xuan L, Liu Q, Zheng Z, Li Z, Zhou H. STAT5 phosphorylation plus minimal residual disease defines a novel risk classification in adult B-cell acute lymphoblastic leukaemia. Br J Haematol 2024; 205:517-528. [PMID: 38639167 DOI: 10.1111/bjh.19467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/20/2024]
Abstract
The dysregulation of the Janus family tyrosine kinase-signal transducer and activator of transcription (JAK-STAT) is closely related to acute lymphoblastic leukaemia (ALL), whereas the clinical value of phosphorylated STAT5 (pSTAT5) remains elusive. Herein we performed a prospective study on clinical significance of flow cytometry-based pSTAT5 in adult B-ALL patients. A total of 184 patients were enrolled in the Precision-Classification-Directed-Target-Total-Therapy (PDT)-ALL-2016 cohort between January 2018 and December 2021, and STAT5 phosphorylation was detected by flow cytometry at diagnosis. Based on flow-pSTAT5, the population was classified into pSTAT5low (113/184, 61.1%) and pSTAT5high (71/184, 38.9%). Overall survival (OS) and event-free survival (EFS) were inferior in pSTAT5high patients than in those with pSTAT5low (OS, 44.8% vs. 65.2%, p = 0.004; EFS, 23.5% vs. 52.1%, p < 0.001), which was further confirmed in an external validation cohort. Furthermore, pSTAT5 plus flow-based minimal residual disease (MRD) postinduction defines a novel risk classification as being high risk (HR, pSTAT5high + MRD+), standard risk (SR, pSTAT5low + MRD-) and others as moderate-risk group. Three identified patient subgroups are distinguishable with disparate survival curves (3-year OS rates, 36.5%, 56.7% and 76.3%, p < 0.001), which was confirmed on multivariate analysis (hazard ratio 3.53, p = 0.003). Collectively, our study proposed a novel, simple and flow-based risk classification by integrating pSTAT5 and MRD in favour of risk-guided treatment for B-ALL.
Collapse
Affiliation(s)
- Xiuli Xu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Hematology, Ganzhou People's Hospital (Nanfang Hospital Ganzhou Hospital), Ganzhou, China
| | - Zicong Huang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chenhao Ding
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shiyu Deng
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiawang Ou
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zihong Cai
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yang Zhou
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haimei Liang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Junjie Chen
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - ZhiXiang Wang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Hematology, Ganzhou People's Hospital (Nanfang Hospital Ganzhou Hospital), Ganzhou, China
| | - Xiaoli Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Hematology, Ganzhou People's Hospital (Nanfang Hospital Ganzhou Hospital), Ganzhou, China
| | - Li Xuan
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research, Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Qifa Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research, Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Zhongxin Zheng
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhen Li
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hongsheng Zhou
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Hematology, Ganzhou People's Hospital (Nanfang Hospital Ganzhou Hospital), Ganzhou, China
- Clinical Medical Research, Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| |
Collapse
|
2
|
Three-Dimensional Reconstructed Bone Marrow Matrix Culture Improves the Viability of Primary Myeloma Cells In-Vitro via a STAT3-Dependent Mechanism. Curr Issues Mol Biol 2021; 43:313-323. [PMID: 34201211 PMCID: PMC8928965 DOI: 10.3390/cimb43010026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/04/2021] [Accepted: 06/04/2021] [Indexed: 11/17/2022] Open
Abstract
Primary myeloma (PM) cells are short-lived in conventional culture, which limited their usefulness as a study model. Here, we evaluated if three-dimensional (3D) culture can significantly prolong the longevity of PM cells in-vitro. We employed a previously established 3D model for culture of bone marrow mononuclear cells isolated from 15 patients. We assessed the proportion of PM cells, viability and proliferation using CD38 staining, trypan blue exclusion assays and carboxy fluorescein succinimidyl ester (CFSE) staining, respectively. We observed significantly more CD38+ viable cells in 3D than in conventional culture (65% vs. 25%, p = 0.006) on day 3. CFSE staining showed no significant difference in cell proliferation between the two culture systems. Moreover, we found that PM cells in 3D culture are more STAT3 active by measure of pSTAT3 staining (66% vs. 10%, p = 0.008). Treatment of IL6, a STAT3 activator significantly increased CD38+ cell viability (41% to 68%, p = 0.021). In comparison, inhibition of STAT3 with Stattic significantly decreased PM cell viability in 3D culture (38% to 17% p = 0.010). Neither IL6 nor Stattic affected the PM cell viability in conventional culture. This study suggests that 3D culture can significantly improve the longevity of PM cells in-vitro, and STAT3 activation can further improve their viability.
Collapse
|
3
|
Dunphy K, Dowling P, Bazou D, O’Gorman P. Current Methods of Post-Translational Modification Analysis and Their Applications in Blood Cancers. Cancers (Basel) 2021; 13:1930. [PMID: 33923680 PMCID: PMC8072572 DOI: 10.3390/cancers13081930] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/04/2021] [Accepted: 04/14/2021] [Indexed: 12/12/2022] Open
Abstract
Post-translational modifications (PTMs) add a layer of complexity to the proteome through the addition of biochemical moieties to specific residues of proteins, altering their structure, function and/or localization. Mass spectrometry (MS)-based techniques are at the forefront of PTM analysis due to their ability to detect large numbers of modified proteins with a high level of sensitivity and specificity. The low stoichiometry of modified peptides means fractionation and enrichment techniques are often performed prior to MS to improve detection yields. Immuno-based techniques remain popular, with improvements in the quality of commercially available modification-specific antibodies facilitating the detection of modified proteins with high affinity. PTM-focused studies on blood cancers have provided information on altered cellular processes, including cell signaling, apoptosis and transcriptional regulation, that contribute to the malignant phenotype. Furthermore, the mechanism of action of many blood cancer therapies, such as kinase inhibitors, involves inhibiting or modulating protein modifications. Continued optimization of protocols and techniques for PTM analysis in blood cancer will undoubtedly lead to novel insights into mechanisms of malignant transformation, proliferation, and survival, in addition to the identification of novel biomarkers and therapeutic targets. This review discusses techniques used for PTM analysis and their applications in blood cancer research.
Collapse
Affiliation(s)
- Katie Dunphy
- Department of Biology, National University of Ireland, W23 F2K8 Maynooth, Ireland; (K.D.); (P.D.)
| | - Paul Dowling
- Department of Biology, National University of Ireland, W23 F2K8 Maynooth, Ireland; (K.D.); (P.D.)
| | - Despina Bazou
- Department of Haematology, Mater Misericordiae University Hospital, D07 WKW8 Dublin, Ireland;
| | - Peter O’Gorman
- Department of Haematology, Mater Misericordiae University Hospital, D07 WKW8 Dublin, Ireland;
| |
Collapse
|
4
|
Ranjbaran R, Abbasi M, Rafiei Dehbidi G, Seyyedi N, Behzad-Behbahani A, Sharifzadeh S. Phosflow assessment of PDGFRA phosphorylation state: A guide for tyrosine kinase inhibitor targeted therapy in hypereosinophilia patients. Cytometry A 2021; 99:784-792. [PMID: 33386673 DOI: 10.1002/cyto.a.24302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/14/2020] [Accepted: 12/28/2020] [Indexed: 11/06/2022]
Abstract
Clonal eosinophilia is a hematologic disorder caused by translocation in growth factor receptor (GFR) genes. Despite the identified molecular mechanisms underlying clonal hypereosinophilia, the distinction between clonal and reactive eosinophilia has remained challenging due to the diversity of partner genes for translocated GFRs. This study aimed to examine the feasibility of phosphoflow cytometry in the diagnosis of clonal hypereosinophilia through evaluating the level of platelet-derived growth factor receptor alpha (PDGFRA) phosphorylation and its correlation with PDGFRA genetic aberration. Blood samples were collected from 45 hypereosinophilia patients and 10 healthy controls. Using phosphoflow cytometry method, the phosphorylation state of PDGFRA was assessed. The specificity of phosflow results was confirmed by western blotting and eventually compared with qRT-PCR expression analysis of 3'-region of PDGFRA. To detect the genetic aberration of PDGFRA, 5'-rapid amplification of cDNA ends (5'-RACE) was performed. Phosflow analysis illustrated that 9 of 45 hypereosinophilic patients had higher level of PDGFRA phosphorylation while sequence analysis of 5'-RACE-PCR fragments confirmed that in seven cases of them, there was a PDGFRA-FIP1L1 fusion. We also verified that two of nine patients with hyperposphorylated PDGFRA hold ETV6-PDGFRA and STRN-PDGFRA rearrangements. Importantly, nine cases also had significantly higher levels of PDGFRA mRNA expression when compared with healthy controls, and cases with no PDGFRA rearrangement. These findings highlight a robust correlation between hyperphosphorylation state of PDGFRA and aberrant PDGFRA gene fusions. This implicates phosflow as an efficient and reliable technique raising an intriguing possibility that it could replace other genomic and cDNA-amplification-based diagnostic approaches with limited effectiveness.
Collapse
Affiliation(s)
- Reza Ranjbaran
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mojdeh Abbasi
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.,Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Gholamreza Rafiei Dehbidi
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Noorossadat Seyyedi
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Behzad-Behbahani
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sedigheh Sharifzadeh
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
5
|
Zhong L, Jin X, Xu Z, Zeng M, Chen D, He Y, Zhang J, Jiang T, Chen J. Circulating miR-451a levels as a potential biomarker to predict the prognosis of patients with multiple myeloma. Oncol Lett 2020; 20:263. [PMID: 32989397 PMCID: PMC7517596 DOI: 10.3892/ol.2020.12126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 07/22/2020] [Indexed: 12/26/2022] Open
Abstract
The natural course of multiple myeloma (MM) varies greatly between patients. The Revised MM International Staging System (R-ISS) identifies high-risk patients, but it is unsuitable for assessing minimal residual disease (MRD). Furthermore, the focal location of myeloma cells and clonal evolution often produce false negative results in flow cytometry. Extracellular microRNA (miRNA/miR) expression levels are stable in bodily fluids, and are retrievable and measurable from fresh or archived serum or plasma samples. Therefore, the present study aimed to investigate the clinical utility of circulating miRNA levels in patients with MM, particularly miR-451a, which is commonly downregulated in MM, and whether it could predict the prognosis and relapse of patients with MM. In total, 66 patients with MM, stratified using the R-ISS criteria, were recruited, while 10 healthy subjects (transplantation donors) were enrolled as controls. Reverse transcription-quantitative PCR was used to evaluate miR-451a expression in bone marrow (BM) and in the circulation. IL-6 levels were measured using ELISA, while western blotting was conducted to analyze the protein expression levels of the IL-6 receptor (IL-6R). During follow-up, MRD was assessed via multiparameter flow cytometry (MFC). miR-451a was identified to target IL-6R using a dual-luciferase reporter assay. Circulating miR-451a levels were low in patients with MM, and was found to be 0.39 times that of the control group (U=4.00; P<0.001). Among the 66 patients with MM, the median level of miR-451a was 0.73 and 0.41 times that of the control group in R-ISS stage I MM (15 patients) and R-ISS stage II stage (17 patients), respectively; patients with R-ISS stage III MM (34 patients) had the lowest level, at 0.24 times the value of the control group. Circulating miR-451a levels had a strong positive correlation with miR-451a levels in BM, but negatively correlated with IL-6 and IL-6R levels. After two courses of consolidation chemotherapy, 19 patients achieved complete remission, 10 of whom presented steady circulating miR-451a levels during follow-up; the other nine patients had an abrupt decrease in circulating miR-451a levels. The turning points in the trend appeared 4–8 weeks before positive results were obtained via MFC, and 4–16 weeks before clinical relapse. Moreover, miR-451a overexpression notably downregulated the expression of the IL-6R mRNA and protein. Collectively, circulating miR-451a levels potentially represent a novel biomarker to monitor MRD and predict relapse.
Collapse
Affiliation(s)
- Ling Zhong
- Department of Clinical and Experimental Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, P.R. China.,Department of Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, P.R. China
| | - Xin Jin
- Department of Clinical and Experimental Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, P.R. China
| | - Zhuyu Xu
- Department of Pharmacy, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, P.R. China
| | - Minghui Zeng
- Department of Pharmacy, Qionglai Municipal Medical Center Hospital of Sichuan Province, Chengdu, Sichuan 611530, P.R. China
| | - Dongmei Chen
- Department of Clinical and Experimental Medicine, Southwest Medical University Clinical Medical School, Luzhou, Sichuan 646000, P.R. China
| | - Yuan He
- Department of Clinical and Experimental Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, P.R. China
| | - Jianbo Zhang
- Department of Clinical and Experimental Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, P.R. China
| | - Tao Jiang
- Department of Hematology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, P.R. China
| | - Jiao Chen
- Department of Hematology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, P.R. China
| |
Collapse
|
6
|
Brachet-Botineau M, Polomski M, Neubauer HA, Juen L, Hédou D, Viaud-Massuard MC, Prié G, Gouilleux F. Pharmacological Inhibition of Oncogenic STAT3 and STAT5 Signaling in Hematopoietic Cancers. Cancers (Basel) 2020; 12:E240. [PMID: 31963765 PMCID: PMC7016966 DOI: 10.3390/cancers12010240] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 12/14/2022] Open
Abstract
Signal Transducer and Activator of Transcription (STAT) 3 and 5 are important effectors of cellular transformation, and aberrant STAT3 and STAT5 signaling have been demonstrated in hematopoietic cancers. STAT3 and STAT5 are common targets for different tyrosine kinase oncogenes (TKOs). In addition, STAT3 and STAT5 proteins were shown to contain activating mutations in some rare but aggressive leukemias/lymphomas. Both proteins also contribute to drug resistance in hematopoietic malignancies and are now well recognized as major targets in cancer treatment. The development of inhibitors targeting STAT3 and STAT5 has been the subject of intense investigations during the last decade. This review summarizes the current knowledge of oncogenic STAT3 and STAT5 functions in hematopoietic cancers as well as advances in preclinical and clinical development of pharmacological inhibitors.
Collapse
Affiliation(s)
- Marie Brachet-Botineau
- Leukemic Niche and Oxidative metabolism (LNOx), CNRS ERL 7001, University of Tours, 37000 Tours, France;
| | - Marion Polomski
- Innovation Moléculaire et Thérapeutique (IMT), EA 7501, University of Tours, 37000 Tours, France; (M.P.); (L.J.); (D.H.); (M.-C.V.-M.); (G.P.)
| | - Heidi A. Neubauer
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, A-1210 Vienna, Austria;
| | - Ludovic Juen
- Innovation Moléculaire et Thérapeutique (IMT), EA 7501, University of Tours, 37000 Tours, France; (M.P.); (L.J.); (D.H.); (M.-C.V.-M.); (G.P.)
| | - Damien Hédou
- Innovation Moléculaire et Thérapeutique (IMT), EA 7501, University of Tours, 37000 Tours, France; (M.P.); (L.J.); (D.H.); (M.-C.V.-M.); (G.P.)
| | - Marie-Claude Viaud-Massuard
- Innovation Moléculaire et Thérapeutique (IMT), EA 7501, University of Tours, 37000 Tours, France; (M.P.); (L.J.); (D.H.); (M.-C.V.-M.); (G.P.)
| | - Gildas Prié
- Innovation Moléculaire et Thérapeutique (IMT), EA 7501, University of Tours, 37000 Tours, France; (M.P.); (L.J.); (D.H.); (M.-C.V.-M.); (G.P.)
| | - Fabrice Gouilleux
- Leukemic Niche and Oxidative metabolism (LNOx), CNRS ERL 7001, University of Tours, 37000 Tours, France;
| |
Collapse
|
7
|
In Chronic Lymphocytic Leukemia the JAK2/STAT3 Pathway Is Constitutively Activated and Its Inhibition Leads to CLL Cell Death Unaffected by the Protective Bone Marrow Microenvironment. Cancers (Basel) 2019; 11:cancers11121939. [PMID: 31817171 PMCID: PMC6966457 DOI: 10.3390/cancers11121939] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/11/2019] [Accepted: 11/29/2019] [Indexed: 01/01/2023] Open
Abstract
The bone marrow microenvironment promotes proliferation and drug resistance in chronic lymphocytic leukemia (CLL). Although ibrutinib is active in CLL, it is rarely able to clear leukemic cells protected by bone marrow mesenchymal stromal cells (BMSCs) within the marrow niche. We investigated the modulation of JAK2/STAT3 pathway in CLL by BMSCs and its targeting with AG490 (JAK2 inhibitor) or Stattic (STAT3 inhibitor). B cells collected from controls and CLL patients, were treated with medium alone, ibrutinib, JAK/Signal Transducer and Activator of Transcription (STAT) inhibitors, or both drugs, in the presence of absence of BMSCs. JAK2/STAT3 axis was evaluated by western blotting, flow cytometry, and confocal microscopy. We demonstrated that STAT3 was phosphorylated in Tyr705 in the majority of CLL patients at basal condition, and increased following co-cultures with BMSCs or IL-6. Treatment with AG490, but not Stattic, caused STAT3 and Lyn dephosphorylation, through re-activation of SHP-1, and triggered CLL apoptosis even when leukemic cells were cultured on BMSC layers. Moreover, while BMSCs hamper ibrutinib activity, the combination of ibrutinib+JAK/STAT inhibitors increase ibrutinib-mediated leukemic cell death, bypassing the pro-survival stimuli derived from BMSCs. We herein provide evidence that JAK2/STAT3 signaling might play a key role in the regulation of CLL-BMSC interactions and its inhibition enhances ibrutinib, counteracting the bone marrow niche.
Collapse
|
8
|
Shi J, Zhu ZM, Sun K, Lei PC, Liu ZW, Guo JM, Yang J, Zang YZ, Zhang Y. [Expression of CD45 in newly diagnosed multiple myeloma and the relationship with prognosis]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2019; 40:744-749. [PMID: 31648475 PMCID: PMC7342442 DOI: 10.3760/cma.j.issn.0253-2727.2019.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Indexed: 01/21/2023]
Abstract
Objective: To explore the expression of CD45 in newly diagnosed multiple myeloma (MM) and its relationship with clinical efficacy and prognosis. Methods: This study retrospectively analyzed expression and distribution of CD45 in 130 cases of newly diagnosed MM, comparing clinical efficacy and prognosis in CD45(+)/CD45(-) groups. Results: ①The CD45(+) group was 33 cases (25.38%) , and CD45(-) group was 97 cases (74.62%) . ②The objective remission rate (ORR) of CD45(+) and CD45(-)group was 33.33% and 64.95%, respectively. The difference was statistically significant (P=0.002) . For patients in Bortezomib regimen, the ORR of CD45(+) and CD45(-) group was 35.71% and 66.25%, respectively. The difference was statistically significant (P=0.005) . ③The median progress free survival (PFS) of CD45(+) group and CD45(-) group was 29.8 (95%CI 10.0-59.0) months vs 34.5 (95%CI 6.0-69.0) months (χ(2)=14.59, P<0.001) and the median overall survival (OS) was 32.5 (95%CI 10.0-68.0) months vs 37.6 (95%CI 6.0-78.0) months (χ(2)=11.42, P=0.001) , respectively. Among the patients in bortezomib regimen, The median PFS and median OS of CD45 (+) group and CD45(-) group were 30.3 (95%CI 10.0-59.0) months vs 36.3 (95%CI 6.0-69.0) months (χ(2)=14.75, P=0.001) and 34.0 (95%CI 10.0-68.0) months vs 39.5 (95%CI 6.0-78.0) months (χ(2)=10.62, P=0.001) . ④Cox risk regression model analysis showed that serum creatinine≥176.8 μmol/L (HR=5.078, 95%CI 1.744-14.723, P=0.001) , CD45 positive (HR=14.504, 95%CI 0.168-0.42, P=0.001) , LDH≥220 IU/L (HR=1.308, 95%CI 1.16-2.417, P=0.015) were independent risk prognostic factors. Conclusion: CD45 expression is a risk prognostic factor of MM patients. Bortezomib did not improve the poor prognosis of CD45(+) MM patients.
Collapse
Affiliation(s)
- J Shi
- Henan Provincial People's Hospital, Zhengzhou 450003, China
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Constitutive Activation of STAT3 in Myeloma Cells Cultured in a Three-Dimensional, Reconstructed Bone Marrow Model. Cancers (Basel) 2018; 10:cancers10060206. [PMID: 29914181 PMCID: PMC6024941 DOI: 10.3390/cancers10060206] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/14/2018] [Accepted: 06/14/2018] [Indexed: 01/18/2023] Open
Abstract
Malignant cells cultured in three-dimensional (3D) models have been found to be phenotypically and biochemically different from their counterparts cultured conventionally. Since most of these studies employed solid tumor types, how 3D culture affects multiple myeloma (MM) cells is not well understood. Here, we compared MM cells (U266 and RPMI8226) in a 3D culture model with those in conventional culture. While the conventionally cultured cells were present in single cells or small clusters, MM-3D cells grew in large spheroids. We discovered that STAT3 was the pathway that was more activated in 3D in both cell lines. The active form of STAT3 (phospho-STAT3 or pSTAT3), which was absent in MM cells cultured conventionally, became detectable after 1–2 days in 3D culture. This elevated pSTAT3 level was dependent on the 3D environment, since it disappeared after transferring to conventional culture. STAT3 inhibition using a pharmacological agent, Stattic, significantly decreased the cell viability of MM cells and sensitized them to bortezomib in 3D culture. Using an oligonucleotide array, we found that 3D culture significantly increased the expression of several known STAT3 downstream genes implicated in oncogenesis. Since most primary MM tumors are naturally STAT3-active, studies of MM in 3D culture can generate results that are more representative of the disease.
Collapse
|
10
|
Jung SH, Ahn SY, Choi HW, Shin MG, Lee SS, Yang DH, Ahn JS, Kim YK, Kim HJ, Lee JJ. STAT3 expression is associated with poor survival in non-elderly adult patients with newly diagnosed multiple myeloma. Blood Res 2017; 52:293-299. [PMID: 29333406 PMCID: PMC5762740 DOI: 10.5045/br.2017.52.4.293] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 06/28/2017] [Accepted: 07/08/2017] [Indexed: 12/22/2022] Open
Abstract
Background Signal transducer and activator of transcription 3 (STAT3) is not only a key signaling molecule in the regulation of growth but is also involved in malignant transformation. We investigated the prognostic significance of STAT3 expression in 94 non-elderly adult patients (aged 38 to 65 yr) with newly diagnosed multiple myeloma (MM). Methods Tumor cell-specific phosphotyrosine-STAT3 (PY-STAT3) expression at the time of diagnosis was evaluated with dual immunohistochemical (IHC) staining for PY-STAT3 and CD138. Results PY-STAT3 positivity was detected in 10 patients (10.6%), including three who showed strong expression. PY-STAT3-positive patients had higher serum C-reactive protein and calcium levels at diagnosis than did PY-STAT3-negative patients. PY-STAT3 positivity had predictive value for poor progression-free survival (PFS; P=0.001) and overall survival (OS; P=0.003). Among the 60 patients who received frontline autologous stem cell transplantation, PY-STAT3-positive patients had poorer PFS than did PY-STAT3-negative patients (4.2 vs. 19.2 mo, respectively; P=0.013). Multivariate analysis identified PY-STAT3 expression as an independent prognostic factor for PFS (relative risk [RR]=2.706, P=0.014) and OS (RR=3.091, P=0.044). Conclusion These data show that PY-STAT3 positivity, as determined using dual IHC, is a marker of poor prognosis in non-elderly adult patients with MM.
Collapse
Affiliation(s)
- Sung-Hoon Jung
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Seo-Yeon Ahn
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Hyun-Woo Choi
- Department of Laboratory Medicine, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Myung-Geun Shin
- Department of Laboratory Medicine, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Seung-Shin Lee
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Deok-Hwan Yang
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Jae-Sook Ahn
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Yeo-Kyeoung Kim
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Hyeoung-Joon Kim
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Je-Jung Lee
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Korea
| |
Collapse
|
11
|
Iriyama N, Miura K, Hatta Y, Kobayashi S, Uchino Y, Kurita D, Sakagami H, Takahashi H, Sakagami M, Kobayashi Y, Nakagawa M, Ohtake S, Iizuka Y, Takei M. Clinical effect of immunophenotyping on the prognosis of multiple myeloma patients treated with bortezomib. Oncol Lett 2017; 13:3803-3808. [PMID: 28521480 DOI: 10.3892/ol.2017.5920] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 01/19/2017] [Indexed: 11/06/2022] Open
Abstract
In the present study, the effect of immunophenotyping on the prognoses of patients with multiple myeloma (MM) treated with bortezomib plus dexamethasone was investigated. The study involved 46 patients with MM, and analyzed the prognostic significance of the expression of cluster of differentiation (CD)45, CD56 and mature plasma cell (MPC)-1, and other factors including the International Staging System (ISS) stage, age, gender, the immunoglobulin subtype and the treatment line number prior to bortezomib treatment. Although CD56 and MPC-1 expression did not appear to affect the time to next treatment (TNT) or overall survival rate (OS), the univariate analysis determined that CD45 positivity was an adverse prognostic factor for TNT and OS, and that being male was significantly associated with inferior TNT and OS. Multivariate analyses determined that CD45 expression was prognostically significant for TNT and OS. In conclusion, CD45 positivity is an adverse prognostic factor in MM patients treated with bortezomib. The data from the present study demonstrate the clinical importance of classifying MM cells immunophenotypically to determine the prognoses of patients.
Collapse
Affiliation(s)
- Noriyoshi Iriyama
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Katsuhiro Miura
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Yoshihiro Hatta
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Sumiko Kobayashi
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Yoshihito Uchino
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Daisuke Kurita
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Hitomi Sakagami
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Hiromichi Takahashi
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, Tokyo 173-8610, Japan.,Department of Clinical Laboratory, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Masashi Sakagami
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Yujin Kobayashi
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Masaru Nakagawa
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Shimon Ohtake
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Yoshikazu Iizuka
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Masami Takei
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, Tokyo 173-8610, Japan
| |
Collapse
|
12
|
Wu K, Li L, Thakur C, Lu Y, Zhang X, Yi Z, Chen F. Proteomic Characterization of the World Trade Center dust-activated mdig and c-myc signaling circuit linked to multiple myeloma. Sci Rep 2016; 6:36305. [PMID: 27833099 PMCID: PMC5105131 DOI: 10.1038/srep36305] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 10/12/2016] [Indexed: 12/30/2022] Open
Abstract
Several epidemiological studies suggested an increased incidence rate of multiple myeloma (MM) among first responders and other individuals who exposed to World Trade Center (WTC) dust. In this report, we provided evidence showing that WTC dust is potent in inducing mdig protein and/or mRNA in bronchial epithelial cells, B cells and MM cell lines. An increased mdig expression in MM bone marrow was observed, which is associated with the disease progression and prognosis of the MM patients. Through integrative genomics and proteomics approaches, we further demonstrated that mdig directly interacts with c-myc and JAK1 in MM cell lines, which contributes to hyperactivation of the IL-6-JAK-STAT3 signaling important for the pathogenesis of MM. Genetic silencing of mdig reduced activity of the major downstream effectors in the IL-6-JAK-STAT3 pathway. Taken together, these data suggest that WTC dust may be one of the key etiological factors for those who had been exposed for the development of MM by activating mdig and c-myc signaling circuit linked to the IL-6-JAK-STAT3 pathway essential for the tumorigenesis of the malignant plasma cells.
Collapse
Affiliation(s)
- Kai Wu
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| | - Lingzhi Li
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| | - Chitra Thakur
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| | - Yongju Lu
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| | - Xiangmin Zhang
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| | - Zhengping Yi
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| | - Fei Chen
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| |
Collapse
|
13
|
Joshua D, Suen H, Brown R, Bryant C, Ho PJ, Hart D, Gibson J. The T Cell in Myeloma. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2016; 16:537-542. [PMID: 27601001 DOI: 10.1016/j.clml.2016.08.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 07/15/2016] [Accepted: 08/02/2016] [Indexed: 11/16/2022]
Abstract
An active role for the immune system in controlling the malignant plasma cell clone in myeloma has been postulated for many years. The clinical states of monoclonal gammopathy of undetermined significance, plateau phase disease, and smoldering myeloma all suggest that a significant host-tumor interaction is taking place. The fundamental role of the cytotoxic T cell in tumor elimination and control has been exemplified by the dramatic efficacy of adoptive T-cell therapies in many hemopoietic malignancies. However, tumor-host cross-talk results in suppression of the endogenous cytotoxic T-cell response against the malignant plasma cell. Whereas patients with myeloma do not clinically exhibit a T-cell immunodeficiency state, with, for example, increased mycobacterial infections, a number of abnormalities of T-cell function are evident. The major abnormalities of T cells include clonal expansions and associated immunosenescence, alterations of regulatory T cells/T helper 17 cells (Treg/Th17 ratio) and acquired membrane abnormalities, due to trogocytosis, which result in acquired Treg cells. Dendritic cell dysfunction associated with impaired antigen processing and presentation caused by abnormalities of the bone marrow microenvironment plays an additional role. In this perspective, we examine the T-cell abnormalities in myeloma and postulate that, whereas cytotoxic T cells interacting with the tumor are dysfunctional, residual T cells still function adequately against external pathogens and thus protect patients from the infections normally associated with a generalized T-cell immunodeficiency state. The so-called 3 E's of host-tumor interaction (elimination, equilibrium, and escape) are clearly reflected in the immune landscape and clinical behavior of myeloma.
Collapse
Affiliation(s)
- Douglas Joshua
- Institute of Haematology, NSW Pathology, Royal Prince Alfred Hospital, University of Sydney, Sydney, NSW, Australia.
| | - Hayley Suen
- Institute of Haematology, NSW Pathology, Royal Prince Alfred Hospital, University of Sydney, Sydney, NSW, Australia
| | - Ross Brown
- Institute of Haematology, NSW Pathology, Royal Prince Alfred Hospital, University of Sydney, Sydney, NSW, Australia
| | - Christian Bryant
- Institute of Haematology, NSW Pathology, Royal Prince Alfred Hospital, University of Sydney, Sydney, NSW, Australia; Dendritic Cell Research, ANZAC Research Institute, University of Sydney, Concord, NSW, Australia
| | - P Joy Ho
- Institute of Haematology, NSW Pathology, Royal Prince Alfred Hospital, University of Sydney, Sydney, NSW, Australia
| | - Derek Hart
- Dendritic Cell Research, ANZAC Research Institute, University of Sydney, Concord, NSW, Australia
| | - John Gibson
- Institute of Haematology, NSW Pathology, Royal Prince Alfred Hospital, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
14
|
Davies R, Vogelsang P, Jonsson R, Appel S. An optimized multiplex flow cytometry protocol for the analysis of intracellular signaling in peripheral blood mononuclear cells. J Immunol Methods 2016; 436:58-63. [PMID: 27369043 DOI: 10.1016/j.jim.2016.06.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 06/16/2016] [Accepted: 06/27/2016] [Indexed: 10/21/2022]
Abstract
Phosphoflow cytometry is increasingly being used as a tool for the discovery of biomarkers used in the treatment and monitoring of disease and therapy. The ability to measure numerous phospho-protein targets simultaneously at a single cell level accurately and rapidly provides significant advantages over other methods. We here discuss important considerations required to successfully implement these methods. Three different blood collection tubes (lithium-heparin tubes, CPT with sodium citrate and CPT with sodium heparin) were evaluated, with PBMC isolated through lithium-heparin tubes/lymphoprep displaying reduced basal and increased stimulation induced phosphorylation compared to the other two methods. Further, we provide a protocol outlining an 8 color assay developed for the study of intracellular signaling in peripheral blood mononuclear cells. The assay allows for the quantitative measurement of the phospho-proteins ERK1/2, NF-κB p65, Stat1 (Y701), Stat1 (S727), Stat3 (Y705), Stat3 (S727), Stat4 (Y693), p38 and Stat5 (Y694), as well as the identification of T cells, B cells, natural killer cells and monocytes. The assay additionally incorporates fluorescent cell barcoding, reducing assay costs and increasing throughput while increasing data robustness. Inter-assay precision was assessed over a month long period for all experimental variables (phospho-protein measured, cell type and stimulant). Coefficient of variations (CVs) calculated from process triplicates of normalized median fluorescence intensity (MFI) of the phospho-proteins displayed median CVs under 10% when grouped according to cell type, stimulation agent and phospho-protein measured, while the CV for each triplicate did not exceed 20%.
Collapse
Affiliation(s)
- Richard Davies
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Jonas Lies vei 87, 5021 Bergen, Norway.
| | - Petra Vogelsang
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Jonas Lies vei 87, 5021 Bergen, Norway
| | - Roland Jonsson
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Jonas Lies vei 87, 5021 Bergen, Norway; Department of Rheumatology, Haukeland University Hospital, 5021 Bergen, Norway
| | - Silke Appel
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Jonas Lies vei 87, 5021 Bergen, Norway
| |
Collapse
|
15
|
Lee D, Wang YH, Kalaitzidis D, Ramachandran J, Eda H, Sykes DB, Raje N, Scadden DT. Endogenous transmembrane protein UT2 inhibits pSTAT3 and suppresses hematological malignancy. J Clin Invest 2016; 126:1300-10. [PMID: 26927669 PMCID: PMC4811118 DOI: 10.1172/jci84620] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 01/14/2016] [Indexed: 12/27/2022] Open
Abstract
Regulation of STAT3 activation is critical for normal and malignant hematopoietic cell proliferation. Here, we have reported that the endogenous transmembrane protein upstream-of-mTORC2 (UT2) negatively regulates activation of STAT3. Specifically, we determined that UT2 interacts directly with GP130 and inhibits phosphorylation of STAT3 on tyrosine 705 (STAT3Y705). This reduces cytokine signaling including IL6 that is implicated in multiple myeloma and other hematopoietic malignancies. Modulation of UT2 resulted in inverse effects on animal survival in myeloma models. Samples from multiple myeloma patients also revealed a decreased copy number of UT2 and decreased expression of UT2 in genomic and transcriptomic analyses, respectively. Together, these studies identify a transmembrane protein that functions to negatively regulate cytokine signaling through GP130 and pSTAT3Y705 and is molecularly and mechanistically distinct from the suppressors of cytokine signaling (SOCS) family of genes. Moreover, this work provides evidence that perturbations of this activation-dampening molecule participate in hematologic malignancies and may serve as a key determinant of multiple myeloma pathophysiology. UT2 is a negative regulator shared across STAT3 and mTORC2 signaling cascades, functioning as a tumor suppressor in hematologic malignancies driven by those pathways.
Collapse
Affiliation(s)
- Dongjun Lee
- Center for Regenerative Medicine and
- Cancer Center, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Stem Cell and Regenerative Biology and
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Ying-Hua Wang
- Center for Regenerative Medicine and
- Cancer Center, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Stem Cell and Regenerative Biology and
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Demetrios Kalaitzidis
- Center for Regenerative Medicine and
- Cancer Center, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Stem Cell and Regenerative Biology and
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| | | | - Homare Eda
- Cancer Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - David B. Sykes
- Center for Regenerative Medicine and
- Cancer Center, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Stem Cell and Regenerative Biology and
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Noopur Raje
- Cancer Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - David T. Scadden
- Center for Regenerative Medicine and
- Cancer Center, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Stem Cell and Regenerative Biology and
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
16
|
Fairfield H, Falank C, Avery L, Reagan MR. Multiple myeloma in the marrow: pathogenesis and treatments. Ann N Y Acad Sci 2016; 1364:32-51. [PMID: 27002787 PMCID: PMC4806534 DOI: 10.1111/nyas.13038] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Multiple myeloma (MM) is a B cell malignancy resulting in osteolytic lesions and fractures. In the disease state, bone healing is limited owing to increased osteoclastic and decreased osteoblastic activity, as well as an MM-induced forward-feedback cycle where bone-embedded growth factors further enhance tumor progression as bone is resorbed. Recent work on somatic mutation in MM tumors has provided insight into cytogenetic changes associated with this disease; the initiating driver mutations causing MM are diverse because of the complexity and multitude of mutations inherent in MM tumor cells. This manuscript provides an overview of MM pathogenesis by summarizing cytogenic changes related to oncogenes and tumor suppressors associated with MM, reviewing risk factors, and describing the disease progression from monoclonal gammopathy of undetermined significance to overt MM. It also highlights the importance of the bone marrow microenvironment (BMM) in the establishment and progression of MM, as well as associated MM-induced bone disease, and the relationship of the bone marrow to current and future therapeutics. This review highlights why understanding the basic biology of the healthy and diseased BMM is crucial in the quest for better treatments and work toward a cure for genetically diverse diseases such as MM.
Collapse
Affiliation(s)
| | | | | | - Michaela R Reagan
- Maine Medical Center Research Institute, Scarborough, Maine
- University of Maine, Orono, Maine
| |
Collapse
|
17
|
George AA, Paz H, Fei F, Kirzner J, Kim YM, Heisterkamp N, Abdel-Azim H. Phosphoflow-Based Evaluation of Mek Inhibitors as Small-Molecule Therapeutics for B-Cell Precursor Acute Lymphoblastic Leukemia. PLoS One 2015; 10:e0137917. [PMID: 26360058 PMCID: PMC4567297 DOI: 10.1371/journal.pone.0137917] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 08/23/2015] [Indexed: 11/18/2022] Open
Abstract
Upstream mutations that lead to constitutive activation of Erk in B-cell precursor acute lymphoblastic leukemia (BCP-ALL) are relatively common. In the era of personalized medicine, flow cytometry could be used as a rapid method for selection of optimal therapies, which may include drugs that target the Erk pathway. Here, we evaluated the utility of phospho-flow, compared to Western blotting, to monitor Erk pathway activation and its inhibition by targeted Mek kinase inhibitors in human BCP ALL. Because the Erk pathway is not only activated endogenously, by mutations, but also by normal extracellular stimulation through stromal contact and serum growth factors, we compared Erk activation ex vivo in ALL cells in the presence and absence of stroma and serum. Phospho-flow was able to readily detect changes in the pool of pErk1/2 that had been generated by normal microenvironmental stimuli in patient-derived BCP-ALL cells passaged in NSG mice, in viably frozen primary patient samples, and in fresh patient samples. Treatment with the Mek1/2 inhibitor selumetinib resulted in a rapid, complete and persistent reduction of microenvironment-generated pErk1/2. Imaging flow cytometry confirmed reduction of nuclear pErk1/2 upon selumetinib treatment. An ALL relapsing with an activating KRasG12V mutation contained higher endogenous as well as serum/stromal-stimulated levels of pErk1/2 than the matched diagnosis sample which lacked the mutation, but selumetinib treatment reduced pErk1/2 to the same level in both samples. Selumetinib and trametinib as Mek inhibitors were mainly cytostatic, but combined treatment with the PI3K∂ inhibitor CAL101 increased cytotoxicity. Thus phospho-flow cytometry could be used as a platform for rapid, individualized in vitro drug sensitivity assessment for leukemia patients at the time of diagnosis.
Collapse
Affiliation(s)
- Aswathi A. George
- Division of Hematology/Oncology and Bone Marrow Transplantation, The Saban Research Institute of Children’s Hospital Los Angeles, Los Angeles, CA, United States of America
| | - Helicia Paz
- Division of Hematology/Oncology and Bone Marrow Transplantation, The Saban Research Institute of Children’s Hospital Los Angeles, Los Angeles, CA, United States of America
- Section of Molecular Carcinogenesis, Department of Pediatrics, The Saban Research Institute of Children’s Hospital Los Angeles, Los Angeles, CA, United States of America
| | - Fei Fei
- Division of Hematology/Oncology and Bone Marrow Transplantation, The Saban Research Institute of Children’s Hospital Los Angeles, Los Angeles, CA, United States of America
- Section of Molecular Carcinogenesis, Department of Pediatrics, The Saban Research Institute of Children’s Hospital Los Angeles, Los Angeles, CA, United States of America
| | - Jonathan Kirzner
- Division of Hematology/Oncology and Bone Marrow Transplantation, The Saban Research Institute of Children’s Hospital Los Angeles, Los Angeles, CA, United States of America
| | - Yong-mi Kim
- Division of Hematology/Oncology and Bone Marrow Transplantation, The Saban Research Institute of Children’s Hospital Los Angeles, Los Angeles, CA, United States of America
| | - Nora Heisterkamp
- Division of Hematology/Oncology and Bone Marrow Transplantation, The Saban Research Institute of Children’s Hospital Los Angeles, Los Angeles, CA, United States of America
- Section of Molecular Carcinogenesis, Department of Pediatrics, The Saban Research Institute of Children’s Hospital Los Angeles, Los Angeles, CA, United States of America
- Leukemia and Lymphoma Program, Norris Comprehensive Cancer Center and Department of Pathology, University of Southern California, Los Angeles, CA, United States of America
- * E-mail: (NH); (HAA)
| | - Hisham Abdel-Azim
- Division of Hematology/Oncology and Bone Marrow Transplantation, The Saban Research Institute of Children’s Hospital Los Angeles, Los Angeles, CA, United States of America
- * E-mail: (NH); (HAA)
| |
Collapse
|