1
|
Darragh A, Hanna AM, Lipner JH, King AJ, Servant NB, Jahic M. Comprehensive Characterization of Bruton's Tyrosine Kinase Inhibitor Specificity, Potency, and Biological Effects: Insights into Covalent and Noncovalent Mechanistic Signatures. ACS Pharmacol Transl Sci 2025; 8:917-931. [PMID: 40242575 PMCID: PMC11997881 DOI: 10.1021/acsptsci.4c00540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/23/2024] [Accepted: 01/14/2025] [Indexed: 04/18/2025]
Abstract
Uncovering a drug's mechanism of action and possible adverse effects are critical components in drug discovery and development. Moreover, it provides evidence for why some drugs prove more effective than others and how to design better drugs altogether. Here, we demonstrate the utility of a high-throughput in vitro screening platform along with a comprehensive panel to aid in the characterization of 15 Bruton's tyrosine kinase (BTK) inhibitors that are either approved by the FDA or presently under clinical evaluation. To compare the potency of these drugs, we measured the binding affinity of each to wild-type BTK as well as a clinically relevant resistance mutant of BTK (BTK C481S). In doing so, we discovered a considerable difference in the selectivity and potency of these BTK inhibitors to the wild-type and mutant proteins. Some of this potentially contributes to the adverse effects experienced by patients undergoing therapy using these drugs. Overall, noncovalent BTK inhibitors showed stronger potency for both the wild-type and mutant BTK when compared with that of covalent inhibitors, with the majority demonstrating a higher specificity and less off-target modulation. Additionally, we compared biological outcomes for four of these inhibitors in human cell-based models. As expected, we found different phenotypic profiles for each inhibitor. However, the two noncovalent inhibitors had fewer off-target biological effects when compared with the two covalent inhibitors. This and similar in-depth preclinical characterization of drug candidates can provide critical insights into the efficacy and mechanism of action of a compound that may affect its safety in a clinical setting.
Collapse
Affiliation(s)
- Antonia
C. Darragh
- Eurofins
Discovery, 11180 Roselle
Street, Suite D, San Diego, California 92121, United States
| | - Andrew M. Hanna
- Eurofins
Discovery, 11180 Roselle
Street, Suite D, San Diego, California 92121, United States
| | - Justin H. Lipner
- Eurofins
Panlabs, 6 Research Park
Drive, St. Charles, Missouri 63304, United States
| | - Alastair J. King
- Eurofins
Panlabs, 6 Research Park
Drive, St. Charles, Missouri 63304, United States
| | - Nicole B. Servant
- Eurofins
Discovery, 11180 Roselle
Street, Suite D, San Diego, California 92121, United States
| | - Mirza Jahic
- Eurofins
Discovery, 11180 Roselle
Street, Suite D, San Diego, California 92121, United States
| |
Collapse
|
2
|
Lin J, Nan Y, Sun J, Guan A, Peng M, Dai Z, Mai S, Chen Q, Jiang C. Identification and Construction of a R-loop Mediated Diagnostic Model and Associated Immune Microenvironment of COPD through Machine Learning and Single-Cell Transcriptomics. Inflammation 2025:10.1007/s10753-024-02232-x. [PMID: 39798034 DOI: 10.1007/s10753-024-02232-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/24/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025]
Abstract
Chronic obstructive pulmonary disease (COPD) is a prevalent chronic inflammatory airway disease with high incidence and significant disease burden. R-loops, functional chromatin structure formed during transcription, are closely associated with inflammation due to its aberrant formation. However, the role of R-loop regulators (RLRs) in COPD remains unclear. Utilizing both bulk transcriptome data and single-cell RNA sequencing data, we assessed the diverse expression patterns of RLRs in the lung tissues of COPD patients. A lower R-loop score was found in patients with COPD and in neutrophils. 12 machine learning algorithms (150 combinations) identified 14 hub RLRs (CBX8, EHD4, HDLBP, KDM6B, NFAT5, NLRP3, NUP214, PAFAH1B3, PINX1, PLD1, POLB, RCC2, RNF213, and VIM) associated with COPD. A RiskScore based on 14 RLRs identified two distinct COPD subtypes. Patient groups at high risk of COPD (low R-loop scores) had a higher immune score and a significant increase in neutrophils in their immune microenvironment compared to low-risk groups. PD-0325901 and QL-X-138 represent prospective COPD treatments for high-risk (low R-loop score) and low-risk (high R-loop score) patients. Finally, RT-PCR experiments confirmed expression differences of 8 RLRs (EHD4, HDLBP, NFAT5, NLRP3, PLD1, PINX1, POLB, and VIM) in COPD mice lung tissue. R-loops significantly contribute to the development of COPD and constructing predictive models based on RLRs may provide crucial insight into personalized treatment strategies for patients with COPD.
Collapse
Affiliation(s)
- Jianing Lin
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yayun Nan
- Department of Ningxia Geriatrics Medical Center, Ningxia People's Hospital, Yinchuan, 750021, China
| | - Jingyi Sun
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Anqi Guan
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Meijuan Peng
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Ziyu Dai
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Suying Mai
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Qiong Chen
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Chen Jiang
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
3
|
Panthong W, Pientong C, Nukpook T, Heawchaiyaphum C, Aromseree S, Ekalaksananan T. OSI-027 as a Potential Drug Candidate Targeting Upregulated Hub Protein TAF1 in Potential Mechanism of Sinonasal Squamous Cell Carcinoma: Insights from Proteomics and Molecular Docking. BIOLOGY 2024; 13:1089. [PMID: 39765756 PMCID: PMC11673211 DOI: 10.3390/biology13121089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/18/2024] [Accepted: 12/21/2024] [Indexed: 01/11/2025]
Abstract
Sinonasal squamous cell carcinoma (SNSCC) is a rare tumor with high mortality and recurrence rates. However, SNSCC carcinogenesis mechanisms and potential therapeutic drugs have not been fully elucidated. This study investigated the key molecular mechanisms and hub proteins involved in SNSCC carcinogenesis using proteomics and bioinformatic analysis. Dysregulated proteins were validated by RT-qPCR in SNSCC and nasal polyp (NP) tissues. Proteomic analysis revealed that differentially expressed proteins were clustered using MCODE scores ≥ 4 into three modules. The specific hub proteins in each module were analyzed in carcinogenesis pathways using STRING, highlighting potential mechanisms of histone modification and spliceosome dysregulation. Spliceosome components SNRNP200 and SF3A3 were significantly downregulated in SNSCC by RT-qPCR. Web-based applications L1000CDS2 and iLINCS were applied to identify 10 potential repurposable drugs that could reverse the gene expression pattern associated with SNSCC. Docking studies of TAF1, a protein in histone modification, with these 10 small molecule inhibitors indicated OSI-027 to be the most promising due to its strong binding interactions with key residues. These findings suggest that hub proteins involved in the underlying mechanism of SNSCC carcinogenesis may serve as valuable targets for drug development, with OSI-027 emerging as a novel candidate against TAF1 in SNSCC.
Collapse
Affiliation(s)
- Watcharapong Panthong
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (W.P.); (T.N.); (C.H.); (S.A.)
- HPV&EBV and Carcinogenesis (HEC) Research Group, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chamsai Pientong
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (W.P.); (T.N.); (C.H.); (S.A.)
- HPV&EBV and Carcinogenesis (HEC) Research Group, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Thawaree Nukpook
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (W.P.); (T.N.); (C.H.); (S.A.)
- HPV&EBV and Carcinogenesis (HEC) Research Group, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chukkris Heawchaiyaphum
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (W.P.); (T.N.); (C.H.); (S.A.)
- HPV&EBV and Carcinogenesis (HEC) Research Group, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sirinart Aromseree
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (W.P.); (T.N.); (C.H.); (S.A.)
- HPV&EBV and Carcinogenesis (HEC) Research Group, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Tipaya Ekalaksananan
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (W.P.); (T.N.); (C.H.); (S.A.)
- HPV&EBV and Carcinogenesis (HEC) Research Group, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
4
|
Yuan X, Guan D, Chen C, Guo S, Wu H, Bu H, Yang CY, Wang M, Zhou J, Zhang H. Development of an Imidazopyridazine-Based MNK1/2 Inhibitor for the Treatment of Lymphoma. J Med Chem 2024; 67:5437-5457. [PMID: 38564512 DOI: 10.1021/acs.jmedchem.3c02008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The mitogen-activated protein kinase-interacting protein kinases (MNKs) are the only kinases known to phosphorylate eukaryotic translation initiation factor 4E (eIF4E) at Ser209, which plays a significant role in cap-dependent translation. Dysregulation of the MNK/eIF4E axis has been found in various solid tumors and hematological malignancies, including diffuse large B-cell lymphoma (DLBCL). Herein, structure-activity relationship studies and docking models determined that 20j exhibits excellent MNK1/2 inhibitory activity, stability, and hERG safety. 20j exhibits strong and broad antiproliferative activity against different cancer cell lines, especially GCB-DLBCL DOHH2. 20j suppresses the phosphorylation of eIF4E in Hela cells (IC50 = 90.5 nM) and downregulates the phosphorylation of eIF4E and 4E-BP1 in A549 cells. In vivo studies first revealed that ibrutinib enhances the antitumor effect of 20j without side effects in a DOHH2 xenograft model. This study provided a solid foundation for the future development of a MNK inhibitor for GCB-DLBCL treatment.
Collapse
Affiliation(s)
- Xinrui Yuan
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, P. R. China
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38103, United States
| | - Dezhong Guan
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, P. R. China
| | - Chao Chen
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, P. R. China
| | - Shi Guo
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, P. R. China
| | - Hanshu Wu
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, P. R. China
| | - Hong Bu
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, P. R. China
| | - Chao-Yie Yang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38103, United States
| | - Mian Wang
- College of Life Science and Technology, Guangxi University, Nanning 530004, P. R. China
| | - Jinpei Zhou
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, P. R. China
| | - Huibin Zhang
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, P. R. China
| |
Collapse
|
5
|
Li S, Chen JS, Li X, Bai X, Shi D. MNK, mTOR or eIF4E-selecting the best anti-tumor target for blocking translation initiation. Eur J Med Chem 2023; 260:115781. [PMID: 37669595 DOI: 10.1016/j.ejmech.2023.115781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/07/2023]
Abstract
Overexpression of eIF4E is common in patients with various solid tumors and hematologic cancers. As a potential anti-cancer target, eIF4E has attracted extensive attention from researchers. At the same time, mTOR kinases inhibitors and MNK kinases inhibitors, which are directly related to regulation of eIF4E, have been rapidly developed. To explore the optimal anti-cancer targets among MNK, mTOR, and eIF4E, this review provides a detailed classification and description of the anti-cancer activities of promising compounds. In addition, the structures and activities of some dual-target inhibitors are briefly described. By analyzing the different characteristics of the inhibitors, it can be concluded that MNK1/2 and eIF4E/eIF4G interaction inhibitors are superior to mTOR inhibitors. Simultaneous inhibition of MNK and eIF4E/eIF4G interaction may be the most promising anti-cancer method for targeting translation initiation.
Collapse
Affiliation(s)
- Shuo Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, PR China.
| | - Jia-Shu Chen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, PR China.
| | - Xiangqian Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, PR China.
| | - Xiaoyi Bai
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, PR China.
| | - Dayong Shi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, PR China.
| |
Collapse
|
6
|
Montiel-Dávalos A, Ayala Y, Hernández G. The dark side of mRNA translation and the translation machinery in glioblastoma. Front Cell Dev Biol 2023; 11:1086964. [PMID: 36994107 PMCID: PMC10042294 DOI: 10.3389/fcell.2023.1086964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/03/2023] [Indexed: 03/14/2023] Open
Abstract
Among the different types of cancer affecting the central nervous system (CNS), glioblastoma (GB) is classified by the World Health Organization (WHO) as the most common and aggressive CNS cancer in adults. GB incidence is more frequent among persons aged 45–55 years old. GB treatments are based on tumor resection, radiation, and chemotherapies. The current development of novel molecular biomarkers (MB) has led to a more accurate prediction of GB progression. Moreover, clinical, epidemiological, and experimental studies have established genetic variants consistently associated with the risk of suffering GB. However, despite the advances in these fields, the survival expectancy of GB patients is still shorter than 2 years. Thus, fundamental processes inducing tumor onset and progression remain to be elucidated. In recent years, mRNA translation has been in the spotlight, as its dysregulation is emerging as a key cause of GB. In particular, the initiation phase of translation is most involved in this process. Among the crucial events, the machinery performing this phase undergoes a reconfiguration under the hypoxic conditions in the tumor microenvironment. In addition, ribosomal proteins (RPs) have been reported to play translation-independent roles in GB development. This review focuses on the research elucidating the tight relationship between translation initiation, the translation machinery, and GB. We also summarize the state-of-the-art drugs targeting the translation machinery to improve patients’ survival. Overall, the recent advances in this field are shedding new light on the dark side of translation in GB.
Collapse
|
7
|
Mazewski C, Platanias LC. MNK Proteins as Therapeutic Targets in Leukemia. Onco Targets Ther 2023; 16:283-295. [PMID: 37113687 PMCID: PMC10128080 DOI: 10.2147/ott.s370874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
In leukemia, resistance to therapy is a major concern for survival. MAPK-interacting kinases (MNKs) have been identified as important activators of oncogenic-related signaling and may be mediators of resistance. Recent studies in leukemia models, especially acute myeloid leukemia (AML), have focused on targeting MNKs together with other inhibitors or treating chemotherapy-resistant cells with MNK inhibitors. The preclinical demonstrations of the efficacy of MNK inhibitors in these combination formats would suggest a promising potential for use in clinical trials. Optimizing MNK inhibitors and testing in leukemia models is actively being pursued and may have important implications for the future. These studies are furthering the understanding of the mechanisms of MNKs in cancer which could translate to clinical studies.
Collapse
Affiliation(s)
- Candice Mazewski
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
- Division of Hematology–Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Correspondence: Candice Mazewski; Leonidas C Platanias, Email ;
| | - Leonidas C Platanias
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
- Division of Hematology–Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA
| |
Collapse
|
8
|
Sun SL, Wu SH, Kang JB, Ma YY, Chen L, Cao P, Chang L, Ding N, Xue X, Li NG, Shi ZH. Medicinal Chemistry Strategies for the Development of Bruton's Tyrosine Kinase Inhibitors against Resistance. J Med Chem 2022; 65:7415-7437. [PMID: 35594541 DOI: 10.1021/acs.jmedchem.2c00030] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Despite significant efficacy, one of the major limitations of small-molecule Bruton's tyrosine kinase (BTK) agents is the presence of clinically acquired resistance, which remains a major clinical challenge. This Perspective focuses on medicinal chemistry strategies for the development of BTK small-molecule inhibitors against resistance, including the structure-based design of BTK inhibitors targeting point mutations, e.g., (i) developing noncovalent inhibitors from covalent inhibitors, (ii) avoiding steric hindrance from mutated residues, (iii) making interactions with the mutated residue, (iv) modifying the solvent-accessible region, and (v) developing new scaffolds. Additionally, a comparative analysis of multi-inhibitions of BTK is presented based on cross-comparisons between 2916 unique BTK ligands and 283 other kinases that cover 7108 dual/multiple inhibitions. Finally, targeting the BTK allosteric site and uding proteolysis-targeting chimera (PROTAC) as two potential strategies are addressed briefly, while also illustrating the possibilities and challenges to find novel ligands of BTK.
Collapse
Affiliation(s)
- Shan-Liang Sun
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shi-Han Wu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ji-Bo Kang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yi-Yuan Ma
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Lu Chen
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Peng Cao
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.,Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Liang Chang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ning Ding
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xin Xue
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Nian-Guang Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhi-Hao Shi
- Department of Organic Chemistry, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
9
|
Ran F, Liu Y, Xu Z, Meng C, Yang D, Qian J, Deng X, Zhang Y, Ling Y. Recent development of BTK-based dual inhibitors in the treatment of cancers. Eur J Med Chem 2022; 233:114232. [PMID: 35247756 DOI: 10.1016/j.ejmech.2022.114232] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/18/2022] [Accepted: 02/23/2022] [Indexed: 02/07/2023]
Abstract
Bruton's tyrosine kinase (BTK) is a promising target in the treatment of various cancers. Despite the early success of BTK inhibitors in the clinic, these single-target drug therapies have limitations in their clinical applications, such as drug resistance. Several alternative strategies have been developed, including the use of dual inhibitors, to maximize the therapeutic potential of anticancer drugs. In this review, we highlight the scientific background and theoretical basis for developing BTK-based dual inhibitors, as well as the status of these agents in preclinical and clinical studies, and discuss further options in this field. We posit that these advances in BTK-based dual inhibitors confirm their feasibility for the treatment of refractory tumors, including those with drug resistance, and provide a framework for future drug design in this field. Accordingly, we anticipate increasingly rapid progress in the development of novel potent dual inhibitors and advanced clinical research on BTK-based dual inhibitors.
Collapse
Affiliation(s)
- Fansheng Ran
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China
| | - Yun Liu
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China
| | - Zhongyuan Xu
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China
| | - Chi Meng
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China
| | - Dezhi Yang
- School of Pharmacy, Zunyi Medical University, Zunyi, 563006, China
| | - Jianqiang Qian
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China
| | - Xuexian Deng
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China
| | - Yanan Zhang
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China.
| | - Yong Ling
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, China.
| |
Collapse
|
10
|
Qin T, Cheng Y, Wang X. RNA-binding proteins as drivers of AML and novel therapeutic targets. Leuk Lymphoma 2022; 63:1045-1057. [PMID: 35075986 DOI: 10.1080/10428194.2021.2008381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Acute myeloid leukemia (AML) is a group of genetically complex and heterogeneous invasive hematological malignancies with a low 5-year overall survival rate of 30%, which highlights the urgent need for improved treatment measures. RNA-binding proteins (RBPs) regulate the abundance of isoforms of related proteins by regulating RNA splicing, translation, stability, and localization, thereby affecting cell differentiation and self-renewal. It is increasingly believed that RBPs are essential for normal hematopoiesis, and RBPs play a key role in hematological tumors, especially AML, by acting as oncogenes or tumor suppressors. In addition, targeting an RBP that is significantly related to AML can trigger the apoptosis of leukemic stem cells or promote the proliferation of stem and progenitor cells by modulating the expression of important pathway regulatory factors such as HOXA9, MYC, and CDKN1A. Accordingly, RBPs involved in normal myeloid differentiation and the occurrence of AML may represent promising therapeutic targets.
Collapse
Affiliation(s)
- Tingyu Qin
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ying Cheng
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaozhong Wang
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
11
|
Xie SJ, Lei H, Yang B, Diao LT, Liao JY, He JH, Tao S, Hu YX, Hou YR, Sun YJ, Peng YW, Zhang Q, Xiao ZD. Dynamic m 6A mRNA Methylation Reveals the Role of METTL3/14-m 6A-MNK2-ERK Signaling Axis in Skeletal Muscle Differentiation and Regeneration. Front Cell Dev Biol 2021; 9:744171. [PMID: 34660602 PMCID: PMC8517268 DOI: 10.3389/fcell.2021.744171] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/10/2021] [Indexed: 11/25/2022] Open
Abstract
N6-methyladenosine (m6A) RNA methylation has emerged as an important factor in various biological processes by regulating gene expression. However, the dynamic profile, function and underlying molecular mechanism of m6A modification during skeletal myogenesis remain elusive. Here, we report that members of the m6A core methyltransferase complex, METTL3 and METTL14, are downregulated during skeletal muscle development. Overexpression of either METTL3 or METTL14 dramatically blocks myotubes formation. Correspondingly, knockdown of METTL3 or METTL14 accelerates the differentiation of skeletal muscle cells. Genome-wide transcriptome analysis suggests ERK/MAPK is the downstream signaling pathway that is regulated to the greatest extent by METTL3/METTL14. Indeed, METTL3/METTL14 expression facilitates ERK/MAPK signaling. Via MeRIP-seq, we found that MNK2, a critical regulator of ERK/MAPK signaling, is m6A modified and is a direct target of METTL3/METTL14. We further revealed that YTHDF1 is a potential reader of m6A on MNK2, regulating MNK2 protein levels without affecting mRNA levels. Furthermore, we discovered that METTL3/14-MNK2 axis was up-regulated notably after acute skeletal muscle injury. Collectively, our studies revealed that the m6A writers METTL3/METTL14 and the m6A reader YTHDF1 orchestrate MNK2 expression posttranscriptionally and thus control ERK signaling, which is required for the maintenance of muscle myogenesis and may contribute to regeneration.
Collapse
Affiliation(s)
- Shu-Juan Xie
- Vaccine Research Institute of Sun Yat-sen University, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hang Lei
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Bing Yang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Li-Ting Diao
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jian-You Liao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jie-Hua He
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shuang Tao
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yan-Xia Hu
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ya-Rui Hou
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yu-Jia Sun
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yan-Wen Peng
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qi Zhang
- Vaccine Research Institute of Sun Yat-sen University, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhen-Dong Xiao
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
12
|
Xu W, Kannan S, Verma CS, Nacro K. Update on the Development of MNK Inhibitors as Therapeutic Agents. J Med Chem 2021; 65:983-1007. [PMID: 34533957 DOI: 10.1021/acs.jmedchem.1c00368] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Mitogen-activated protein kinase-interacting kinases 1 and 2 (MNK1/2) represent a central class of enzymes that are activated by extracellular signal-regulated kinase (ERK) or p38 mitogen-activated protein (MAP) kinases. MNK1 and MNK2 coordinate cellular signaling, control production of inflammatory chemokines, and regulate cell proliferation and survival. MNK1/2 are referred to as serine/threonine kinases as they phosphorylate serine or threonine residues on their substrates. Upon activation, MNK1/2 phosphorylate eukaryotic translation initiation factor 4E (eIF4E) at Ser209, which in turn initiates ribosome assembly and protein translation. Deleterious overexpression of MNK1/2 and/or eIF4E have been reported in several diseases including cancers, neurological disorders, autism, and inflammation. Recently, there have been intense efforts toward the development of potent and selective inhibitors of MNK1/2 in both academia and industry. Herein, we review the current understanding of the structural and biological aspects of MNK1/2 and provide an update of pharmacological inhibitors of MNK1/2 including candidates in clinical trials.
Collapse
Affiliation(s)
- Weijun Xu
- Experimental Drug Development Centre (EDDC), A*STAR, 10 Biopolis Road, Chromos #05-01, 138670, Singapore
| | | | - Chandra S Verma
- Bioinformatics Institute (BII), A*STAR, 30 Biopolis Street, #07-01 Matrix, 138671, Singapore.,Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, 117558, Singapore.,School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Kassoum Nacro
- Experimental Drug Development Centre (EDDC), A*STAR, 10 Biopolis Road, Chromos #05-01, 138670, Singapore
| |
Collapse
|
13
|
Wu YW, Chao MW, Tu HJ, Chen LC, Hsu KC, Liou JP, Yang CR, Yen SC, HuangFu WC, Pan SL. A novel dual HDAC and HSP90 inhibitor, MPT0G449, downregulates oncogenic pathways in human acute leukemia in vitro and in vivo. Oncogenesis 2021; 10:39. [PMID: 33986242 PMCID: PMC8119482 DOI: 10.1038/s41389-021-00331-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 04/07/2021] [Accepted: 04/21/2021] [Indexed: 01/06/2023] Open
Abstract
Acute leukemia is a highly heterogeneous disease; therefore, combination therapy is commonly used for patient treatment. Drug–drug interaction is a major concern of combined therapy; hence, dual/multi-target inhibitors have become a dominant approach for cancer drug development. HDACs and HSP90 are involved in the activation of various oncogenic signaling pathways, including PI3K/AKT/mTOR, JAK/STAT, and RAF/MEK/ERK, which are also highly enriched in acute leukemia gene expression profiles. Therefore, we suggest that dual HDAC and HSP90 inhibitors could represent a novel therapeutic approach for acute leukemia. MPT0G449 is a dual effect inhibitor, and it showed cytotoxic effectiveness in acute leukemia cells. Molecular docking analysis indicated that MPT0G449 possessed dual HDAC and HSP90 inhibitory abilities. Furthermore, MPT0G449 induced G2 arrest and caspase-mediated cell apoptosis in acute leukemia cells. The oncogenic signaling molecules AKT, mTOR, STAT3, STAT5, MEK, and ERK were significantly downregulated after MPT0G449 treatment in HL-60 and MOLT-4 cells. In vivo xenograft models confirmed the antitumor activity and showed the upregulation of acetyl-histone H3 and HSP70, biomarkers of pan-HDAC and HSP90 inhibition, with MPT0G449 treatment. These findings suggest that the dual inhibition of HDAC and HSP90 can suppress the expression of oncogenic pathways in acute leukemia, and MPT0G449 represents a novel therapeutic for anticancer treatment.
Collapse
Affiliation(s)
- Yi-Wen Wu
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan
| | - Min-Wu Chao
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Huang-Ju Tu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Liang-Chieh Chen
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Guangdong, P. R. China
| | - Kai-Cheng Hsu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan.,TMU Biomedical Commercialization Center, Taipei Medical University, Taipei, Taiwan.,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jing-Ping Liou
- TMU Biomedical Commercialization Center, Taipei Medical University, Taipei, Taiwan.,School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Chia-Ron Yang
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shih-Chung Yen
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Guangdong, P. R. China
| | - Wei-Chun HuangFu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan. .,Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan. .,Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan. .,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Shiow-Lin Pan
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan. .,Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan. .,Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan. .,TMU Biomedical Commercialization Center, Taipei Medical University, Taipei, Taiwan. .,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
14
|
Jin X, Yu R, Wang X, Proud CG, Jiang T. Progress in developing MNK inhibitors. Eur J Med Chem 2021; 219:113420. [PMID: 33892273 DOI: 10.1016/j.ejmech.2021.113420] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 12/19/2022]
Abstract
The MNKs (mitogen-activated protein kinase-interacting protein kinases) phosphorylate eIF4E (eukaryotic initiation factor 4 E) at serine 209; eIF4E plays an important role in the translation of cytoplasmic mRNAs, all of which possess a 5' 'cap' structure to which eIF4E binds. Elevated levels of eIF4E, p-eIF4E and/or the MNK protein kinases have been found in many types of cancer, including solid tumors and leukemia. MNKs also play a role in metabolic disease. Regulation of the activities of MNKs (MNK1 and MNK2), control the phosphorylation of eIF4E, which in turn has a close relationship with the processes of tumor development, cell migration and invasion, and energy metabolism. MNK knock-out mice display no adverse effects on normal cells or phenotypes suggesting that MNK may be a potentially safe targets for the treatment of various cancers. Several MNK inhibitors or 'degraders' have been identified. Initially, some of the inhibitors were developed from natural products or based on other protein kinase inhibitors which inhibit multiple kinases. Subsequently, more potent and selective inhibitors for MNK1/2 have been designed and synthesized. Currently, three inhibitors (BAY1143269, eFT508 and ETC-206) are in various stages of clinical trials for the treatment of solid cancers or leukemia, either alone or combined with inhibitors of other protein kinase. In this review, we summarize the diverse MNK inhibitors that have been reported in patents and other literature, including those with activities in vitro and/or in vivo.
Collapse
Affiliation(s)
- Xin Jin
- School of Medicine and Pharmacy, Ocean University of China and Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Rilei Yu
- School of Medicine and Pharmacy, Ocean University of China and Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xuemin Wang
- Lifelong Health, South Australian Health & Medical Research Institute, North Terrace, Adelaide, SA5000, Australia; School of Biomedical Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Christopher G Proud
- Lifelong Health, South Australian Health & Medical Research Institute, North Terrace, Adelaide, SA5000, Australia; School of Biomedical Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Tao Jiang
- School of Medicine and Pharmacy, Ocean University of China and Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
15
|
Mologni L, Marzaro G, Redaelli S, Zambon A. Dual Kinase Targeting in Leukemia. Cancers (Basel) 2021; 13:E119. [PMID: 33401428 PMCID: PMC7796318 DOI: 10.3390/cancers13010119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 12/13/2022] Open
Abstract
Pharmacological cancer therapy is often based on the concurrent inhibition of different survival pathways to improve treatment outcomes and to reduce the risk of relapses. While this strategy is traditionally pursued only through the co-administration of several drugs, the recent development of multi-targeting drugs (i.e., compounds intrinsically able to simultaneously target several macromolecules involved in cancer onset) has had a dramatic impact on cancer treatment. This review focuses on the most recent developments in dual-kinase inhibitors used in acute myeloid leukemia (AML), chronic myelogenous leukemia (CML), and lymphoid tumors, giving details on preclinical studies as well as ongoing clinical trials. A brief overview of dual-targeting inhibitors (kinase/histone deacetylase (HDAC) and kinase/tubulin polymerization inhibitors) applied to leukemia is also given. Finally, the very recently developed Proteolysis Targeting Chimeras (PROTAC)-based kinase inhibitors are presented.
Collapse
Affiliation(s)
- Luca Mologni
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (L.M.); (S.R.)
| | - Giovanni Marzaro
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, I-35131 Padova, Italy;
| | - Sara Redaelli
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (L.M.); (S.R.)
| | - Alfonso Zambon
- Department of Chemistry and Geological Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| |
Collapse
|
16
|
Creeden JF, Alganem K, Imami AS, Henkel ND, Brunicardi FC, Liu SH, Shukla R, Tomar T, Naji F, McCullumsmith RE. Emerging Kinase Therapeutic Targets in Pancreatic Ductal Adenocarcinoma and Pancreatic Cancer Desmoplasia. Int J Mol Sci 2020; 21:ijms21228823. [PMID: 33233470 PMCID: PMC7700673 DOI: 10.3390/ijms21228823] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 02/08/2023] Open
Abstract
Kinase drug discovery represents an active area of therapeutic research, with previous pharmaceutical success improving patient outcomes across a wide variety of human diseases. In pancreatic ductal adenocarcinoma (PDAC), innovative pharmaceutical strategies such as kinase targeting have been unable to appreciably increase patient survival. This may be due, in part, to unchecked desmoplastic reactions to pancreatic tumors. Desmoplastic stroma enhances tumor development and progression while simultaneously restricting drug delivery to the tumor cells it protects. Emerging evidence indicates that many of the pathologic fibrotic processes directly or indirectly supporting desmoplasia may be driven by targetable protein tyrosine kinases such as Fyn-related kinase (FRK); B lymphoid kinase (BLK); hemopoietic cell kinase (HCK); ABL proto-oncogene 2 kinase (ABL2); discoidin domain receptor 1 kinase (DDR1); Lck/Yes-related novel kinase (LYN); ephrin receptor A8 kinase (EPHA8); FYN proto-oncogene kinase (FYN); lymphocyte cell-specific kinase (LCK); tec protein kinase (TEC). Herein, we review literature related to these kinases and posit signaling networks, mechanisms, and biochemical relationships by which this group may contribute to PDAC tumor growth and desmoplasia.
Collapse
Affiliation(s)
- Justin F. Creeden
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (K.A.); (A.S.I.); (N.D.H.); (R.S.); (R.E.M.)
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (F.C.B.); (S.-H.L.)
- Department of Surgery, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 6038, USA
- Correspondence: ; Tel.: +1-419-383-6474
| | - Khaled Alganem
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (K.A.); (A.S.I.); (N.D.H.); (R.S.); (R.E.M.)
| | - Ali S. Imami
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (K.A.); (A.S.I.); (N.D.H.); (R.S.); (R.E.M.)
| | - Nicholas D. Henkel
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (K.A.); (A.S.I.); (N.D.H.); (R.S.); (R.E.M.)
| | - F. Charles Brunicardi
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (F.C.B.); (S.-H.L.)
- Department of Surgery, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 6038, USA
| | - Shi-He Liu
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (F.C.B.); (S.-H.L.)
- Department of Surgery, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 6038, USA
| | - Rammohan Shukla
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (K.A.); (A.S.I.); (N.D.H.); (R.S.); (R.E.M.)
| | - Tushar Tomar
- PamGene International BV, 5200 BJ’s-Hertogenbosch, The Netherlands; (T.T.); (F.N.)
| | - Faris Naji
- PamGene International BV, 5200 BJ’s-Hertogenbosch, The Netherlands; (T.T.); (F.N.)
| | - Robert E. McCullumsmith
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (K.A.); (A.S.I.); (N.D.H.); (R.S.); (R.E.M.)
- Neurosciences Institute, ProMedica, Toledo, OH 6038, USA
| |
Collapse
|
17
|
Pinto-Díez C, Ferreras-Martín R, Carrión-Marchante R, González VM, Martín ME. Deeping in the Role of the MAP-Kinases Interacting Kinases (MNKs) in Cancer. Int J Mol Sci 2020; 21:2967. [PMID: 32340135 PMCID: PMC7215568 DOI: 10.3390/ijms21082967] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 02/05/2023] Open
Abstract
The mitogen-activated protein kinase (MAPK)-interacting kinases (MNKs) are involved in oncogenic transformation and can promote metastasis and tumor progression. In human cells, there are four MNKs isoforms (MNK1a/b and MNK2a/b), derived from two genes by alternative splicing. These kinases play an important role controlling the expression of specific proteins involved in cell cycle, cell survival and cell motility via eukaryotic initiation factor 4E (eIF4E) regulation, but also through other substrates such as heterogeneous nuclear ribonucleoprotein A1, polypyrimidine tract-binding protein-associated splicing factor and Sprouty 2. In this review, we provide an overview of the role of MNK in human cancers, describing the studies conducted to date to elucidate the mechanism involved in the action of MNKs, as well as the development of MNK inhibitors in different hematological cancers and solid tumors.
Collapse
Affiliation(s)
| | | | | | | | - María Elena Martín
- Grupo de Aptámeros, Servicio de Bioquímica-Investigación, IRYCIS-Hospital Ramón y Cajal, Madrid, Ctra. Colmenar Km. 9100, 28034 Madrid, Spain; (C.P.-D.); (R.F.-M.); (R.C.-M.); (V.M.G.)
| |
Collapse
|
18
|
Taylor J, Yeomans AM, Packham G. Targeted inhibition of mRNA translation initiation factors as a novel therapeutic strategy for mature B-cell neoplasms. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2020; 1:3-25. [PMID: 32924027 PMCID: PMC7116065 DOI: 10.37349/etat.2020.00002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 01/31/2020] [Indexed: 12/17/2022] Open
Abstract
Cancer development is frequently associated with dysregulation of mRNA translation to enhance both increased global protein synthesis and translation of specific mRNAs encoding oncoproteins. Thus, targeted inhibition of mRNA translation is viewed as a promising new approach for cancer therapy. In this article we review current progress in investigating dysregulation of mRNA translation initiation in mature B-cell neoplasms, focusing on chronic lymphocytic leukemia, follicular lymphoma and diffuse large B-cell lymphoma. We discuss mechanisms and regulation of mRNA translation, potential pathways by which genetic alterations and the tumor microenvironment alters mRNA translation in malignant B cells, preclinical evaluation of drugs targeted against specific eukaryotic initiation factors and current progress towards clinical development. Overall, inhibition of mRNA translation initiation factors is an exciting and promising area for development of novel targeted anti-tumor drugs.
Collapse
Affiliation(s)
- Joe Taylor
- Cancer Research UK Centre, Cancer Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, United Kingdom
| | - Alison M Yeomans
- Cancer Research UK Centre, Cancer Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, United Kingdom
| | - Graham Packham
- Cancer Research UK Centre, Cancer Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, United Kingdom
| |
Collapse
|
19
|
Abdeldayem A, Raouf YS, Constantinescu SN, Moriggl R, Gunning PT. Advances in covalent kinase inhibitors. Chem Soc Rev 2020; 49:2617-2687. [DOI: 10.1039/c9cs00720b] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This comprehensive review details recent advances, challenges and innovations in covalent kinase inhibition within a 10 year period (2007–2018).
Collapse
Affiliation(s)
- Ayah Abdeldayem
- Department of Chemical & Physical Sciences
- University of Toronto
- Mississauga
- Canada
- Department of Chemistry
| | - Yasir S. Raouf
- Department of Chemical & Physical Sciences
- University of Toronto
- Mississauga
- Canada
- Department of Chemistry
| | | | - Richard Moriggl
- Institute of Animal Breeding and Genetics
- University of Veterinary Medicine
- 1210 Vienna
- Austria
| | - Patrick T. Gunning
- Department of Chemical & Physical Sciences
- University of Toronto
- Mississauga
- Canada
- Department of Chemistry
| |
Collapse
|
20
|
RUNX1-targeted therapy for AML expressing somatic or germline mutation in RUNX1. Blood 2019; 134:59-73. [PMID: 31023702 DOI: 10.1182/blood.2018893982] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 04/16/2019] [Indexed: 12/22/2022] Open
Abstract
RUNX1 transcription factor regulates normal and malignant hematopoiesis. Somatic or germline mutant RUNX1 (mtRUNX1) is associated with poorer outcome in acute myeloid leukemia (AML). Knockdown or inhibition of RUNX1 induced more apoptosis of AML expressing mtRUNX1 versus wild-type RUNX1 and improved survival of mice engrafted with mtRUNX1-expressing AML. CRISPR/Cas9-mediated editing-out of RUNX1 enhancer (eR1) within its intragenic super-enhancer, or BET protein BRD4 depletion by short hairpin RNA, repressed RUNX1, inhibited cell growth, and induced cell lethality in AML cells expressing mtRUNX1. Moreover, treatment with BET protein inhibitor or degrader (BET-proteolysis targeting chimera) repressed RUNX1 and its targets, inducing apoptosis and improving survival of mice engrafted with AML expressing mtRUNX1. Library of Integrated Network-based Cellular Signatures 1000-connectivity mapping data sets queried with messenger RNA signature of RUNX1 knockdown identified novel expression-mimickers (EMs), which repressed RUNX1 and exerted in vitro and in vivo efficacy against AML cells expressing mtRUNX1. In addition, the EMs cinobufagin, anisomycin, and narciclasine induced more lethality in hematopoietic progenitor cells (HPCs) expressing germline mtRUNX1 from patients with AML compared with HPCs from patients with familial platelet disorder (FPD), or normal untransformed HPCs. These findings highlight novel therapeutic agents for AML expressing somatic or germline mtRUNX1.
Collapse
|
21
|
Huang XB, Yang CM, Han QM, Ye XJ, Lei W, Qian WB. MNK1 inhibitor CGP57380 overcomes mTOR inhibitor-induced activation of eIF4E: the mechanism of synergic killing of human T-ALL cells. Acta Pharmacol Sin 2018; 39:1894-1901. [PMID: 30297804 DOI: 10.1038/s41401-018-0161-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 07/30/2018] [Indexed: 01/05/2023]
Abstract
Although the treatment of adult T-cell acute lymphoblastic leukemia (T-ALL) has been significantly improved, the heterogeneous genetic landscape of the disease often causes relapse. Aberrant activation of mammalian target of rapamycin (mTOR) pathway in T-ALL is responsible for treatment failure and relapse, suggesting that mTOR inhibition may represents a new therapeutic strategy. In this study, we investigated whether the mTOR complex 1 (mTORC1) inhibitor everolimus could be used as a therapeutic agent against human T-ALL. We showed that rapamycin and its analog RAD001 (everolimus) exerted only mild inhibition on the viability of Jurkat, CEM and Molt-4 cell lines (for everolimus the maximum inhibition was <40% at 100 nM), but greatly enhanced the phosphorylation of eIF4E, a downstream substrate of MAPK-interacting kinase (MNK) that was involved in promoting cell survival. Furthermore, we demonstrated in Jurkat cells that mTOR inhibitor-induced eIF4E phosphorylation was independent of insulin-like growth factor-1/insulin-like growth factor-1 receptor axis, but was secondary to mTOR inhibition. Then we examined the antileukemia effects of CGP57380, a MNK1 inhibitor, and we found that CGP57380 (4-16 μM) dose-dependently suppressed the expression of both phosphor-MNK1 and phosphor-eIF4E, thereby inhibiting downstream targets such as c-Myc and survivin in T-ALL cells. Importantly, CGP57380 produced a synergistic growth inhibitory effect with everolimus in T-ALL cells, and treatment with this targeted therapy overcame everolimus-induced eIF4E phosphorylation. In conclusion, our results suggest that dual-targeting of mTOR and MNK1/eIF4E signaling pathways may represent a novel therapeutic strategy for the treatment of human T-ALL.
Collapse
|
22
|
Liu K, Guo J, Liu K, Fan P, Zeng Y, Xu C, Zhong J, Li Q, Zhou Y. Integrative analysis reveals distinct subtypes with therapeutic implications in KRAS-mutant lung adenocarcinoma. EBioMedicine 2018; 36:196-208. [PMID: 30268834 PMCID: PMC6197714 DOI: 10.1016/j.ebiom.2018.09.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/11/2018] [Accepted: 09/19/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND KRAS-mutant lung adenocarcinomas (LUADs) are heterogeneous and frequently occur in smokers. The heterogeneity of KRAS-mutant LUAD has been an obstacle for the drug discovery. METHODS We integrated multiplatform datatypes and identified two corresponding subtypes in the patients and cell lines. We further characterized the features of these two subtypes and performed drug screening to identify subtype-specific drugs. Finally, we used the defining features of the KRAS subtypes for drug sensitivity prediction. FINDINGS Patient-Subtype 1 (PS1) was characterized by increased smoking-related mutational signature activity, a low tumor-infiltrating lymphocyte (TIL)-associating score and STK11/KEAP1 co-mutations. Patient-Subtype 2 (PS2) was characterized by an increased smoking-related methylation signature activity, a high TIL-associating score and increased KRAS dependency. The cell line subtypes faithfully recapitulated all the patients' features. Drug screening of the two cell line subtypes yielded several potential candidates, such as cytarabine and enzastaurin for Cell-line-Subtype 1 (CS1) and a BTK inhibitor QL-XII-61 for Cell-line-Subtype 2 (CS2). The defining features, such as smoking-related methylation signature, were significantly associated with the sensitivity to several drugs. INTERPRETATION The heterogeneity of KRAS-mutant LUAD is associated with smoking-related genomic and epigenomic aberration along with other features such as immunogenicity, KRAS dependency and STK11/KEAP1 co-mutations. These features might be used as biomarkers for drug sensitivity prediction. FUND: This research was funded by the Young Scientists Fund of the National Natural Science Foundation of China, the Natural Science Foundation of Fujian Province, China and the Education and Research Foundation for Young Scholars of Education Department of Fujian Province, China.
Collapse
Affiliation(s)
- Ke Liu
- Department of Translational Medicine, Medical College of Xiamen University, Xiamen 361102, China; Center for Biomedical Big Data Research, Medical College of Xiamen University, Xiamen 361102, China
| | - Jintao Guo
- Department of Translational Medicine, Medical College of Xiamen University, Xiamen 361102, China; Center for Biomedical Big Data Research, Medical College of Xiamen University, Xiamen 361102, China
| | - Kuai Liu
- Department of Translational Medicine, Medical College of Xiamen University, Xiamen 361102, China; Center for Biomedical Big Data Research, Medical College of Xiamen University, Xiamen 361102, China
| | - Peiyang Fan
- Department of Translational Medicine, Medical College of Xiamen University, Xiamen 361102, China; Center for Biomedical Big Data Research, Medical College of Xiamen University, Xiamen 361102, China
| | - Yuanyuan Zeng
- BGI-Shenzhen, Bei Shan Industrial Zone, Yantian District, Shenzhen, Guangdong Province 518083, China
| | - Chaoqun Xu
- Department of Translational Medicine, Medical College of Xiamen University, Xiamen 361102, China; Center for Biomedical Big Data Research, Medical College of Xiamen University, Xiamen 361102, China
| | - Jiaxin Zhong
- Department of Translational Medicine, Medical College of Xiamen University, Xiamen 361102, China; Center for Biomedical Big Data Research, Medical College of Xiamen University, Xiamen 361102, China
| | - Qiyuan Li
- Department of Translational Medicine, Medical College of Xiamen University, Xiamen 361102, China; Center for Biomedical Big Data Research, Medical College of Xiamen University, Xiamen 361102, China.
| | - Ying Zhou
- Department of Translational Medicine, Medical College of Xiamen University, Xiamen 361102, China; Center for Biomedical Big Data Research, Medical College of Xiamen University, Xiamen 361102, China.
| |
Collapse
|
23
|
Saenz-de-Viteri M, Cudrnak T. Bilateral cystoid macular edema in a patient with chronic lymphocytic leukemia treated with ibrutinib. Leuk Lymphoma 2018; 60:842-844. [DOI: 10.1080/10428194.2018.1508673] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Manuel Saenz-de-Viteri
- Royal Eye Infirmary, University Hospitals Plymouth, Plymouth, United Kingdom
- Department of Ophthalmology, University of Navarra, Pamplona, Spain
| | - Tomas Cudrnak
- Royal Eye Infirmary, University Hospitals Plymouth, Plymouth, United Kingdom
| |
Collapse
|
24
|
Zeng DF, Chen F, Wang S, Chen SL, Xu Y, Shen MQ, Du CH, Wang C, Kong PY, Cheng TM, Su YP, Wang JP. Autoantibody against integrin α v β 3 contributes to thrombocytopenia by blocking the migration and adhesion of megakaryocytes. J Thromb Haemost 2018; 16:1843-1856. [PMID: 29953749 DOI: 10.1111/jth.14214] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Indexed: 01/04/2023]
Abstract
Essentials The pathogenesis of immune thrombocytopenia (ITP) has not been fully clarified. We analyzed the role of anti-αvβ3 autoantibody in the pathogenesis of ITP in patients. Anti-αvβ3 autoantibody impeded megakaryocyte migration and adhesion to the vascular niche. Anti-αv β3 autoantibody potentially contributes to the pathogenesis of refractory ITP. SUMMARY Background The pathogenesis of immune thrombocytopenia (ITP) has not been fully clarified. Anti-αvβ3 integrin autoantibody is detected in chronic ITP patients, but its contribution to ITP is still unclear. Objectives To clarify the potential role of anti-αvβ3 integrin autoantibody in chronic ITP and the related mechanism. Methods Relationship between levels of anti-αvβ3 autoantibody and platelets in chronic ITP patients was evaluated. The influence of anti-αvβ3 antibody on megakaryocyte (MK) survival, differentiation, migration and adhesion was assessed, and the associated signal pathways were investigated. Platelet recovery and MKs' distribution were observed in an ITP mouse model pretreated with different antibodies. Result In this study, we showed that the anti-αvβ3 autoantibody usually coexists with anti-αIIbβ3 autoantibody in chronic ITP patients, and patients with both autoantibodies have lower platelets. In in vitro studies, we showed that the anti-αvβ3 antibody had no significant effect on the survival and proliferation of MKs, whereas it decreased formations of proplatelet significantly. Anti-αvβ3 antibody impeded stromal cell derived facor-1 alpha (SDF-1α)- mediated migration and inhibited the phosphorylation of protein kinase B. Anti-αvβ3 antibody significantly inhibited MKs' adhesion to endothelial cells and Fibrogen. The phosphorylation of focal adhesion kinase and proto-oncogene tyrosine-protein kinase Src induced by adhesion was inhibited when MKs were pretreated with anti-αvβ3 antibody. In in vivo studies, we showed that injection with anti-αv antibody delayed platelet recovery in a mouse model of ITP. Conclusions These findings demonstrate that the autoantibody against integrin αv β3 may aggravate thrombocytopenia in ITP patients by impeding MK migration and adhesion to the vascular niche, which provides new insights into the pathogenesis of ITP.
Collapse
Affiliation(s)
- D F Zeng
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
- Department of Hematology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - F Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - S Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - S L Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Y Xu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - M Q Shen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - C H Du
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - C Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - P Y Kong
- Department of Hematology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - T M Cheng
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Y P Su
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - J P Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| |
Collapse
|
25
|
Liu L, Shi B, Li X, Wang X, Lu X, Cai X, Huang A, Luo G, You Q, Xiang H. Design and synthesis of benzofuro[3,2-b]pyridin-2(1H)-one derivatives as anti-leukemia agents by inhibiting Btk and PI3Kδ. Bioorg Med Chem 2018; 26:4537-4543. [DOI: 10.1016/j.bmc.2018.07.047] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/18/2018] [Accepted: 07/26/2018] [Indexed: 12/17/2022]
|
26
|
Ling Y, Zhang Z, Zhang H, Huang Z. Protein Kinase Inhibitors as Therapeutic Drugs in AML: Advances and Challenges. Curr Pharm Des 2018; 23:4303-4310. [PMID: 28671056 PMCID: PMC6302345 DOI: 10.2174/1381612823666170703164114] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 05/13/2017] [Accepted: 05/18/2017] [Indexed: 12/28/2022]
Abstract
Acute myeloid leukemia (AML) is a malignant blood disorder and the cure rate has been remarkably improved over the past decade. However, recurrent or refractory leu-kemia remains the major problem of the AML and no clearly effective therapy has been es-tablished so far. Traditional treatments such as chemotherapy and hematopoietic stem cell transplantation are both far dissatisfying the patients partly for their individual variety. Be-sides, conventional treatments usually have many side effects to result in poor prognosis. Therefore, an urgent need is necessary to update therapies of AML. To date, protein kinase inhibitors as new drugs offer hope for AML treatment and many of them are on clinical tri-als. Here, this review will provide a brief summary of protein kinase inhibitors investigated in AML thus far, mainly including tyrosine protein kinase inhibitors and serine/threonine kinase inhibitors. We also presented the sketch of signal pathways involving protein kinase inhibitors, as well as discussed the clinical applications and the challenges of inhibitors in AML treatment
Collapse
Affiliation(s)
- Yuan Ling
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, P.R. China.,China-America Cancer Research Institute, Dongguan Key Laboratory of Epigenetics, Institute of Clinical Laboratory Medicine, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan 523808, P.R. China
| | - Zikang Zhang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, P.R. China.,China-America Cancer Research Institute, Dongguan Key Laboratory of Epigenetics, Institute of Clinical Laboratory Medicine, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan 523808, P.R. China
| | - Hua Zhang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, P.R. China.,China-America Cancer Research Institute, Dongguan Key Laboratory of Epigenetics, Institute of Clinical Laboratory Medicine, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan 523808, P.R. China
| | - Zunnan Huang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, P.R. China.,China-America Cancer Research Institute, Dongguan Key Laboratory of Epigenetics, Institute of Clinical Laboratory Medicine, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan 523808, P.R. China
| |
Collapse
|
27
|
Shi Y. Current status and progress of lymphoma management in China. Int J Hematol 2018; 107:405-412. [PMID: 29388166 DOI: 10.1007/s12185-018-2404-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/08/2018] [Accepted: 01/15/2018] [Indexed: 01/09/2023]
Abstract
Lymphoma is a large group of lymphoid hematopoietic malignancies including Hodgkin lymphoma and non-Hodgkin's lymphoma. The various subtypes of lymphoma are different in clinical features, response to treatment and prognoses. The relative frequency of specific subtypes of lymphoma varies geographically. The mature T cell lymphoma is much more common in East Asia compared with Western countries. Chemotherapy plays an important role in the treatment of lymphoma. With advances in understanding the biology and genetics of lymphoma, many new agents are used in the treatment of lymphoma. In mainland China, some new agents and new combination chemotherapy regimens showed high efficacy and good tolerability. Chidamide, a histone deacetylase inhibitor, has been approved for the treatment of relapsed or refractory peripheral T cell lymphoma by the China Food and Drug Administration. Anti-programmed death 1 antibodies and chimeric antigen receptor-engineered T cells have been explored for lymphoma immunotherapy in Chinese patients. Advances in the treatment have substantially increased the likelihood of cure for patients with lymphoma.
Collapse
Affiliation(s)
- Yuankai Shi
- Department of Medical Oncology, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China.
| |
Collapse
|
28
|
Progress with covalent small-molecule kinase inhibitors. Drug Discov Today 2018; 23:727-735. [PMID: 29337202 DOI: 10.1016/j.drudis.2018.01.035] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/23/2017] [Accepted: 01/09/2018] [Indexed: 01/07/2023]
Abstract
With reduced risk of toxicity and high selectivity, covalent small-molecule kinase inhibitors (CSKIs) have emerged rapidly. Through the lens of structural system pharmacology, here we review this rapid progress by considering design strategies and the challenges and opportunities offered by current CSKIs.
Collapse
|
29
|
Chu J, Ramon Y Cajal S, Sonenberg N, Pelletier J. Eukaryotic initiation factor 4F-sidestepping resistance mechanisms arising from expression heterogeneity. Curr Opin Genet Dev 2017; 48:89-96. [PMID: 29169064 DOI: 10.1016/j.gde.2017.11.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/01/2017] [Accepted: 11/03/2017] [Indexed: 12/31/2022]
Abstract
There is enormous diversity in the genetic makeup and gene expression profiles between and within tumors. This heterogeneity leads to phenotypic variation and is a major mechanism of resistance to molecular targeted therapies. Here we describe a conceptual framework for targeting eukaryotic initiation factor (eIF) 4F in cancer-an essential complex that drives and promotes multiple Cancer Hallmarks. The unique nature of eIF4F and its druggability bypasses several of the heterogeneity issues that plague molecular targeted drugs developed for cancer therapy.
Collapse
Affiliation(s)
- Jennifer Chu
- Departments of Biochemistry and Oncology, McGill University, Montreal, Quebec, Canada
| | - Santiago Ramon Y Cajal
- Pathology Department, Vall d'Hebron Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain; Spanish Biomedical Research Network Centre in Oncology (CIBERONC), Spain
| | - Nahum Sonenberg
- Departments of Biochemistry and Oncology, McGill University, Montreal, Quebec, Canada; Goodman Cancer Research Center, McGill University, Montreal, Quebec, Canada
| | - Jerry Pelletier
- Departments of Biochemistry and Oncology, McGill University, Montreal, Quebec, Canada; Goodman Cancer Research Center, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
30
|
Ge Y, Wang C, Song S, Huang J, Liu Z, Li Y, Meng Q, Zhang J, Yao J, Liu K, Ma X, Sun X. Identification of highly potent BTK and JAK3 dual inhibitors with improved activity for the treatment of B-cell lymphoma. Eur J Med Chem 2017; 143:1847-1857. [PMID: 29146136 DOI: 10.1016/j.ejmech.2017.10.080] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/24/2017] [Accepted: 10/30/2017] [Indexed: 01/05/2023]
Abstract
The BTK and JAK3 receptor tyrosine kinases are two validated and therapeutically amenable targets in the treatment of B-cell lymphomas. Here we report the identification of several classes of pyrimidine derivatives as potent BTK and JAK3 dual inhibitors. Among these molecules, approximately two thirds displayed strong inhibitory capacity at less than 10 nM concentration, and four compounds (7e, 7g, 7m and 7n) could significantly inhibit the phosphorylation of BTK and JAK3 enzymes at concentrations lower than 1 nM. Additionally, these pyrimidine derivatives also exhibited enhanced activity to block the proliferation of B-cell lymphoma cells compared with the representative BTK inhibitor ibrutinib. In particular, two structure-specific compounds 7b and 7e displayed stronger activity than reference agents in cell-based evaluation, with IC50 values lower than 10 μM. Further biological studies, including flow cytometric analysis, and a xenograft model for in vivo evaluation, also indicated their efficacy and low toxicity in the treatment of B-cell lymphoma. These findings provide a new insight for the development of novel anti-B-cell lymphoma drugs with multi-target actions.
Collapse
Affiliation(s)
- Yang Ge
- Department of Hematology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, PR China; College of Pharmacy, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, PR China
| | - Changyuan Wang
- College of Pharmacy, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, PR China
| | - Shijie Song
- College of Pharmacy, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, PR China
| | - Jiaxin Huang
- College of Pharmacy, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, PR China
| | - Zhihao Liu
- College of Pharmacy, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, PR China
| | - Yongming Li
- College of Pharmacy, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, PR China
| | - Qiang Meng
- College of Pharmacy, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, PR China
| | - Jianbin Zhang
- College of Pharmacy, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, PR China
| | - Jihong Yao
- College of Pharmacy, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, PR China
| | - Kexin Liu
- College of Pharmacy, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, PR China
| | - Xiaodong Ma
- College of Pharmacy, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, PR China.
| | - Xiuli Sun
- Department of Hematology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, PR China.
| |
Collapse
|
31
|
Okon A, Han J, Dawadi S, Demosthenous C, Aldrich CC, Gupta M, Wagner CR. Anchimerically Activated ProTides as Inhibitors of Cap-Dependent Translation and Inducers of Chemosensitization in Mantle Cell Lymphoma. J Med Chem 2017; 60:8131-8144. [PMID: 28858511 DOI: 10.1021/acs.jmedchem.7b00916] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The cellular delivery of nucleotides through various pronucleotide strategies has expanded the utility of nucleosides as a therapeutic class. Although highly successful, the highly popular ProTide system relies on a four-step enzymatic and chemical process to liberate the corresponding monophosphate. To broaden the scope and reduce the number of steps required for monophosphate release, we have developed a strategy that depends on initial chemical activation by a sulfur atom of a methylthioalkyl protecting group, followed by enzymatic hydrolysis of the resulting phosphoramidate monoester. We have employed this ProTide strategy for intracellular delivery of a nucleotide antagonist of eIF4E in mantle cell lymphoma (MCL) cells. Furthermore, we demonstrated that chemical inhibition of cap-dependent translation results in suppression of c-Myc expression, increased p27 expression, and enhanced chemosensitization to doxorubicin, dexamethasone, and ibrutinib. In addition, the new ProTide strategy was shown to enhance oral bioavailability of the corresponding monoester phosphoramidate.
Collapse
Affiliation(s)
| | - JingJing Han
- Department of Internal Medicine, Division of Hematology, Mayo Clinic , Rochester, Minnesota 55905, United States
| | | | - Christos Demosthenous
- Department of Internal Medicine, Division of Hematology, Mayo Clinic , Rochester, Minnesota 55905, United States
| | | | - Mamta Gupta
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, George Washington University , GW Cancer Center, Washington, D.C. 20052, United States
| | | |
Collapse
|
32
|
Musumeci F, Sanna M, Greco C, Giacchello I, Fallacara AL, Amato R, Schenone S. Pyrrolo[2,3-d]pyrimidines active as Btk inhibitors. Expert Opin Ther Pat 2017; 27:1305-1318. [DOI: 10.1080/13543776.2017.1355908] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Francesca Musumeci
- Dipartimento di Farmacia, Università degli Studi di Genova, Genova, Italy
| | - Monica Sanna
- Dipartimento di Farmacia, Università degli Studi di Genova, Genova, Italy
| | - Chiara Greco
- Dipartimento di Farmacia, Università degli Studi di Genova, Genova, Italy
| | - Ilaria Giacchello
- Dipartimento di Farmacia, Università degli Studi di Genova, Genova, Italy
| | - Anna Lucia Fallacara
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Siena, Italy
| | - Rosario Amato
- Dipartimento di “Scienze della Salute”, Università “Magna Graecia” di Catanzaro, Catanzaro, Italy
| | - Silvia Schenone
- Dipartimento di Farmacia, Università degli Studi di Genova, Genova, Italy
| |
Collapse
|
33
|
Structure-activity relationship investigation for benzonaphthyridinone derivatives as novel potent Bruton's tyrosine kinase (BTK) irreversible inhibitors. Eur J Med Chem 2017. [PMID: 28628824 DOI: 10.1016/j.ejmech.2017.06.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Through a structure-based drug design approach, a tricyclic benzonaphthyridinone pharmacophore was used as a starting point for carrying out detailed medicinal structure-activity relationhip (SAR) studies geared toward characterization of a panel of proposed BTK inhibitors, including 6 (QL-X-138), 7 (BMX-IN-1) and 8 (QL47). These studies led to the discovery of the novel potent irreversible BTK inhibitor, compound 18 (CHMFL-BTK-11). Kinetic analysis of compound 18 revealed an irreversible binding efficacy (kinact/Ki) of 0.01 μM-1s-1. Compound 18 potently inhibited BTK kinase Y223 auto-phosphorylation (EC50 < 100 nM), arrested cell cycle in G0/G1 phase, and induced apoptosis in Ramos, MOLM13 and Pfeiffer cells. We believe these features would make 18 a good pharmacological tool for studying BTK-related pathologies.
Collapse
|
34
|
Structural pharmacological studies on EGFR T790M/C797S. Biochem Biophys Res Commun 2017; 488:266-272. [DOI: 10.1016/j.bbrc.2017.04.138] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 04/25/2017] [Indexed: 12/21/2022]
|
35
|
Wang SN, Bai O. [The advances of clinical and molecular prognostic factors of diffuse large B-cell lymphoma]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2017; 37:538-41. [PMID: 27431086 PMCID: PMC7348340 DOI: 10.3760/cma.j.issn.0253-2727.2016.06.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
36
|
de Wispelaere M, Carocci M, Liang Y, Liu Q, Sun E, Vetter ML, Wang J, Gray NS, Yang PL. Discovery of host-targeted covalent inhibitors of dengue virus. Antiviral Res 2016; 139:171-179. [PMID: 28034743 DOI: 10.1016/j.antiviral.2016.12.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 12/14/2016] [Accepted: 12/21/2016] [Indexed: 10/20/2022]
Abstract
We report here on an approach targeting the host reactive cysteinome to identify inhibitors of host factors required for the infectious cycle of Flaviviruses and other viruses. We used two parallel cellular phenotypic screens to identify a series of covalent inhibitors, exemplified by QL-XII-47, that are active against dengue virus. We show that the compounds effectively block viral protein expression and that this inhibition is associated with repression of downstream processes of the infectious cycle, and thus significantly contributes to the potent antiviral activity of these compounds. We demonstrate that QL-XII-47's antiviral activity requires selective, covalent modification of a host target by showing that the compound's antiviral activity is recapitulated when cells are preincubated with QL-XII-47 and then washed prior to viral infection and by showing that QL-XII-47R, a non-reactive analog, lacks antiviral activity at concentrations more than 20-fold higher than QL-XII-47's IC90. QL-XII-47's inhibition of Zika virus, West Nile virus, hepatitis C virus, and poliovirus further suggests that it acts via a target mediating inhibition of these other medically relevant viruses. These results demonstrate the utility of screens targeting the host reactive cysteinome for rapid identification of compounds with potent antiviral activity.
Collapse
Affiliation(s)
| | - Margot Carocci
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Yanke Liang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Qingsong Liu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Eileen Sun
- Department of Chemistry and Chemical Biology, Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - Michael L Vetter
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Jinhua Wang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Nathanael S Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Priscilla L Yang
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
37
|
Kosciuczuk EM, Saleiro D, Platanias LC. Dual targeting of eIF4E by blocking MNK and mTOR pathways in leukemia. Cytokine 2016; 89:116-121. [PMID: 27094611 DOI: 10.1016/j.cyto.2016.01.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 01/30/2016] [Indexed: 12/22/2022]
Abstract
Dysregulation of mRNA translation leads to aberrant activation of cellular pathways that promote expansion and survival of leukemic clones. A key element of the initiation translation complex is eIF4E (eukaryotic translation initiation factor 4E). The mitogen-activated protein kinase (MAPK) and mammalian target of rapamycin (mTOR) pathways play important roles in the regulation of eIF4E expression and downstream functional outcomes. Mitogen-activated protein kinase interacting protein kinases (Mnks) control translation by phosphorylation of eIF4E, whereas the mTOR kinase phosphorylates/de-activates the eIF4E inhibitor, 4E-BP1, to release translational repression. Both pathways are often abnormally activated in leukemia cells and promote cell survival events by controlling expression of oncogenic proteins. Targeting these pathways may provide approaches to avoid aberrant proliferation and neoplastic transformation.
Collapse
Affiliation(s)
- Ewa M Kosciuczuk
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612, USA.
| | - Diana Saleiro
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Leonidas C Platanias
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
38
|
Han W, Ding Y, Xu Y, Pfister K, Zhu S, Warne B, Doyle M, Aikawa M, Amiri P, Appleton B, Stuart DD, Fanidi A, Shafer CM. Discovery of a Selective and Potent Inhibitor of Mitogen-Activated Protein Kinase-Interacting Kinases 1 and 2 (MNK1/2) Utilizing Structure-Based Drug Design. J Med Chem 2016; 59:3034-45. [DOI: 10.1021/acs.jmedchem.5b01657] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Wooseok Han
- Global
Discovery Chemistry, Novartis Institutes for BioMedical Research, 4560 Horton Street, Emeryville, California 94608, United States
| | - Yu Ding
- Global
Discovery Chemistry, Novartis Institutes for BioMedical Research, 4560 Horton Street, Emeryville, California 94608, United States
| | - Yongjin Xu
- Global
Discovery Chemistry, Novartis Institutes for BioMedical Research, 4560 Horton Street, Emeryville, California 94608, United States
| | - Keith Pfister
- Global
Discovery Chemistry, Novartis Institutes for BioMedical Research, 4560 Horton Street, Emeryville, California 94608, United States
| | - Shejin Zhu
- Global
Discovery Chemistry, Novartis Institutes for BioMedical Research, 4560 Horton Street, Emeryville, California 94608, United States
| | - Bob Warne
- Oncology, Novartis Institutes for BioMedical Research, 4560 Horton Street, Emeryville, California 94608, United States
| | - Mike Doyle
- Oncology, Novartis Institutes for BioMedical Research, 4560 Horton Street, Emeryville, California 94608, United States
| | - Mina Aikawa
- Oncology, Novartis Institutes for BioMedical Research, 4560 Horton Street, Emeryville, California 94608, United States
| | - Payman Amiri
- Oncology, Novartis Institutes for BioMedical Research, 4560 Horton Street, Emeryville, California 94608, United States
| | - Brent Appleton
- Global
Discovery Chemistry, Novartis Institutes for BioMedical Research, 4560 Horton Street, Emeryville, California 94608, United States
| | - Darrin D. Stuart
- Oncology, Novartis Institutes for BioMedical Research, 4560 Horton Street, Emeryville, California 94608, United States
| | - Abdallah Fanidi
- Oncology, Novartis Institutes for BioMedical Research, 4560 Horton Street, Emeryville, California 94608, United States
| | - Cynthia M. Shafer
- Global
Discovery Chemistry, Novartis Institutes for BioMedical Research, 4560 Horton Street, Emeryville, California 94608, United States
| |
Collapse
|
39
|
Lamba JK, Pounds S, Cao X, Crews KR, Cogle CR, Bhise N, Raimondi SC, Downing JR, Baker SD, Ribeiro RC, Rubnitz JE. Clinical significance of in vivo cytarabine-induced gene expression signature in AML. Leuk Lymphoma 2015; 57:909-20. [PMID: 26366682 DOI: 10.3109/10428194.2015.1086918] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Despite initial remission, ∼60-70% of adult and 30% of pediatric patients experience relapse or refractory AML. Studies so far have identified base line gene expression profiles of pathogenic and prognostic significance in AML; however, the extent of change in gene expression post-initiation of treatment has not been investigated. Exposure of leukemic cells to chemotherapeutic agents such as cytarabine, a mainstay of AML chemotherapy, can trigger adaptive response by influencing leukemic cell transcriptome and, hence, development of resistance or refractory disease. It is, however, challenging to perform such a study due to lack of availability of specimens post-drug treatment. The primary objective of this study was to identify in vivo cytarabine-induced changes in leukemia cell transcriptome and to evaluate their impact on clinical outcome. The results highlight genes relevant to cytarabine resistance and support the concept of targeting cytarabine-induced genes as a means of improving response.
Collapse
Affiliation(s)
- Jatinder K Lamba
- a Pharmacotherapy and Translational Research, University of Florida , Gainesville , FL , USA
| | - Stanley Pounds
- b Biostatistics, St Jude Children's Research Hospital , Memphis , TN , USA
| | - Xueyuan Cao
- b Biostatistics, St Jude Children's Research Hospital , Memphis , TN , USA
| | - Kristine R Crews
- c Pharmaceutical Sciences, St Jude Children's Research Hospital , Memphis , TN , USA
| | - Christopher R Cogle
- d Division of Hematology and Oncology, Department of Medicine , University of Florida , Gainesville , FL , USA
| | - Neha Bhise
- a Pharmacotherapy and Translational Research, University of Florida , Gainesville , FL , USA
| | - Susana C Raimondi
- e Pathology, St Jude Children's Research Hospital , Memphis , TN , USA , and
| | - James R Downing
- e Pathology, St Jude Children's Research Hospital , Memphis , TN , USA , and
| | - Sharyn D Baker
- c Pharmaceutical Sciences, St Jude Children's Research Hospital , Memphis , TN , USA
| | - Raul C Ribeiro
- f Oncology, St Jude Children's Research Hospital , Memphis , TN , USA
| | - Jeffrey E Rubnitz
- f Oncology, St Jude Children's Research Hospital , Memphis , TN , USA
| |
Collapse
|