1
|
Nguyen JT, Jessri M, Costa-da-Silva AC, Sharma R, Mays JW, Treister NS. Oral Chronic Graft-Versus-Host Disease: Pathogenesis, Diagnosis, Current Treatment, and Emerging Therapies. Int J Mol Sci 2024; 25:10411. [PMID: 39408739 PMCID: PMC11476840 DOI: 10.3390/ijms251910411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/16/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Chronic graft-versus-host disease (cGvHD) is a multisystem disorder that occurs in recipients of allogeneic hematopoietic (alloHCT) stem cell transplants and is characterized by both inflammatory and fibrotic manifestations. It begins with the recognition of host tissues by the non-self (allogeneic) graft and progresses to tissue inflammation, organ dysfunction and fibrosis throughout the body. Oral cavity manifestations of cGVHD include mucosal features, salivary gland dysfunction and fibrosis. This review synthesizes current knowledge on the pathogenesis, diagnosis and management of oral cGVHD, with a focus on emerging trends and novel therapeutics. Data from various clinical studies and expert consensus are integrated to provide a comprehensive overview.
Collapse
Affiliation(s)
- Joe T. Nguyen
- Nguyen Laboratory, Head and Neck Cancer Section, Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Oral Immunobiology Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA; (A.C.C.-d.-S.); (R.S.); (J.W.M.)
| | - Maryam Jessri
- Metro North Hospital and Health Service, Queensland Health, Brisbane, QLD 4029, Australia;
- Department of Oral Medicine and Pathology, School of Dentistry, The University of Queensland, Herston, QLD 4072, Australia
| | - Ana C. Costa-da-Silva
- Oral Immunobiology Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA; (A.C.C.-d.-S.); (R.S.); (J.W.M.)
| | - Rubina Sharma
- Oral Immunobiology Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA; (A.C.C.-d.-S.); (R.S.); (J.W.M.)
| | - Jacqueline W. Mays
- Oral Immunobiology Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA; (A.C.C.-d.-S.); (R.S.); (J.W.M.)
| | - Nathaniel S. Treister
- Division of Oral Medicine and Dentistry, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA 02114, USA
| |
Collapse
|
2
|
Contreras-Castillo E, García-Rasilla VY, García-Patiño MG, Licona-Limón P. Stability and plasticity of regulatory T cells in health and disease. J Leukoc Biol 2024; 116:33-53. [PMID: 38428948 DOI: 10.1093/jleuko/qiae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/09/2024] [Accepted: 02/19/2024] [Indexed: 03/03/2024] Open
Abstract
The mechanisms that negatively regulate inflammation upon a pathogenic stimulus are crucial for the maintenance of tissue integrity and organ function. T regulatory cells are one of the main drivers in controlling inflammation. The ability of T regulatory cells to adapt to different inflammatory cues and suppress inflammation is one of the relevant features of T regulatory cells. During this process, T regulatory cells express different transcription factors associated with their counterparts, Th helper cells, including Tbx21, GATA-3, Bcl6, and Rorc. The acquisition of this transcription factor helps the T regulatory cells to suppress and migrate to the different inflamed tissues. Additionally, the T regulatory cells have different mechanisms that preserve stability while acquiring a particular T regulatory cell subtype. This review focuses on describing T regulatory cell subtypes and the mechanisms that maintain their identity in health and diseases.
Collapse
Affiliation(s)
- Eugenio Contreras-Castillo
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito exterior s/n, CU Coyoacán, México City 04510, Mexico
| | - Verónica Yutsil García-Rasilla
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito exterior s/n, CU Coyoacán, México City 04510, Mexico
| | - María Guadalupe García-Patiño
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito exterior s/n, CU Coyoacán, México City 04510, Mexico
| | - Paula Licona-Limón
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito exterior s/n, CU Coyoacán, México City 04510, Mexico
| |
Collapse
|
3
|
Tollemar V, Ström J, Tudzarovski N, Häbel H, Legert KG, Heymann R, Warfvinge G, Le Blanc K, Sugars RV. Immunohistopathology of oral mucosal chronic graft-versus-host disease severity and duration. Oral Dis 2023; 29:3346-3359. [PMID: 35796584 DOI: 10.1111/odi.14303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/23/2022] [Accepted: 07/04/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Chronic graft-versus-host disease (cGVHD) is the main cause of late non-relapse mortality following hematopoietic cell transplantation. Oral mucosal (om-) cGVHD is common, but diagnosis and assessment rely on clinical interpretation and patient-reported symptoms. We investigated immunohistopathological profiles with respect to om-cGVHD severity disease duration. MATERIAL AND METHODS Ninety-four transplant patients and 15 healthy controls (n = 212 biopsies) were investigated by quantitative immunohistochemistry for T cells (CD4, CD8, and CD5), B cells (CD19 and CD20), macrophages (CD68), and Langerhans cells (CD1a). RESULTS We found significant increases in T (CD4, CD8) and monocytic (CD68) cells in om-cGVHD, and a notable absence of B (CD19 and CD20) cells. Histopathological activity correlated with increased CD4, CD8 and CD68. However, CD4 was associated with mild om-cGVHD, whereas CD8 and CD68 were found to be elevated in severe om-cGVHD. CD8 and CD68 levels were raised at disease onset, but during late phase, the predominant CD68 population was accompanied by CD4. CONCLUSION Oral cGVHD is a heterogenous clinical disorder, but our knowledge of the underlying biology remains limited. We highlight the importance of CD4, CD8 and CD68 immune profiling, together with histological grading for the staging of oral cGVHD, to broaden our understanding of the biology and individual disease course.
Collapse
Affiliation(s)
- Victor Tollemar
- Division of Oral Diagnostics and Rehabilitation, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jennifer Ström
- Division of Oral Diagnostics and Rehabilitation, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Nikolce Tudzarovski
- Division of Oral Diagnostics and Rehabilitation, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Henrike Häbel
- Division of Biostatistics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Karin Garming Legert
- Division of Oral Diagnostics and Rehabilitation, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Robert Heymann
- Division of Oral Diagnostics and Rehabilitation, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
- Medical Unit for Reconstructive Plastic- and Craniofacial Surgery, Karolinska University Hospital, Stockholm, Sweden
| | - Gunnar Warfvinge
- Department of Oral Pathology, Faculty of Odontology, Malmö University, Malmö, Sweden
| | - Katarina Le Blanc
- Division of Clinical Immunology and Transfusion Medicine, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Center of Allogeneic Stem Cell Transplantation and Cellular Therapy (CAST), Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Rachael Victoria Sugars
- Division of Oral Diagnostics and Rehabilitation, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
4
|
Tollemar V, Garming Legert K, Sugars RV. Perspectives on oral chronic graft-versus-host disease from immunobiology to morbid diagnoses. Front Immunol 2023; 14:1151493. [PMID: 37449200 PMCID: PMC10338056 DOI: 10.3389/fimmu.2023.1151493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
Chronic Graft-versus-Host Disease (cGVHD) is a major long-term complication, associated with morbidity and mortality in patients following allogenic hematopoietic cell transplantation (HCT) for immune hematopoietic disorders. The mouth is one of the most frequently affected organs after HCT (45-83%) and oral cGVHD, which may appear as the first visible sign. Manifestations present with mucosal lichenoid lesions, salivary gland dysfunction and limited oral aperture. Diagnosis of oral cGVHD severity is based on mucosal lesions with symptoms of sensitivity and pain and reduced oral intake. However, diagnostic difficulties arise due to subjective definitions and low specificity to cover the spectrum of oral cGVHD. In recent years there have been significant improvements in our understanding of the underlying oral cGVHD disease mechanisms. Drawing upon the current knowledge on the pathophysiology and biological phases of oral cGVHD, we address oral mucosa lichenoid and Sjogren's Syndrome-like sicca syndromes. We consider the response of alloreactive T-cells and macrophages to recipient tissues to drive the pathophysiological reactions and biological phases of acute inflammation (phase 1), chronic inflammation and dysregulated immunity (phase 2), and subsequent aberrant fibrotic healing (phase 3), which in time may be associated with an increased malignant transformation rate. When formulating treatment strategies, the pathophysiological spectrum of cGVHD is patient dependent and not every patient may progress chronologically through the biological stages. As such there remains a need to address and clarify personalized diagnostics and management to improve treatment descriptions. Within this review, we highlight the current state of the art knowledge on oral cGVHD pathophysiology and biological phases. We address knowledge gaps of oral cGVHD, with a view to facilitate clinical management and improve research quality on lichenoid biology and morbid forms of oral cGVHD.
Collapse
Affiliation(s)
| | | | - Rachael V. Sugars
- Division of Oral Diagnostics and Rehabilitation, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
5
|
Ji R, Li Y, Huang R, Xiong J, Wang X, Zhang X. Recent Advances and Research Progress in Biomarkers for Chronic Graft Versus Host Disease. Crit Rev Oncol Hematol 2023; 186:103993. [PMID: 37061073 DOI: 10.1016/j.critrevonc.2023.103993] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 03/24/2023] [Accepted: 04/11/2023] [Indexed: 04/17/2023] Open
Abstract
Chronic graft-versus host disease (cGVHD) is a major risk for patients undergoing allogeneic hematopoietic stem cell transplantation. With the emergence of novel therapies and the increased understanding of the mechanisms underlying cGVHD, there are more options for cGVHD treatment. Regardless of improvements in treatment, diagnosis mainly depends on identification of symptoms, which makes precise treatment a challenge. Numerous biomarkers for cGVHD have been validated and have demonstrated strong associations with prognosis and response to treatment. The most common biomarkers mainly include critical types of immune cells, chemokines, cytokines, microRNAs, and autoantibodies, all of which play important roles in the development of cGVHD. Compared to traditional tools, biomarkers have several advantages, for example, they can be applied for early diagnosis, to identify cGVHD risk before onset, and predict which therapy is most likely to benefit patients. In this review, we summarize biomarkers with potential clinical value and discuss future applications.
Collapse
Affiliation(s)
- Rui Ji
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing 400037, China
| | - Yue Li
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing 400037, China
| | - Ruihao Huang
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing 400037, China
| | - Jingkang Xiong
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing 400037, China
| | - Xiaoqi Wang
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing 400037, China.
| | - Xi Zhang
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing 400037, China; Jinfeng Laboratory, Chongqing 400037, China.
| |
Collapse
|
6
|
Bayegi SN, Hamidieh AA, Behfar M, Saghazadeh A, Bozorgmehr M, Karamlou Y, Shekarabi M, Tajik N, Delbandi AA, Zavareh FT, Delavari S, Rezaei N. T helper 17 and regulatory T-cell profile and graft-versus-host disease after allogeneic hematopoietic stem cell transplantation in pediatric patients with beta-thalassemia. Transpl Immunol 2023; 77:101803. [PMID: 36842567 DOI: 10.1016/j.trim.2023.101803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/29/2023] [Accepted: 02/21/2023] [Indexed: 02/28/2023]
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is an effective treatment option for hereditary hemoglobin disorders, such as beta-thalassemia; However, this procedure is not without constraints, mainly engendering complications such as acute graft-versus-host disease (aGvHD), chronic GvHD (cGvHD), and susceptibility to infections. The clinical outcomes of allo-HSCT are highly dependant on the quality and quantity of T-cell subsets reconstitution. Following the allo-HSCT of six pediatric patients afflicted with beta-thalassemia, their mononuclear cells were isolated, and then cultured with a combination of phorbol myristate acetate (PMA)/ionomycin and Brefeldin A. The content of CD4 T-cell subsets, including T helper 17 (Th17) cells and regulatory T cells (Tregs), were determined by specific conjugated-monoclonal antibodies three and six months post-HSCT. An increased frequency of total CD4 T-cells, Tregs and Th17 cells was observed at day 90 and 180 after allo-HSCT, albeit the numbers were still lower than that of our healthy controls. In patients who developed cGvHD, a lower Th17/Treg ratio was observed, owing it to a decreased proportion of Th17 cells. In conclusion, creating balance between Th17 and Treg subsets may prevent acute and chronic GvHD in patients after allo-HSCT.
Collapse
Affiliation(s)
- Shideh Namazi Bayegi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Pediatric Cell and Gene Therapy Research Center, Gene, Cell and Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Ali Hamidieh
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell and Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Behfar
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell and Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Amene Saghazadeh
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mahmood Bozorgmehr
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Yalda Karamlou
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell and Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Shekarabi
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Nader Tajik
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Ali-Akbar Delbandi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Farzaneh Tofighi Zavareh
- Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Samaneh Delavari
- Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy, and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
7
|
Milosevic E, Babic A, Iovino L, Markovic M, Grce M, Greinix H. Use of the NIH consensus criteria in cellular and soluble biomarker research in chronic graft-versus-host disease: A systematic review. Front Immunol 2022; 13:1033263. [DOI: 10.3389/fimmu.2022.1033263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectivesChronic graft-versus-host disease (cGvHD) is the most frequent cause of late non-relapse mortality after allogeneic haematopoietic stem cell transplantation (alloHCT). Nevertheless, established biomarkers of cGvHD are still missing. The National Institutes of Health (NIH) Consensus Development Project on Criteria for Clinical Trials in cGvHD provided recommendations for biomarker research. We evaluated to which extent studies on cellular and soluble biomarkers in cGvHD published in the last 10 years complied with these recommendations. Also, we highlight the most promising biomarker candidates, verified in independent cohorts and/or repeatedly identified by separate studies.MethodsWe searched Medline and EMBASE for “cGvHD”, “biomarkers”, “soluble” and “cells” as MeSH terms or emtree subject headings, and their variations on July 28th, 2021, limited to human subjects, English language and last ten years. Reviews, case reports, conference abstracts and single nucleotide polymorphism studies were excluded. Criteria based on the set of recommendations from the NIH group for biomarker research in cGvHD were used for scoring and ranking the references.ResultsA total of 91 references encompassing 15,089 participants were included, 54 prospective, 17 retrospective, 18 cross-sectional, and 2 studies included both prospective and retrospective cohorts. Thirty-five papers included time-matched controls without cGvHD and 20 studies did not have any control subjects. Only 9 studies were randomized, and 8 were multicentric. Test and verification cohorts were included in 11 studies. Predominantly, diagnostic biomarkers were explored (n=54). Assigned scores ranged from 5-34. None of the studies fulfilled all 24 criteria (48 points). Nevertheless, the scores improved during the last years. Three cell subsets (CXCR3+CD56bright NK cells, CD19+CD21low and BAFF/CD19+ B cells) and several soluble factors (BAFF, IL-15, CD163, DKK3, CXCL10 and the panel of ST2, CXCL9, MMP3 and OPN) had the highest potential as diagnostic and/or prognostic biomarkers in cGvHD.ConclusionDespite several limitations of this review (limited applicability for paediatric population, definition of verification, missing data on comorbidities), we identified promising candidate biomarkers for further evaluation in multicentre collaborative studies. This review confirms the importance of the NIH consensus group criteria for improving the quality and reproducibility of cGvHD biomarker research.
Collapse
|
8
|
A randomized phase 2 trial of pomalidomide in subjects failing prior therapy for chronic graft-versus-host disease. Blood 2021; 137:896-907. [PMID: 32976576 DOI: 10.1182/blood.2020006892] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 09/18/2020] [Indexed: 12/21/2022] Open
Abstract
Steroid-refractory chronic graft-versus-host disease (cGVHD) is a therapeutic challenge. Sclerotic skin manifestations are especially difficult to treat. We conducted a randomized phase 2 clinical trial (#NCT01688466) to determine the safety, efficacy, and preferred dose of pomalidomide in persons with moderate to severe cGVHD unresponsive to corticosteroids and/or subsequent lines of therapy. Thirty-four subjects were randomized to receive pomalidomide 0.5 mg per day orally (n = 17; low-dose cohort) or 2 mg per day at a starting dose of 0.5 mg per day increasing to 2 mg per day over 6 weeks (n = 17; high-dose cohort). The primary endpoint was overall response rate (ORR) at 6 months according to the 2005 National Institutes of Health cGVHD Response Criteria. Thirty-two patients had severe sclerotic skin and received a median of 5 (range, 2-10) previous systemic therapies. ORR was 47% (95% confidence interval, 30-65) in the intention-to-treat analyses. All were partial responses, with no difference in ORR between the cohorts. ORR was 67% (45%-84%) in the 24 evaluable subjects at 6 months. Nine had improvement in National Institutes of Health joint/fascia scores (P = .018). Median change from the baseline in body surface area involvement of skin cGVHD was -7.5% (-10% to 35%; P = .002). The most frequent adverse events were lymphopenia, infection, and fatigue. Eight subjects in the high-dose cohort had dose decreases because of adverse events. There was 1 death in the low-dose cohort from bacterial pneumonia. Our data indicate antifibrotic effects of pomalidomide and possible association with increases in concentrations of blood regulatory T-cell and interleukin-2. Pomalidomide 0.5 mg per day is a safe and effective therapy for advanced corticosteroid-refractory cGVHD.
Collapse
|
9
|
Wienke J, Brouwers L, van der Burg LM, Mokry M, Scholman RC, Nikkels PG, van Rijn BB, van Wijk F. Human Tregs at the materno-fetal interface show site-specific adaptation reminiscent of tumor Tregs. JCI Insight 2020; 5:137926. [PMID: 32809975 PMCID: PMC7526557 DOI: 10.1172/jci.insight.137926] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 08/12/2020] [Indexed: 02/06/2023] Open
Abstract
Tregs are crucial for maintaining maternal immunotolerance against the semiallogeneic fetus. We investigated the elusive transcriptional profile and functional adaptation of human uterine Tregs (uTregs) during pregnancy. Uterine biopsies, from placental bed (materno-fetal interface) and incision site (control) and blood were obtained from women with uncomplicated pregnancies undergoing cesarean section. Tregs and CD4+ non-Tregs were isolated for transcriptomic profiling by Cel-Seq2. Results were validated on protein and single cell levels by flow cytometry. Placental bed uTregs showed elevated expression of Treg signature markers, including FOXP3, CTLA-4, and TIGIT. Their transcriptional profile was indicative of late-stage effector Treg differentiation and chronic activation, with increased expression of immune checkpoints GITR, TNFR2, OX-40, and 4-1BB; genes associated with suppressive capacity (HAVCR2, IL10, LAYN, and PDCD1); and transcription factors MAF, PRDM1, BATF, and VDR. uTregs mirrored non-Treg Th1 polarization and tissue residency. The particular transcriptional signature of placental bed uTregs overlapped strongly with that of tumor-infiltrating Tregs and was remarkably pronounced at the placental bed compared with uterine control site. In conclusion, human uTregs acquire a differentiated effector Treg profile similar to tumor-infiltrating Tregs, specifically at the materno-fetal interface. This introduces the concept of site-specific transcriptional adaptation of Tregs within 1 organ. Human regulatory T cells at the maternal-fetal interface show uterine site-specific functional adaptation with late-stage effector differentiation, chronic activation, Th1 polarization, and tumor-infiltrating, Treg-like features.
Collapse
Affiliation(s)
| | | | | | - Michal Mokry
- Regenerative Medicine Utrecht.,Laboratory of Clinical Chemistry and Hematology, and
| | | | - Peter Gj Nikkels
- Department of Pathology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Netherlands
| | - Bas B van Rijn
- Wilhelmina Children's Hospital Birth Center.,Obstetrics and Fetal Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | | |
Collapse
|
10
|
Fall-Dickson JM, Pavletic SZ, Mays JW, Schubert MM. Oral Complications of Chronic Graft-Versus-Host Disease. J Natl Cancer Inst Monogr 2020; 2019:5551350. [PMID: 31425593 DOI: 10.1093/jncimonographs/lgz007] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/15/2019] [Accepted: 04/01/2019] [Indexed: 02/07/2023] Open
Abstract
The increasing clinical indications for hematopoietic stem cell transplantation (HSCT) and improved clinical care throughout and following HSCT have led to not only long-term survival but also to an increasing incidence and prevalence of graft-versus-host disease (GVHD). Chronic GVHD (cGVHD) affects almost 50% of adult patients post-HSCT, with increasing incidence in pediatric patients as well. Oral cGVHD specifically has a reported prevalence ranging from 45% to 83% in patients who develop cGVHD and is more extensive in adult patients than in children. Oral cGVHD affects patients through clinically significant oral symptoms that may lead to significantly decreased caloric intake, oral infections, and increased health service utilization, and may thus affect overall health and survival. The most commonly used therapy for mucosal involvement of oral cGVHD is topical high-dose and ultra-high potency corticosteroids, and calcineurin inhibitors. This review of oral complications of cGVHD presents the clinical significance of oral cGVHD to HSCT survivors, our current understanding of the pathobiology of oral cGVHD and gaps in this evidence, and the global targeted interdisciplinary clinical research efforts, including the National Institutes of Health Consensus Development Project on Criteria for Clinical Trials in Chronic Graft-versus-Host Disease. Current challenges regarding the management of oral cGVHD and strategies to advance our scientific understanding of this clinically significant chronic oral disease are presented.
Collapse
Affiliation(s)
- Jane M Fall-Dickson
- Department of Professional Nursing Practice, Georgetown University School of Nursing & Health Studies, Washington, DC
| | - Steven Z Pavletic
- Experimental Transplantation and Immunology Branch, National Cancer Institute, Division of Intramural Research, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD
| | - Jacqueline W Mays
- Experimental Transplantation and Immunology Branch, National Cancer Institute, Division of Intramural Research, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD
| | - Mark M Schubert
- Department of Oral Medicine, University of Washington, School of Dentistry and Seattle Cancer Care Alliance and Oral Medicine, Fred Hutchinson Cancer Research Center, Seattle, WA
| |
Collapse
|
11
|
Yang ZZ, Kim HJ, Wu H, Jalali S, Tang X, Krull JE, Ding W, Novak AJ, Ansell SM. TIGIT Expression Is Associated with T-cell Suppression and Exhaustion and Predicts Clinical Outcome and Anti-PD-1 Response in Follicular Lymphoma. Clin Cancer Res 2020; 26:5217-5231. [PMID: 32631956 DOI: 10.1158/1078-0432.ccr-20-0558] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 06/01/2020] [Accepted: 06/30/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE T-cell immunoglobulin and ITIM domain (TIGIT), a member of the immune checkpoint family, is important in normal T-cell biology. However, the phenotypical profile and clinical relevance of TIGIT in follicular lymphoma is largely unknown. EXPERIMENTAL DESIGN Biopsy specimens from a cohort of 82 patients with follicular lymphoma were analyzed using mass cytometry to explore the phenotype and biological and clinical significance of TIGIT+ T cells. RESULTS TIGIT is highly expressed on intratumoral T cells and its expression alters T-cell phenotype in follicular lymphoma. TIGIT is abundantly expressed on Treg cells, resulting in an enhanced suppressive property. TIGIT expression on non-Treg/TFH T cells defines a population that exhibits an exhausted phenotype. Clinically, increased numbers of TIGIT+ T cells are associated with inferior patient outcomes and poor survival. We observe that anti-PD-1 therapy with pembrolizumab alters the phenotype of TIGIT+ T subsets and identifies a role for CD28 expression on TIGIT+ T cells in treatment response. CONCLUSIONS The current study provides a comprehensive analysis of the phenotypic profile of intratumoral TIGIT+ T subsets and their prognostic relevance in follicular lymphoma. Inhibition of TIGIT signaling may be an additional mechanism to prevent T-cell suppression and exhaustion in B-cell lymphoma.
Collapse
Affiliation(s)
- Zhi-Zhang Yang
- Division of Hematology and Internal Medicine, Mayo Clinic, Rochester, Minnesota.
| | - Hyo Jin Kim
- Division of Hematology and Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Hongyan Wu
- Department of Immunology, Medical College, China Three Gorges University, Yichang, Hubei, China
| | - Shahrzad Jalali
- Division of Hematology and Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Xinyi Tang
- Division of Hematology and Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Jordan E Krull
- Division of Hematology and Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Wei Ding
- Division of Hematology and Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Anne J Novak
- Division of Hematology and Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Stephen M Ansell
- Division of Hematology and Internal Medicine, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
12
|
Golay H, Jurkovic Mlakar S, Mlakar V, Nava T, Ansari M. The Biological and Clinical Relevance of G Protein-Coupled Receptors to the Outcomes of Hematopoietic Stem Cell Transplantation: A Systematized Review. Int J Mol Sci 2019; 20:E3889. [PMID: 31404983 PMCID: PMC6719093 DOI: 10.3390/ijms20163889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 01/04/2023] Open
Abstract
Hematopoietic stem cell transplantation (HSCT) remains the only curative treatment for several malignant and non-malignant diseases at the cost of serious treatment-related toxicities (TRTs). Recent research on extending the benefits of HSCT to more patients and indications has focused on limiting TRTs and improving immunological effects following proper mobilization and engraftment. Increasing numbers of studies report associations between HSCT outcomes and the expression or the manipulation of G protein-coupled receptors (GPCRs). This large family of cell surface receptors is involved in various human diseases. With ever-better knowledge of their crystal structures and signaling dynamics, GPCRs are already the targets for one third of the current therapeutic arsenal. The present paper assesses the current status of animal and human research on GPCRs in the context of selected HSCT outcomes via a systematized survey and analysis of the literature.
Collapse
Affiliation(s)
- Hadrien Golay
- Platform of Pediatric Onco-Hematology research (CANSEARCH Laboratory), Department of Pediatrics, Gynecology, and Obstetrics, University of Geneva, Bâtiment La Tulipe, Avenue de la Roseraie 64, 1205 Geneva, Switzerland
| | - Simona Jurkovic Mlakar
- Platform of Pediatric Onco-Hematology research (CANSEARCH Laboratory), Department of Pediatrics, Gynecology, and Obstetrics, University of Geneva, Bâtiment La Tulipe, Avenue de la Roseraie 64, 1205 Geneva, Switzerland
| | - Vid Mlakar
- Platform of Pediatric Onco-Hematology research (CANSEARCH Laboratory), Department of Pediatrics, Gynecology, and Obstetrics, University of Geneva, Bâtiment La Tulipe, Avenue de la Roseraie 64, 1205 Geneva, Switzerland
| | - Tiago Nava
- Platform of Pediatric Onco-Hematology research (CANSEARCH Laboratory), Department of Pediatrics, Gynecology, and Obstetrics, University of Geneva, Bâtiment La Tulipe, Avenue de la Roseraie 64, 1205 Geneva, Switzerland
- Department of Women-Children-Adolescents, Division of General Pediatrics, Pediatric Onco-Hematology Unit, Geneva University Hospitals (HUG), Avenue de la Roseraie 64, 1205 Geneva, Switzerland
| | - Marc Ansari
- Platform of Pediatric Onco-Hematology research (CANSEARCH Laboratory), Department of Pediatrics, Gynecology, and Obstetrics, University of Geneva, Bâtiment La Tulipe, Avenue de la Roseraie 64, 1205 Geneva, Switzerland.
- Department of Women-Children-Adolescents, Division of General Pediatrics, Pediatric Onco-Hematology Unit, Geneva University Hospitals (HUG), Avenue de la Roseraie 64, 1205 Geneva, Switzerland.
| |
Collapse
|
13
|
Lai P, Chen X, Guo L, Wang Y, Liu X, Liu Y, Zhou T, Huang T, Geng S, Luo C, Huang X, Wu S, Ling W, Du X, He C, Weng J. A potent immunomodulatory role of exosomes derived from mesenchymal stromal cells in preventing cGVHD. J Hematol Oncol 2018; 11:135. [PMID: 30526632 PMCID: PMC6286548 DOI: 10.1186/s13045-018-0680-7] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 11/21/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Mesenchymal stromal cells (MSCs) are a promising therapy for preventing chronic Graft-Versus-Host Disease (cGVHD) due to their potent immunomodulatory properties. However, the safety concerns regarding the use of MSCs remain unsolved, and conflicting effects are observed due to the heterogeneity of MSCs. Recently, exosomes were shown to mediate the paracrine effects of MSCs, making it a potential candidate for cell-free therapies. The aim of this study is to investigate the efficacy and safety of MSCs-derived exosomes (MSCs-exo) in an established cGVHD mouse model. METHODS Bone marrow (BM)-derived MSCs were cultured, and the supernatants of these cultures were collected to prepare exosomes using ultracentrifugation. Exosomes from human dermal fibroblasts (Fib-exo) were used as a negative control. The cGVHD model was established, and tail vein injections of MSCs-exo or Fib-exo were administered once per week for 6 weeks. The symptoms and signs of cGVHD were monitored, and histopathological changes were detected by hematoxylin and eosin and Masson staining. The effects of MSCs-exo on Th17, Th1, and Treg were evaluated by flow cytometry, qPCR, and Luminex. In addition, human peripheral blood mononuclear cells (PBMCs) were stimulated and treated with MSCs-exo in vitro. IL-17-expressing Th17 and IL-10-expressing Treg were evaluated by flow cytometry, qPCR, and ELISA. RESULTS We found that MSCs-exo effectively prolonged the survival of cGVHD mice and diminished the clinical and pathological scores of cGVHD. Fibrosis in the skin, lung, and liver was significantly ameliorated by MSCs-exo application. In MSCs-exo treated mice, activation of CD4+ T cells and their infiltration into the lung were reduced. Of note, MSCs-exo exhibited potent immunomodulatory effects via the inhibition of IL-17-expressing pathogenic T cells and induction of IL-10-expressing regulatory cells during cGVHD. The expressions of Th17 cell-relevant transcription factors and pro-inflammatory cytokines was markedly reduced after MSCs-exo treatment. In vitro, MSCs-exo blocked Th17 differentiation and improved the Treg phenotype in PBMCs obtained from healthy donors and patients with active cGVHD, further indicating the regulatory effect of MSCs-exo on GVHD effector T cells. CONCLUSIONS Our data suggested that MSCs-exo could improve the survival and ameliorate the pathologic damage of cGVHD by suppressing Th17 cells and inducing Treg. This finding provides a novel alternative approach for the treatment of cGVHD.
Collapse
Affiliation(s)
- Peilong Lai
- Department of Hematology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People's Republic of China.,Guangdong Geriatrics Institute, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Xiaomei Chen
- Department of Hematology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Liyan Guo
- Department of Hematology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Yulian Wang
- Department of Hematology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Xialin Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, People's Republic of China
| | - Yan Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, People's Republic of China
| | - Tian Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, People's Republic of China
| | - Tian Huang
- Department of Hematology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Suxia Geng
- Department of Hematology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Chengwei Luo
- Department of Hematology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Xin Huang
- Department of Hematology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Suijing Wu
- Department of Hematology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Wei Ling
- Department of Hematology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Xin Du
- Department of Hematology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People's Republic of China. .,Guangdong Geriatrics Institute, Guangzhou, Guangdong, 510080, People's Republic of China.
| | - Chang He
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, People's Republic of China.
| | - Jianyu Weng
- Department of Hematology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People's Republic of China. .,Guangdong Geriatrics Institute, Guangzhou, Guangdong, 510080, People's Republic of China.
| |
Collapse
|
14
|
Trovillion EM, Gloude NJ, Anderson EJ, Morris GP. Relationship of post-transplant thymopoiesis with CD4 +FoxP3 + regulatory T cell recovery associated with freedom from chronic graft versus host disease. Bone Marrow Transplant 2018; 54:917-920. [PMID: 30413809 PMCID: PMC6509012 DOI: 10.1038/s41409-018-0394-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 10/27/2018] [Accepted: 10/30/2018] [Indexed: 02/07/2023]
Affiliation(s)
- Erin M Trovillion
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Nicholas J Gloude
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Eric J Anderson
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Gerald P Morris
- Department of Pathology, University of California San Diego, La Jolla, California, USA.
| |
Collapse
|
15
|
Motta ACF, Zhan Q, Larson A, Lerman M, Woo SB, Soiffer RJ, Murphy GF, Treister NS. Immunohistopathological characterization and the impact of topical immunomodulatory therapy in oral chronic graft-versus-host disease: A pilot study. Oral Dis 2018; 24:580-590. [PMID: 29197137 PMCID: PMC5902645 DOI: 10.1111/odi.12813] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 11/11/2017] [Accepted: 11/26/2017] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To characterize the immunohistopathological features of oral chronic graft-versus-host disease (cGVHD), and the impact of topical immunomodulatory therapy on the infiltrating cells. MATERIAL AND METHODS Paired oral cGVHD biopsies obtained before (n = 12) and 1 month after treatment (n = 12) with topical dexamethasone (n = 8) or tacrolimus (n = 4) were characterized by immunohistochemistry using a panel of CD1a, CD3, CD4, CD8, CD20, CD31, CD62E, CD103, CD163, c-kit, and FoxP3. Controls included acute GVHD (aGVHD; n = 3), oral lichen planus (OLP; n = 5), and normal tissues (n = 5). RESULTS Oral cGVHD specimens prior to treatment were mainly characterized by basal cell squamatization, lichenoid inflammation, sclerosis, apoptosis, and lymphocytic exocytosis. The infiltrating cells in oral cGVHD primarily consisted of CD3+ , CD4+ , CD8+ , CD103+ , CD163+ , and FoxP3+ cells, which were higher than in normal tissues. Topical dexamethasone or tacrolimus reduced neutrophilic exocytosis, basal cell squamatization, and lichenoid inflammation in oral cGVHD, and dexamethasone reduced the number of CD4+ and CD103+ cells. CONCLUSION The high expression of CD3, CD4, CD8, CD103, CD163, and FoxP3 confirms that oral cGVHD is largely T-cell-driven with macrophage participation. The impact of topical immunomodulatory therapy was variable, reducing histological inflammatory features, but with a weak clinicopathological correlation. Topical dexamethasone reduced the expression of CD4 and CD103, which may offer novel therapeutic targets.
Collapse
Affiliation(s)
- Ana Carolina F. Motta
- Department of Stomatology, Public Oral Health and Forensic Dentistry, School of Dentistry of Ribeirao Preto, University of São Paulo, Ribeirao Preto, SP, Brazil
| | - Qian Zhan
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Allison Larson
- Department of Dermatology, Boston University School of Medicine, Boston, MA, USA
| | - Mark Lerman
- Department of Diagnostic Sciences, Tufts University School of Dental Medicine, Boston, MA, USA
| | - Sook-Bin Woo
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
- Division of Oral Medicine and Dentistry, Brigham and Women’s Hospital, Boston, MA, USA
| | - Robert J. Soiffer
- Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Boston, MA, USA
| | - George F. Murphy
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Nathaniel S. Treister
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
- Division of Oral Medicine and Dentistry, Brigham and Women’s Hospital, Boston, MA, USA
| |
Collapse
|
16
|
Proinflammatory Dual Receptor T Cells in Chronic Graft-versus-Host Disease. Biol Blood Marrow Transplant 2017; 23:1852-1860. [PMID: 28750779 DOI: 10.1016/j.bbmt.2017.07.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 07/16/2017] [Indexed: 12/11/2022]
Abstract
Defective post-transplantation thymopoiesis is associated with chronic graft-versus-host disease (GVHD), a multiorgan pathology affecting up to 80% of patients after allogeneic hematopoietic stem cell transplantation (HSCT). Previous work demonstrated that the subset of T cells expressing 2 T cell receptors (TCRs) is predisposed to alloreactivity, driving selective and disproportionate activity in acute GVHD in both mouse models and HSCT patients. Here we investigate a potential role for this pathogenic T cell subset in chronic GVHD (cGVHD). HSCT patients with cGVHD demonstrated increased numbers of dual TCR cells in circulation. These dual receptor cells had an activated phenotype, indicating an active role in cGVHD. Notably, single-cell RNA sequencing identified the increased dual TCR cells in cGVHD as predominantly expressing Tbet, indicative of a proinflammatory phenotype. These results identify dual TCR cells as specific mediators of pathogenic inflammation underlying cGVHD and highlight Tbet-driven T cell function as a potential pathway for potential therapeutic targeting.
Collapse
|
17
|
Buxbaum NP, Farthing DE, Maglakelidze N, Lizak M, Merkle H, Carpenter AC, Oliver BU, Kapoor V, Castro E, Swan GA, Dos Santos LM, Bouladoux NJ, Bare CV, Flomerfelt FA, Eckhaus MA, Telford WG, Belkaid Y, Bosselut RJ, Gress RE. In vivo kinetics and nonradioactive imaging of rapidly proliferating cells in graft-versus-host disease. JCI Insight 2017; 2:92851. [PMID: 28614804 DOI: 10.1172/jci.insight.92851] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 05/16/2017] [Indexed: 12/25/2022] Open
Abstract
Hematopoietic stem cell transplantation (HSCT) offers a cure for cancers that are refractory to chemotherapy and radiation. Most HSCT recipients develop chronic graft-versus-host disease (cGVHD), a systemic alloimmune attack on host organs. Diagnosis is based on clinical signs and symptoms, as biopsies are risky. T cells are central to the biology of cGVHD. We found that a low Treg/CD4+ T effector memory (Tem) ratio in circulation, lymphoid, and target organs identified early and established mouse cGVHD. Using deuterated water labeling to measure multicompartment in vivo kinetics of these subsets, we show robust Tem and Treg proliferation in lymphoid and target organs, while Tregs undergo apoptosis in target organs. Since deuterium enrichment into DNA serves as a proxy for cell proliferation, we developed a whole-body clinically relevant deuterium MRI approach to nonradioactively detect cGVHD and potentially allow imaging of other diseases characterized by rapidly proliferating cells.
Collapse
Affiliation(s)
- Nataliya P Buxbaum
- Experimental Transplantation and Immunology Branch, National Cancer Institute
| | - Donald E Farthing
- Experimental Transplantation and Immunology Branch, National Cancer Institute
| | | | - Martin Lizak
- In Vivo NMR Center, National Institute of Neurological Disorders and Stroke
| | - Hellmut Merkle
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke
| | | | - Brittany U Oliver
- Experimental Transplantation and Immunology Branch, National Cancer Institute
| | - Veena Kapoor
- Experimental Transplantation and Immunology Branch, National Cancer Institute
| | - Ehydel Castro
- Experimental Transplantation and Immunology Branch, National Cancer Institute
| | - Gregory A Swan
- Experimental Transplantation and Immunology Branch, National Cancer Institute
| | - Liliane M Dos Santos
- Mucosal Immunology Section, National Institute of Allergy and Infectious Diseases, and
| | - Nicolas J Bouladoux
- Mucosal Immunology Section, National Institute of Allergy and Infectious Diseases, and
| | - Catherine V Bare
- Experimental Transplantation and Immunology Branch, National Cancer Institute
| | | | - Michael A Eckhaus
- Diagnostic and Research Services Branch, Office of the Director, NIH, Bethesda, Maryland, USA
| | - William G Telford
- Experimental Transplantation and Immunology Branch, National Cancer Institute
| | - Yasmine Belkaid
- Mucosal Immunology Section, National Institute of Allergy and Infectious Diseases, and
| | - Remy J Bosselut
- Laboratory of Immune Cell Biology, National Cancer Institute
| | - Ronald E Gress
- Experimental Transplantation and Immunology Branch, National Cancer Institute
| |
Collapse
|
18
|
Cooke KR, Luznik L, Sarantopoulos S, Hakim FT, Jagasia M, Fowler DH, van den Brink MRM, Hansen JA, Parkman R, Miklos DB, Martin PJ, Paczesny S, Vogelsang G, Pavletic S, Ritz J, Schultz KR, Blazar BR. The Biology of Chronic Graft-versus-Host Disease: A Task Force Report from the National Institutes of Health Consensus Development Project on Criteria for Clinical Trials in Chronic Graft-versus-Host Disease. Biol Blood Marrow Transplant 2017; 23:211-234. [PMID: 27713092 PMCID: PMC6020045 DOI: 10.1016/j.bbmt.2016.09.023] [Citation(s) in RCA: 274] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 09/30/2016] [Indexed: 12/12/2022]
Abstract
Chronic graft-versus-host disease (GVHD) is the leading cause of late, nonrelapse mortality and disability in allogeneic hematopoietic cell transplantation recipients and a major obstacle to improving outcomes. The biology of chronic GVHD remains enigmatic, but understanding the underpinnings of the immunologic mechanisms responsible for the initiation and progression of disease is fundamental to developing effective prevention and treatment strategies. The goals of this task force review are as follows: This document is intended as a review of our understanding of chronic GVHD biology and therapies resulting from preclinical studies, and as a platform for developing innovative clinical strategies to prevent and treat chronic GVHD.
Collapse
Affiliation(s)
- Kenneth R Cooke
- Department of Oncology, Sidney Kimmel Cancer Center at Johns Hopkins Hospital, Baltimore, Maryland.
| | - Leo Luznik
- Department of Oncology, Sidney Kimmel Cancer Center at Johns Hopkins Hospital, Baltimore, Maryland
| | - Stefanie Sarantopoulos
- Division of Hematological Malignancies and Cellular Therapy, Department of Immunology and Duke Cancer Institute, Duke University, Durham, North Carolina
| | - Frances T Hakim
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Madan Jagasia
- Division of Hematology-Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Daniel H Fowler
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Marcel R M van den Brink
- Departments of Immunology and Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - John A Hansen
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Department of Medicine, University of Washington, Seattle, Washington
| | - Robertson Parkman
- Division of Pediatric Stem Cell Transplantation and Regenerative Medicine, Stanford University, Palo Alto, California
| | - David B Miklos
- Division of Blood and Marrow Transplantation, Stanford University, Palo Alto, California
| | - Paul J Martin
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Department of Medicine, University of Washington, Seattle, Washington
| | - Sophie Paczesny
- Departments of Pediatrics and Immunology, Wells Center for Pediatric Research, Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana
| | - Georgia Vogelsang
- Department of Oncology, Sidney Kimmel Cancer Center at Johns Hopkins Hospital, Baltimore, Maryland
| | - Steven Pavletic
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Jerome Ritz
- Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Kirk R Schultz
- Michael Cuccione Childhood Cancer Research Program, Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Bruce R Blazar
- Masonic Cancer Center and Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
19
|
Presland RB. Biology of chronic graft- vs-host disease: Immune mechanisms and progress in biomarker discovery. World J Transplant 2016; 6:608-619. [PMID: 28058210 PMCID: PMC5175218 DOI: 10.5500/wjt.v6.i4.608] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 07/02/2016] [Accepted: 09/18/2016] [Indexed: 02/05/2023] Open
Abstract
Chronic graft-vs-host disease (cGVHD) is the leading cause of long-term morbidity and mortality following allogeneic hematopoietic stem cell transplantation. It presents as a chronic inflammatory and sclerotic autoimmune-like condition that most frequently affects the skin, oral mucosa, liver, eyes and gastrointestinal tract. Both clinical and animal studies have shown that multiple T cell subsets including Th1, Th2, Th17, T follicular helper cells and regulatory T-cells play some role in cGVHD development and progression; B cells also play an important role in the disease including the production of antibodies to HY and nuclear antigens that can cause serious tissue damage. An array of cytokines and chemokines produced by different types of immune cells also mediate tissue inflammation and damage of cGVHD target tissues such as the skin and oral cavity. Many of these same immune regulators have been studied as candidate cGVHD biomarkers. Recent studies suggest that some of these biomarkers may be useful for determining disease prognosis and planning long-term clinical follow-up of cGVHD patients.
Collapse
|
20
|
Theil A, Wilhelm C, Kuhn M, Petzold A, Tuve S, Oelschlägel U, Dahl A, Bornhäuser M, Bonifacio E, Eugster A. T cell receptor repertoires after adoptive transfer of expanded allogeneic regulatory T cells. Clin Exp Immunol 2016; 187:316-324. [PMID: 27774628 DOI: 10.1111/cei.12887] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2016] [Indexed: 12/16/2022] Open
Abstract
Regulatory T cell (Treg ) therapy has been exploited in autoimmune disease, solid organ transplantation and in efforts to prevent or treat graft-versus-host disease (GVHD). However, our knowledge on the in-vivo persistence of transfused Treg is limited. Whether Treg transfusion leads to notable changes in the overall Treg repertoire or whether longevity of Treg in the periphery is restricted to certain clones is unknown. Here we use T cell receptor alpha chain sequencing (TCR-α-NGS) to monitor changes in the repertoire of Treg upon polyclonal expansion and after subsequent adoptive transfer. We applied TCR-α-NGS to samples from two patients with chronic GVHD who received comparable doses of stem cell donor derived expanded Treg . We found that in-vitro polyclonal expansion led to notable repertoire changes in vitro and that Treg cell therapy altered the peripheral Treg repertoire considerably towards that of the infused cell product, to different degrees, in each patient. Clonal changes in the peripheral blood were transient and correlated well with the clinical parameters. We suggest that T cell clonotype analyses using TCR sequencing should be considered as a means to monitor longevity and fate of adoptively transferred T cells.
Collapse
Affiliation(s)
- A Theil
- DFG-Center for Regenerative Therapies Dresden, Dresden, Germany.,Internal Medicine I, University Hospital Carl Gustav Carus, Dresden, Germany
| | - C Wilhelm
- DFG-Center for Regenerative Therapies Dresden, Dresden, Germany
| | - M Kuhn
- Institute for Medical Informatics and Biometry, Faculty of Medicine Carl Gustav Carus, Dresden, Germany
| | - A Petzold
- Deep Sequencing Group, Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - S Tuve
- Internal Medicine I, University Hospital Carl Gustav Carus, Dresden, Germany
| | - U Oelschlägel
- Internal Medicine I, University Hospital Carl Gustav Carus, Dresden, Germany
| | - A Dahl
- Deep Sequencing Group, Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - M Bornhäuser
- Internal Medicine I, University Hospital Carl Gustav Carus, Dresden, Germany
| | - E Bonifacio
- DFG-Center for Regenerative Therapies Dresden, Dresden, Germany
| | - A Eugster
- DFG-Center for Regenerative Therapies Dresden, Dresden, Germany
| |
Collapse
|
21
|
Ogonek J, Kralj Juric M, Ghimire S, Varanasi PR, Holler E, Greinix H, Weissinger E. Immune Reconstitution after Allogeneic Hematopoietic Stem Cell Transplantation. Front Immunol 2016; 7:507. [PMID: 27909435 PMCID: PMC5112259 DOI: 10.3389/fimmu.2016.00507] [Citation(s) in RCA: 269] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 11/02/2016] [Indexed: 12/17/2022] Open
Abstract
The timely reconstitution and regain of function of a donor-derived immune system is of utmost importance for the recovery and long-term survival of patients after allogeneic hematopoietic stem cell transplantation (HSCT). Of note, new developments such as umbilical cord blood or haploidentical grafts were associated with prolonged immunodeficiency due to delayed immune reconstitution, raising the need for better understanding and enhancing the process of immune reconstitution and finding strategies to further optimize these transplant procedures. Immune reconstitution post-HSCT occurs in several phases, innate immunity being the first to regain function. The slow T cell reconstitution is regarded as primarily responsible for deleterious infections with latent viruses or fungi, occurrence of graft-versus-host disease, and relapse. Here we aim to summarize the major steps of the adaptive immune reconstitution and will discuss the importance of immune balance in patients after HSCT.
Collapse
Affiliation(s)
- Justyna Ogonek
- Transplantation Biology, Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Mateja Kralj Juric
- BMT, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Sakhila Ghimire
- Department of Hematology and Oncology, University of Regensburg, Regensburg, Germany
| | - Pavankumar Reddy Varanasi
- Transplantation Biology, Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Ernst Holler
- Department of Hematology and Oncology, University of Regensburg, Regensburg, Germany
| | | | - Eva Weissinger
- Transplantation Biology, Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| |
Collapse
|
22
|
Hakim FT, Memon S, Jin P, Imanguli MM, Wang H, Rehman N, Yan XY, Rose J, Mays JW, Dhamala S, Kapoor V, Telford W, Dickinson J, Davis S, Halverson D, Naik HB, Baird K, Fowler D, Stroncek D, Cowen EW, Pavletic SZ, Gress RE. Upregulation of IFN-Inducible and Damage-Response Pathways in Chronic Graft-versus-Host Disease. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 197:3490-3503. [PMID: 27694491 PMCID: PMC5101132 DOI: 10.4049/jimmunol.1601054] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 09/06/2016] [Indexed: 12/29/2022]
Abstract
Although chronic graft-versus-host disease (CGVHD) is the primary nonrelapse complication of allogeneic transplantation, understanding of its pathogenesis is limited. To identify the main operant pathways across the spectrum of CGVHD, we analyzed gene expression in circulating monocytes, chosen as in situ systemic reporter cells. Microarrays identified two interrelated pathways: 1) IFN-inducible genes, and 2) innate receptors for cellular damage. Corroborating these with multiplex RNA quantitation, we found that multiple IFN-inducible genes (affecting lymphocyte trafficking, differentiation, and Ag presentation) were concurrently upregulated in CGVHD monocytes compared with normal subjects and non-CGVHD control patients. IFN-inducible chemokines were elevated in both lichenoid and sclerotic CGHVD plasma and were linked to CXCR3+ lymphocyte trafficking. Furthermore, the levels of the IFN-inducible genes CXCL10 and TNFSF13B (BAFF) were correlated at both the gene and the plasma levels, implicating IFN induction as a factor in elevated BAFF levels in CGVHD. In the second pathway, damage-/pathogen-associated molecular pattern receptor genes capable of inducing type I IFN were upregulated. Type I IFN-inducible MxA was expressed in proportion to CGVHD activity in skin, mucosa, and glands, and expression of TLR7 and DDX58 receptor genes correlated with upregulation of type I IFN-inducible genes in monocytes. Finally, in serial analyses after transplant, IFN-inducible and damage-response genes were upregulated in monocytes at CGVHD onset and declined upon therapy and resolution in both lichenoid and sclerotic CGVHD patients. This interlocking analysis of IFN-inducible genes, plasma analytes, and tissue immunohistochemistry strongly supports a unifying hypothesis of induction of IFN by innate response to cellular damage as a mechanism for initiation and persistence of CGVHD.
Collapse
Affiliation(s)
- Frances T Hakim
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892;
| | - Sarfraz Memon
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Ping Jin
- Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892
| | - Matin M Imanguli
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Huan Wang
- Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892
| | - Najibah Rehman
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Xiao-Yi Yan
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Jeremy Rose
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Jacqueline W Mays
- Clinical Research Core, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892
| | - Susan Dhamala
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Veena Kapoor
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - William Telford
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - John Dickinson
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Sean Davis
- Cancer Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - David Halverson
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Haley B Naik
- Dermatology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Kristin Baird
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Daniel Fowler
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - David Stroncek
- Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892
| | - Edward W Cowen
- Dermatology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Steven Z Pavletic
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Ronald E Gress
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
23
|
Zhao XY, Zhao XS, Wang YT, Chen YH, Xu LP, Zhang XH, Han W, Chen H, Wang Y, Yan CH, Wang FR, Wang JZ, Liu KY, Chang YJ, Huang XJ. Prophylactic use of low-dose interleukin-2 and the clinical outcomes of hematopoietic stem cell transplantation: A randomized study. Oncoimmunology 2016; 5:e1250992. [PMID: 28123892 DOI: 10.1080/2162402x.2016.1250992] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/13/2016] [Accepted: 10/14/2016] [Indexed: 10/20/2022] Open
Abstract
Leukemia relapse and chronic graft-versus-host disease (cGVHD) are still major obstacles of allogeneic hematopoietic stem cell transplantation (allo-HSCT). The numbers and activity of natural killer (NK) and T-regulatory cells can be increased post-transplantation by exposure to interleukin-2 (IL-2). We tested whether administering low-dose IL-2 would decrease leukemia relapse while reducing cGVHD after allotransplantation. This controlled, open-label randomized trial included 90 recipients of allotransplants. Subjects were randomized in a 1:1 ratio to either receive or not receive low-dose IL-2 during the early post-transplantation period. Patients in the IL-2 arm received a subcutaneous injection of low-dose IL-2 (1×106 U/d) on day 60 after allo-HSCT. IL-2 was administered daily for 14 d followed by a 14-d hiatus. The primary endpoint was the cumulative incidence of leukemia relapse (CIR). Three-year CIRs for the IL-2 arm and control arm were 23% (range 16-30%) and 11% (range 6-15%; p = 0.20), respectively. Minimal residual disease-positive (MRD+) tests were more common in the IL-2 arm compared to the control arm (36% [range 29-44%] vs. 15% [range 10-20%], p = 0.03). The cumulative incidence of moderate-to-severe chronic GVHD (cGVHD) was lower in the IL-2 arm compared to the control arm (33% [range 26-39%] vs. 57% [range 49-64%), p = 0.02). Therefore, the 3-y GVHD-free and GVHD progression-free survival (GPFS) rates were significantly higher in the IL-2 arm compared to the control arm (47% [range 39-55%] vs. 31% [range 25-38%], p = 0.048). Blood Tregs, NK cells, and NK-cell cytotoxicity were increased in subjects in the IL-2 arm between 3 mo and 6 mo post-transplantation. Administration of low-dose IL-2 during the immediate post-transplantation period was associated with a higher GPFS but did not decrease the CIR.
Collapse
Affiliation(s)
- Xiang-Yu Zhao
- Peking University Institute of Hematology, Peking University People's Hospital, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation , Beijing, China
| | - Xiao-Su Zhao
- Peking University Institute of Hematology, Peking University People's Hospital, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation , Beijing, China
| | - Yu-Tong Wang
- Peking University Institute of Hematology, Peking University People's Hospital, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation , Beijing, China
| | - Yu-Hong Chen
- Peking University Institute of Hematology, Peking University People's Hospital, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation , Beijing, China
| | - Lan-Ping Xu
- Peking University Institute of Hematology, Peking University People's Hospital, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation , Beijing, China
| | - Xiao-Hui Zhang
- Peking University Institute of Hematology, Peking University People's Hospital, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation , Beijing, China
| | - Wei Han
- Peking University Institute of Hematology, Peking University People's Hospital, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation , Beijing, China
| | - Huan Chen
- Peking University Institute of Hematology, Peking University People's Hospital, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation , Beijing, China
| | - Yu Wang
- Peking University Institute of Hematology, Peking University People's Hospital, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation , Beijing, China
| | - Chen-Hua Yan
- Peking University Institute of Hematology, Peking University People's Hospital, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation , Beijing, China
| | - Feng-Rong Wang
- Peking University Institute of Hematology, Peking University People's Hospital, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation , Beijing, China
| | - Jing-Zhi Wang
- Peking University Institute of Hematology, Peking University People's Hospital, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation , Beijing, China
| | - Kai-Yan Liu
- Peking University Institute of Hematology, Peking University People's Hospital, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation , Beijing, China
| | - Ying-Jun Chang
- Peking University Institute of Hematology, Peking University People's Hospital, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation , Beijing, China
| | - Xiao-Jun Huang
- Peking University Institute of Hematology, Peking University People's Hospital, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China; Peking-Tsinghua Center for Life Sciences, Beijing, China
| |
Collapse
|
24
|
Sakthivel P, Grunewald J, Eklund A, Bruder D, Wahlström J. Pulmonary sarcoidosis is associated with high-level inducible co-stimulator (ICOS) expression on lung regulatory T cells--possible implications for the ICOS/ICOS-ligand axis in disease course and resolution. Clin Exp Immunol 2016; 183:294-306. [PMID: 26415669 PMCID: PMC4711163 DOI: 10.1111/cei.12715] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2015] [Indexed: 11/30/2022] Open
Abstract
Sarcoidosis is a granulomatous inflammatory disorder of unknown aetiology. The increased frequency of activated lung CD4(+) T cells with a T helper type 1 (Th1) cytokine profile in sarcoidosis patients is accompanied by a reduced proportion and/or impaired function of regulatory T cells (Tregs ). Here we evaluated the expression of the inducible co-stimulator (ICOS) on lung and blood CD4(+) T cell subsets in sarcoidosis patients with different prognosis, by flow cytometry. Samples from the deep airways were obtained by bronchoalveolar lavage (BAL). We show that Tregs from the inflamed lung of sarcoidosis patients were characterized by a unique ICOS(high) phenotype. High-level ICOS expression was restricted to Tregs from the inflamed lung and was absent in blood Tregs of sarcoidosis patients as well as in lung and blood Tregs of healthy volunteers. In addition, lung Tregs exhibited increased ICOS expression compared to sarcoid-specific lung effector T cells. Strikingly, ICOS expression on Tregs was in particularly high in the lungs of Löfgren's syndrome (LS) patients who present with acute disease which often resolves spontaneously. Moreover, blood monocytes from LS patients revealed increased ICOS-L levels compared to healthy donors. Sarcoidosis was associated with a shift towards a non-classical monocyte phenotype and the ICOS-L(high) phenotype was restricted to this particular monocyte subset. We propose a potential implication of the ICOS/ICOS-L immune-regulatory axis in disease activity and resolution and suggest to evaluate further the suitability of ICOS as biomarker for the prognosis of sarcoidosis.
Collapse
Affiliation(s)
- P. Sakthivel
- Immune Regulation Group, Helmholtz Centre for Infection Research, Braunschweig, Germany and Infection Immunology Group, Institute of Medical Microbiology, Infection Control and PreventionOtto‐von‐Guericke University MagdeburgMagdeburgGermany
| | - J. Grunewald
- Respiratory Medicine Unit, Department of Medicine Solna and Center for Molecular MedicineKarolinska Institutet and Karolinska University HospitalStockholmSweden
| | - A. Eklund
- Respiratory Medicine Unit, Department of Medicine Solna and Center for Molecular MedicineKarolinska Institutet and Karolinska University HospitalStockholmSweden
| | - D. Bruder
- Immune Regulation Group, Helmholtz Centre for Infection Research, Braunschweig, Germany and Infection Immunology Group, Institute of Medical Microbiology, Infection Control and PreventionOtto‐von‐Guericke University MagdeburgMagdeburgGermany
| | - J. Wahlström
- Respiratory Medicine Unit, Department of Medicine Solna and Center for Molecular MedicineKarolinska Institutet and Karolinska University HospitalStockholmSweden
| |
Collapse
|
25
|
Unbalanced recovery of regulatory and effector T cells after allogeneic stem cell transplantation contributes to chronic GVHD. Blood 2015; 127:646-57. [PMID: 26670634 DOI: 10.1182/blood-2015-10-672345] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Accepted: 12/05/2015] [Indexed: 01/01/2023] Open
Abstract
The development and maintenance of immune tolerance after allogeneic hematopoietic stem cell transplantation (HSCT) requires the balanced reconstitution of donor-derived CD4 regulatory T cells (CD4Tregs) as well as effector CD4 (conventional CD4 T cells [CD4Tcons]) and CD8 T cells. To characterize the complex mechanisms that lead to unbalanced recovery of these distinct T-cell populations, we studied 107 adult patients who received T-replete stem cell grafts after reduced-intensity conditioning. Immune reconstitution of CD4Treg, CD4Tcon, and CD8 T cells was monitored for a 2-year period. CD3 T-cell counts gradually recovered to normal levels during this period but CD8 T cells recovered more rapidly than either CD4Tregs or CD4Tcons. Reconstituting CD4Tregs and CD4Tcons were predominantly central memory (CM) and effector memory (EM) cells and CD8 T cells were predominantly terminal EM cells. Thymic generation of naive CD4Tcon and CD8 T cells was maintained but thymic production of CD4Tregs was markedly decreased with little recovery during the 2-year study. T-cell proliferation was skewed in favor of CM and EM CD4Tcon and CD8 T cells, especially 6 to 12 months after HSCT. Intracellular expression of BCL2 was increased in CD4Tcon and CD8 T cells in the first 3 to 6 months after HSCT. Early recovery of naive and CM fractions within each T-cell population 3 months after transplant was also strongly correlated with the subsequent development of chronic graft-versus-host disease (GVHD). These dynamic imbalances favor the production, expansion, and persistence of effector T cells over CD4Tregs and were associated with the development of chronic GVHD.
Collapse
|
26
|
O’Connor RA, Anderton SM. Inflammation-associated genes: risks and benefits to Foxp3+ regulatory T-cell function. Immunology 2015; 146:194-205. [PMID: 26190495 PMCID: PMC4582961 DOI: 10.1111/imm.12507] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 06/30/2015] [Accepted: 07/02/2015] [Indexed: 01/10/2023] Open
Abstract
Foxp3(+) regulatory T (Treg) cells prevent the development of autoimmunity and immunopathology, as well as maintaining homeostasis and tolerance to commensal microorganisms. The suppressive activity of Treg cells is their defining characteristic, generating great interest in their therapeutic potential. However, suppressive and effector functions are not entirely exclusive. Considerable evidence points to the ability of supposedly anti-inflammatory Foxp3-expressing Treg cells to also express transcription factors that have been characterized as cardinal drivers of T effector cell function. We will consider the mounting evidence that Treg cells can function in non-suppressive capacities and review the impetus for this functional change, its relevance to developing immune and autoimmune responses and its significance to the development of Treg-based therapies.
Collapse
Affiliation(s)
- Richard A O’Connor
- MRC Centre for Inflammation Research, Centre for Multiple Sclerosis Research and Centre for Immunity Infection and Evolution, University of EdinburghEdinburgh, UK
| | - Stephen M Anderton
- MRC Centre for Inflammation Research, Centre for Multiple Sclerosis Research and Centre for Immunity Infection and Evolution, University of EdinburghEdinburgh, UK
| |
Collapse
|
27
|
Takahashi H, Ikeda K, Ogawa K, Saito S, Ngoma AM, Mashimo Y, Ueda K, Furukawa M, Shichishima-Nakamura A, Ohkawara H, Nollet KE, Ohto H, Takeishi Y. CD4+ T cells in aged or thymectomized recipients of allogeneic stem cell transplantations. Biol Res 2015. [PMID: 26210500 PMCID: PMC4514962 DOI: 10.1186/s40659-015-0033-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background CD4+CD25highFOXP3+ regulatory T (Treg) cells, which include thymus-derived and peripherally induced cells, play a central role in immune regulation, and are therefore crucial to prevent graft-versus-host disease (GVHD). The increasing use of allogeneic hematopoietic stem cell transplantation (allo-HSCT) for elderly patients with thymus regression, and our case of allo-HSCT shortly after total thymectomy, raised questions about the activity of thymus-derived Treg cells and peripherally induced Treg cells, which are otherwise indistinguishable. Results We found that despite pre-transplant thymectomy or older age, both naïve and effector Treg cells, as well as naïve and effector conventional T cells, proliferated in allo-HSCT recipients. Higher proportions of total Treg cells 1 month post allo-HSCT, and naïve Treg cells 1 year post allo-HSCT, appeared in patients achieving complete chimera without developing significant chronic GVHD, including our thymectomized patient, compared with patients who developed chronic GVHD. Conclusions Treg cells that modulate human allogeneic immunity may arise peripherally as well as in the thymus of allo-HSCT recipients.
Collapse
Affiliation(s)
- Hiroshi Takahashi
- Department of Cardiology and Hematology, School of Medicine, Fukushima Medical University, Fukushima, Japan.
| | - Kazuhiko Ikeda
- Department of Cardiology and Hematology, School of Medicine, Fukushima Medical University, Fukushima, Japan. .,Department of Blood Transfusion and Transplantation Immunology, School of Medicine, Fukushima Medical University, 1 Hikariga-oka, Fukushima, Fukushima, 960-1295, Japan.
| | - Kazuei Ogawa
- Department of Cardiology and Hematology, School of Medicine, Fukushima Medical University, Fukushima, Japan.
| | - Syunnichi Saito
- Department of Blood Transfusion and Transplantation Immunology, School of Medicine, Fukushima Medical University, 1 Hikariga-oka, Fukushima, Fukushima, 960-1295, Japan.
| | - Alain M Ngoma
- Department of Blood Transfusion and Transplantation Immunology, School of Medicine, Fukushima Medical University, 1 Hikariga-oka, Fukushima, Fukushima, 960-1295, Japan. .,Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, QC, Canada.
| | - Yumiko Mashimo
- Department of Cardiology and Hematology, School of Medicine, Fukushima Medical University, Fukushima, Japan.
| | - Koki Ueda
- Department of Cardiology and Hematology, School of Medicine, Fukushima Medical University, Fukushima, Japan.
| | - Miki Furukawa
- Department of Cardiology and Hematology, School of Medicine, Fukushima Medical University, Fukushima, Japan.
| | - Akiko Shichishima-Nakamura
- Department of Cardiology and Hematology, School of Medicine, Fukushima Medical University, Fukushima, Japan.
| | - Hiroshi Ohkawara
- Department of Cardiology and Hematology, School of Medicine, Fukushima Medical University, Fukushima, Japan.
| | - Kenneth E Nollet
- Department of Blood Transfusion and Transplantation Immunology, School of Medicine, Fukushima Medical University, 1 Hikariga-oka, Fukushima, Fukushima, 960-1295, Japan.
| | - Hitoshi Ohto
- Department of Blood Transfusion and Transplantation Immunology, School of Medicine, Fukushima Medical University, 1 Hikariga-oka, Fukushima, Fukushima, 960-1295, Japan.
| | - Yasuchika Takeishi
- Department of Cardiology and Hematology, School of Medicine, Fukushima Medical University, Fukushima, Japan.
| |
Collapse
|
28
|
Research Progress on Regulatory T Cells in Acute Kidney Injury. J Immunol Res 2015; 2015:174164. [PMID: 26273681 PMCID: PMC4529954 DOI: 10.1155/2015/174164] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 07/02/2015] [Indexed: 02/06/2023] Open
Abstract
Immune inflammation is crucial in mediating acute kidney injury (AKI). Immune cells of both the innate and adaptive immune systems substantially contribute to overall renal damage in AKI. Regulatory T cells (Tregs) are key regulator of immunological function and have been demonstrated to ameliorate injury in several murine experimental models of renal inflammation. Recent studies have illuminated the renal-protective function of Tregs in AKI. Tregs appear to exert beneficial effects in both the acute injury phase and the recovery phase of AKI. Additionally, Tregs-based immunotherapy may represent a promising approach to ameliorate AKI and promote recovery from AKI. This review will highlight the recent insights into the role of Tregs and their therapeutic potential in AKI.
Collapse
|
29
|
Pandiyan P, Zhu J. Origin and functions of pro-inflammatory cytokine producing Foxp3+ regulatory T cells. Cytokine 2015; 76:13-24. [PMID: 26165923 DOI: 10.1016/j.cyto.2015.07.005] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 06/24/2015] [Accepted: 07/03/2015] [Indexed: 12/12/2022]
Abstract
CD4(+)CD25(+)Foxp3(+) regulatory cells (Tregs) are a special lineage of cells central in the maintenance of immune homeostasis, and are targeted for human immunotherapy. They are conventionally associated with the production of classical anti-inflammatory cytokines such as IL-10, TGF-β and IL-35, consistent to their anti-inflammatory functions. However, emerging evidence show that they also express effector cytokines such as IFN-γ and IL-17A under inflammatory conditions. While some studies reveal that these pro-inflammatory cytokine producing Foxp3(+) regulatory cells retain their suppressive ability, others believe that these cells are dys-regulated and are associated with perpetuation of immunopathology. Therefore the development of these cells may challenge the efficacy of human Treg therapy. Mechanistically, toll-like receptor (TLR) ligands and the pro-inflammatory cytokine milieu have been shown to play important roles in the induction of effector cytokines in Tregs. Here we review the mechanisms of development and the possible functions of pro-inflammatory cytokine producing Foxp3+ Tregs.
Collapse
Affiliation(s)
- Pushpa Pandiyan
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Jinfang Zhu
- Molecular and Cellular Immunoregulation Unit, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
30
|
Pesenacker AM, Broady R, Levings MK. Control of tissue-localized immune responses by human regulatory T cells. Eur J Immunol 2014; 45:333-43. [PMID: 25378065 DOI: 10.1002/eji.201344205] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 09/30/2014] [Accepted: 10/31/2014] [Indexed: 12/25/2022]
Abstract
Treg cells control immune responses to self and nonharmful foreign antigens. Emerging data from animal models indicate that Treg cells function in both secondary lymphoid organs and tissues, and that these different microenvironments may contain specialized subsets of Treg cells with distinct mechanisms of action. The design of therapies for the restoration of tissue-localized immune homeostasis is dependent upon understanding how local immune responses are influenced by Treg cells in health versus disease. Here we review the current state of knowledge about human Treg cells in four locations: the skin, lung, intestine, and joint. Despite the distinct biology of these tissues, there are commonalities in the biology of their resident Treg cells, including phenotypic and functional differences from circulating Treg cells, and the presence of cytokine-producing (e.g. IL-17(+)) FOXP3(+) cells. We also highlight the challenges to studying tissue Treg cells in humans, and opportunities to use new technologies for the detailed analysis of Treg cells at the single-cell level. As emerging biological therapies are increasingly targeted toward tissue-specific effects, it is critical to understand their potential impact on local immune regulation.
Collapse
Affiliation(s)
- Anne M Pesenacker
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada; Child & Family Research Institute, Vancouver, British Columbia, Canada
| | | | | |
Collapse
|
31
|
Xu J, Wu Y, Wang G, Qin Y, Zhu L, Tang G, Shen Q. Inducible costimulatory molecule deficiency induced imbalance of Treg and Th17/Th2 delays rejection reaction in mice undergoing allogeneic tracheal transplantation. Am J Transl Res 2014; 6:777-785. [PMID: 25628788 PMCID: PMC4297345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 10/15/2014] [Indexed: 06/04/2023]
Abstract
OBJECTIVE This study aimed to investigate the role of inducible costimulatory molecule (ICOS) pathway in the rejection reaction of mice undergoing allogeneic tracheal transplantation. METHODS The bronchus was separated from wide-type (WT) BalB/c mice and transplanted into WT BalB/c mice, C57 mice and icos(-/-) mice to prepare the obliterative bronchiolitis (OB) animal model. The transplanted bronchus was pathologically examined; flow cytometry was done to detect the T cell subsets and activity of the bronchus and spleen of recipient mice. RESULTS 21 d after transplantation, evident rejection reaction was observed and the proportion of Th2 and Th17 cells increased significantly in the bronchus and spleen in C57 mice receiving allogeneic tracheal transplantation when compared with mice with autologous transplantation, but the proportion of Treg cells was comparable between them. When compared with WT BalB/c mice, the proportion of Th2, Th17 and Treg cells reduced markedly and rejection reaction was attenuated in icos(-/-) mice receiving tracheal transplantation, although rejection reaction was still noted. CONCLUSION icos knockout may delay the rejection reaction after tracheal transplantation, which might be ascribed to the imbalance among Th2, Th17 and Treg cells.
Collapse
Affiliation(s)
- Jingsong Xu
- Department of Pulmonary Medicine, 94th Hospital of The Chinese People’s Liberation ArmyNanchang, China
- Department of Laboratory Medicine, Changhai Hospital, Second Military Medical UniversityShanghai, China
| | - Yu Wu
- Department of Laboratory Medicine, Changhai Hospital, Second Military Medical UniversityShanghai, China
- Department of Laboratory Medicine, 94th Hospital of The Chinese People’s Liberation ArmyNanchang, China
| | - Guifang Wang
- Department of Pulmonary Medicine, Huashan Hospital, Fudan UniversityShanghai, China
| | - Yanghua Qin
- Department of Laboratory Medicine, Changhai Hospital, Second Military Medical UniversityShanghai, China
| | - Li Zhu
- Department of Laboratory Medicine, Changhai Hospital, Second Military Medical UniversityShanghai, China
| | - Gusheng Tang
- Institute of Hematology, Changhai Hospital, Second Military Medical UniversityShanghai, China
| | - Qian Shen
- Department of Laboratory Medicine, Changhai Hospital, Second Military Medical UniversityShanghai, China
| |
Collapse
|
32
|
Herrera AF, Kim HT, Bindra B, Jones KT, Alyea EP, Armand P, Cutler CS, Ho VT, Nikiforow S, Blazar BR, Ritz J, Antin JH, Soiffer RJ, Koreth J. A phase II study of bortezomib plus prednisone for initial therapy of chronic graft-versus-host disease. Biol Blood Marrow Transplant 2014; 20:1737-43. [PMID: 25017765 DOI: 10.1016/j.bbmt.2014.06.040] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 06/30/2014] [Indexed: 12/21/2022]
Abstract
Chronic graft-versus-host disease (GVHD) induces significant morbidity and mortality after allogeneic hematopoietic stem cell transplantation. Corticosteroids are standard initial therapy, despite limited efficacy and long-term toxicity. Based on our experience using bortezomib as effective acute GVHD prophylaxis, we hypothesized that proteasome-inhibition would complement the immunomodulatory effects of corticosteroids to improve outcomes in chronic GVHD (cGVHD). We undertook a single-arm phase II trial of bortezomib plus prednisone for initial therapy of cGVHD. Bortezomib was administered at 1.3 mg/m(2) i.v. on days 1, 8, 15, and 22 of each 35-day cycle for 3 cycles (15 weeks). Prednisone was dosed at .5 to 1 mg/kg/day, with a suggested taper after cycle 1. All 22 enrolled participants were evaluable for toxicity; 20 were evaluable for response. Bortezomib plus prednisone therapy was well tolerated, with 1 occurrence of grade 3 sensory peripheral neuropathy possibly related to bortezomib. The overall response rate at week 15 in evaluable participants was 80%, including 2 (10%) complete and 14 (70%) partial responses. The organ-specific complete response rate was 73% for skin, 53% for liver, 75% for gastrointestinal tract, and 33% for joint, muscle, or fascia involvement. The median prednisone dose decreased from 50 mg/day to 20 mg/day at week 15 (P < .001). The combination of bortezomib and prednisone for initial treatment of cGVHD is feasible and well tolerated. We observed a high response rate to combined bortezomib and prednisone therapy; however, in this single-arm study, we could not directly measure the impact of bortezomib. Proteasome inhibition may offer benefit in the treatment of cGVHD and should be further evaluated.
Collapse
Affiliation(s)
- Alex F Herrera
- Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Haesook T Kim
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Bhavjot Bindra
- Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Kyle T Jones
- Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Edwin P Alyea
- Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Philippe Armand
- Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Corey S Cutler
- Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Vincent T Ho
- Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Sarah Nikiforow
- Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Bruce R Blazar
- Blood and Marrow Transplantation, University of Minnesota Masonic Cancer Center, Minneapolis, Minnesota
| | - Jerome Ritz
- Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Joseph H Antin
- Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Robert J Soiffer
- Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - John Koreth
- Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Boston, Massachusetts.
| |
Collapse
|