1
|
Ceolin V, Spadea M, Apolito V, Saglio F, Fagioli F. Emerging CART Therapies for Pediatric Acute Myeloid Leukemia. J Pediatr Hematol Oncol 2024; 46:393-403. [PMID: 39469946 DOI: 10.1097/mph.0000000000002956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 09/16/2024] [Indexed: 10/30/2024]
Abstract
The prognosis of children with acute myeloid leukemia (AML) has improved incrementally over the last decades. However, at relapse, overall survival (OS) ∼40% to 50% and is even lower for patients with chemorefractory disease. Effective and less-toxic therapies are urgently needed for these children. In the last years, immune-directed therapies such as chimeric antigen receptor (CAR)-T cells were introduced, which showed outstanding clinical activity against B-cell malignancies. CART therapies are being developed for AML on the basis of the results obtained for other hematologic malignancies. The biggest challenge of CART therapy for AML is to identify a specific target antigen, since antigens expressed in AML cells are usually shared with healthy hematopoietic stem cells. An overview of prospects of CART in pediatric AML, focused on the common antigens targeted by CART in AML that have been tested or are currently under investigation, is provided in this manuscript.
Collapse
Affiliation(s)
- Valeria Ceolin
- Department of Pediatric Oncology/Hematology, Regina Margherita Children's Hospital
| | - Manuela Spadea
- Department of Pediatric Oncology/Hematology, Regina Margherita Children's Hospital
- Department of Pediatric Oncology/Hematology, University of Turin, Turin, Italy
| | - Vincenzo Apolito
- Department of Pediatric Oncology/Hematology, Regina Margherita Children's Hospital
| | - Francesco Saglio
- Department of Pediatric Oncology/Hematology, Regina Margherita Children's Hospital
| | - Franca Fagioli
- Department of Pediatric Oncology/Hematology, Regina Margherita Children's Hospital
- Department of Pediatric Oncology/Hematology, University of Turin, Turin, Italy
| |
Collapse
|
2
|
Kapor S, Radojković M, Santibanez JF. Myeloid-derived suppressor cells: Implication in myeloid malignancies and immunotherapy. Acta Histochem 2024; 126:152183. [PMID: 39029317 DOI: 10.1016/j.acthis.2024.152183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/21/2024]
Abstract
Myeloid malignancies stem from a modified hematopoietic stem cell and predominantly include acute myeloid leukemia, myelodysplastic neoplasms, myeloproliferative malignancies, and chronic myelomonocytic leukemia. Myeloid-derived suppressor cells (MDSCs) exhibit immunoregulatory properties by governing the innate and adaptive immune systems, creating a permissive and supportive environment for neoplasm growth. This review examines the key characteristics of MDSCs in myeloid malignancies, highlighting that an increased MDSC count corresponds to heightened immunosuppressive capabilities, fostering an immune-tolerant neoplasm microenvironment. Also, this review analyzes and describes the potential of combined cancer therapies, focusing on targeting MDSC generation, expansion, and their inherent immunosuppressive activities to enhance the efficacy of current cancer immunotherapies. A comprehensive understanding of the implications of myeloid malignancies may enhance the exploration of immunotherapeutic strategies for their potential application.
Collapse
Affiliation(s)
- Suncica Kapor
- Department of Hematology, Clinical, and Hospital Center "Dr. Dragiša Mišović-Dedinje,", Heroja Milana Tepića 1, Belgrade 11020, Serbia
| | - Milica Radojković
- Department of Hematology, Clinical, and Hospital Center "Dr. Dragiša Mišović-Dedinje,", Heroja Milana Tepića 1, Belgrade 11020, Serbia; Faculty of Medicine, University of Belgrade, Dr. Subotića Starijeg 8, Belgrade 11000, Serbia
| | - Juan F Santibanez
- Molecular Oncology group, Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, Dr. Subotica 4, POB 102, Belgrade 11129, Serbia; Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O Higgins, General Gana 1780, Santiago 8370854, Chile.
| |
Collapse
|
3
|
Pe KCS, Jewmoung S, Rad SAH, Chantarat N, Chanswangphuwana C, Tashiro H, Suppipat K, Tawinwung S. Optimization of anti-TIM3 chimeric antigen receptor with CD8α spacer and TNFR-based costimulation for enhanced efficacy in AML therapy. Biomed Pharmacother 2024; 179:117388. [PMID: 39243430 DOI: 10.1016/j.biopha.2024.117388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/26/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024] Open
Abstract
CAR T cell therapy for AML remains limited due to the lack of a proper target without on-target off-tumor toxicity. TIM3 is a promising target due to its high expression on AML cells and absence in most normal hematopoietic cells. Previous reports have shown that each CAR component impacts CAR functionality. Here, we optimized TIM-3 targeting CAR T cells for AML therapy. We generated CARs targeting TIM3 with two different non-signaling domains: an IgG2-CH3 spacer with CD28 transmembrane domain (CH3/CD28) and a CD8α spacer with CD8α transmembrane domain (CD8/CD8), and evaluated their characteristics and function. Incorporating the non-signaling CH3/CD28 domain resulted in unstable CAR expression in anti-TIM3 CAR T cells, leading to lower surface CAR expression over time and reduced cytotoxic function compared to anti-TIM3 CARs with the CD8/CD8 domain. Both types of anti-TIM3 CAR T cells transiently exhibited fratricide, which subsided overtime, and both CAR T cells achieved substantial T cell expansion. To further optimize the design, we explored the effects of different costimulatory domains. Compared with CD28 costimulation, 4-1BB and CD27 combined with a CD8/CD8 non-signaling domain showed higher cytokine secretion, superior antitumor activity, and enhanced T-cell persistence after repeated antigen exposure. These findings emphasize the impact of the optimal design of CAR constructs that provide efficient function. In the context of anti-TIM3 CAR T cells, using a CD8α spacer and transmembrane domain with TNFR-based costimulation is a promising CAR design to improve anti-TIM3 CAR T cell function for AML therapy.
Collapse
MESH Headings
- Humans
- Receptors, Chimeric Antigen/immunology
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/immunology
- Animals
- Hepatitis A Virus Cellular Receptor 2/metabolism
- Immunotherapy, Adoptive/methods
- CD8 Antigens/metabolism
- CD8 Antigens/immunology
- Cell Line, Tumor
- Mice
- CD28 Antigens/immunology
- CD28 Antigens/metabolism
- Receptors, Tumor Necrosis Factor/immunology
- Receptors, Tumor Necrosis Factor/metabolism
- Mice, Inbred NOD
Collapse
Affiliation(s)
- Kristine Cate S Pe
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Sirirut Jewmoung
- Cellular Immunotherapy Research Unit, Chulalongkorn University, Bangkok, Thailand
| | | | - Natthida Chantarat
- Cellular Immunotherapy Research Unit, Chulalongkorn University, Bangkok, Thailand
| | - Chantiya Chanswangphuwana
- Division of Hematology, Department of Medicine, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Haruko Tashiro
- Department of Hematology/Oncology, Teikyo University School of Medicine, Tokyo, Japan
| | - Koramit Suppipat
- Cellular Immunotherapy Research Unit, Chulalongkorn University, Bangkok, Thailand; Department of Research Affair, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Thailand Hub of Talents in Cancer Immunotherapy (TTCI), Bangkok, Thailand
| | - Supannikar Tawinwung
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand; Cellular Immunotherapy Research Unit, Chulalongkorn University, Bangkok, Thailand; Thailand Hub of Talents in Cancer Immunotherapy (TTCI), Bangkok, Thailand.
| |
Collapse
|
4
|
Saw PE, Liu Q, Wong PP, Song E. Cancer stem cell mimicry for immune evasion and therapeutic resistance. Cell Stem Cell 2024; 31:1101-1112. [PMID: 38925125 DOI: 10.1016/j.stem.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 03/11/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024]
Abstract
Cancer stem cells (CSCs) are heterogeneous, possess self-renewal attributes, and orchestrate important crosstalk in tumors. We propose that the CSC state represents "mimicry" by cancer cells that leads to phenotypic plasticity. CSC mimicry is suggested as CSCs can impersonate immune cells, vasculo-endothelia, or lymphangiogenic cells to support cancer growth. CSCs facilitate both paracrine and juxtracrine signaling to prime tumor-associated immune and stromal cells to adopt pro-tumoral phenotypes, driving therapeutic resistance. Here, we outline the ingenuity of CSCs' mimicry in their quest to evade immune detection, which leads to immunotherapeutic resistance, and highlight CSC-mimicry-targeted therapeutic strategies for robust immunotherapy.
Collapse
Affiliation(s)
- Phei Er Saw
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Nanhai Clinical Translational Center, Sun Yat-sen Memorial Hospital, Foshan, China
| | - Qiang Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ping-Pui Wong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Nanhai Clinical Translational Center, Sun Yat-sen Memorial Hospital, Foshan, China
| | - Erwei Song
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Nanhai Clinical Translational Center, Sun Yat-sen Memorial Hospital, Foshan, China; Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Zenith Institute of Medical Sciences, Guangzhou 510120, China.
| |
Collapse
|
5
|
Qin H, Peng M, Cheng J, Wang Z, Cui Y, Huang Y, Gui Y, Sun Y, Xiang W, Huang X, Huang T, Wang L, Chen J, Hou Y. A novel LGALS1-depended and immune-associated fatty acid metabolism risk model in acute myeloid leukemia stem cells. Cell Death Dis 2024; 15:482. [PMID: 38965225 PMCID: PMC11224233 DOI: 10.1038/s41419-024-06865-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/18/2024] [Accepted: 06/25/2024] [Indexed: 07/06/2024]
Abstract
Leukemia stem cells (LSCs) are recognized as the root cause of leukemia initiation, relapse, and drug resistance. Lipid species are highly abundant and essential component of human cells, which often changed in tumor microenvironment. LSCs remodel lipid metabolism to sustain the stemness. However, there is no useful lipid related biomarker has been approved for clinical practice in AML prediction and treatment. Here, we constructed and verified fatty acid metabolism-related risk score (LFMRS) model based on TCGA database via a series of bioinformatics analysis, univariate COX regression analysis, and multivariate COX regression analysis, and found that the LFMRS model could be an independent risk factor and predict the survival time of AML patients combined with age. Moreover, we revealed that Galectin-1 (LGALS1, the key gene of LFMRS) was highly expressed in LSCs and associated with poor prognosis of AML patients, and LGALS1 repression inhibited AML cell and LSC proliferation, enhanced cell apoptosis, and decreased lipid accumulation in vitro. LGALS1 repression curbed AML progression, lipid accumulation, and CD8+ T and NK cell counts in vivo. Our study sheds light on the roles of LFMRS (especially LGALS1) model in AML, and provides information that may help clinicians improve patient prognosis and develop personalized treatment regimens for AML.
Collapse
Affiliation(s)
- Huanhuan Qin
- The First Clinical Institute, Zunyi Medical University, Zunyi, 563006, China
| | - Meixi Peng
- Department of Radiological Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Jingsong Cheng
- The Second Clinical College, Chongqing Medical University, Chongqing, 400016, China
| | - Zhenyu Wang
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, 563006, China
| | - Yinghui Cui
- Department of Hematology/Oncology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Yongxiu Huang
- Department of Radiological Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yaoqi Gui
- Department of Radiological Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Yanni Sun
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Medical School of Guizhou University, Guiyang, 550025, China
| | - Wenqiong Xiang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xiaomei Huang
- Obstetrics and Gynecology Department, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Ting Huang
- Department of Gynecology and Obstetrics, Chongqing Health Center for Women and Children, Women and Children's Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Li Wang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Jieping Chen
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| | - Yu Hou
- Department of Radiological Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China.
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
6
|
Teppert K, Yonezawa Ogusuku IE, Brandes C, Herbel V, Winter N, Werchau N, Khorkova S, Wöhle C, Jelveh N, Bisdorf K, Engels B, Schaser T, Anders K, Künkele A, Lock D. CAR'TCR-T cells co-expressing CD33-CAR and dNPM1-TCR as superior dual-targeting approach for AML treatment. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200797. [PMID: 38601972 PMCID: PMC11004219 DOI: 10.1016/j.omton.2024.200797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 03/20/2024] [Indexed: 04/12/2024]
Abstract
Acute myeloid leukemia (AML), a fast-progressing hematological malignancy affecting myeloid cells, is typically treated with chemotherapy or hematopoietic stem cell transplantation. However, approximately half of the patients face relapses and 5-year survival rates are poor. With the goal to facilitate dual-specificity, boosting anti-tumor activity, and minimizing the risk for antigen escape, this study focused on combining chimeric antigen receptor (CAR) and T cell receptor (TCR) technologies. CAR'TCR-T cells, co-expressing a CD33-CAR and a transgenic dNPM1-TCR, revealed increased and prolonged anti-tumor activity in vitro, particularly in case of low target antigen expression. The distinct transcriptomic profile suggested enhanced formation of immunological synapses, activation, and signaling. Complete elimination of AML xenografts in vivo was only achieved with a cell product containing CAR'TCR-T, CAR-T, and TCR-T cells, representing the outcome of co-transduction with two lentiviral vectors encoding either CAR or TCR. A mixture of CAR-T and TCR-T cells, without CAR'TCR-T cells, did not prevent progressive tumor outgrowth and was comparable to treatment with CAR-T and TCR-T cells individually. Overall, our data underscore the efficacy of co-expressing CAR and transgenic TCR in one T cell, and might open a novel therapeutic avenue not only for AML but also other malignancies.
Collapse
Affiliation(s)
- Karin Teppert
- Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany
| | | | | | - Vera Herbel
- Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany
| | - Nora Winter
- Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany
| | - Niels Werchau
- Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany
| | | | - Christian Wöhle
- Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany
| | - Nojan Jelveh
- Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany
| | - Kevin Bisdorf
- Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany
| | - Boris Engels
- Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany
| | - Thomas Schaser
- Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany
| | - Kathleen Anders
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10178 Berlin, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Annette Künkele
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10178 Berlin, Germany
- German Cancer Consortium (DKTK), 10117 Berlin, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Dominik Lock
- Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany
| |
Collapse
|
7
|
Damiani D, Tiribelli M. CAR-T Cells in Acute Myeloid Leukemia: Where Do We Stand? Biomedicines 2024; 12:1194. [PMID: 38927401 PMCID: PMC11200794 DOI: 10.3390/biomedicines12061194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 06/28/2024] Open
Abstract
Despite recent advances, the prognosis of acute myeloid leukemia (AML) remains unsatisfactory due to disease recurrence and the development of resistance to both conventional and novel therapies. Engineered T cells expressing chimeric antigen receptors (CARs) on their cellular surface represent one of the most promising anticancer agents. CAR-T cells are increasingly used in patients with B cell malignancies, with remarkable clinical results despite some immune-related toxicities. However, at present, the role of CAR-T cells in myeloid neoplasms, including AML, is extremely limited, as specific molecular targets for immune cells are generally lacking on AML blasts. Besides the paucity of dispensable targets, as myeloid antigens are often co-expressed on normal hematopoietic stem and progenitor cells with potentially intolerable myeloablation, the AML microenvironment is hostile to T cell proliferation due to inhibitory soluble factors. In addition, the rapidly progressive nature of the disease further complicates the use of CAR-T in AML. This review discusses the current state of CAR-T cell therapy in AML, including the still scanty clinical evidence and the potential approaches to overcome its limitations, including genetic modifications and combinatorial strategies, to make CAR-T cell therapy an effective option for AML patients.
Collapse
Affiliation(s)
- Daniela Damiani
- Division of Hematology and Stem Cell Transplantation, University Hospital, 33100 Udine, Italy;
- Department of Medicine (DMED), University of Udine, 33100 Udine, Italy
| | - Mario Tiribelli
- Division of Hematology and Stem Cell Transplantation, University Hospital, 33100 Udine, Italy;
- Department of Medicine (DMED), University of Udine, 33100 Udine, Italy
| |
Collapse
|
8
|
Huang J, Yang Q, Wang W, Huang J. CAR products from novel sources: a new avenue for the breakthrough in cancer immunotherapy. Front Immunol 2024; 15:1378739. [PMID: 38665921 PMCID: PMC11044028 DOI: 10.3389/fimmu.2024.1378739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy has transformed cancer immunotherapy. However, significant challenges limit its application beyond B cell-driven malignancies, including limited clinical efficacy, high toxicity, and complex autologous cell product manufacturing. Despite efforts to improve CAR T cell therapy outcomes, there is a growing interest in utilizing alternative immune cells to develop CAR cells. These immune cells offer several advantages, such as major histocompatibility complex (MHC)-independent function, tumor microenvironment (TME) modulation, and increased tissue infiltration capabilities. Currently, CAR products from various T cell subtypes, innate immune cells, hematopoietic progenitor cells, and even exosomes are being explored. These CAR products often show enhanced antitumor efficacy, diminished toxicity, and superior tumor penetration. With these benefits in mind, numerous clinical trials are underway to access the potential of these innovative CAR cells. This review aims to thoroughly examine the advantages, challenges, and existing insights on these new CAR products in cancer treatment.
Collapse
Affiliation(s)
| | | | - Wen Wang
- Department of Hematology, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Juan Huang
- Department of Hematology, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
9
|
Jing L, Zhang B, Sun J, Feng J, Fu D. Prognostic insights and immune microenvironment delineation in acute myeloid leukemia by ferroptosis-derived signature. Heliyon 2024; 10:e28237. [PMID: 38532996 PMCID: PMC10963645 DOI: 10.1016/j.heliyon.2024.e28237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 03/28/2024] Open
Abstract
Acute myeloid leukemia (AML) represents as a prevalent and formidable hematological malignancy, characterized by notably low 5-year survival rates. Ferroptosis has been found to be correlated with cancer initiation, therapeutic response, and clinical outcome. Nevertheless, the involvement of Ferroptosis-related genes (FRGs) in AML remains ambiguous. Five independent AML cohorts totaling 1,470 (GSE37642, GSE12417, GSE10358, Beat-AML, and TCGA-AML) patients with clinical information were used to systematically investigated the influence of these FRGs expression on outcome and tumor microenvironment. The integration of these datasets led to the subdivision into training and validation sets. Nineteen FRGs were identified as correlated with the overall survival (OS) of AML patients, primarily enriched in ferroptosis, fatty acid metabolism, and leukemia-related signaling pathways. The prognostic signature, consisting of 11 FRGs, was formulated using LASSO-Cox stepwise regression analysis. Patients with high-risk scores exhibited reduced survival compared to those in the low-risk group. The receiver operating characteristic (ROC) analysis underscored the signature's robust predictive accuracy. The high predictive efficacy was confirmed by both internal and external validation datasets. Leukemia and signaling related to immune regulation were mainly enriched pathways of the differentially expressed genes by comparing high- and low-risk groups. The immune composition deconvolution might indicate an immunosuppressive niche in the high-risk patients. The pRRophetic algorithm exploration unveiled chemical drugs with potentially sensitivity among patients in both groups. Collectively, our study developed a ferroptosis-derived prognostic signature that provides the OS prediction and identifies the immune microenvironment for AML patients on large-scale AML cohorts.
Collapse
Affiliation(s)
- Lijun Jing
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Biyu Zhang
- School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Jinghui Sun
- College of Medicine, Medical University of South Carolina, Charleston, SC, 29425, United States
| | - Jueping Feng
- Department of Oncology, Wuhan Fourth Hospital, Wuhan, 430033, China
| | - Denggang Fu
- College of Medicine, Medical University of South Carolina, Charleston, SC, 29425, United States
| |
Collapse
|
10
|
Yang J, Chen M, Ye J, Ma H. Targeting PRAME for acute myeloid leukemia therapy. Front Immunol 2024; 15:1378277. [PMID: 38596687 PMCID: PMC11002138 DOI: 10.3389/fimmu.2024.1378277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/12/2024] [Indexed: 04/11/2024] Open
Abstract
Despite significant progress in targeted therapy for acute myeloid leukemia (AML), clinical outcomes are disappointing for elderly patients, patients with less fit disease characteristics, and patients with adverse disease risk characteristics. Over the past 10 years, adaptive T-cell immunotherapy has been recognized as a strategy for treating various malignant tumors. However, it has faced significant challenges in AML, primarily because myeloid blasts do not contain unique surface antigens. The preferentially expressed antigen in melanoma (PRAME), a cancer-testis antigen, is abnormally expressed in AML and does not exist in normal hematopoietic cells. Accumulating evidence has demonstrated that PRAME is a useful target for treating AML. This paper reviews the structure and function of PRAME, its effects on normal cells and AML blasts, its implications in prognosis and follow-up, and its use in antigen-specific immunotherapy for AML.
Collapse
Affiliation(s)
- Jinjun Yang
- Department of Hematology and Institute of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Mengran Chen
- Department of Hematology and Institute of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Ye
- Department of Dermatology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Hongbing Ma
- Department of Hematology and Institute of Hematology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Vukotić M, Kapor S, Simon F, Cokic V, Santibanez JF. Mesenchymal stromal cells in myeloid malignancies: Immunotherapeutic opportunities. Heliyon 2024; 10:e25081. [PMID: 38314300 PMCID: PMC10837636 DOI: 10.1016/j.heliyon.2024.e25081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/06/2024] Open
Abstract
Myeloid malignancies are clonal disorders of the progenitor cells or hematopoietic stem cells, including acute myeloid leukemia, myelodysplastic syndromes, myeloproliferative malignancies, and chronic myelomonocytic leukemia. Myeloid neoplastic cells affect the proliferation and differentiation of other hematopoietic lineages in the bone marrow and peripheral blood, leading to severe and life-threatening complications. Mesenchymal stromal cells (MSCs) residing in the bone marrow exert immunosuppressive functions by suppressing innate and adaptive immune systems, thus creating a supportive and tolerant microenvironment for myeloid malignancy progression. This review summarizes the significant features of MSCs in myeloid malignancies, including their role in regulating cell growth, cell death, and antineoplastic resistance, in addition to their immunosuppressive contributions. Understanding the implications of MSCs in myeloid malignancies could pave the path for potential use in immunotherapy.
Collapse
Affiliation(s)
- Milica Vukotić
- Molecular Oncology Group, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Suncica Kapor
- Department of Hematology, Clinical Hospital Center “Dr. Dragisa Misovic-Dedinje,” University of Belgrade, Serbia
| | - Felipe Simon
- Laboratory of Integrative Physiopathology, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Millennium Nucleus of Ion Channel-Associated Diseases, Universidad de Chile, Santiago, Chile
| | - Vladan Cokic
- Molecular Oncology Group, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Juan F. Santibanez
- Molecular Oncology Group, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O'Higgins, Santiago, Chile
| |
Collapse
|
12
|
Fetsch V, Zeiser R. Chimeric antigen receptor T cells for acute myeloid leukemia. Eur J Haematol 2024; 112:28-35. [PMID: 37455578 DOI: 10.1111/ejh.14047] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
The use of T cells expressing chimeric antigen receptors (CARs) that can target and eliminate cancer cells has revolutionized the treatment of B-cell malignancies. In contrast, CAR T cells have not yet become a routine treatment for myeloid malignancies such as acute myeloid leukemia (AML) or myeloproliferative neoplasms (MPNs). For these disease entities, allogeneic hematopoietic cell transplantation (allo-HCT) relying on polyclonal allo-reactive T cells is still the major cellular immunotherapy used in clinical routine. Here, we discuss major hurdles of CAR T-cell therapy for myeloid malignancies and novel approaches to enhance their efficacy and reduce toxicity. Heterogeneity of the malignant myeloid clone, CAR T-cell induced toxicity against normal hematopoietic cells, lack of long-term CAR T-cell persistence, and loss or downregulation of targetable antigens on myeloid cells are obstacles for successful CAR T cells therapy against AML and MPNs. Strategies to overcome these hurdles include pharmacological interventions, for example, demethylating therapy to increase target antigen expression, multi-targeted CAR T cells, and gene-therapy based approaches that delete the CAR target antigen in the hematopoietic cells of the recipient to protect them from CAR-induced myelotoxicity. Most of these approaches are still in preclinical testing but may reach the clinic in the coming years. In summary, we report on barriers to CAR T-cell use against AML and novel therapeutic strategies to overcome these challenges, with the goal of clinical treatment of myeloid malignancies with CAR T cells.
Collapse
Affiliation(s)
- Viktor Fetsch
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Robert Zeiser
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Centre for Biological Signalling Studies (BIOSS) and Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Comprehensive Cancer Centre Freiburg (CCCF), University of Freiburg, Freiburg, Germany
| |
Collapse
|
13
|
Boucher JC, Shrestha B, Vishwasrao P, Leick M, Cervantes EV, Ghafoor T, Reid K, Spitler K, Yu B, Betts BC, Guevara-Patino JA, Maus MV, Davila ML. Bispecific CD33/CD123 targeted chimeric antigen receptor T cells for the treatment of acute myeloid leukemia. Mol Ther Oncolytics 2023; 31:100751. [PMID: 38075241 PMCID: PMC10701585 DOI: 10.1016/j.omto.2023.100751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/16/2023] [Indexed: 02/12/2024] Open
Abstract
CD33 and CD123 are expressed on the surface of human acute myeloid leukemia blasts and other noncancerous tissues such as hematopoietic stem cells. On-target off-tumor toxicities may limit chimeric antigen receptor T cell therapies that target both CD33 and CD123. To overcome this limitation, we developed bispecific human CD33/CD123 chimeric antigen receptor (CAR) T cells with an "AND" logic gate. We produced novel CD33 and CD123 scFvs from monoclonal antibodies that bound CD33 and CD123 and activated T cells. Screening of CD33 and CD123 CAR T cells for cytotoxicity, cytokine production, and proliferation was performed, and we selected scFvs for CD33/CD123 bispecific CARs. The bispecific CARs split 4-1BB co-stimulation on one scFv and CD3ζ on the other. In vitro testing of cytokine secretion and cytotoxicity resulted in selecting bispecific CAR 1 construct for in vivo analysis. The CD33/CD123 bispecific CAR T cells were able to control acute myeloid leukemia (AML) in a xenograft AML mouse model similar to monospecific CD33 and CD123 CAR T cells while showing no on-target off-tumor effects. Based on our findings, human CD33/CD123 bispecific CAR T cells are a promising cell-based approach to prevent AML and support clinical investigation.
Collapse
Affiliation(s)
- Justin C. Boucher
- Department of Blood & Marrow Transplant and Cellular Immunotherapy, Division of Clinical Science, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Bishwas Shrestha
- Department of Blood & Marrow Transplant and Cellular Immunotherapy, Division of Clinical Science, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Paresh Vishwasrao
- Department of Radiation Oncology, City of Hope Medical Center, Duarte, CA 91010, USA
- Department of Hematology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Mark Leick
- Cellular Immunotherapy Program. Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA
| | | | | | - Kayla Reid
- Department of Blood & Marrow Transplant and Cellular Immunotherapy, Division of Clinical Science, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Kristen Spitler
- Department of Blood & Marrow Transplant and Cellular Immunotherapy, Division of Clinical Science, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Bin Yu
- Department of Blood & Marrow Transplant and Cellular Immunotherapy, Division of Clinical Science, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Brian C. Betts
- Division of Hematology, Oncology, and Transplant, Department of Medicine, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Marcela V. Maus
- Cellular Immunotherapy Program. Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA
| | - Marco L. Davila
- Department of Blood & Marrow Transplant and Cellular Immunotherapy, Division of Clinical Science, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
- Department of Medicine and Immunology, Roswell Park Cancer Center, Buffalo, NY 14263, USA
| |
Collapse
|
14
|
Wang WD, Guo YY, Yang ZL, Su GL, Sun ZJ. Sniping Cancer Stem Cells with Nanomaterials. ACS NANO 2023; 17:23262-23298. [PMID: 38010076 DOI: 10.1021/acsnano.3c07828] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Cancer stem cells (CSCs) drive tumor initiation, progression, and therapeutic resistance due to their self-renewal and differentiation capabilities. Despite encouraging progress in cancer treatment, conventional approaches often fail to eliminate CSCs, necessitating the development of precise targeted strategies. Recent advances in materials science and nanotechnology have enabled promising CSC-targeted approaches, harnessing the power of tailoring nanomaterials in diverse therapeutic applications. This review provides an update on the current landscape of nanobased precision targeting approaches against CSCs. We elucidate the nuanced application of organic, inorganic, and bioinspired nanomaterials across a spectrum of therapeutic paradigms, encompassing targeted therapy, immunotherapy, and multimodal synergistic therapies. By examining the accomplishments and challenges in this potential field, we aim to inform future efforts to advance nanomaterial-based therapies toward more effective "sniping" of CSCs and tumor clearance.
Collapse
Affiliation(s)
- Wen-Da Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China
| | - Yan-Yu Guo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China
| | - Zhong-Lu Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China
| | - Guang-Liang Su
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China
- Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| |
Collapse
|
15
|
Pérez-Amill L, Bataller À, Delgado J, Esteve J, Juan M, Klein-González N. Advancing CART therapy for acute myeloid leukemia: recent breakthroughs and strategies for future development. Front Immunol 2023; 14:1260470. [PMID: 38098489 PMCID: PMC10720337 DOI: 10.3389/fimmu.2023.1260470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/30/2023] [Indexed: 12/17/2023] Open
Abstract
Chimeric antigen receptor (CAR) T therapies are being developed for acute myeloid leukemia (AML) on the basis of the results obtained for other haematological malignancies and the need of new treatments for relapsed and refractory AML. The biggest challenge of CART therapy for AML is to identify a specific target antigen, since antigens expressed in AML cells are usually shared with healthy haematopoietic stem cells (HSC). The concomitant expression of the target antigen on both tumour and HSC may lead to on-target/off-tumour toxicity. In this review, we guide researchers to design, develop, and translate to the clinic CART therapies for the treatment of AML. Specifically, we describe what issues have to be considered to design these therapies; what in vitro and in vivo assays can be used to prove their efficacy and safety; and what expertise and facilities are needed to treat and manage patients at the hospital.
Collapse
Affiliation(s)
- Lorena Pérez-Amill
- Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Gyala Therapeutics S.L, Barcelona, Spain
- Department of Immunology, Centre de Diagnòstic Biomèdic (CDB), Hospital Clínic de Barcelona, Barcelona, Spain
| | - Àlex Bataller
- Department of Haematology, Institut Clínic de Malalties Hematològiques i Oncològiques (ICHMO), Hospital Clínic de Barcelona, Barcelona, Spain
- Josep Carreras Leukemia Research Institute, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Julio Delgado
- Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Department of Haematology, Institut Clínic de Malalties Hematològiques i Oncològiques (ICHMO), Hospital Clínic de Barcelona, Barcelona, Spain
- Universitat de Barcelona, Barcelona, Spain
| | - Jordi Esteve
- Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Department of Haematology, Institut Clínic de Malalties Hematològiques i Oncològiques (ICHMO), Hospital Clínic de Barcelona, Barcelona, Spain
- Universitat de Barcelona, Barcelona, Spain
| | - Manel Juan
- Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Department of Immunology, Centre de Diagnòstic Biomèdic (CDB), Hospital Clínic de Barcelona, Barcelona, Spain
- Universitat de Barcelona, Barcelona, Spain
- Hospital Sant Joan de Déu, Universidad de Barcelona, Barcelona, Spain
| | - Nela Klein-González
- Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Gyala Therapeutics S.L, Barcelona, Spain
- Department of Immunology, Centre de Diagnòstic Biomèdic (CDB), Hospital Clínic de Barcelona, Barcelona, Spain
| |
Collapse
|
16
|
Haubner S, Mansilla-Soto J, Nataraj S, Kogel F, Chang Q, de Stanchina E, Lopez M, Ng MR, Fraser K, Subklewe M, Park JH, Wang X, Rivière I, Sadelain M. Cooperative CAR targeting to selectively eliminate AML and minimize escape. Cancer Cell 2023; 41:1871-1891.e6. [PMID: 37802054 PMCID: PMC11006543 DOI: 10.1016/j.ccell.2023.09.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/20/2023] [Accepted: 09/15/2023] [Indexed: 10/08/2023]
Abstract
Acute myeloid leukemia (AML) poses a singular challenge for chimeric antigen receptor (CAR) therapy owing to its phenotypic heterogeneity and similarity to normal hematopoietic stem/progenitor cells (HSPCs). Here we expound a CAR strategy intended to efficiently target AML while minimizing HSPC toxicity. Quantification of target expression in relapsed/refractory patient samples and normal HSPCs reveals a therapeutic window for gated co-targeting of ADGRE2 and CLEC12A: We combine an attenuated ADGRE2-CAR with a CLEC12A-chimeric costimulatory receptor (ADCLEC.syn1) to preferentially engage ADGRE2posCLEC12Apos leukemic stem cells over ADGRE2lowCLEC12Aneg normal HSPCs. ADCLEC.syn1 prevents antigen escape in AML xenograft models, outperforms the ADGRE2-CAR alone and eradicates AML despite proximate myelopoiesis in humanized mice. Off-target HSPC toxicity is similar to that of a CD19-CAR and can be mitigated by reducing CAR T cell-derived interferon-γ. Overall, we demonstrate the ability of target density-adapted cooperative CAR targeting to selectively eliminate AML and potentially obviate the need for hematopoietic rescue.
Collapse
Affiliation(s)
- Sascha Haubner
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jorge Mansilla-Soto
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sarah Nataraj
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Friederike Kogel
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Qing Chang
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Elisa de Stanchina
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Michael Lopez
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Mei Rosa Ng
- Takeda Development Center Americas, Inc., Lexington, MA 02421, USA
| | - Kathryn Fraser
- Takeda Development Center Americas, Inc., Lexington, MA 02421, USA
| | - Marion Subklewe
- Department of Medicine III, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Jae H Park
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Cellular Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Xiuyan Wang
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Michael G. Harris Cell Therapy and Cell Engineering Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Isabelle Rivière
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Michael G. Harris Cell Therapy and Cell Engineering Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Michel Sadelain
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
17
|
Wang C, Wang J, Che S, Zhao H. CAR-T cell therapy for hematological malignancies: History, status and promise. Heliyon 2023; 9:e21776. [PMID: 38027932 PMCID: PMC10658259 DOI: 10.1016/j.heliyon.2023.e21776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/19/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
For many years, the methods of cancer treatment are usually surgery, chemotherapy and radiation therapy. Although these methods help to improve the condition, most tumors still have a poor prognosis. In recent years, immunotherapy has great potential in tumor treatment. Chimeric antigen receptor T-cell immunotherapy (CAR-T) uses the patient's own T cells to express chimeric antigen receptors. Chimeric antigen receptor (CAR) recognizes tumor-associated antigens and kills tumor cells. CAR-T has achieved good results in the treatment of hematological tumors. In 2017, the FDA approved the first CAR-T for the treatment of B-cell acute lymphoblastic leukemia (ALL). In October of the same year, the FDA approved CAR-T to treat B-cell lymphoma. In order to improve and enhance the therapeutic effect, CAR-T has become a research focus in recent years. The structure of CAR, the targets of CAR-T treatment, adverse reactions and improvement measures during the treatment process are summarized. This review is an attempt to highlight recent and possibly forgotten findings of advances in chimeric antigen receptor T cell for treatment of hematological tumors.
Collapse
Affiliation(s)
- Chao Wang
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, Shandong, 266005, China
| | - Jianpeng Wang
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, Shandong, 266005, China
| | - Shusheng Che
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, Shandong, 266005, China
| | - Hai Zhao
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, Shandong, 266005, China
| |
Collapse
|
18
|
Patel SA, Bello E, Wilks A, Gerber JM, Sadagopan N, Cerny J. Harnessing autologous immune effector mechanisms in acute myeloid leukemia: 2023 update of trials and tribulations. Leuk Res 2023; 134:107388. [PMID: 37729719 PMCID: PMC10947503 DOI: 10.1016/j.leukres.2023.107388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/07/2023] [Accepted: 09/09/2023] [Indexed: 09/22/2023]
Abstract
Numerous recent advances have been made in therapeutic approaches toward acute myeloid leukemia (AML). Since 2017, we have seen eleven novel Food & Drug Administration (FDA)-approved medications for AML, all of which extend beyond the classical cytarabine-based cytostatic chemotherapy. In the recent two decades, the role of immune surveillance in AML has been intensively investigated. The power of one's own innate and adaptive immunity has been harnessed pharmacologically toward the goal of clearance of AML cells. Specifically, pre-clinical studies have shown great promise for antibodies that disinhibit T cells and macrophages by blocking checkpoint receptors within the immunologic synapse, thereby resulting in the elimination of AML cells. Anti-CD33 CAR-T therapies and anti-CD3/CD123 bispecific antibodies have also exhibited encouraging results in pre-clinical and early clinical studies. However, despite these translational efforts, we currently have no immune-based therapies for AML on the market, with the exception of gemtuzumab ozogamicin. In this focused review, we discuss molecular target validation and the most relevant clinical updates for immune-based experimental therapeutics including anti-CD47 monoclonal antibodies, CAR-T therapies, and bispecific T cell engagers. We highlight barriers to the clinical translation of these therapies in AML, and we propose solutions to optimize the manufacturing and delivery of the most novel immune-based therapies in the pipeline.
Collapse
Affiliation(s)
- Shyam A Patel
- Dept. of Medicine - Division of Hematology/Oncology, UMass Memorial Medical Center, UMass Chan Medical School, Worcester, MA, USA; Center for Clinical and Translational Science, UMass Chan Medical School, Worcester, MA, USA
| | - Elisa Bello
- UMass Chan Medical School, Worcester, MA, USA
| | - Andrew Wilks
- Dept. of Medicine - Division of Hematology and Medical Oncology, Boston Medical Center, Boston University School of Medicine, Boston, MA, USA
| | - Jonathan M Gerber
- Dept. of Medicine - Division of Hematology/Oncology, UMass Memorial Medical Center, UMass Chan Medical School, Worcester, MA, USA; Center for Clinical and Translational Science, UMass Chan Medical School, Worcester, MA, USA
| | - Narayanan Sadagopan
- MedStar Health - Georgetown/Washington Hospital Center Hematology and Medical Oncology, Washington, DC, USA
| | - Jan Cerny
- Dept. of Medicine - Division of Hematology/Oncology, UMass Memorial Medical Center, UMass Chan Medical School, Worcester, MA, USA; Center for Clinical and Translational Science, UMass Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
19
|
Liberatore C, Di Ianni M. Novel Approaches to Treatment of Acute Myeloid Leukemia Relapse Post Allogeneic Stem Cell Transplantation. Int J Mol Sci 2023; 24:15019. [PMID: 37834466 PMCID: PMC10573608 DOI: 10.3390/ijms241915019] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/05/2023] [Accepted: 10/07/2023] [Indexed: 10/15/2023] Open
Abstract
The management of patients with acute myeloid leukemia (AML) relapsed post allogeneic hematopoietic stem cell transplantation (HSCT) remains a clinical challenge. Intensive treatment approaches are limited by severe toxicities in the early post-transplantation period. Therefore, hypomethylating agents (HMAs) have become the standard therapeutic approach due to favorable tolerability. Moreover, HMAs serve as a backbone for additional anti-leukemic agents. Despite discordant results, the addition of donor lymphocytes infusions (DLI) generally granted improved outcomes with manageable GvHD incidence. The recent introduction of novel targeted drugs in AML gives the opportunity to add a third element to salvage regimens. Those patients harboring targetable mutations might benefit from IDH1/2 inhibitors Ivosidenib and Enasidenib as well as FLT3 inhibitors Sorafenib and Gilteritinib in combination with HMA and DLI. Conversely, patients lacking targetable mutations actually benefit from the addition of Venetoclax. A second HSCT remains a valid option, especially for fit patients and for those who achieve a complete disease response with salvage regimens. Overall, across studies, higher response rates and longer survival were observed in cases of pre-emptive intervention for molecular relapse. Future perspectives currently rely on the development of adoptive immunotherapeutic strategies mainly represented by CAR-T cells.
Collapse
Affiliation(s)
- Carmine Liberatore
- Hematology Unit, Department of Oncology and Hematology, Santo Spirito Hospital, 65124 Pescara, Italy;
| | - Mauro Di Ianni
- Hematology Unit, Department of Oncology and Hematology, Santo Spirito Hospital, 65124 Pescara, Italy;
- Department of Medicine and Sciences of Aging, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
20
|
Peroni E, Randi ML, Rosato A, Cagnin S. Acute myeloid leukemia: from NGS, through scRNA-seq, to CAR-T. dissect cancer heterogeneity and tailor the treatment. J Exp Clin Cancer Res 2023; 42:259. [PMID: 37803464 PMCID: PMC10557350 DOI: 10.1186/s13046-023-02841-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/25/2023] [Indexed: 10/08/2023] Open
Abstract
Acute myeloid leukemia (AML) is a malignant blood cancer with marked cellular heterogeneity due to altered maturation and differentiation of myeloid blasts, the possible causes of which are transcriptional or epigenetic alterations, impaired apoptosis, and excessive cell proliferation. This neoplasm has a high rate of resistance to anticancer therapies and thus a high risk of relapse and mortality because of both the biological diversity of the patient and intratumoral heterogeneity due to the acquisition of new somatic changes. For more than 40 years, the old gold standard "one size fits all" treatment approach included intensive chemotherapy treatment with anthracyclines and cytarabine.The manuscript first traces the evolution of the understanding of the pathology from the 1970s to the present. The enormous strides made in its categorization prove to be crucial for risk stratification, enabling an increasingly personalized diagnosis and treatment approach.Subsequently, we highlight how, over the past 15 years, technological advances enabling single cell RNA sequencing and T-cell modification based on the genomic tools are affecting the classification and treatment of AML. At the dawn of the new millennium, the advent of high-throughput next-generation sequencing technologies has enabled the profiling of patients evidencing different facets of the same disease, stratifying risk, and identifying new possible therapeutic targets that have subsequently been validated. Currently, the possibility of investigating tumor heterogeneity at the single cell level, profiling the tumor at the time of diagnosis or after treatments exist. This would allow the identification of underrepresented cellular subclones or clones resistant to therapeutic approaches and thus responsible for post-treatment relapse that would otherwise be difficult to detect with bulk investigations on the tumor biopsy. Single-cell investigation will then allow even greater personalization of therapy to the genetic and transcriptional profile of the tumor, saving valuable time and dangerous side effects. The era of personalized medicine will take a huge step forward through the disclosure of each individual piece of the complex puzzle that is cancer pathology, to implement a "tailored" therapeutic approach based also on engineered CAR-T cells.
Collapse
Affiliation(s)
- Edoardo Peroni
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology, IOV-IRCCS, Padova, 35128, Italy.
| | - Maria Luigia Randi
- First Medical Clinic, Department of Medicine-DIMED, University of Padua, Padua, Italy
| | - Antonio Rosato
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology, IOV-IRCCS, Padova, 35128, Italy
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - Stefano Cagnin
- Department of Biology, University of Padova, Padova, 35131, Italy
- CIR-Myo Myology Center, University of Padova, Padova, 35131, Italy
| |
Collapse
|
21
|
Jin X, Xie D, Sun R, Lu W, Xiao X, Yu Y, Meng J, Zhao M. CAR-T cells dual-target CD123 and NKG2DLs to eradicate AML cells and selectively target immunosuppressive cells. Oncoimmunology 2023; 12:2248826. [PMID: 37645216 PMCID: PMC10461507 DOI: 10.1080/2162402x.2023.2248826] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 08/12/2023] [Accepted: 08/14/2023] [Indexed: 08/31/2023] Open
Abstract
Chimeric antigen receptor (CAR)-T cells have not made significant progress in the treatment of acute myeloid leukemia (AML) in earlyclinical studies. This lack of progress could be attributed in part to the immunosuppressive microenvironment of AML, such as monocyte-like myeloid-derived suppressor cells (M-MDSCs) and alternatively activated macrophages (M2 cells), which can inhibit the antitumor activity of CAR-T cells. Furthermore, AML cells are usually heterogeneous, and single-target CAR-T cells may not be able to eliminate all AML cells, leading to disease relapse. CD123 and NKG2D ligands (NKG2DLs) are commonly used targets for CAR-T therapy of AML, and M-MDSCs and M2 cells express both antigens. We developed dual-targeted CAR-T (123NL CAR-T) cells targeting CD123 and NKG2DL by various structural optimization screens. Our study reveals that 123NL CAR-T cells eradicate AML cells and selectively target immunosuppressive cells. A highly compact marker/suicide gene, RQR8, which binds targeting epitopes of CD34 and CD20 antigens, was also incorporated in front of the CAR structure. The binding of Rituximab to RQR8 leads to the elimination of 123NL CAR-T cells and cessation of their cytotoxicity. In conclusion, we successfully developed dual effects of 123NL CAR-T cells against tumor cells and immunosuppressive cells, which can avoid target escape and resist the effects of immunosuppressive microenvironment.
Collapse
Affiliation(s)
- Xin Jin
- School of Medicine, Nankai University, Tianjin, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Department of Hematology, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Danni Xie
- First Central Clinical College, Tianjin Medical University, Tianjin, China
| | - Rui Sun
- School of Medicine, Nankai University, Tianjin, China
| | - Wenyi Lu
- Department of Hematology, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Xia Xiao
- Department of Hematology, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Yibing Yu
- First Central Clinical College, Tianjin Medical University, Tianjin, China
| | - Juanxia Meng
- Department of Hematology, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Mingfeng Zhao
- Department of Hematology, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
22
|
Fu D, Zhang B, Wu S, Feng J, Jiang H. Molecular subtyping of acute myeloid leukemia through ferroptosis signatures predicts prognosis and deciphers the immune microenvironment. Front Cell Dev Biol 2023; 11:1207642. [PMID: 37691822 PMCID: PMC10483833 DOI: 10.3389/fcell.2023.1207642] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/03/2023] [Indexed: 09/12/2023] Open
Abstract
Acute myeloid leukemia (AML) is one of the most aggressive hematological malignancies with a low 5-year survival rate and high rate of relapse. Developing more efficient therapies is an urgent need for AML treatment. Accumulating evidence showed that ferroptosis, an iron-dependent form of programmed cell death, is closely correlated with cancer initiation and clinical outcome through reshaping the tumor microenvironment. However, understanding of AML heterogeneity based on extensive profiling of ferroptosis signatures remains to be investigated yet. Herein, five independent AML transcriptomic datasets (TCGA-AML, GSE37642, GSE12417, GSE10358, and GSE106291) were obtained from the GEO and TCGA databases. Then, we identified two ferroptosis-related molecular subtypes (C1 and C2) with distinct prognosis and tumor immune microenvironment (TIME) by consensus clustering. Patients in the C1 subtype were associated with favorable clinical outcomes and increased cytotoxic immune cell infiltration, including CD8+/central memory T cells, natural killer (NK) cells, and non-regulatory CD4+ T cells while showing decreased suppressive immune subsets such as M2 macrophages, neutrophils, and monocytes. Functional enrichment analysis of differentially expressed genes (DEGs) implied that cell activation involved in immune response, leukocyte cell-cell adhesion and migration, and cytokine production were the main biological processes. Phagosome, antigen processing and presentation, cytokine-cytokine receptor interaction, B-cell receptor, and chemokine were identified as the major pathways. To seize the distinct landscape in C1 vs. C2 subtypes, a 5-gene prognostic signature (LSP1, IL1R2, MPO, CRIP1, and SLC24A3) was developed using LASSO Cox stepwise regression analysis and further validated in independent AML cohorts. Patients were divided into high- and low-risk groups, and decreased survival rates were observed in high- vs. low-risk groups. The TIME between high- and low-risk groups has a similar scenery in C1 vs. C2 subtypes. Single-cell-level analysis verified that LSP1 and CRIP1 were upregulated in AML and exhausted CD8+ T cells. Dual targeting of these two markers might present a promising immunotherapeutic for AML. In addition, potential effective chemical drugs for AML were predicted. Thus, we concluded that molecular subtyping using ferroptosis signatures could characterize the TIME and provide implications for monitoring clinical outcomes and predicting novel therapies.
Collapse
Affiliation(s)
- Denggang Fu
- College of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Biyu Zhang
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology Wuhan, Wuhan, China
| | - Shiyong Wu
- Department of Pediatrics, The Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | | | - Hua Jiang
- Department of Radiation Oncology, School of Medicine, Stanford University, San Francisco, CA, United States
| |
Collapse
|
23
|
Wu RH, Zhu CY, Yu PH, Ma Y, Hussain L, Naranmandura H, Wang QQ. The landscape of novel strategies for acute myeloid leukemia treatment: Therapeutic trends, challenges, and future directions. Toxicol Appl Pharmacol 2023; 473:116585. [PMID: 37302559 DOI: 10.1016/j.taap.2023.116585] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/13/2023]
Abstract
Acute myeloid leukemia (AML) is a highly heterogeneous subtype of hematological malignancies with a wide spectrum of cytogenetic and molecular abnormalities, which makes it difficult to manage and cure. Along with the deeper understanding of the molecular mechanisms underlying AML pathogenesis, a large cohort of novel targeted therapeutic approaches has emerged, which considerably expands the medical options and changes the therapeutic landscape of AML. Despite that, resistant and refractory cases caused by genomic mutations or bypass signalling activation remain a great challenge. Therefore, discovery of novel treatment targets, optimization of combination strategies, and development of efficient therapeutics are urgently required. This review provides a detailed and comprehensive discussion on the advantages and limitations of targeted therapies as a single agent or in combination with others. Furthermore, the innovative therapeutic approaches including hyperthermia, monoclonal antibody-based therapy, and CAR-T cell therapy are also introduced, which may provide safe and viable options for the treatment of patients with AML.
Collapse
Affiliation(s)
- Ri Han Wu
- College of Life Sciences, Changchun Normal University, Changchun 130032, China
| | - Chen Ying Zhu
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Pei Han Yu
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yafang Ma
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Liaqat Hussain
- Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Hua Naranmandura
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China.
| | - Qian Qian Wang
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
24
|
Christodoulou I, Solomou EE. A Panorama of Immune Fighters Armored with CARs in Acute Myeloid Leukemia. Cancers (Basel) 2023; 15:cancers15113054. [PMID: 37297016 DOI: 10.3390/cancers15113054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/28/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Acute myeloid leukemia (AML) is a devastating disease. Intensive chemotherapy is the mainstay of treatment but results in debilitating toxicities. Moreover, many treated patients will eventually require hematopoietic stem cell transplantation (HSCT) for disease control, which is the only potentially curative but challenging option. Ultimately, a subset of patients will relapse or have refractory disease, posing a huge challenge to further therapeutic decisions. Targeted immunotherapies hold promise for relapsed/refractory (r/r) malignancies by directing the immune system against cancer. Chimeric antigen receptors (CARs) are important components of targeted immunotherapy. Indeed, CAR-T cells have achieved unprecedented success against r/r CD19+ malignancies. However, CAR-T cells have only achieved modest outcomes in clinical studies on r/r AML. Natural killer (NK) cells have innate anti-AML functionality and can be engineered with CARs to improve their antitumor response. CAR-NKs are associated with lower toxicities than CAR-T cells; however, their clinical efficacy against AML has not been extensively investigated. In this review, we cite the results from clinical studies of CAR-T cells in AML and describe their limitations and safety concerns. Moreover, we depict the clinical and preclinical landscape of CAR used in alternative immune cell platforms with a specific focus on CAR-NKs, providing insight into the future optimization of AML.
Collapse
Affiliation(s)
- Ilias Christodoulou
- Department of Internal Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Internal Medicine, University of Patras Medical School, 26500 Rion, Greece
| | - Elena E Solomou
- Department of Internal Medicine, University of Patras Medical School, 26500 Rion, Greece
| |
Collapse
|
25
|
Mu X, Chen C, Dong L, Kang Z, Sun Z, Chen X, Zheng J, Zhang Y. Immunotherapy in leukaemia. Acta Biochim Biophys Sin (Shanghai) 2023; 55:974-987. [PMID: 37272727 PMCID: PMC10326417 DOI: 10.3724/abbs.2023101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/19/2023] [Indexed: 06/06/2023] Open
Abstract
Leukaemia is the common name for a group of malignant diseases of the haematopoietic system with complex classifications and characteristics. Remarkable progress has been made in basic research and preclinical studies for acute leukaemia compared to that of the many other types/subtypes of leukaemia, especially the exploration of the biological basis and application of immunotherapy in acute myeloid leukaemia (AML) and B-cell acute lymphoblastic leukaemia (B-ALL). In this review, we summarize the basic approaches to immunotherapy for leukaemia and focus on the research progress made in immunotherapy development for AML and ALL. Importantly, despite the advances made to date, big challenges still exist in the effectiveness of leukaemia immunotherapy, especially in AML. Therefore, we use AML as an example and summarize the mechanisms of tumour cell immune evasion, describe recently reported data and known therapeutic targets, and discuss the obstacles in finding suitable treatment targets and the results obtained in recent clinical trials for several types of single and combination immunotherapies, such as bispecific antibodies, cell therapies (CAR-T-cell treatment), and checkpoint blockade. Finally, we summarize novel immunotherapy strategies for treating lymphocytic leukaemia and clinical trial results.
Collapse
Affiliation(s)
- Xingmei Mu
- Hongqiao International Institute of MedicineShanghai Tongren Hospital/Faculty of Basic MedicineKey Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of EducationShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Chumao Chen
- Hongqiao International Institute of MedicineShanghai Tongren Hospital/Faculty of Basic MedicineKey Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of EducationShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Loujie Dong
- Shanghai Jiao Tong University School of MedicineShanghai200025China
| | - Zhaowei Kang
- Shanghai Jiao Tong University School of MedicineShanghai200025China
| | - Zhixian Sun
- Shanghai Jiao Tong University School of MedicineShanghai200025China
| | - Xijie Chen
- Shanghai Jiao Tong University School of MedicineShanghai200025China
| | - Junke Zheng
- Hongqiao International Institute of MedicineShanghai Tongren Hospital/Faculty of Basic MedicineKey Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of EducationShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Yaping Zhang
- Hongqiao International Institute of MedicineShanghai Tongren Hospital/Faculty of Basic MedicineKey Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of EducationShanghai Jiao Tong University School of MedicineShanghai200025China
| |
Collapse
|
26
|
Fan S, Wang T, You F, Zhang T, Li Y, Ji C, Han Z, Sheng B, Zhai X, An G, Meng H, Yang L. B7-H3 chimeric antigen receptor-modified T cell shows potential for targeted treatment of acute myeloid leukaemia. Eur J Med Res 2023; 28:129. [PMID: 36941687 PMCID: PMC10026503 DOI: 10.1186/s40001-023-01049-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 02/07/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND AND AIMS Chimeric antigen receptor (CAR)-T cell therapy is a novel type of immunotherapy. However, the use of CAR-T cells to treat acute myeloid leukaemia (AML) has limitations. B7-H3 is expressed in several malignancies, including some types of AML cells. However, its expression in normal tissues is low. Therefore, B7-H3 is ideal for targeted AML therapy. MATERIALS AND METHODS First, we constructed B7-H3 CAR that can target B7-H3, and then constructed B7-H3-CAR-T cells in vitro, which were co-incubated with six AML cell lines expressing different levels of B7-H3, respectively. The toxicity and cytokines were detected by flow cytometry. In vivo, AML model was established in B-NSG mice to study the toxicity of B7-H3-CAR T on AML cells. RESULTS In vitro functional tests showed that B7-H3-CAR-T cells were cytotoxic to B7-H3-positive AML tumor cells and had good scavenging effect on B7-H3-expressing AML cell lines, and the cytokine results were consistent. In vivo, B7-H3-CAR-T cells significantly inhibited tumor cell growth in a mouse model of AML, prolonging mouse survival compared with controls. CONCLUSION B7-H3-CAR-T cells may serve as a novel therapeutic method for the targeted treatment of AML.
Collapse
Affiliation(s)
- Shuangshuang Fan
- The Cyrus Tang Hematology Center, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Tian Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu, China
| | - Fengtao You
- PersonGen BioTherapeutics (Suzhou) Co., Ltd., Suzhou, Jiangsu, China
| | - Tingting Zhang
- The Cyrus Tang Hematology Center, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Yafen Li
- PersonGen BioTherapeutics (Suzhou) Co., Ltd., Suzhou, Jiangsu, China
| | - Cheng Ji
- The Cyrus Tang Hematology Center, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Zhichao Han
- The Cyrus Tang Hematology Center, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Binjie Sheng
- The Cyrus Tang Hematology Center, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Xiaochen Zhai
- The Cyrus Tang Hematology Center, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Gangli An
- The Cyrus Tang Hematology Center, Soochow University, Suzhou, 215123, Jiangsu, China
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, China
| | - Huimin Meng
- The Cyrus Tang Hematology Center, Soochow University, Suzhou, 215123, Jiangsu, China.
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, China.
| | - Lin Yang
- The Cyrus Tang Hematology Center, Soochow University, Suzhou, 215123, Jiangsu, China.
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, China.
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu, China.
- PersonGen BioTherapeutics (Suzhou) Co., Ltd., Suzhou, Jiangsu, China.
| |
Collapse
|
27
|
Biederstädt A, Rezvani K. How I treat high-risk acute myeloid leukemia using preemptive adoptive cellular immunotherapy. Blood 2023; 141:22-38. [PMID: 35512203 PMCID: PMC10023741 DOI: 10.1182/blood.2021012411] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 01/21/2023] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (alloHSCT) is a potentially curative treatment for patients with high-risk acute leukemias, but unfortunately disease recurrence remains the major cause of death in these patients. Infusion of donor lymphocytes (DLI) has the potential to restore graft-versus-leukemia immunologic surveillance; however, efficacy varies across different hematologic entities. Although relapsed chronic myeloid leukemia, transplanted in chronic phase, has proven remarkably susceptible to DLI, response rates are more modest for relapsed acute myeloid leukemia and acute lymphoblastic leukemia. To prevent impending relapse, a number of groups have explored administering DLI preemptively on detection of measurable residual disease (MRD) or mixed chimerism. Evidence for the effectiveness of this strategy, although encouraging, comes from only a few, mostly single-center retrospective, nonrandomized studies. This article seeks to (1) discuss the available evidence supporting this approach while highlighting some of the inherent challenges of MRD-triggered treatment decisions post-transplant, (2) portray other forms of postremission cellular therapies, including the role of next-generation target-specific immunotherapies, and (3) provide a practical framework to support clinicians in their decision-making process when considering preemptive cellular therapy for this difficult-to-treat patient population.
Collapse
Affiliation(s)
- Alexander Biederstädt
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
- Department of Medicine III: Hematology and Oncology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Katayoun Rezvani
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
28
|
Circosta P, Donini C, Gallo S, Giraudo L, Gammaitoni L, Rotolo R, Galvagno F, Capellero S, Basiricò M, Casucci M, Aglietta M, Ferrero I, Fagioli F, Cignetti A, Carnevale-Schianca F, Leuci V, Sangiolo D. Full chimaeric CAR.CIK from patients engrafted after allogeneic haematopoietic cell transplant: Feasibility, anti-leukaemic potential and alloreactivity across major human leukocyte antigen barriers. Br J Haematol 2023; 200:64-69. [PMID: 36155897 PMCID: PMC10087171 DOI: 10.1111/bjh.18469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/02/2022]
Abstract
Cytokine-induced killer lymphocytes (CIK) are a promising alternative to conventional donor lymphocyte infusion (DLI), following allogeneic haematopoietic cell transplantation (HCT), due to their intrinsic anti-tumour activity and reduced risk of graft-versus-host disease (GVHD). We explored the feasibility, anti-leukaemic activity and alloreactive risk of CIK generated from full-donor chimaeric (fc) patients and genetically redirected by a chimeric antigen receptor (CAR) (fcCAR.CIK) against the leukaemic target CD44v6. fcCAR.CIK were successfully ex-vivo expanded from leukaemic patients in complete remission after HCT confirming their intense preclinical anti-leukaemic activity without enhancing the alloreactivity across human leukocyte antigen (HLA) barriers. Our study provides translational bases to support clinical studies with fcCAR.CIK, a sort of biological bridge between the autologous and allogeneic sources, as alternative DLI following HCT.
Collapse
Affiliation(s)
- Paola Circosta
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy.,Molecular Biotechnology Center, University of Turin, Turin, Italy
| | - Chiara Donini
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy.,Department of Oncology, University of Turin, Turin, Italy
| | | | - Lidia Giraudo
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
| | | | - Ramona Rotolo
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy.,Department of Oncology, University of Turin, Turin, Italy
| | - Federica Galvagno
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy.,Department of Oncology, University of Turin, Turin, Italy
| | - Sonia Capellero
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy.,Department of Oncology, University of Turin, Turin, Italy
| | - Marco Basiricò
- Stem Cell Transplantation and Cellular Therapy Laboratory, Paediatric Onco-Haematology Division, Regina Margherita Children's Hospital, City of Health and Science of Turin, Turin, Italy
| | - Monica Casucci
- Innovative Immunotherapies Unit - Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Aglietta
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy.,Department of Oncology, University of Turin, Turin, Italy
| | - Ivana Ferrero
- Stem Cell Transplantation and Cellular Therapy Laboratory, Paediatric Onco-Haematology Division, Regina Margherita Children's Hospital, City of Health and Science of Turin, Turin, Italy
| | - Franca Fagioli
- Stem Cell Transplantation and Cellular Therapy Laboratory, Paediatric Onco-Haematology Division, Regina Margherita Children's Hospital, City of Health and Science of Turin, Turin, Italy.,Department of Public Health and Paediatrics, University of Turin, Turin, Italy
| | - Alessandro Cignetti
- Division of Hematology and Cell Therapy, A.O. Ordine Mauriziano, Turin, Italy
| | | | - Valeria Leuci
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
| | - Dario Sangiolo
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy.,Department of Oncology, University of Turin, Turin, Italy
| |
Collapse
|
29
|
Zhang H, Yan C, Xia Y, Guan J, Zhou S. Causal Gene Identification Using Non-Linear Regression-Based Independence Tests. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:185-195. [PMID: 35139025 DOI: 10.1109/tcbb.2022.3149864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
With the development of biomedical techniques in the past decades, causal gene identification has become one of the most promising applications in human genome-based business, which can help doctors to evaluate the risk of certain genetic diseases and provide further treatment recommendations for potential patients. When no controlled experiments can be applied, machine learning techniques like causal inference-based methods are generally used to identify causal genes. Unfortunately, most of the existing methods detect disease-related genes by ranking-based strategies or feature selection techniques, which generally return a superset of the corresponding real causal genes. There are also some causal inference-based methods that can identify a part of real causal genes from those supersets, but they are just able to return a few causal genes. This is contrary to our knowledge, as many results from controlled experiments have demonstrated that a certain disease, especially cancer, is usually related to dozens or hundreds of genes. In this work, we present an effective approach for identifying causal genes from gene expression data by using a new search strategy based on non-linear regression-based independence tests, which is able to greatly reduce the search space, and simultaneously establish the causal relationships from the candidate genes to the disease variable. Extensive experiments on real-world cancer datasets show that our method is superior to the existing causal inference-based methods in three aspects: 1) our method can identify dozens of causal genes, and 1/3 ∼ 1/2 of the discovered causal genes can be verified by existing works that they are really directly related to the corresponding disease; 2) The discovered causal genes are able to distinguish the status or disease subtype of the target patient; 3) Most of the discovered causal genes are closely relevant to the disease variable.
Collapse
|
30
|
Lu Y, Liu Y, Wen S, Kuang N, Zhang X, Li J, Wang F. Naturally selected CD7 CAR-T therapy without genetic editing demonstrates significant antitumour efficacy against relapsed and refractory acute myeloid leukaemia (R/R-AML). J Transl Med 2022; 20:600. [DOI: 10.1186/s12967-022-03797-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
Abstract
Background
The survival rate for patients with relapsed and refractory acute myeloid leukaemia (R/R-AML) remains poor, and treatment is challenging. Chimeric antigen receptor T cells (CAR-T cells) have been widely used for haematologic malignancies. Current CAR-T therapies for acute myeloid leukaemia mostly target myeloid-lineage antigens, such as CD123 and CD33, which may be associated with potential haematopoietic toxicity. As a lineage-specific receptor, CD7 is expressed in acute myeloid leukaemia cells and T cells but is not expressed in myeloid cells. Therefore, the use of CD7 CAR-T cells for R/R-AML needs to be further explored.
Methods
In this report, immunohistochemistry and flow cytometry were used to analyse CD7 expression in clinical samples from R/R-AML patients and healthy donors (HDs). We designed naturally selected CD7 CAR-T cells to analyse various functions and in vitro antileukaemic efficacy based on flow cytometry, and xenograft models were used to validate in vivo tumour dynamics.
Results
We calculated the percentage of cells with CD7 expression in R/R-AML patients with minimal residual disease (MRD) (5/16, 31.25%) from our institution and assessed CD7 expression in myeloid and lymphoid lineage cells of R/R-AML patients, concluding that CD7 is expressed in T cells but not in myeloid cells. Subsequently, we designed and constructed naturally selected CD7 CAR-T cells (CD7 CAR). We did not perform CD7 antigen knockdown on CD7 CAR-T cells because CD7 molecule expression is naturally eliminated at Day 12 post transduction. We then evaluated the ability to target and kill CD7+ acute myeloid leukaemia cells in vitro and in vivo. Naturally selected CD7 CAR-T cells efficiently killed CD7+ acute myeloid leukaemia cells and CD7+ primary blasts of R/R-AML patients in vitro and significantly inhibited leukaemia cell growth in a xenograft mouse model.
Conclusion
Naturally selected CD7 CAR-T cells represent an effective treatment strategy for relapsed and refractory acute myeloid leukaemia patients in preclinical studies.
Collapse
|
31
|
Wei W, Yang D, Chen X, Liang D, Zou L, Zhao X. Chimeric antigen receptor T-cell therapy for T-ALL and AML. Front Oncol 2022; 12:967754. [PMID: 36523990 PMCID: PMC9745195 DOI: 10.3389/fonc.2022.967754] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 11/14/2022] [Indexed: 11/10/2023] Open
Abstract
Non-B-cell acute leukemia is a term that encompasses T-cell acute lymphoblastic leukemia (T-ALL) and acute myeloid leukemia (AML). Currently, the therapeutic effectiveness of existing treatments for refractory or relapsed (R/R) non-B-cell acute leukemia is limited. In such situations, chimeric antigen receptor (CAR)-T cell therapy may be a promising approach to treat non-B-cell acute leukemia, given its promising results in B-cell acute lymphoblastic leukemia (B-ALL). Nevertheless, fratricide, malignant contamination, T cell aplasia for T-ALL, and specific antigen selection and complex microenvironment for AML remain significant challenges in the implementation of CAR-T therapy for T-ALL and AML patients in the clinic. Therefore, designs of CAR-T cells targeting CD5 and CD7 for T-ALL and CD123, CD33, and CLL1 for AML show promising efficacy and safety profiles in clinical trials. In this review, we summarize the characteristics of non-B-cell acute leukemia, the development of CARs, the CAR targets, and their efficacy for treating non-B-cell acute leukemia.
Collapse
Affiliation(s)
- Wenwen Wei
- Laboratory of Animal Tumor Models, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
- Department of Medical Oncology of Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Dong Yang
- Laboratory of Animal Tumor Models, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Xi Chen
- Department of Radiotherapy, Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Dandan Liang
- Laboratory of Animal Tumor Models, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Liqun Zou
- Department of Medical Oncology of Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Xudong Zhao
- Laboratory of Animal Tumor Models, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
32
|
Hematopoietic Cell Transplantation in the Treatment of Pediatric Acute Myelogenous Leukemia and Myelodysplastic Syndromes: Guidelines from the American Society of Transplantation and Cellular Therapy. Transplant Cell Ther 2022; 28:530-545. [DOI: 10.1016/j.jtct.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 11/20/2022]
|
33
|
Yu W, Zhang H, Yuan Y, Tang J, Chen X, Liu T, Zhao X. Chimeric Antigen Receptor T Cells Targeting Cell Surface GRP78 to Eradicate Acute Myeloid Leukemia. Front Cell Dev Biol 2022; 10:928140. [PMID: 35990606 PMCID: PMC9387679 DOI: 10.3389/fcell.2022.928140] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/31/2022] [Indexed: 11/19/2022] Open
Abstract
Acute myeloid leukemia (AML) is a serious, life-threatening hematological malignancy. The treatment outcome of relapsed or refractory AML patients remains dismal, and new treatment options are needed. Chimeric antigen receptor (CAR) T cells have been successful in improving the prognosis for B-lineage acute lymphoblastic leukemia and lymphoma by targeting CD19. However, CAR T-cell therapy for AML is still elusive, owing to the lack of a tumor-specific cell surface antigen and spare hematopoietic stem cells (HSCs). This study generated a novel CAR construction that targets the cell surface protein glucose-regulated protein 78 (GRP78) (csGRP78). We confirmed that GRP78-CAR T cells demonstrate an anti-tumor effect against human AML cells in vitro. In xenograft models, GRP78-CAR T cells effectively eliminate AML cells and protect mice against systemic leukemia, in the meanwhile, prolonging survival. In addition, GRP78-CAR T cells also specifically eradicate the primary AML patient-derived blast. In particular, GRP78-CAR T cells spare normal HSCs, highlighting that GRP78-CAR is a promising approach for the therapy of AML.
Collapse
Affiliation(s)
- Wei Yu
- Laboratory of Animal Tumor Models, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Hang Zhang
- Department of Hematology, Institute of Hematology, West China Hospital of Sichuan University, Chengdu, China
| | - Yuncang Yuan
- Laboratory of Animal Tumor Models, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Jie Tang
- Laboratory of Animal Tumor Models, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Xinchuan Chen
- Department of Hematology, Institute of Hematology, West China Hospital of Sichuan University, Chengdu, China
| | - Ting Liu
- Department of Hematology, Institute of Hematology, West China Hospital of Sichuan University, Chengdu, China
- *Correspondence: Ting Liu, ; Xudong Zhao,
| | - Xudong Zhao
- Laboratory of Animal Tumor Models, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Ting Liu, ; Xudong Zhao,
| |
Collapse
|
34
|
Jogalekar MP, Rajendran RL, Khan F, Dmello C, Gangadaran P, Ahn BC. CAR T-Cell-Based gene therapy for cancers: new perspectives, challenges, and clinical developments. Front Immunol 2022; 13:925985. [PMID: 35936003 PMCID: PMC9355792 DOI: 10.3389/fimmu.2022.925985] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/27/2022] [Indexed: 12/20/2022] Open
Abstract
Chimeric antigen receptor (CAR)-T cell therapy is a progressive new pillar in immune cell therapy for cancer. It has yielded remarkable clinical responses in patients with B-cell leukemia or lymphoma. Unfortunately, many challenges remain to be addressed to overcome its ineffectiveness in the treatment of other hematological and solidtumor malignancies. The major hurdles of CAR T-cell therapy are the associated severe life-threatening toxicities such as cytokine release syndrome and limited anti-tumor efficacy. In this review, we briefly discuss cancer immunotherapy and the genetic engineering of T cells and, In detail, the current innovations in CAR T-cell strategies to improve efficacy in treating solid tumors and hematologic malignancies. Furthermore, we also discuss the current challenges in CAR T-cell therapy and new CAR T-cell-derived nanovesicle therapy. Finally, strategies to overcome the current clinical challenges associated with CAR T-cell therapy are included as well.
Collapse
Affiliation(s)
- Manasi P. Jogalekar
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, United States
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Fatima Khan
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Crismita Dmello
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, South Korea
- *Correspondence: Prakash Gangadaran, ; Byeong-Cheol Ahn,
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, South Korea
- *Correspondence: Prakash Gangadaran, ; Byeong-Cheol Ahn,
| |
Collapse
|
35
|
Laszlo GS, Orozco JJ, Kehret AR, Lunn MC, Huo J, Hamlin DK, Wilbur DS, Dexter SL, Comstock ML, O’Steen S, Sandmaier BM, Green DJ, Walter RB. Development of [ 211At]astatine-based anti-CD123 radioimmunotherapy for acute leukemias and other CD123+ malignancies. Leukemia 2022; 36:1485-1491. [PMID: 35474099 PMCID: PMC9177726 DOI: 10.1038/s41375-022-01580-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 11/09/2022]
Abstract
Radioimmunotherapy (RIT) has long been pursued to improve outcomes in acute leukemia and higher-risk myelodysplastic syndrome (MDS). Of increasing interest are alpha-particle-emitting radionuclides such as astatine-211 (211At) as they deliver large amounts of radiation over just a few cell diameters, enabling efficient and selective target cell kill. Here, we developed 211At-based RIT targeting CD123, an antigen widely displayed on acute leukemia and MDS cells including underlying neoplastic stem cells. We generated and characterized new murine monoclonal antibodies (mAbs) specific for human CD123 and selected four, all of which were internalized by CD123+ target cells, for further characterization. All mAbs could be conjugated to a boron cage, isothiocyanatophenethyl-ureido-closo-decaborate(2-) (B10), and labeled with 211At. CD123+ cell targeting studies in immunodeficient mice demonstrated specific uptake of 211At-labeled anti-CD123 mAbs in human CD123+ MOLM-13 cell tumors in the flank. In mice injected intravenously with MOLM-13 cells or a CD123NULL MOLM-13 subline, a single dose of up to 40 µCi of 211At delivered via anti-CD123 mAb decreased tumor burdens and substantially prolonged survival dose dependently in mice bearing CD123+ but not CD123- leukemia xenografts, demonstrating potent and target-specific in vivo anti-leukemia efficacy. These data support the further development of 211At-CD123 RIT toward clinical application.
Collapse
Affiliation(s)
- George S. Laszlo
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Johnnie J. Orozco
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA,Department of Medicine, Division of Medical Oncology, University of Washington, Seattle, WA
| | - Allie R. Kehret
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Margaret C. Lunn
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Jenny Huo
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Donald K. Hamlin
- Department of Radiation Oncology, University of Washington, Seattle, WA
| | - D. Scott Wilbur
- Department of Radiation Oncology, University of Washington, Seattle, WA
| | - Shannon L. Dexter
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Melissa L. Comstock
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Shyril O’Steen
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Brenda M. Sandmaier
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA,Department of Medicine, Division of Medical Oncology, University of Washington, Seattle, WA
| | - Damian J. Green
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA,Department of Medicine, Division of Medical Oncology, University of Washington, Seattle, WA
| | - Roland B. Walter
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA,Department of Medicine, Division of Hematology, University of Washington, Seattle, WA,Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA,Department of Epidemiology, University of Washington, Seattle, WA
| |
Collapse
|
36
|
Hossian AKMN, Hackett CS, Brentjens RJ, Rafiq S. Multipurposing CARs: Same engine, different vehicles. Mol Ther 2022; 30:1381-1395. [PMID: 35151842 PMCID: PMC9077369 DOI: 10.1016/j.ymthe.2022.02.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/16/2021] [Accepted: 02/08/2022] [Indexed: 11/22/2022] Open
Abstract
T cells genetically engineered to recognize and eliminate tumor cells through synthetic chimeric antigen receptors (CARs) have demonstrated remarkable clinical efficacy against B cell leukemia over the past decade. This therapy is a form of highly personalized medicine that involves genetically modifying a patient's T cells to recognize and kill cancer cells. With the FDA approval of 5 CAR T cell products, this approach has been validated as a powerful new drug in the therapeutic armamentarium against cancer. Researchers are now studying how to expand this technology beyond its use in conventional polyclonal αβ T cells to address limitations to the current therapy in cancer and applications beyond it. Considering the specific characteristics of immune cell from diverse lineages, several preclinical and clinical studies are under way to assess the advantages of CAR-redirected function in these cells and apply the lessons learned from CAR T cell therapy in cancer to other diseases.
Collapse
Affiliation(s)
- A K M Nawshad Hossian
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA 30322, USA
| | - Christopher S Hackett
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Renier J Brentjens
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA.
| | - Sarwish Rafiq
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
37
|
Preclinical Evaluation of CAR T Cell Function: In Vitro and In Vivo Models. Int J Mol Sci 2022; 23:ijms23063154. [PMID: 35328572 PMCID: PMC8955360 DOI: 10.3390/ijms23063154] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/11/2022] [Accepted: 03/11/2022] [Indexed: 01/12/2023] Open
Abstract
Immunotherapy using chimeric antigen receptor (CAR) T cells is a rapidly emerging modality that engineers T cells to redirect tumor-specific cytotoxicity. CAR T cells have been well characterized for their efficacy against B cell malignancies, and rigorously studied in other types of tumors. Preclinical evaluation of CAR T cell function, including direct tumor killing, cytokine production, and memory responses, is crucial to the development and optimization of CAR T cell therapies. Such comprehensive examinations are usually performed in different types of models. Model establishment should focus on key challenges in the clinical setting and the capability to generate reliable data to indicate CAR T cell therapeutic potency in the clinic. Further, modeling the interaction between CAR T cells and tumor microenvironment provides additional insight for the future endeavors to enhance efficacy, especially against solid tumors. This review will summarize both in vitro and in vivo models for CAR T cell functional evaluation, including how they have evolved with the needs of CAR T cell research, the information they can provide for preclinical assessment of CAR T cell products, and recent technology advances to test CAR T cells in more clinically relevant models.
Collapse
|
38
|
Efficacy of Flotetuzumab in Combination with Cytarabine in Patient-Derived Xenograft Models of Pediatric Acute Myeloid Leukemia. J Clin Med 2022; 11:jcm11051333. [PMID: 35268423 PMCID: PMC8911345 DOI: 10.3390/jcm11051333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/22/2022] [Accepted: 02/27/2022] [Indexed: 01/21/2023] Open
Abstract
Children with acute myeloid leukemia (AML) have a poor prognosis despite the intensification of chemotherapy. Future efforts to improve outcomes should focus on more precise targeting of leukemia cells. CD123, or IL3RA, is expressed on the surface of nearly all pediatric AML samples and is a high-priority target for immunotherapy. The efficacy of an investigational dual-affinity retargeting antibody (DART) molecule (CD123 × CD3; MGD006 or flotetuzumab) was assessed in two distinct patient-derived xenograft (PDX) models of pediatric AML. MGD006 simultaneously binds to CD123 on target cells and CD3 on effector T cells, thereby activating T cells and redirecting them to induce cytotoxicity in target cells. The concurrent treatment of cytarabine and MGD006 was performed to determine the effect of cytarabine on T-cell counts and MGD006 activity. Treatment with MGD006 along with an allogeneic human T-cell infusion to act as effector cells induced durable responses in both PDX models, with CD123 positivity. This effect was sustained in mice treated with a combination of MGD006 and cytarabine in the presence of T cells. MGD006 enhanced T-cell proliferation and decreased the burden of AML blasts in the peripheral blood with or without cytarabine treatment. These data demonstrate the efficacy of MGD006 in prolonging survival in pediatric AML PDX models in the presence of effector T cells and show that the inclusion of cytarabine in the treatment regimen does not interfere with MGD006 activity.
Collapse
|
39
|
Zhang Y, Li Y, Cao W, Wang F, Xie X, Li Y, Wang X, Guo R, Jiang Z, Guo R. Single-Cell Analysis of Target Antigens of CAR-T Reveals a Potential Landscape of "On-Target, Off-Tumor Toxicity". Front Immunol 2022; 12:799206. [PMID: 34975912 PMCID: PMC8716389 DOI: 10.3389/fimmu.2021.799206] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/19/2021] [Indexed: 01/09/2023] Open
Abstract
Cellular immunotherapy represented by CD19-directed chimeric antigen receptor T (CAR-T) cells has achieved great success in recent years. An increasing number of CAR-T therapies are being developed for cancer treatment, but the frequent and varied adverse events, such as “on-target, off-tumor toxicity”, limit CAR-T application. Here, we identify the target antigen expression patterns of CAR therapies in 18 tissues and organs (peripheral blood mononuclear cells, bone marrow, lymph nodes, spleen, heart, ascending aortic tissue, trachea, lung, skin, kidney, bladder, esophagus, stomach, small intestine, rectum, liver, common bile duct, and pancreas) from healthy human samples. The atlas determines target antigens expressed on some normal cell types, which facilitates elucidating the cause of “on-target, off-tumor toxicity” in special tissues and organs by targeting some antigens, but not others. Moreover, we describe the target antigen expression patterns of B-lineage-derived malignant cells, acute myeloid leukemia (AML), and solid tumors. Overall, the present study indicates the pathogenesis of “on-target, off-tumor toxicity” during CAR therapies and provides guidance on taking preventive measures during CAR treatment.
Collapse
Affiliation(s)
- Yinyin Zhang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yingmei Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Weijie Cao
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fang Wang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinsheng Xie
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yadan Li
- The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Xiaoyi Wang
- Department of Pediatric Hematology and Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Rong Guo
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhongxing Jiang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Rongqun Guo
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
40
|
Singh D, Khan MA, Siddique HR. Specific targeting of cancer stem cells by immunotherapy: A possible stratagem to restrain cancer recurrence and metastasis. Biochem Pharmacol 2022; 198:114955. [PMID: 35181312 DOI: 10.1016/j.bcp.2022.114955] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/09/2022] [Accepted: 02/09/2022] [Indexed: 02/07/2023]
Abstract
Cancer stem cells (CSCs), the tumor-initiating cells playing a crucial role in cancer progression, recurrence, and metastasis, have the intrinsic property of self-renewal and therapy resistance. The tumorigenic properties of these cells include generation of cellular heterogeneity and immuno-suppressive tumor microenvironment (TME), conferring them the capability to resist a variety of anti-cancer therapeutics. Further, CSCs possess several unique immunological properties that help them escape recognition by the innate and adaptive immune system and shape a TME into a pro-tumorigenic and immunosuppressive landscape. In this context, immunotherapy is considered one of the best therapeutic options for eliminating CSCs to halt cancer recurrence and metastasis. In this review, we discuss the various immunomodulatory properties of CSCs and the interaction of CSCs with the immune system enabling immune evasion. In addition, we also highlight the present research update on immunotherapeutic targeting of CSCs and the possible further scope of research on this topic. We believe that a deeper understanding of CSCs' immunological properties and the crosstalk between CSCs and the immune system can develop better innovative immune-therapeutics and enhance the efficacy of current therapy-resistant cancer treatments.
Collapse
Affiliation(s)
- Deepti Singh
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Mohammad Afsar Khan
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Hifzur R Siddique
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
41
|
[Development and functional verification of CAR-T cells targeting CLL-1]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2022; 43:102-106. [PMID: 35381669 PMCID: PMC8980646 DOI: 10.3760/cma.j.issn.0253-2727.2022.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Objective: To explore the development of a CAR-T cells targeting CLL-1 and verify its function. Methods: The expression levels of CLL-1 targets in cell lines and primary cells were detected by flow cytometry. A CLL-1 CAR vector was constructed, and the corresponding lentivirus was prepared. After infection and activation of T cells, CAR-T cells targeting CLL-1 were produced and their function was verified in vitro and in vivo. Results: CLL-1 was expressed in acute myeloid leukemia (AML) cell lines and primary AML cells. The transduction rate of the prepared CAR T cells was 77.82%. In AML cell lines and AML primary cells, CLL-1-targeting CAR-T cells significantly and specifically killed CLL-1-expressing cells. Compared to untransduced T cells, CAR-T cells killed target cells and secreted inflammatory cytokines, such as interleukin-6 and interferon-γ, at significantly higher levels (P<0.001) . In an in vivo human xenograft mouse model of AML, CLL-1 CAR-T cells also exhibited potent antileukemic activity and induced prolonged mouse survival compared with untransduced T cells [not reached vs 22 days (95%CI 19-24 days) , P=0.002]. Conclusion: CAR-T cells targeting CLL-1 have been successfully produced and have excellent functions.
Collapse
|
42
|
Lamble AJ, Eidenschink Brodersen L, Alonzo TA, Wang J, Pardo L, Sung L, Cooper TM, Kolb EA, Aplenc R, Tasian SK, Loken MR, Meshinchi S. CD123 Expression Is Associated With High-Risk Disease Characteristics in Childhood Acute Myeloid Leukemia: A Report From the Children's Oncology Group. J Clin Oncol 2022; 40:252-261. [PMID: 34855461 PMCID: PMC8769096 DOI: 10.1200/jco.21.01595] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
PURPOSE Increased CD123 surface expression has been associated with high-risk disease characteristics in adult acute myeloid leukemia (AML), but has not been well-characterized in childhood AML. In this study, we defined CD123 expression and associated clinical characteristics in a uniformly treated cohort of pediatric patients with newly diagnosed AML enrolled on the Children's Oncology Group AAML1031 phase III trial (NCT01371981). MATERIALS AND METHODS AML blasts within diagnostic bone marrow specimens (n = 1,040) were prospectively analyzed for CD123 protein expression by multidimensional flow cytometry immunophenotyping at a central clinical laboratory. Patients were stratified as low-risk or high-risk on the basis of (1) leukemia-associated cytogenetic and molecular alterations and (2) end-of-induction measurable residual disease levels. RESULTS The study population was divided into CD123 expression-based quartiles (n = 260 each) for analysis. Those with highest CD123 expression (quartile 4 [Q4]) had higher prevalence of high-risk KMT2A rearrangements and FLT3-ITD mutations (P < .001 for both) and lower prevalence of low-risk t(8;21), inv(16), and CEBPA mutations (P < .001 for all). Patients in lower CD123 expression quartiles (Q1-3) had similar relapse risk, event-free survival, and overall survival. Conversely, Q4 patients had a significantly higher relapse risk (53% v 39%, P < .001), lower event-free survival (49% v 69%, P < .001), and lower overall survival (32% v 50%, P < .001) in comparison with Q1-3 patients. CD123 maintained independent significance for outcomes when all known contemporary high-risk cytogenetic and molecular markers were incorporated into multivariable Cox regression analysis. CONCLUSION CD123 is strongly associated with disease-relevant cytogenetic and molecular alterations in childhood AML. CD123 is a critical biomarker and promising immunotherapeutic target for children with relapsed or refractory AML, given its prevalent expression and enrichment in patients with high-risk genetic alterations and inferior clinical outcomes with conventional therapy.
Collapse
Affiliation(s)
- Adam J. Lamble
- Division of Hematology/Oncology, Seattle Children's Hospital, University of Washington, Seattle, WA,Adam J. Lamble, MD, University of Washington–Seattle Children's Hospital, M/S MB.8.501, PO Box 5371, Seattle, WA 98145-5005; e-mail:
| | | | - Todd A. Alonzo
- Children's Oncology Group, Monrovia, CA,University of Southern California, Keck School of Medicine, Los Angeles, CA
| | - Jim Wang
- Children's Oncology Group, Monrovia, CA
| | | | - Lillian Sung
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, CA
| | - Todd M. Cooper
- Division of Hematology/Oncology, Seattle Children's Hospital, University of Washington, Seattle, WA
| | - E. Anders Kolb
- Division of Oncology, Nemours/Alfred I. Dupont Hospital for Children, Wilmington, DE
| | - Richard Aplenc
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA,Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Sarah K. Tasian
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA,Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | | | - Soheil Meshinchi
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| |
Collapse
|
43
|
Badar T, Manna A, Gadd ME, Kharfan-Dabaja MA, Qin H. Prospect of CAR T-cell therapy in acute myeloid leukemia. Expert Opin Investig Drugs 2022; 31:211-220. [PMID: 35051347 DOI: 10.1080/13543784.2022.2032642] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Long-term outcome of patients with acute myeloid leukemia (AML) remains dismal, especially for those with high-risk disease or who are refractory to conventional therapy. CAR T-cell therapy provides unique opportunity to improve outcome by specifically targeting leukemia cells through genetically engineered T-cells. AREAS COVERED We summarize the progress of CAR T-cells therapy in AML. We examine its shortcomings in AML therapy and the strategies that are being implemented to improve its safety and effectiveness. PubMed Central, ClinicalTrials.gov and ASH annual meeting abstracts, were searched. Search terms used to identify clinical trials were "CAR T-cells in AML" OR CAR T-cells in leukemia". Relevant clinical trials and CAR T-cell research data was reviewed from June 2009 till July 2021. EXPERT OPINION CAR T-cell therapy has shown promise as a novel therapy, but there are number of barriers to overcome to achieve it full therapeutic potential in AML. Targeting leukemia specific antigen such as CLL1, to avoid myelotoxicity; incorporating checkpoint inhibitors to overcome leukemia induced immunosuppression and allogenic CAR T-cells to increases accessibility to patients with proliferative disease are among the strategies that are being explored to make CAR T-cell a successful immunotherapy for patient with AML.
Collapse
Affiliation(s)
- Talha Badar
- Division of Hematology and Oncology, Department of Medicine, Mayo Clinic, Florida, USA
| | - Alak Manna
- Division of Hematology and Oncology, Department of Medicine, Mayo Clinic, Florida, USA
| | - Martha E Gadd
- Division of Hematology and Oncology, Department of Medicine, Mayo Clinic, Florida, USA
| | | | - Hong Qin
- Division of Hematology and Oncology, Department of Medicine, Mayo Clinic, Florida, USA
| |
Collapse
|
44
|
Challenges and Advances in Chimeric Antigen Receptor Therapy for Acute Myeloid Leukemia. Cancers (Basel) 2022; 14:cancers14030497. [PMID: 35158765 PMCID: PMC8833567 DOI: 10.3390/cancers14030497] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 02/06/2023] Open
Abstract
The advent of chimeric antigen receptor (CAR) T-cell therapy has led to dramatic remission rates in multiple relapsed/refractory hematologic malignancies. While CAR T-cell therapy has been particularly successful as a treatment for B-cell malignancies, effectively treating acute myeloid leukemia (AML) with CARs has posed a larger challenge. AML not only creates an immunosuppressive tumor microenvironment that dampens CAR T-cell responses, but it also lacks many unique tumor-associated antigens, making leukemic-specific targeting difficult. One advantage of CAR T-cell therapy compared to alternative treatment options is the ability to provide prolonged antigen-specific immune effector and surveillance functions. Since many AML CAR targets under investigation including CD33, CD117, and CD123 are also expressed on hematopoietic stem cells, CAR T-cell therapy can lead to severe and potentially lethal myeloablation. Novel strategies to combat these issues include creation of bispecific CARs, CAR T-cell "safety switches", TCR-like CARs, NK CARs, and universal CARs, but all vary in their ability to provide a sustained remission, and consolidation with an allogeneic hematopoietic cell transplantation (allo-HCT) will be necessary in most cases This review highlights the delicate balance between effectively eliminating AML blasts and leukemic stem cells, while preserving the ability for bone marrow to regenerate. The impact of CAR therapy on treatment landscape of AML and changing scope of allo-HCT is discussed. Continued advances in AML CAR therapy would be of great benefit to a disease that still has high morbidity and mortality.
Collapse
|
45
|
Pediatric Acute Myeloid Leukemia—Past, Present, and Future. J Clin Med 2022; 11:jcm11030504. [PMID: 35159956 PMCID: PMC8837075 DOI: 10.3390/jcm11030504] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/31/2021] [Accepted: 01/13/2022] [Indexed: 02/06/2023] Open
Abstract
This review reports about the main steps of development in pediatric acute myeloid leukemia (AML) concerning diagnostics, treatment, risk groups, and outcomes. Finally, a short overview of present and future approaches is given.
Collapse
|
46
|
Current Limitations and Perspectives of Chimeric Antigen Receptor-T-Cells in Acute Myeloid Leukemia. Cancers (Basel) 2021; 13:cancers13246157. [PMID: 34944782 PMCID: PMC8699597 DOI: 10.3390/cancers13246157] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Acute myeloid leukemia (AML) is the most frequent type of acute leukemia in adults. Allogeneic hematopoietic cell transplantation (allo-HCT) has been the only potentially curative treatment for the majority of patients. The ability of chimeric antigen receptor (CAR)-modified T-cell therapy directed against the CD19 antigen to induce durable remissions in patients with acute lymphoblastic leukemia (ALL) has provided optimism that this novel treatment paradigm can be extrapolated to AML. In this review, we provide an overview of candidate target antigens for CAR-T-cells in AML, an update on recent progress in preclinical and clinical development of investigational CAR-T-cell products, and discuss challenges for the clinical implementation of CAR-T-cell therapy in AML. Abstract Adoptive transfer of gene-engineered chimeric antigen receptor (CAR)-T-cells has emerged as a powerful immunotherapy for combating hematologic cancers. Several target antigens that are prevalently expressed on AML cells have undergone evaluation in preclinical CAR-T-cell testing. Attributes of an ‘ideal’ target antigen for CAR-T-cell therapy in AML include high-level expression on leukemic blasts and leukemic stem cells (LSCs), and absence on healthy tissues, normal hematopoietic stem and progenitor cells (HSPCs). In contrast to other blood cancer types, where CAR-T therapies are being similarly studied, only a rather small number of AML patients has received CAR-T-cell treatment in clinical trials, resulting in limited clinical experience for this therapeutic approach in AML. For curative AML treatment, abrogation of bulk blasts and LSCs is mandatory with the need for hematopoietic recovery after CAR-T administration. Herein, we provide a critical review of the current pipeline of candidate target antigens and corresponding CAR-T-cell products in AML, assess challenges for clinical translation and implementation in routine clinical practice, as well as perspectives for overcoming them.
Collapse
|
47
|
Abstract
INTRODUCTION Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare and aggressive hematologic malignancy with historically poor outcomes for patients, often refractory to traditional chemotherapy. Recent research has focused on targeted therapy to improve responses and limit potential toxicity. AREAS COVERED CD123 (also known as IL-3 Rα) is a cell surface marker and attractive therapeutic target for many myeloid malignancies, particularly BPDCN, whose cells ubiquitously overexpress CD123. We review the history of CD123 research regarding BPDCN, recent advances including FDA approval of tagraxofusp (formerly SL-401) for BPDCN, and ongoing clinical studies utilizing novel therapeutic strategies to target CD123. EXPERT OPINION The approval of tagraxofusp for the treatment of BPDCN in December 2018 drastically changed the treatment landscape for patients with this rare neoplasm. While tagraxofusp is better tolerated than traditional multi-agent chemotherapy regimens, it requires close monitoring and sound clinical judgment by providers to prevent and mitigate severe treatment-related complications with special attention to the recognition and management of capillary leak syndrome (CLS). Several other promising strategies for targeting CD123 in BPDCN are currently under investigation, including antibody-drug conjugates, T-cell engagers, and CAR-T cellular therapeutics. These CD123 targeted approaches may soon become standard of care for patients with this difficult to treat malignancy.
Collapse
Affiliation(s)
- Adam J DiPippo
- Clinical Pharmacy Specialist, Pharmacy Clinical Programs, The University of Texas Md Anderson Cancer Center, Houston,Texas US
| | - Nathaniel R Wilson
- Resident Physician, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, Texas, US
| | - Naveen Pemmaraju
- Associate Professor, Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, US
| |
Collapse
|
48
|
Bonnevaux H, Guerif S, Albrecht J, Jouannot E, De Gallier T, Beil C, Lange C, Leuschner WD, Schneider M, Lemoine C, Caron A, Amara C, Barrière C, Siavellis J, Bardet V, Luna E, Agrawal P, Drake DR, Rao E, Wonerow P, Carrez C, Blanc V, Hsu K, Wiederschain D, Fraenkel PG, Virone-Oddos A. Pre-clinical development of a novel CD3-CD123 bispecific T-cell engager using cross-over dual-variable domain (CODV) format for acute myeloid leukemia (AML) treatment. Oncoimmunology 2021; 10:1945803. [PMID: 34484869 PMCID: PMC8409758 DOI: 10.1080/2162402x.2021.1945803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Novel therapies are needed for effective treatment of AML. In the relapsed setting, prognosis is very poor despite salvage treatment with chemotherapy. Evidence suggests that leukemic stem cells (LSCs) cause relapse. The cell surface receptor CD123 is highly expressed in blast cells and LSCs from AML patients and is a potential therapeutic target. CD123 cross-over dual-variable domain T-cell engager (CD123-CODV-TCE) is a bispecific antibody with an innovative format. One arm targets the CD3εδ subunit of T-cell co-receptors on the surface of T cells, while the other targets CD123 on malignant cells, leading to cell-specific cytotoxic activity. Here, we describe the preclinical activity of CD123-CODV-TCE. CD123-CODV-TCE effectively binds to human and cynomolgus monkey CD3 and CD123 and is a highly potent T-cell engager. It mediates T-cell activation and T-cell-directed killing of AML cells in vitro. In vivo, CD123-CODV-TCE suppresses AML tumor growth in leukemia xenograft mouse models, where it achieves an effective half-life of 3.2 days, which is a significantly longer half-life compared to other bispecific antibodies with no associated Fc fragment. The in vitro safety profile is as expected for compounds with similar modes of action. These results suggest that CD123-CODV-TCE may be a promising therapy for patients with relapsed/refractory AML.
Collapse
Affiliation(s)
- Hélène Bonnevaux
- Sanofi R&D, Vitry-sur-Seine, France; Frankfurt, Germany; and Cambridge, MA, USA
| | - Stephane Guerif
- Sanofi R&D, Vitry-sur-Seine, France; Frankfurt, Germany; and Cambridge, MA, USA
| | - Jana Albrecht
- Sanofi R&D, Vitry-sur-Seine, France; Frankfurt, Germany; and Cambridge, MA, USA
| | - Erwan Jouannot
- Sanofi R&D, Vitry-sur-Seine, France; Frankfurt, Germany; and Cambridge, MA, USA
| | - Thibaud De Gallier
- Sanofi R&D, Vitry-sur-Seine, France; Frankfurt, Germany; and Cambridge, MA, USA
| | - Christian Beil
- Sanofi R&D, Vitry-sur-Seine, France; Frankfurt, Germany; and Cambridge, MA, USA
| | - Christian Lange
- Sanofi R&D, Vitry-sur-Seine, France; Frankfurt, Germany; and Cambridge, MA, USA
| | - Wulf Dirk Leuschner
- Sanofi R&D, Vitry-sur-Seine, France; Frankfurt, Germany; and Cambridge, MA, USA
| | - Marion Schneider
- Sanofi R&D, Vitry-sur-Seine, France; Frankfurt, Germany; and Cambridge, MA, USA
| | - Cendrine Lemoine
- Sanofi R&D, Vitry-sur-Seine, France; Frankfurt, Germany; and Cambridge, MA, USA
| | - Anne Caron
- Sanofi R&D, Vitry-sur-Seine, France; Frankfurt, Germany; and Cambridge, MA, USA
| | - Céline Amara
- Sanofi R&D, Vitry-sur-Seine, France; Frankfurt, Germany; and Cambridge, MA, USA
| | - Cédric Barrière
- Sanofi R&D, Vitry-sur-Seine, France; Frankfurt, Germany; and Cambridge, MA, USA
| | - Justine Siavellis
- Hopitaux Universitaires Paris Ile De France Ouest, Université Versailles Saint Quentin, Paris, France
| | - Valérie Bardet
- Hopitaux Universitaires Paris Ile De France Ouest, Université Versailles Saint Quentin, Paris, France
| | | | | | | | - Ercole Rao
- Sanofi R&D, Vitry-sur-Seine, France; Frankfurt, Germany; and Cambridge, MA, USA
| | - Peter Wonerow
- Sanofi R&D, Vitry-sur-Seine, France; Frankfurt, Germany; and Cambridge, MA, USA
| | - Chantal Carrez
- Sanofi R&D, Vitry-sur-Seine, France; Frankfurt, Germany; and Cambridge, MA, USA
| | - Véronique Blanc
- Sanofi R&D, Vitry-sur-Seine, France; Frankfurt, Germany; and Cambridge, MA, USA
| | - Karl Hsu
- Sanofi R&D, Vitry-sur-Seine, France; Frankfurt, Germany; and Cambridge, MA, USA
| | - Dmitri Wiederschain
- Sanofi R&D, Vitry-sur-Seine, France; Frankfurt, Germany; and Cambridge, MA, USA
| | - Paula G Fraenkel
- Sanofi R&D, Vitry-sur-Seine, France; Frankfurt, Germany; and Cambridge, MA, USA
| | - Angéla Virone-Oddos
- Sanofi R&D, Vitry-sur-Seine, France; Frankfurt, Germany; and Cambridge, MA, USA
| |
Collapse
|
49
|
Shademan B, Karamad V, Nourazarian A, Avcı CB. CAR T Cells: Cancer Cell Surface Receptors Are the Target for Cancer Therapy. Adv Pharm Bull 2021; 12:476-489. [PMID: 35935042 PMCID: PMC9348524 DOI: 10.34172/apb.2022.051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/12/2021] [Accepted: 08/17/2021] [Indexed: 11/09/2022] Open
Abstract
Immunotherapy has become a prominent strategy for the treatment of cancer. A method that improves the immune system's ability to attack a tumor (Enhances antigen binding). Targeted killing of malignant cells by adoptive transfer of chimeric antigen receptor (CAR) T cells is a promising immunotherapy technique in the treatment of cancers. For this purpose, the patient's immune cells, with genetic engineering aid, are loaded with chimeric receptors that have particular antigen binding and activate cytotoxic T lymphocytes. That increases the effectiveness of immune cells and destroying cancer cells. This review discusses the basic structure and function of CAR-T cells and how antigenic targets are identified to treat different cancers and address the disadvantages of this treatment for cancer.
Collapse
Affiliation(s)
- Behrouz Shademan
- Department of Medical Biology, Faculty of Medicine, EGE University, Izmir, Turkey
| | - Vahidreza Karamad
- Department of Medical Biology, Faculty of Medicine, EGE University, Izmir, Turkey
| | - Alireza Nourazarian
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Cigir Biray Avcı
- Department of Medical Biology, Faculty of Medicine, EGE University, Izmir, Turkey
| |
Collapse
|
50
|
Marofi F, Rahman HS, Al-Obaidi ZMJ, Jalil AT, Abdelbasset WK, Suksatan W, Dorofeev AE, Shomali N, Chartrand MS, Pathak Y, Hassanzadeh A, Baradaran B, Ahmadi M, Saeedi H, Tahmasebi S, Jarahian M. Novel CAR T therapy is a ray of hope in the treatment of seriously ill AML patients. Stem Cell Res Ther 2021; 12:465. [PMID: 34412685 PMCID: PMC8377882 DOI: 10.1186/s13287-021-02420-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/26/2021] [Indexed: 12/20/2022] Open
Abstract
Acute myeloid leukemia (AML) is a serious, life-threatening, and hardly curable hematological malignancy that affects the myeloid cell progenies and challenges patients of all ages but mostly occurs in adults. Although several therapies are available including chemotherapy, allogeneic hematopoietic stem cell transplantation (alloHSCT), and receptor-antagonist drugs, the 5-year survival of patients is quietly disappointing, less than 30%. alloHSCT is the major curative approach for AML with promising results but the treatment has severe adverse effects such as graft-versus-host disease (GVHD). Therefore, as an alternative, more efficient and less harmful immunotherapy-based approaches such as the adoptive transferring T cell therapy are in development for the treatment of AML. As such, chimeric antigen receptor (CAR) T cells are engineered T cells which have been developed in recent years as a breakthrough in cancer therapy. Interestingly, CAR T cells are effective against both solid tumors and hematological cancers such as AML. Gradually, CAR T cell therapy found its way into cancer therapy and was widely used for the treatment of hematologic malignancies with successful results particularly with somewhat better results in hematological cancer in comparison to solid tumors. The AML is generally fatal, therapy-resistant, and sometimes refractory disease with a disappointing low survival rate and weak prognosis. The 5-year survival rate for AML is only about 30%. However, the survival rate seems to be age-dependent. Novel CAR T cell therapy is a light at the end of the tunnel. The CD19 is an important target antigen in AML and lymphoma and the CAR T cells are engineered to target the CD19. In addition, a lot of research goes on the discovery of novel target antigens with therapeutic efficacy and utilizable for generating CAR T cells against various types of cancers. In recent years, many pieces of research on screening and identification of novel AML antigen targets with the goal of generation of effective anti-cancer CAR T cells have led to new therapies with strong cytotoxicity against cancerous cells and impressive clinical outcomes. Also, more recently, an improved version of CAR T cells which were called modified or smartly reprogrammed CAR T cells has been designed with less unwelcome effects, less toxicity against normal cells, more safety, more specificity, longer persistence, and proliferation capability. The purpose of this review is to discuss and explain the most recent advances in CAR T cell-based therapies targeting AML antigens and review the results of preclinical and clinical trials. Moreover, we will criticize the clinical challenges, side effects, and the different strategies for CAR T cell therapy.
Collapse
Affiliation(s)
- Faroogh Marofi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Heshu Sulaiman Rahman
- College of Medicine, University of Sulaimani, Sulaimaniyah, Iraq.,Department of Medical Laboratory Sciences, Komar University of Science and Technology, Chaq-Chaq Qularaise, Sulaimaniyah, Iraq
| | - Zaid Mahdi Jaber Al-Obaidi
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Alkafeel, Najaf, 54001, Iraq.,Department of Chemistry and Biochemistry, College of Medicine, University of Kerbala, Karbala, 56001, Iraq
| | | | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al Kharj, Saudi Arabia.,Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | - Wanich Suksatan
- Faculty of Nursing, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, 10210, Thailand
| | | | - Navid Shomali
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Yashwant Pathak
- Taneja College of Pharmacy, University of South Florida, Tampa, FL, USA.,Department of Pharmaceutics, Faculty of Pharmacy, Airlangga University, Surabaya, Indonesia
| | - Ali Hassanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Ahmadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Saeedi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Safa Tahmasebi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mostafa Jarahian
- German Cancer Research Center, Toxicology and Chemotherapy, No. 2, Floor 4 Unit (G401), 69120, Heidelberg, Germany.
| |
Collapse
|