1
|
Li M, Li D, Wang HY, Zhang W, Zhuo Z, Guo H, Liu J, Zhuo Y, Tang J, He J, Miao L. Leptin decreases Th17/Treg ratio to facilitate neuroblastoma via inhibiting long-chain fatty acid catabolism in tumor cells. Oncoimmunology 2025; 14:2460281. [PMID: 39902867 PMCID: PMC11796542 DOI: 10.1080/2162402x.2025.2460281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/05/2025] [Accepted: 01/24/2025] [Indexed: 02/06/2025] Open
Abstract
The exploration of therapeutic targets in neuroblastoma (NB), which needs more attempts, can benefit patients with high-risk NB. Based on metabolomic and transcriptomic data in mediastinal NB tissues, we found that the content of long-chain acylcarnitine (LCAC) was increased and positively associated with leptin expression in advanced NB. Leptin over-expression forced naïve CD4+ T cells to differentiate into Treg cells instead of Th17 cells, which benefited from NB cell proliferation, migration, and drug resistance. Mechanically, leptin in NB cells blunted the activity of carnitine palmitoyltransferase 2 (CPT2), the key enzyme for LCAC catabolism, by inhibiting sirtuin 3-mediated CPT2 deacetylation, which depresses oxidative phosphorylation (OXPHOS) for energy supply and increases lactic acid (LA) production from glycolysis to modulate CD4+ T cell differentiation. These findings highlight that excess leptin contributes to lipid metabolism dysfunction in NB cells and subsequently misdirects CD4+ T cell differentiation in tumor micro-environment (TME), indicating that targeting leptin could be a therapeutic strategy for retarding NB progression.
Collapse
Affiliation(s)
- Meng Li
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Di Li
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Hai-Yun Wang
- Department of Pathology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, National Children’s Medical Center for South Central Region, Guangzhou, Guangdong, China
| | - Weixin Zhang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Zhenjian Zhuo
- Laboratory Animal Center, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Huiqin Guo
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Jiabin Liu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Yue Zhuo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jue Tang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Lei Miao
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Sokei J, Kanefsky J, Sykes SM. Reprogramming of Fatty Acid Metabolism in Acute Leukemia. J Cell Physiol 2025; 240:e70000. [PMID: 39835485 DOI: 10.1002/jcp.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 01/06/2025] [Accepted: 01/08/2025] [Indexed: 01/22/2025]
Abstract
Fatty acids are essential biomolecules that support several cellular processes, such as membrane structures, energy storage and production, as well as signal transduction. Accordingly, changes in fatty acid metabolism can have a significant impact on cell behavior, such as growth, survival, proliferation, differentiation, and motility. Therefore, it is not surprising that many aspects of fatty acid metabolism are frequently dysregulated in human cancer, including in highly aggressive blood cancers such as acute leukemia. The aims of this review are to summarize the aspects of fatty acid metabolism that are specifically coopted in acute leukemia as well as current preclinical strategies for targeting fatty acid metabolism in these cancers.
Collapse
Affiliation(s)
- Judith Sokei
- Division of Hematology & Oncology, Department of Pediatrics, School of Medicine, Washington University in Saint Louis, St. Louis, Missouri, USA
| | - Joice Kanefsky
- Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University Health System, Philadelphia, Pennsylvania, USA
| | - Stephen M Sykes
- Division of Hematology & Oncology, Department of Pediatrics, School of Medicine, Washington University in Saint Louis, St. Louis, Missouri, USA
| |
Collapse
|
3
|
Wemyss C, Jones E, Stentz R, Carding SR. Acute Myeloid Leukaemia and Acute Lymphoblastic Leukaemia Classification and Metabolic Characteristics for Informing and Advancing Treatment. Cancers (Basel) 2024; 16:4136. [PMID: 39766036 PMCID: PMC11675077 DOI: 10.3390/cancers16244136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Acute myeloid leukaemia (AML) and acute lymphoblastic leukaemia (ALL) remain significant challenges in haematological oncology. This review examines the pathophysiology, classification, and risk stratification of these aggressive malignancies, emphasising their impact on treatment strategies and prognosis. We discuss current standard-of-care treatments, including chemotherapy regimens and targeted therapies, while addressing the associated adverse effects and hypersensitivity reactions. Delving into the metabolic characteristics and vulnerabilities of leukaemia cells, the review highlights the key differences between lymphoid and myeloid leukaemia and how metabolic insights can be utilised for therapeutic purposes, with special focus on asparaginase therapy and its potential for improvement in both ALL and AML treatment. The review conveys the importance of personalised medicine approaches based on individual metabolic profiles and the challenges posed by metabolic heterogeneity and plasticity in leukaemia cells. Combining molecular and metabolic profiling can enhance and refine treatment strategies for acute leukaemia, potentially improving patient outcomes and quality of life. However, integrating these into routine clinical practice requires overcoming various practical, technical, and logistical issues.
Collapse
Affiliation(s)
- Carrie Wemyss
- Food, Microbiome and Health Research Programme, Quadram Institute Bioscience, Norwich NR4 7UQ, UK; (C.W.); (E.J.); (R.S.)
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK
| | - Emily Jones
- Food, Microbiome and Health Research Programme, Quadram Institute Bioscience, Norwich NR4 7UQ, UK; (C.W.); (E.J.); (R.S.)
| | - Régis Stentz
- Food, Microbiome and Health Research Programme, Quadram Institute Bioscience, Norwich NR4 7UQ, UK; (C.W.); (E.J.); (R.S.)
| | - Simon R. Carding
- Food, Microbiome and Health Research Programme, Quadram Institute Bioscience, Norwich NR4 7UQ, UK; (C.W.); (E.J.); (R.S.)
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK
| |
Collapse
|
4
|
Soon JW, Manca MA, Laskowska A, Starkova J, Rohlenova K, Rohlena J. Aspartate in tumor microenvironment and beyond: Metabolic interactions and therapeutic perspectives. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167451. [PMID: 39111633 DOI: 10.1016/j.bbadis.2024.167451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/19/2024] [Accepted: 07/31/2024] [Indexed: 08/11/2024]
Abstract
Aspartate is a proteinogenic non-essential amino acid with several essential functions in proliferating cells. It is mostly produced in a cell autonomous manner from oxalacetate via glutamate oxalacetate transaminases 1 or 2 (GOT1 or GOT2), but in some cases it can also be salvaged from the microenvironment via transporters such as SLC1A3 or by macropinocytosis. In this review we provide an overview of biosynthetic pathways that produce aspartate endogenously during proliferation. We discuss conditions that favor aspartate uptake as well as possible sources of exogenous aspartate in the microenvironment of tumors and bone marrow, where most available data have been generated. We highlight metabolic fates of aspartate, its various functions, and possible approaches to target aspartate metabolism for cancer therapy.
Collapse
Affiliation(s)
- Julian Wong Soon
- Institute of Biotechnology of the Czech Academy of Sciences, Prumyslova 595, 252 50 Vestec, Prague-West, Czech Republic
| | - Maria Antonietta Manca
- Institute of Biotechnology of the Czech Academy of Sciences, Prumyslova 595, 252 50 Vestec, Prague-West, Czech Republic
| | - Agnieszka Laskowska
- Institute of Biotechnology of the Czech Academy of Sciences, Prumyslova 595, 252 50 Vestec, Prague-West, Czech Republic
| | - Julia Starkova
- CLIP (Childhood Leukaemia Investigation Prague), Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Katerina Rohlenova
- Institute of Biotechnology of the Czech Academy of Sciences, Prumyslova 595, 252 50 Vestec, Prague-West, Czech Republic.
| | - Jakub Rohlena
- Institute of Biotechnology of the Czech Academy of Sciences, Prumyslova 595, 252 50 Vestec, Prague-West, Czech Republic.
| |
Collapse
|
5
|
Lill CB, Fitter S, Zannettino ACW, Vandyke K, Noll JE. Molecular and cellular mechanisms of chemoresistance in paediatric pre-B cell acute lymphoblastic leukaemia. Cancer Metastasis Rev 2024; 43:1385-1399. [PMID: 39102101 PMCID: PMC11554931 DOI: 10.1007/s10555-024-10203-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/24/2024] [Indexed: 08/06/2024]
Abstract
Paediatric patients with relapsed B cell acute lymphoblastic leukaemia (B-ALL) have poor prognosis, as relapse-causing clones are often refractory to common chemotherapeutics. While the molecular mechanisms leading to chemoresistance are varied, significant evidence suggests interactions between B-ALL blasts and cells within the bone marrow microenvironment modulate chemotherapy sensitivity. Importantly, bone marrow mesenchymal stem cells (BM-MSCs) and BM adipocytes are known to support B-ALL cells through multiple distinct molecular mechanisms. This review discusses the contribution of integrin-mediated B-ALL/BM-MSC signalling and asparagine supplementation in B-ALL chemoresistance. In addition, the role of adipocytes in sequestering anthracyclines and generating a BM niche favourable for B-ALL survival is explored. Furthermore, this review discusses the role of BM-MSCs and adipocytes in promoting a quiescent and chemoresistant B-ALL phenotype. Novel treatments which target these mechanisms are discussed herein, and are needed to improve dismal outcomes in patients with relapsed/refractory disease.
Collapse
Affiliation(s)
- Caleb B Lill
- Myeloma Research Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia
- Precision Cancer Medicine Theme, Solid Tumour Program, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Stephen Fitter
- Myeloma Research Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia
- Precision Cancer Medicine Theme, Solid Tumour Program, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Andrew C W Zannettino
- Myeloma Research Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia
- Precision Cancer Medicine Theme, Solid Tumour Program, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Kate Vandyke
- Myeloma Research Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia
- Precision Cancer Medicine Theme, Solid Tumour Program, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Jacqueline E Noll
- Myeloma Research Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia.
- Precision Cancer Medicine Theme, Solid Tumour Program, South Australian Health and Medical Research Institute, Adelaide, Australia.
| |
Collapse
|
6
|
Hlozkova K, Vasylkivska M, Boufersaoui A, Marzullo B, Kolarik M, Alquezar-Artieda N, Shaikh M, Alaei NF, Zaliova M, Zwyrtkova M, Bakardijeva-Mihaylova V, Alberich-Jorda M, Trka J, Tennant DA, Starkova J. Rewired glutamate metabolism diminishes cytostatic action of L-asparaginase. Cancer Lett 2024; 605:217242. [PMID: 39270769 DOI: 10.1016/j.canlet.2024.217242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 09/02/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024]
Abstract
Tumor cells often adapt to amino acid deprivation through metabolic rewiring, compensating for the loss with alternative amino acids/substrates. We have described such a scenario in leukemic cells treated with L-asparaginase (ASNase). Clinical effect of ASNase is based on nutrient stress achieved by its dual enzymatic action which leads to depletion of asparagine and glutamine and is accompanied with elevated aspartate and glutamate concentrations in serum of acute lymphoblastic leukemia patients. We showed that in these limited conditions glutamate uptake compensates for the loss of glutamine availability. Extracellular glutamate flux detection confirms its integration into the TCA cycle and its participation in nucleotide and glutathione synthesis. Importantly, it is glutamate-driven de novo synthesis of glutathione which is the essential metabolic pathway necessary for glutamate's pro-survival effect. In vivo findings support this effect by showing that inhibition of glutamate transporters enhances the therapeutic effect of ASNase. In summary, ASNase induces elevated extracellular glutamate levels under nutrient stress, which leads to a rewiring of intracellular glutamate metabolism and has a negative impact on ASNase treatment.
Collapse
Affiliation(s)
- Katerina Hlozkova
- Childhood Leukaemia Investigation Prague, Prague, Czech Republic; Second Faculty of Medicine, Department of Pediatric Hematology and Oncology, Charles University, Prague, Czech Republic.
| | - Maryna Vasylkivska
- Childhood Leukaemia Investigation Prague, Prague, Czech Republic; Second Faculty of Medicine, Department of Pediatric Hematology and Oncology, Charles University, Prague, Czech Republic
| | - Adam Boufersaoui
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Bryan Marzullo
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Matus Kolarik
- Childhood Leukaemia Investigation Prague, Prague, Czech Republic; Second Faculty of Medicine, Department of Pediatric Hematology and Oncology, Charles University, Prague, Czech Republic; First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Natividad Alquezar-Artieda
- Childhood Leukaemia Investigation Prague, Prague, Czech Republic; Second Faculty of Medicine, Department of Pediatric Hematology and Oncology, Charles University, Prague, Czech Republic
| | - Mehak Shaikh
- Laboratory of Hemato-Oncology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Nadia Fatemeh Alaei
- Childhood Leukaemia Investigation Prague, Prague, Czech Republic; Second Faculty of Medicine, Department of Pediatric Hematology and Oncology, Charles University, Prague, Czech Republic; Laboratory of Hemato-Oncology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Marketa Zaliova
- Childhood Leukaemia Investigation Prague, Prague, Czech Republic; Second Faculty of Medicine, Department of Pediatric Hematology and Oncology, Charles University, Prague, Czech Republic; University Hospital Motol, Prague, Czech Republic
| | - Martina Zwyrtkova
- Childhood Leukaemia Investigation Prague, Prague, Czech Republic; Second Faculty of Medicine, Department of Pediatric Hematology and Oncology, Charles University, Prague, Czech Republic
| | - Violeta Bakardijeva-Mihaylova
- Childhood Leukaemia Investigation Prague, Prague, Czech Republic; Second Faculty of Medicine, Department of Pediatric Hematology and Oncology, Charles University, Prague, Czech Republic
| | - Meritxell Alberich-Jorda
- Childhood Leukaemia Investigation Prague, Prague, Czech Republic; Second Faculty of Medicine, Department of Pediatric Hematology and Oncology, Charles University, Prague, Czech Republic; Laboratory of Hemato-Oncology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Trka
- Childhood Leukaemia Investigation Prague, Prague, Czech Republic; Second Faculty of Medicine, Department of Pediatric Hematology and Oncology, Charles University, Prague, Czech Republic; University Hospital Motol, Prague, Czech Republic
| | - Daniel A Tennant
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Julia Starkova
- Childhood Leukaemia Investigation Prague, Prague, Czech Republic; Second Faculty of Medicine, Department of Pediatric Hematology and Oncology, Charles University, Prague, Czech Republic; University Hospital Motol, Prague, Czech Republic.
| |
Collapse
|
7
|
Trivanović D, Vujačić M, Labella R, Djordjević IO, Ćazić M, Chernak B, Jauković A. Molecular Deconvolution of Bone Marrow Adipose Tissue Interactions with Malignant Hematopoiesis: Potential for New Therapy Development. Curr Osteoporos Rep 2024; 22:367-377. [PMID: 38922359 DOI: 10.1007/s11914-024-00879-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/18/2024] [Indexed: 06/27/2024]
Abstract
PURPOSE OF REVIEW Along with a strong impact on skeletal integrity, bone marrow adipose tissue (BMAT) is an important modulator of the adult hematopoietic system. This review will summarize the current knowledge on the causal relationship between bone marrow (BM) adipogenesis and the development and progression of hematologic malignancies. RECENT FINDINGS BM adipocytes (BMAds) support a number of processes promoting oncogenesis, including the evolution of clonal hematopoiesis, malignant cell survival, proliferation, angiogenesis, and chemoresistance. In addition, leukemic cells manipulate surrounding BMAds by promoting lipolysis and release of free fatty acids, which are then utilized by leukemic cells via β-oxidation. Therefore, limiting BM adipogenesis, blocking BMAd-derived adipokines, or lipid metabolism obstruction have been considered as potential treatment options for hematological malignancies. Leukemic stem cells rely heavily on BMAds within the structural BM microenvironment for necessary signals which foster disease progression. Further development of 3D constructs resembling BMAT at different skeletal regions are critical to better understand these relationships in geometric space and may provide essential insight into the development of hematologic malignancies within the BM niche. In turn, these mechanisms provide promising potential as novel approaches to targeting the microenvironment with new therapeutic strategies.
Collapse
Affiliation(s)
- Drenka Trivanović
- Group for Hematology and Stem Cells, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11000, Belgrade, Serbia.
| | - Marko Vujačić
- Institute for Orthopedy Banjica, 11000, Belgrade, Serbia
- School of Medicine, University of Belgrade, 11000, Belgrade, Serbia
| | - Rossella Labella
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
- Edward P. Evans Center for Myelodysplastic Syndromes, Columbia University Medical Center, New York, NY, USA
| | - Ivana Okić Djordjević
- Group for Hematology and Stem Cells, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11000, Belgrade, Serbia
| | - Marija Ćazić
- Department of Hematology and Oncology, University Children's Hospital Tiršova, 11000, Belgrade, Serbia
| | - Brian Chernak
- Division of Hematology/Oncology, Columbia University, New York, NY, USA
| | - Aleksandra Jauković
- Group for Hematology and Stem Cells, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11000, Belgrade, Serbia
| |
Collapse
|
8
|
Zlotnikov ID, Kudryashova EV. Targeted Polymeric Micelles System, Designed to Carry a Combined Cargo of L-Asparaginase and Doxorubicin, Shows Vast Improvement in Cytotoxic Efficacy. Polymers (Basel) 2024; 16:2132. [PMID: 39125158 PMCID: PMC11314107 DOI: 10.3390/polym16152132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
L-asparaginases (ASP) and Doxorubicin (Dox) are both used in the treatment of leukemia, including in combination. We have attempted to investigate if their combination within the same targeted delivery vehicle can make such therapy more efficacious. We assembled a micellar system, where the inner hydrophobic core was loaded with Dox, while ASP would absorb at the surface due to electrostatic interactions. To make such absorption stronger, we conjugated the ASP with oligoamines, such as spermine, and the lipid components of the micelle-lipoic and oleic acids-with heparin. When loaded with Dox alone, the system yielded about a 10-fold improvement in cytotoxicity, as compared to free Dox. ASP alone showed about a 2.5-fold increase in cytotoxicity, so, assuming additivity of the effect, one could expect a 25-fold improvement when the two agents are applied in combination. But in reality, a combination of ASP + Dox loaded into the delivery system produced a synergy, with a whopping 50× improvement vs. free individual component. Pharmacokinetic studies have shown prolonged circulation of micellar formulations in the bloodstream as well as an increase in the effective concentration of Dox in micellar form and a reduction in Dox accumulation to the liver and heart (which reduces hepatotoxicity and cardiotoxicity). For the same reason, Dox's liposomal formulation has been in use in the treatment of multiple types of cancer, almost replacing the free drug. We believe that an opportunity to deliver a combination of two types of drugs to the same target cell may represent a further step towards improvement in the risk-benefit ratio in cancer treatment.
Collapse
Affiliation(s)
| | - Elena V. Kudryashova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991 Moscow, Russia;
| |
Collapse
|
9
|
Szrok-Jurga S, Czumaj A, Turyn J, Hebanowska A, Swierczynski J, Sledzinski T, Stelmanska E. The Physiological and Pathological Role of Acyl-CoA Oxidation. Int J Mol Sci 2023; 24:14857. [PMID: 37834305 PMCID: PMC10573383 DOI: 10.3390/ijms241914857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/27/2023] [Accepted: 09/30/2023] [Indexed: 10/15/2023] Open
Abstract
Fatty acid metabolism, including β-oxidation (βOX), plays an important role in human physiology and pathology. βOX is an essential process in the energy metabolism of most human cells. Moreover, βOX is also the source of acetyl-CoA, the substrate for (a) ketone bodies synthesis, (b) cholesterol synthesis, (c) phase II detoxication, (d) protein acetylation, and (d) the synthesis of many other compounds, including N-acetylglutamate-an important regulator of urea synthesis. This review describes the current knowledge on the importance of the mitochondrial and peroxisomal βOX in various organs, including the liver, heart, kidney, lung, gastrointestinal tract, peripheral white blood cells, and other cells. In addition, the diseases associated with a disturbance of fatty acid oxidation (FAO) in the liver, heart, kidney, lung, alimentary tract, and other organs or cells are presented. Special attention was paid to abnormalities of FAO in cancer cells and the diseases caused by mutations in gene-encoding enzymes involved in FAO. Finally, issues related to α- and ω- fatty acid oxidation are discussed.
Collapse
Affiliation(s)
- Sylwia Szrok-Jurga
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland; (S.S.-J.); (J.T.); (A.H.)
| | - Aleksandra Czumaj
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, 80-211 Gdansk, Poland;
| | - Jacek Turyn
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland; (S.S.-J.); (J.T.); (A.H.)
| | - Areta Hebanowska
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland; (S.S.-J.); (J.T.); (A.H.)
| | - Julian Swierczynski
- Institue of Nursing and Medical Rescue, State University of Applied Sciences in Koszalin, 75-582 Koszalin, Poland;
| | - Tomasz Sledzinski
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, 80-211 Gdansk, Poland;
| | - Ewa Stelmanska
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland; (S.S.-J.); (J.T.); (A.H.)
| |
Collapse
|
10
|
Alquezar-Artieda N, Kuzilkova D, Roberts J, Hlozkova K, Pecinova A, Pecina P, Zwyrtkova M, Potuckova E, Kavan D, Hermanova I, Zaliova M, Novak P, Mracek T, Sramkova L, Tennant DA, Trka J, Starkova J. Restored biosynthetic pathways induced by MSCs serve as rescue mechanism in leukemia cells after L-asparaginase therapy. Blood Adv 2023; 7:2228-2236. [PMID: 36399517 PMCID: PMC10196988 DOI: 10.1182/bloodadvances.2021006431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 10/21/2022] [Accepted: 11/07/2022] [Indexed: 11/19/2022] Open
Affiliation(s)
- Natividad Alquezar-Artieda
- Childhood Leukaemia Investigation Prague, Prague, Czech Republic
- Second Faculty of Medicine, Department of Pediatric Hematology and Oncology, Charles University, Prague, Czech Republic
| | - Daniela Kuzilkova
- Childhood Leukaemia Investigation Prague, Prague, Czech Republic
- Second Faculty of Medicine, Department of Pediatric Hematology and Oncology, Charles University, Prague, Czech Republic
- University Hospital Motol, Prague, Czech Republic
| | - Jennie Roberts
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Katerina Hlozkova
- Childhood Leukaemia Investigation Prague, Prague, Czech Republic
- Second Faculty of Medicine, Department of Pediatric Hematology and Oncology, Charles University, Prague, Czech Republic
| | - Alena Pecinova
- Department of Bioenergetics, Institute of Physiology of the Czech Academy of Science, Prague, Czech Republic
| | - Petr Pecina
- Department of Bioenergetics, Institute of Physiology of the Czech Academy of Science, Prague, Czech Republic
| | - Martina Zwyrtkova
- Childhood Leukaemia Investigation Prague, Prague, Czech Republic
- Second Faculty of Medicine, Department of Pediatric Hematology and Oncology, Charles University, Prague, Czech Republic
| | - Eliska Potuckova
- Childhood Leukaemia Investigation Prague, Prague, Czech Republic
- Second Faculty of Medicine, Department of Pediatric Hematology and Oncology, Charles University, Prague, Czech Republic
| | - Daniel Kavan
- Laboratory of Structural Biology and Cell Signalling, Institute of Microbiology, Academy of Science of the Czech Republic, Prague, Czech Republic
| | - Ivana Hermanova
- Childhood Leukaemia Investigation Prague, Prague, Czech Republic
- Second Faculty of Medicine, Department of Pediatric Hematology and Oncology, Charles University, Prague, Czech Republic
| | - Marketa Zaliova
- Childhood Leukaemia Investigation Prague, Prague, Czech Republic
- Second Faculty of Medicine, Department of Pediatric Hematology and Oncology, Charles University, Prague, Czech Republic
- University Hospital Motol, Prague, Czech Republic
| | - Petr Novak
- Laboratory of Structural Biology and Cell Signalling, Institute of Microbiology, Academy of Science of the Czech Republic, Prague, Czech Republic
| | - Tomas Mracek
- Department of Bioenergetics, Institute of Physiology of the Czech Academy of Science, Prague, Czech Republic
| | - Lucie Sramkova
- Second Faculty of Medicine, Department of Pediatric Hematology and Oncology, Charles University, Prague, Czech Republic
- University Hospital Motol, Prague, Czech Republic
| | - Daniel A. Tennant
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Jan Trka
- Childhood Leukaemia Investigation Prague, Prague, Czech Republic
- Second Faculty of Medicine, Department of Pediatric Hematology and Oncology, Charles University, Prague, Czech Republic
- University Hospital Motol, Prague, Czech Republic
| | - Julia Starkova
- Childhood Leukaemia Investigation Prague, Prague, Czech Republic
- Second Faculty of Medicine, Department of Pediatric Hematology and Oncology, Charles University, Prague, Czech Republic
- University Hospital Motol, Prague, Czech Republic
| |
Collapse
|
11
|
Zhou R, Liang T, Li T, Huang J, Chen C. Possible mechanism of metabolic and drug resistance with L-asparaginase therapy in childhood leukaemia. Front Oncol 2023; 13:1070069. [PMID: 36816964 PMCID: PMC9929349 DOI: 10.3389/fonc.2023.1070069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
L-asparaginase, which hydrolyzes asparagine into aspartic acid and ammonia, is frequently used to treat acute lymphoblastic leukaemia in children. When combined with other chemotherapy drugs, the event-free survival rate is 90%. Due to immunogenicity and drug resistance, however, not all patients benefit from it, restricting the use of L-asparaginase therapy in other haematological cancers. To solve the problem of immunogenicity, several L-ASNase variants have emerged, such as Erwinia-ASNase and PEG-ASNase. However, even when Erwinia-ASNase is used as a substitute for E. coli-ASNase or PEG-ASNase, allergic reactions occur in 3%-33% of patients. All of these factors contributed to the development of novel L-ASNases. Additionally, L-ASNase resistance mechanisms, such as the methylation status of ASNS promoters and activation of autophagy, have further emphasized the importance of personalized treatment for paediatric haematological neoplasms. In this review, we discussed the metabolic effects of L-ASNase, mechanisms of drug resistance, applications in non-ALL leukaemia, and the development of novel L-ASNase.
Collapse
Affiliation(s)
| | | | | | | | - Chun Chen
- *Correspondence: Junbin Huang, ; Chun Chen,
| |
Collapse
|
12
|
Safrhansova L, Hlozkova K, Starkova J. Targeting amino acid metabolism in cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 373:37-79. [PMID: 36283767 DOI: 10.1016/bs.ircmb.2022.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Metabolic rewiring is a characteristic hallmark of cancer cells. This phenomenon sustains uncontrolled proliferation and resistance to apoptosis by increasing nutrients and energy supply. However, reprogramming comes together with vulnerabilities that can be used against tumor and can be applied in targeted therapy. In the last years, the genetic background of tumors has been identified thoroughly and new therapies targeting those mutations tested. Nevertheless, we propose that targeting the phenotype of cancer cells could be another way of treatment aiming to avoid drug resistance and non-responsiveness of cancer patients. Amino acid metabolism is part of the altered processes in cancer cells. Amino acids are building blocks and also sensors of signaling pathways regulating main biological processes. In this comprehensive review, we described four amino acids (asparagine, arginine, methionine, and cysteine) which have been actively investigated as potential targets for anti-tumor therapy. Asparagine depletion is successfully used for decades in the treatment of acute lymphoblastic leukemia and there is a strong implication to apply it to other types of tumors. Arginine auxotrophic tumors are great candidates for arginine-starvation therapy. Higher requirement for essential amino acids such as methionine and cysteine point out promising targetable weaknesses of cancer cells.
Collapse
Affiliation(s)
- Lucie Safrhansova
- CLIP - Childhood Leukaemia Investigation Prague, Prague, Czech Republic; Dept. of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Katerina Hlozkova
- CLIP - Childhood Leukaemia Investigation Prague, Prague, Czech Republic; Dept. of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Julia Starkova
- CLIP - Childhood Leukaemia Investigation Prague, Prague, Czech Republic; Dept. of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic; University Hospital Motol, Prague, Czech Republic.
| |
Collapse
|
13
|
Hlozkova K, Hermanova I, Safrhansova L, Alquezar-Artieda N, Kuzilkova D, Vavrova A, Sperkova K, Zaliova M, Stary J, Trka J, Starkova J. PTEN/PI3K/Akt pathway alters sensitivity of T-cell acute lymphoblastic leukemia to L-asparaginase. Sci Rep 2022; 12:4043. [PMID: 35260738 PMCID: PMC8904819 DOI: 10.1038/s41598-022-08049-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 02/21/2022] [Indexed: 12/22/2022] Open
Abstract
Childhood T-cell acute lymphoblastic leukemia (T-ALL) still remains a therapeutic challenge due to relapses which are resistant to further treatment. l-asparaginase (ASNase) is a key therapy component in pediatric T-ALL and lower sensitivity of leukemia cells to this drug negatively influences overall treatment efficacy and outcome. PTEN protein deletion and/or activation of the PI3K/Akt signaling pathway leading to altered cell growth and metabolism are emerging as a common feature in T-ALL. We herein investigated the relationship amongst PTEN deletion, ASNase sensitivity and glucose metabolism in T-ALL cells. First, we found significant differences in the sensitivity to ASNase amongst T-ALL cell lines. While cell lines more sensitive to ASNase were PTEN wild type (WT) and had no detectable level of phosphorylated Akt (P-Akt), cell lines less sensitive to ASNase were PTEN-null with high P-Akt levels. Pharmacological inhibition of Akt in the PTEN-null cells rendered them more sensitive to ASNase and lowered their glycolytic function which then resembled PTEN WT cells. In primary T-ALL cells, although P-Akt level was not dependent exclusively on PTEN expression, their sensitivity to ASNase could also be increased by pharmacological inhibition of Akt. In summary, we highlight a promising therapeutic option for T-ALL patients with aberrant PTEN/PI3K/Akt signaling.
Collapse
Affiliation(s)
- Katerina Hlozkova
- CLIP (Childhood Leukaemia Investigation Prague), Prague, Czech Republic.,Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Ivana Hermanova
- CLIP (Childhood Leukaemia Investigation Prague), Prague, Czech Republic.,Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Lucie Safrhansova
- CLIP (Childhood Leukaemia Investigation Prague), Prague, Czech Republic.,Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Natividad Alquezar-Artieda
- CLIP (Childhood Leukaemia Investigation Prague), Prague, Czech Republic.,Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Daniela Kuzilkova
- CLIP (Childhood Leukaemia Investigation Prague), Prague, Czech Republic.,Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Adela Vavrova
- CLIP (Childhood Leukaemia Investigation Prague), Prague, Czech Republic.,Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Kristyna Sperkova
- CLIP (Childhood Leukaemia Investigation Prague), Prague, Czech Republic.,Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Marketa Zaliova
- CLIP (Childhood Leukaemia Investigation Prague), Prague, Czech Republic.,Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic.,University Hospital Motol, Prague, Czech Republic
| | - Jan Stary
- Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic.,University Hospital Motol, Prague, Czech Republic
| | - Jan Trka
- CLIP (Childhood Leukaemia Investigation Prague), Prague, Czech Republic.,Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic.,University Hospital Motol, Prague, Czech Republic
| | - Julia Starkova
- CLIP (Childhood Leukaemia Investigation Prague), Prague, Czech Republic. .,Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic. .,University Hospital Motol, Prague, Czech Republic.
| |
Collapse
|
14
|
Guo X, Zhang L, Wang J, Zhang W, Ren J, Chen Y, Zhang Y, Gao A. Plasma metabolomics study reveals the critical metabolic signatures for benzene-induced hematotoxicity. JCI Insight 2022; 7:154999. [PMID: 35076025 PMCID: PMC8855792 DOI: 10.1172/jci.insight.154999] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/23/2021] [Indexed: 12/11/2022] Open
Affiliation(s)
- Xiaoli Guo
- Department of Occupational Health and Environmental Health, School of Public Health, and
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Lei Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, and
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Jingyu Wang
- Department of Occupational Health and Environmental Health, School of Public Health, and
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Wei Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, and
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Jing Ren
- Department of Occupational Health and Environmental Health, School of Public Health, and
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Yujiao Chen
- Department of Occupational Health and Environmental Health, School of Public Health, and
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Yanlin Zhang
- Research Center of Occupational Medicine, Peking University Third Hospital, Haidian District, Beijing, China
| | - Ai Gao
- Department of Occupational Health and Environmental Health, School of Public Health, and
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| |
Collapse
|
15
|
Soltani M, Zhao Y, Xia Z, Ganjalikhani Hakemi M, Bazhin AV. The Importance of Cellular Metabolic Pathways in Pathogenesis and Selective Treatments of Hematological Malignancies. Front Oncol 2021; 11:767026. [PMID: 34868994 PMCID: PMC8636012 DOI: 10.3389/fonc.2021.767026] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/20/2021] [Indexed: 02/05/2023] Open
Abstract
Despite recent advancements in the treatment of hematologic malignancies and the emergence of newer and more sophisticated therapeutic approaches such as immunotherapy, long-term overall survival remains unsatisfactory. Metabolic alteration, as an important hallmark of cancer cells, not only contributes to the malignant transformation of cells, but also promotes tumor progression and metastasis. As an immune-escape mechanism, the metabolic adaptation of the bone marrow microenvironment and leukemic cells is a major player in the suppression of anti-leukemia immune responses. Therefore, metabolic rewiring in leukemia would provide promising opportunities for newer therapeutic interventions. Several therapeutic agents which affect essential bioenergetic pathways in cancer cells including glycolysis, β-oxidation of fatty acids and Krebs cycle, or anabolic pathways such as lipid biosynthesis and pentose phosphate pathway, are being tested in various types of cancers. So far, numerous preclinical or clinical trial studies using such metabolic agents alone or in combination with other remedies such as immunotherapy are in progress and have demonstrated promising outcomes. In this review, we aim to argue the importance of metabolic alterations and bioenergetic pathways in different types of leukemia and their vital roles in disease development. Designing treatments based on targeting leukemic cells vulnerabilities, particularly in nonresponsive leukemia patients, should be warranted.
Collapse
Affiliation(s)
- Mojdeh Soltani
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Yue Zhao
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Zhijia Xia
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | | | - Alexandr V Bazhin
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| |
Collapse
|
16
|
Sbirkov Y, Ivanova T, Burnusuzov H, Gercheva K, Petrie K, Schenk T, Sarafian V. The Protozoan Inhibitor Atovaquone Affects Mitochondrial Respiration and Shows In Vitro Efficacy Against Glucocorticoid-Resistant Cells in Childhood B-Cell Acute Lymphoblastic Leukaemia. Front Oncol 2021; 11:632181. [PMID: 33791218 PMCID: PMC8005808 DOI: 10.3389/fonc.2021.632181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 02/02/2021] [Indexed: 11/13/2022] Open
Abstract
Childhood acute lymphoblastic leukaemia (cALL) accounts for about one third of all paediatric malignancies making it the most common cancer in children. Alterations in tumour cell metabolism were first described nearly a century ago and have been acknowledged as one of the key characteristics of cancers including cALL. Two of the backbone chemotherapeutic agents in the treatment of this disease, Glucocorticoids and L-asparaginase, are exerting their anti-leukaemic effects through targeting cell metabolism. Even though risk stratification and treatment regimens have improved cure rates to nearly 90%, prognosis for relapsed children remains poor. Therefore, new therapeutic approaches are urgently required. Atovaquone is a well-tolerated drug used in the clinic mainly against malaria. Being a ubiquinone analogue, this drug inhibits co-enzyme Q10 of the electron transport chain (ETC) affecting oxidative phosphorylation and cell metabolism. In this study we tested the effect of Atovaquone on cALL cells in vitro. Pharmacologically relevant concentrations of the inhibitor could effectively target mitochondrial respiration in both cALL cell lines (REH and Sup-B15) and primary patient samples. We found that Atovaquone leads to a marked decrease in basal respiration and ATP levels, as well as reduced proliferation, cell cycle arrest, and induction of apoptosis. Importantly, we observed an enhanced anti-leukaemic effect when Atovaquone was combined with the standard chemotherapeutic Idarubicin, or with Prednisolone in an in vitro model of Glucocorticoid resistance. Repurposing of this clinically approved inhibitor renders further investigations, but also presents opportunities for fast-track trials as a single agent or in combination with standard chemotherapeutics.
Collapse
Affiliation(s)
- Yordan Sbirkov
- Department of Medical Biology, Medical University of Plovdiv, Plovdiv, Bulgaria.,Research Institute at Medical University of Plovdiv, Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Tsvetomira Ivanova
- Research Institute at Medical University of Plovdiv, Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Hasan Burnusuzov
- Research Institute at Medical University of Plovdiv, Medical University of Plovdiv, Plovdiv, Bulgaria.,Department of Pediatrics and Medical Genetics, Medical University of Plovdiv, Plovdiv, Bulgaria.,Center for Competence Personalized Innovative Medicine (PERIMED), Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Kalina Gercheva
- Department of Medical Biology, Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Kevin Petrie
- Faculty of Health Sciences and Wellbeing, School of Medicine, University of Sunderland, Sunderland, United Kingdom
| | - Tino Schenk
- Department of Hematology and Medical Oncology, Jena University Hospital, Jena, Germany.,Institute of Molecular Cell Biology, Center for Molecular Biomedicine Jena (CMB), Jena University Hospital, Jena, Germany
| | - Victoria Sarafian
- Department of Medical Biology, Medical University of Plovdiv, Plovdiv, Bulgaria.,Research Institute at Medical University of Plovdiv, Medical University of Plovdiv, Plovdiv, Bulgaria
| |
Collapse
|
17
|
Xu B, Hu R, Liang Z, Chen T, Chen J, Hu Y, Jiang Y, Li Y. Metabolic regulation of the bone marrow microenvironment in leukemia. Blood Rev 2020; 48:100786. [PMID: 33353770 DOI: 10.1016/j.blre.2020.100786] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 09/24/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022]
Abstract
Most leukemia patients experience little benefit from immunotherapy, in part due to the immunosuppressive bone marrow microenvironment. Various metabolic mechanisms orchestrate the behaviors of immune cells and leukemia cells in the bone marrow microenvironment. Furthermore, leukemia cells regulate the bone marrow microenvironment through metabolism to generate an adequate supply of energy and to escape antitumor immune surveillance. Thus, the targeting of the interaction between leukemia cells and the bone marrow microenvironment provides a new therapeutic avenue. In this review, we describe the concept of the bone marrow microenvironment and several important metabolic processes of leukemia cells within the bone marrow microenvironment, including carbohydrate, lipid, and amino acid metabolism. In addition, we discuss how these metabolic pathways regulate antitumor immunity and reveal potential therapeutic targets.
Collapse
Affiliation(s)
- Binyan Xu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, PR China
| | - Rong Hu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, PR China
| | - Zhao Liang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, PR China
| | - Tong Chen
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, PR China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - Jianyu Chen
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, PR China
| | - Yuxing Hu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, PR China
| | - Yirong Jiang
- Department of Hematology, Affiliated Dongguan People's Hospital, Southern Medical University, Dongguan, Guangdong 523059, PR China.
| | - Yuhua Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, PR China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005 Guangzhou, PR China.
| |
Collapse
|
18
|
Anselmi L, Bertuccio SN, Lonetti A, Prete A, Masetti R, Pession A. Insights on the Interplay between Cells Metabolism and Signaling: A Therapeutic Perspective in Pediatric Acute Leukemias. Int J Mol Sci 2020; 21:ijms21176251. [PMID: 32872391 PMCID: PMC7503381 DOI: 10.3390/ijms21176251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/20/2020] [Accepted: 08/22/2020] [Indexed: 12/12/2022] Open
Abstract
Nowadays, thanks to extensive studies and progress in precision medicine, pediatric leukemia has reached an extremely high overall survival rate. Nonetheless, a fraction of relapses and refractory cases is still present, which are frequently correlated with poor prognosis. Although several molecular features of these diseases are known, still the field of energy metabolism, which is widely studied in adult, has not been frequently explored in childhood leukemias. Metabolic reprogramming is a hallmark of cancer and is deeply connected with other genetic and signaling aberrations generally known to be key features of both acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML). This review aims to clear the current knowledge on metabolic rewiring in pediatric ALL and AML, also highlighting the influence of the main signaling pathways and suggesting potential ideas to further exploit this field to discover new prognostic biomarkers and, above all, beneficial therapeutic options.
Collapse
Affiliation(s)
- Laura Anselmi
- Pediatric Hematology and Oncology Unit, S.Orsola-Malpighi Hospital, University of Bologna, 40126 Bologna, Italy;
| | - Salvatore Nicola Bertuccio
- Pediatric Hematology-Oncology Unit, Department of Medical and Surgical Sciences DIMEC, University of Bologna, 40126 Bologna, Italy; (A.P.); (R.M.); (A.P.)
- Correspondence:
| | - Annalisa Lonetti
- Giorgio Prodi Interdepartmental Cancer Research Centre, University of Bologna, 40126 Bologna, Italy;
| | - Arcangelo Prete
- Pediatric Hematology-Oncology Unit, Department of Medical and Surgical Sciences DIMEC, University of Bologna, 40126 Bologna, Italy; (A.P.); (R.M.); (A.P.)
| | - Riccardo Masetti
- Pediatric Hematology-Oncology Unit, Department of Medical and Surgical Sciences DIMEC, University of Bologna, 40126 Bologna, Italy; (A.P.); (R.M.); (A.P.)
| | - Andrea Pession
- Pediatric Hematology-Oncology Unit, Department of Medical and Surgical Sciences DIMEC, University of Bologna, 40126 Bologna, Italy; (A.P.); (R.M.); (A.P.)
- Giorgio Prodi Interdepartmental Cancer Research Centre, University of Bologna, 40126 Bologna, Italy;
| |
Collapse
|
19
|
Hlozkova K, Pecinova A, Alquezar-Artieda N, Pajuelo-Reguera D, Simcikova M, Hovorkova L, Rejlova K, Zaliova M, Mracek T, Kolenova A, Stary J, Trka J, Starkova J. Metabolic profile of leukemia cells influences treatment efficacy of L-asparaginase. BMC Cancer 2020; 20:526. [PMID: 32503472 PMCID: PMC7275298 DOI: 10.1186/s12885-020-07020-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 05/28/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Effectiveness of L-asparaginase administration in acute lymphoblastic leukemia treatment is mirrored in the overall outcome of patients. Generally, leukemia patients differ in their sensitivity to L-asparaginase; however, the mechanism underlying their inter-individual differences is still not fully understood. We have previously shown that L-asparaginase rewires the biosynthetic and bioenergetic pathways of leukemia cells to activate both anti-leukemic and pro-survival processes. Herein, we investigated the relationship between the metabolic profile of leukemia cells and their sensitivity to currently used cytostatic drugs. METHODS Altogether, 19 leukemia cell lines, primary leukemia cells from 26 patients and 2 healthy controls were used. Glycolytic function and mitochondrial respiration were measured using Seahorse Bioanalyzer. Sensitivity to cytostatics was measured using MTS assay and/or absolute count and flow cytometry. Mitochondrial membrane potential was determined as TMRE fluorescence. RESULTS Using cell lines and primary patient samples we characterized the basal metabolic state of cells derived from different leukemia subtypes and assessed their sensitivity to cytostatic drugs. We found that leukemia cells cluster into distinct groups according to their metabolic profile. Lymphoid leukemia cell lines and patients sensitive to L-asparaginase clustered into the low glycolytic cluster. While lymphoid leukemia cells with lower sensitivity to L-asparaginase together with resistant normal mononuclear blood cells gathered into the high glycolytic cluster. Furthermore, we observed a correlation of specific metabolic parameters with the sensitivity to L-asparaginase. Greater ATP-linked respiration and lower basal mitochondrial membrane potential in cells significantly correlated with higher sensitivity to L-asparaginase. No such correlation was found in the other cytostatic drugs tested by us. CONCLUSIONS These data support that cell metabolism plays a prominent role in the treatment effect of L-asparaginase. Based on these findings, leukemia patients with lower sensitivity to L-asparaginase with no specific genetic characterization could be identified by their metabolic profile.
Collapse
Affiliation(s)
- Katerina Hlozkova
- CLIP - Childhood Leukaemia Investigation Prague, Prague, Czech Republic
- Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Alena Pecinova
- Department of Bioenergetics, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Natividad Alquezar-Artieda
- CLIP - Childhood Leukaemia Investigation Prague, Prague, Czech Republic
- Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - David Pajuelo-Reguera
- CLIP - Childhood Leukaemia Investigation Prague, Prague, Czech Republic
- Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Marketa Simcikova
- CLIP - Childhood Leukaemia Investigation Prague, Prague, Czech Republic
- Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Lenka Hovorkova
- CLIP - Childhood Leukaemia Investigation Prague, Prague, Czech Republic
- Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Katerina Rejlova
- CLIP - Childhood Leukaemia Investigation Prague, Prague, Czech Republic
- Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Marketa Zaliova
- CLIP - Childhood Leukaemia Investigation Prague, Prague, Czech Republic
- Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
- University Hospital Motol, Prague, Czech Republic
| | - Tomas Mracek
- Department of Bioenergetics, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Alexandra Kolenova
- Department of Pediatric Hematology and Oncology, National Institute of Children's Diseases and Medical Faculty, Comenius University, Bratislava, Slovakia
| | - Jan Stary
- Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
- University Hospital Motol, Prague, Czech Republic
| | - Jan Trka
- CLIP - Childhood Leukaemia Investigation Prague, Prague, Czech Republic
- Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
- University Hospital Motol, Prague, Czech Republic
| | - Julia Starkova
- CLIP - Childhood Leukaemia Investigation Prague, Prague, Czech Republic.
- Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic.
| |
Collapse
|
20
|
Sbirkov Y, Burnusuzov H, Sarafian V. Metabolic reprogramming in childhood acute lymphoblastic leukemia. Pediatr Blood Cancer 2020; 67:e28255. [PMID: 32293782 DOI: 10.1002/pbc.28255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 02/04/2020] [Accepted: 02/25/2020] [Indexed: 12/12/2022]
Abstract
The first observations of altered metabolism in malignant cells were made nearly 100 years ago and therapeutic strategies targeting cell metabolism have been in clinical use for several decades. In this review, we summarize our current understanding of cell metabolism dysregulation in childhood acute lymphoblastic leukemia (cALL). Reprogramming of cellular bioenergetic processes can be expected in the three distinct stages of cALL: at diagnosis, during standard chemotherapy, and in cases of relapse. Upregulation of glycolysis, dependency on anaplerotic energy sources, and activation of the electron transport chain have all been observed in cALL. While the current treatment strategies are tackling some of these aberrations, cALL cells are likely to be able to rewire their metabolism in order to escape therapy, which may contribute to a refractory disease and relapse. Finally, here we focus on novel therapeutic approaches emerging from our evolving understanding of the alterations of different metabolic networks in lymphoblasts.
Collapse
Affiliation(s)
- Yordan Sbirkov
- Department of Medical Biology, Medical University of Plovdiv, Plovdiv, Bulgaria.,Research Institute at Medical University- Plovdiv, Plovdiv, Bulgaria
| | - Hasan Burnusuzov
- Research Institute at Medical University- Plovdiv, Plovdiv, Bulgaria.,Department of Pediatrics and Medical Genetics, Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Victoria Sarafian
- Department of Medical Biology, Medical University of Plovdiv, Plovdiv, Bulgaria.,Research Institute at Medical University- Plovdiv, Plovdiv, Bulgaria
| |
Collapse
|
21
|
Tabe Y, Konopleva M, Andreeff M. Fatty Acid Metabolism, Bone Marrow Adipocytes, and AML. Front Oncol 2020; 10:155. [PMID: 32133293 PMCID: PMC7040225 DOI: 10.3389/fonc.2020.00155] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 01/29/2020] [Indexed: 01/31/2023] Open
Abstract
Acute myeloid leukemia (AML) cells modulate their metabolic state continuously as a result of bone marrow (BM) microenvironment stimuli and/or nutrient availability. Adipocytes are prevalent in the BM stroma and increase in number with age. AML in elderly patients induces remodeling and lipolysis of BM adipocytes, which may promote AML cell survival through metabolic activation of fatty acid oxidation (FAO). FAO reactions generate acetyl-CoA from fatty acids under aerobic conditions and, under certain conditions, it can cause uncoupling of mitochondrial oxidative phosphorylation. Recent experimental evidence indicates that FAO is associated with quiescence and drug-resistance in leukemia stem cells. In this review, we highlight recent progress in our understanding of fatty acid metabolism in AML cells in the adipocyte-rich BM microenvironment, and discuss the therapeutic potential of combinatorial regimens with various FAO inhibitors, which target metabolic vulnerabilities of BM-resident, chemoresistant leukemia cells.
Collapse
Affiliation(s)
- Yoko Tabe
- Department of Laboratory Medicine, Juntendo University, Tokyo, Japan.,Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Marina Konopleva
- Section of Leukemia Biology Research, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Michael Andreeff
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
22
|
Pajuelo Reguera D, Čunátová K, Vrbacký M, Pecinová A, Houštěk J, Mráček T, Pecina P. Cytochrome c Oxidase Subunit 4 Isoform Exchange Results in Modulation of Oxygen Affinity. Cells 2020; 9:cells9020443. [PMID: 32075102 PMCID: PMC7072730 DOI: 10.3390/cells9020443] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/11/2020] [Accepted: 02/11/2020] [Indexed: 01/05/2023] Open
Abstract
Cytochrome c oxidase (COX) is regulated through tissue-, development- or environment-controlled expression of subunit isoforms. The COX4 subunit is thought to optimize respiratory chain function according to oxygen-controlled expression of its isoforms COX4i1 and COX4i2. However, biochemical mechanisms of regulation by the two variants are only partly understood. We created an HEK293-based knock-out cellular model devoid of both isoforms (COX4i1/2 KO). Subsequent knock-in of COX4i1 or COX4i2 generated cells with exclusive expression of respective isoform. Both isoforms complemented the respiratory defect of COX4i1/2 KO. The content, composition, and incorporation of COX into supercomplexes were comparable in COX4i1- and COX4i2-expressing cells. Also, COX activity, cytochrome c affinity, and respiratory rates were undistinguishable in cells expressing either isoform. Analysis of energy metabolism and the redox state in intact cells uncovered modestly increased preference for mitochondrial ATP production, consistent with the increased NADH pool oxidation and lower ROS in COX4i2-expressing cells in normoxia. Most remarkable changes were uncovered in COX oxygen kinetics. The p50 (partial pressure of oxygen at half-maximal respiration) was increased twofold in COX4i2 versus COX4i1 cells, indicating decreased oxygen affinity of the COX4i2-containing enzyme. Our finding supports the key role of the COX4i2-containing enzyme in hypoxia-sensing pathways of energy metabolism.
Collapse
Affiliation(s)
- David Pajuelo Reguera
- Department of Bioenergetics, Institute of Physiology, Czech Academy of Sciences, 14220 Prague 4, Czech Republic; (D.P.R.); (K.Č.); (M.V.); (A.P.); (J.H.)
| | - Kristýna Čunátová
- Department of Bioenergetics, Institute of Physiology, Czech Academy of Sciences, 14220 Prague 4, Czech Republic; (D.P.R.); (K.Č.); (M.V.); (A.P.); (J.H.)
- Department of Cell Biology, Faculty of Science, Charles University, 12000 Prague 2, Czech Republic
| | - Marek Vrbacký
- Department of Bioenergetics, Institute of Physiology, Czech Academy of Sciences, 14220 Prague 4, Czech Republic; (D.P.R.); (K.Č.); (M.V.); (A.P.); (J.H.)
| | - Alena Pecinová
- Department of Bioenergetics, Institute of Physiology, Czech Academy of Sciences, 14220 Prague 4, Czech Republic; (D.P.R.); (K.Č.); (M.V.); (A.P.); (J.H.)
| | - Josef Houštěk
- Department of Bioenergetics, Institute of Physiology, Czech Academy of Sciences, 14220 Prague 4, Czech Republic; (D.P.R.); (K.Č.); (M.V.); (A.P.); (J.H.)
| | - Tomáš Mráček
- Department of Bioenergetics, Institute of Physiology, Czech Academy of Sciences, 14220 Prague 4, Czech Republic; (D.P.R.); (K.Č.); (M.V.); (A.P.); (J.H.)
- Correspondence: (T.M.); (P.P.)
| | - Petr Pecina
- Department of Bioenergetics, Institute of Physiology, Czech Academy of Sciences, 14220 Prague 4, Czech Republic; (D.P.R.); (K.Č.); (M.V.); (A.P.); (J.H.)
- Correspondence: (T.M.); (P.P.)
| |
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW In an attempt to identify potential new therapeutic targets, efforts to describe the metabolic features unique to cancer cells are increasingly being reported. Although current standard of care regimens for several pediatric malignancies incorporate agents that target tumor metabolism, these drugs have been part of the therapeutic landscape for decades. More recent research has focused on the identification and targeting of new metabolic vulnerabilities in pediatric cancers. The purpose of this review is to describe the most recent translational findings in the metabolic targeting of pediatric malignancies. RECENT FINDINGS Across multiple pediatric cancer types, dependencies on a number of key metabolic pathways have emerged through study of patient tissue samples and preclinical modeling. Among the potentially targetable vulnerabilities are glucose metabolism via glycolysis, oxidative phosphorylation, amino acid and polyamine metabolism, and NAD metabolism. Although few agents have yet to move forward into clinical trials for pediatric cancer patients, the robust and promising preclinical data that have been generated suggest that future clinical trials should rationally test metabolically targeted agents for relevant disease populations. SUMMARY Recent advances in our understanding of the metabolic dependencies of pediatric cancers represent a source of potential new therapeutic opportunities for these diseases.
Collapse
|
24
|
Abstract
In this Review, Rashkovan et al. discuss the role of cancer metabolic circuitries feeding anabolism and redox potential in leukemia development and recent progress in translating these important findings to the clinic. Leukemia cell proliferation requires up-regulation and rewiring of metabolic pathways to feed anabolic cell growth. Oncogenic drivers directly and indirectly regulate metabolic pathways, and aberrant metabolism is central not only for leukemia proliferation and survival, but also mediates oncogene addiction with significant implications for the development of targeted therapies. This review explores leukemia metabolic circuitries feeding anabolism, redox potential, and energy required for tumor propagation with an emphasis on emerging therapeutic opportunities.
Collapse
Affiliation(s)
- Marissa Rashkovan
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA
| | - Adolfo Ferrando
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA.,Department of Pediatrics, Columbia University, New York, NY 10032, USA.,Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| |
Collapse
|
25
|
Sea JL, Orgel E, Chen T, Paszkiewicz RL, Krall AS, Oberley MJ, Stiles L, Mittelman SD. Levocarnitine does not impair chemotherapy cytotoxicity against acute lymphoblastic leukemia. Leuk Lymphoma 2019; 61:420-428. [PMID: 31526067 DOI: 10.1080/10428194.2019.1666379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Asparaginase (ASNase) is an integral part of pediatric induction chemotherapy that has also been shown to improve adult survival rates; however, pegylated (PEG)-ASNase induces severe hepatotoxicity in this population. Recent case reports describe the incorporation of levocarnitine (LC) supplementation into PEG-ASNase-containing induction regimens to prevent or treat hepatotoxicity. Because LC facilitates the metabolism of free fatty acids (FFA), a primary fuel source for ALL cells, LC could potentially interfere with ALL chemotherapy efficacy. To test this, we employed in vitro and in vivo models of ALL. We show in vitro that LC supplementation does not impact cytotoxicity from vincristine, daunorubicin, dexamethasone, or ASNase on human ALL cells nor lead to an increase in ALL cell metabolic rate. In vivo, we demonstrate LC does not impair PEG-ASNase monotherapy in mice with syngeneic ALL. Together, our findings show that LC supplementation is a safe strategy to prevent/reverse ASNase-induced toxicities in preclinical models.
Collapse
Affiliation(s)
- Jessica L Sea
- Division of Pediatric Endocrinology, UCLA Children's Discovery and Innovation Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Etan Orgel
- Division of Hematology, Oncology, Blood and Marrow Transplantation, Children's Hospital Los Angeles, Los Angeles, CA, USA.,Department of Pediatrics, University of Southern California, Los Angeles, CA, USA
| | - Ting Chen
- Division of Pediatric Endocrinology, UCLA Children's Discovery and Innovation Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Rebecca L Paszkiewicz
- Division of Pediatric Endocrinology, UCLA Children's Discovery and Innovation Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Abigail S Krall
- Department of Biological Chemistry and the Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA
| | - Matthew J Oberley
- Department of Pediatrics, University of Southern California, Los Angeles, CA, USA.,Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Keck School of Medicine, Los Angeles, CA, USA
| | - Linsey Stiles
- Division of Endocrinology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Steven D Mittelman
- Division of Pediatric Endocrinology, UCLA Children's Discovery and Innovation Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
26
|
Reis LMD, Adamoski D, Ornitz Oliveira Souza R, Rodrigues Ascenção CF, Sousa de Oliveira KR, Corrêa-da-Silva F, Malta de Sá Patroni F, Meira Dias M, Consonni SR, Mendes de Moraes-Vieira PM, Silber AM, Dias SMG. Dual inhibition of glutaminase and carnitine palmitoyltransferase decreases growth and migration of glutaminase inhibition-resistant triple-negative breast cancer cells. J Biol Chem 2019; 294:9342-9357. [PMID: 31040181 DOI: 10.1074/jbc.ra119.008180] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/25/2019] [Indexed: 12/12/2022] Open
Abstract
Triple-negative breast cancers (TNBCs) lack progesterone and estrogen receptors and do not have amplified human epidermal growth factor receptor 2, the main therapeutic targets for managing breast cancer. TNBCs have an altered metabolism, including an increased Warburg effect and glutamine dependence, making the glutaminase inhibitor CB-839 therapeutically promising for this tumor type. Accordingly, CB-839 is currently in phase I/II clinical trials. However, not all TNBCs respond to CB-839 treatment, and the tumor resistance mechanism is not yet fully understood. Here we classified cell lines as CB-839-sensitive or -resistant according to their growth responses to CB-839. Compared with sensitive cells, resistant cells were less glutaminolytic and, upon CB-839 treatment, exhibited a smaller decrease in ATP content and less mitochondrial fragmentation, an indicator of poor mitochondrial health. Transcriptional analyses revealed that the expression levels of genes linked to lipid metabolism were altered between sensitive and resistant cells and between breast cancer tissues (available from The Cancer Genome Atlas project) with low versus high glutaminase (GLS) gene expression. Of note, CB-839-resistant TNBC cells had increased carnitine palmitoyltransferase 2 (CPT2) protein and CPT1 activity levels. In agreement, CB-839-resistant TNBC cells mobilized more fatty acids into mitochondria for oxidation, which responded to AMP-activated protein kinase and acetyl-CoA carboxylase signaling. Moreover, chemical inhibition of both glutaminase and CPT1 decreased cell proliferation and migration of CB-839-resistant cells compared with single inhibition of each enzyme. We propose that dual targeting of glutaminase and CPT1 activities may have therapeutic relevance for managing CB-839-resistant tumors.
Collapse
Affiliation(s)
- Larissa Menezes Dos Reis
- From the Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970 Campinas, São Paulo, Brazil.,the Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas, 13083-970 Campinas, São Paulo, Brazil
| | - Douglas Adamoski
- From the Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970 Campinas, São Paulo, Brazil.,the Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas, 13083-970 Campinas, São Paulo, Brazil
| | - Rodolpho Ornitz Oliveira Souza
- the Laboratory of Biochemistry of Tryps, Department of Parasitology, Institute of Biomedical Science, University of São Paulo, 05508-000 São Paulo, São Paulo, Brazil
| | - Carolline Fernanda Rodrigues Ascenção
- From the Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970 Campinas, São Paulo, Brazil.,the Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas, 13083-970 Campinas, São Paulo, Brazil
| | - Krishina Ratna Sousa de Oliveira
- From the Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970 Campinas, São Paulo, Brazil.,the Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas, 13083-970 Campinas, São Paulo, Brazil
| | - Felipe Corrêa-da-Silva
- the Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas, 13083-970 Campinas, São Paulo, Brazil.,the Department of Genetics, Evolution, Microbiology, and Immunology, Laboratory of Immunometabolism, Institute of Biology, University of Campinas, 13083-970 Campinas, São Paulo, Brazil, and
| | - Fábio Malta de Sá Patroni
- From the Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970 Campinas, São Paulo, Brazil.,the Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas, 13083-970 Campinas, São Paulo, Brazil
| | - Marília Meira Dias
- From the Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970 Campinas, São Paulo, Brazil
| | - Sílvio Roberto Consonni
- the Department of Biochemistry and Tissue Biology, Laboratory of Cytochemistry and Immunocytochemistry, Institute of Biology, University of Campinas, 13083-970 Campinas, São Paulo, Brazil
| | - Pedro Manoel Mendes de Moraes-Vieira
- the Department of Genetics, Evolution, Microbiology, and Immunology, Laboratory of Immunometabolism, Institute of Biology, University of Campinas, 13083-970 Campinas, São Paulo, Brazil, and
| | - Ariel Mariano Silber
- the Laboratory of Biochemistry of Tryps, Department of Parasitology, Institute of Biomedical Science, University of São Paulo, 05508-000 São Paulo, São Paulo, Brazil
| | - Sandra Martha Gomes Dias
- From the Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970 Campinas, São Paulo, Brazil,
| |
Collapse
|
27
|
Shakambari G, Sameer Kumar R, Ashokkumar B, Ganesh V, Vasantha VS, Varalakshmi P. Cloning and expression of L-asparaginase from Bacillus tequilensis PV9W and therapeutic efficacy of Solid Lipid Particle formulations against cancer. Sci Rep 2018; 8:18013. [PMID: 30573733 PMCID: PMC6301963 DOI: 10.1038/s41598-018-36161-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 11/09/2018] [Indexed: 11/12/2022] Open
Abstract
L-asparaginase, a therapeutic involved in cancer therapy, from Bacillus tequilensis PV9W (ansA gene) was cloned and over expressed in Escherichia coli BL21 (DE3), achieved the aim of maximizing the yield of the recombinant enzyme (6.02 ± 1.77 IU/mL) within 12 h. The native L-asparaginase of B. tequilensis PV9W was encapsulated using solid lipid particles by hot lipid emulsion method, which is reported for first time in this study. Subsequently, the lipid encapsulated L-asparaginase (LPE) was characterized by SEM, UV-Vis spectroscopy, FT-IR, SDS-PAGE and its thermo stability was also analyzed by TGA. Further characterization of LPE revealed that enzyme was highly stable for 25 days when stored at 25 °C, showed high pH (9) tolerance and longer trypsin half-life (120 min). In addition, the cytotoxic ability of LPE on HeLa cells was highly enhanced compared to the native L-asparaginase from Bacillus tequilensis PV9W. Moreover, better kinetic velocity and lower Km values of LPE aided to detect L-asparagine in cell extracts by Differential Pulse Voltammetry (DPV) method. The LPE preparation also showed least immunogenic reaction when tested on normal macrophage cell lines. This LPE preparation might thus pave way for efficient drug delivery and enhancing the stability of L-asparaginase for its therapeutic applications.
Collapse
Affiliation(s)
- Ganeshan Shakambari
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India
| | - Rai Sameer Kumar
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India
| | - Balasubramaniem Ashokkumar
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India
| | - Venkatachalam Ganesh
- Electrodics and Electrocatalysis (EEC) Division, CSIR - Central Electrochemical Research Institute, (CSIR - CECRI), Karaikudi, Tamilnadu, 630003, India
| | - Vairathevar Sivasamy Vasantha
- Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India
| | - Perumal Varalakshmi
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India.
| |
Collapse
|
28
|
Zhao P, Huang J, Zhang D, Zhang D, Wang F, Qu Y, Guo T, Qin Y, Wei J, Niu T, Zheng Y. SLC2A5
overexpression in childhood philadelphia chromosome-positive acute lymphoblastic leukaemia. Br J Haematol 2018; 183:242-250. [PMID: 30272826 DOI: 10.1111/bjh.15580] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 07/29/2018] [Indexed: 02/05/2023]
Affiliation(s)
- Pan Zhao
- Department of Haematology; West China Hospital; Sichuan University; Chengdu China
- Department of Haematology; Affiliated Hospital of North Sichuan Medical College; Chengdu China
- State Key Laboratory of Biotherapy and Cancer Centre; West China Hospital; Sichuan University; Chengdu China
| | - Jingcao Huang
- Department of Haematology; West China Hospital; Sichuan University; Chengdu China
| | - Dan Zhang
- Department of Haematology; West China Hospital; Sichuan University; Chengdu China
| | - Danfeng Zhang
- Department of Haematology; West China Hospital; Sichuan University; Chengdu China
| | - Fangfang Wang
- Department of Haematology; West China Hospital; Sichuan University; Chengdu China
| | - Ying Qu
- Department of Haematology; West China Hospital; Sichuan University; Chengdu China
| | - Tingting Guo
- Department of Haematology; West China Hospital; Sichuan University; Chengdu China
| | - Yu Qin
- Department of Endocrinology; Baylor College of Medicine; Houston TX USA
| | - Jin Wei
- Department of Haematology; Affiliated Hospital of North Sichuan Medical College; Chengdu China
| | - Ting Niu
- Department of Haematology; West China Hospital; Sichuan University; Chengdu China
| | - Yuhuan Zheng
- Department of Haematology; West China Hospital; Sichuan University; Chengdu China
- State Key Laboratory of Biotherapy and Cancer Centre; West China Hospital; Sichuan University; Chengdu China
| |
Collapse
|
29
|
Vališ K, Grobárová V, Hernychová L, Bugáňová M, Kavan D, Kalous M, Černý J, Stodůlková E, Kuzma M, Flieger M, Černý J, Novák P. Reprogramming of leukemic cell metabolism through the naphthoquinonic compound Quambalarine B. Oncotarget 2017; 8:103137-103153. [PMID: 29262552 PMCID: PMC5732718 DOI: 10.18632/oncotarget.21663] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 09/21/2017] [Indexed: 12/31/2022] Open
Abstract
Abnormalities in cancer metabolism represent potential targets for cancer therapy. We have recently identified a natural compound Quambalarine B (QB), which inhibits proliferation of several leukemic cell lines followed by cell death. We have predicted ubiquinone binding sites of mitochondrial respiratory complexes as potential molecular targets of QB in leukemia cells. Hence, we tracked the effect of QB on leukemia metabolism by applying several omics and biochemical techniques. We have confirmed the inhibition of respiratory complexes by QB and found an increase in the intracellular AMP levels together with respiratory substrates. Inhibition of mitochondrial respiration by QB triggered reprogramming of leukemic cell metabolism involving disproportions in glycolytic flux, inhibition of proteins O-glycosylation, stimulation of glycine synthesis pathway, and pyruvate kinase activity, followed by an increase in pyruvate and a decrease in lactate levels. Inhibition of mitochondrial complex I by QB suppressed folate metabolism as determined by a decrease in formate production. We have also observed an increase in cellular levels of several amino acids except for aspartate, indicating the dependence of Jurkat (T-ALL) cells on aspartate synthesis. These results indicate blockade of mitochondrial complex I and II activity by QB and reduction in aspartate and folate metabolism as therapeutic targets in T-ALL cells. Anti-cancer activity of QB was also confirmed during in vivo studies, suggesting the therapeutic potential of this natural compound.
Collapse
Affiliation(s)
- Karel Vališ
- BIOCEV, Institute of Microbiology, v.v.i., The Czech Academy of Sciences, Vestec, Czech Republic.,Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Valéria Grobárová
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Lucie Hernychová
- BIOCEV, Institute of Microbiology, v.v.i., The Czech Academy of Sciences, Vestec, Czech Republic.,Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Martina Bugáňová
- Institute of Microbiology, v.v.i., The Czech Academy of Sciences, Prague, Czech Republic.,Faculty of Chemical Technology, University of Chemistry and Technology, Prague, Czech Republic
| | - Daniel Kavan
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic.,Institute of Microbiology, v.v.i., The Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Kalous
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jiří Černý
- BIOCEV, Institute of Biotechnology, v.v.i., The Czech Academy of Sciences, Vestec, Czech Republic
| | - Eva Stodůlková
- Institute of Microbiology, v.v.i., The Czech Academy of Sciences, Prague, Czech Republic
| | - Marek Kuzma
- Institute of Microbiology, v.v.i., The Czech Academy of Sciences, Prague, Czech Republic
| | - Miroslav Flieger
- Institute of Microbiology, v.v.i., The Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Černý
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Petr Novák
- BIOCEV, Institute of Microbiology, v.v.i., The Czech Academy of Sciences, Vestec, Czech Republic.,Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
30
|
Starkova J, Hermanova I, Hlozkova K, Hararova A, Trka J. Altered Metabolism of Leukemic Cells: New Therapeutic Opportunity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 336:93-147. [PMID: 29413894 DOI: 10.1016/bs.ircmb.2017.07.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The cancer metabolic program alters bioenergetic processes to meet the higher demands of tumor cells for biomass production, nucleotide synthesis, and NADPH-balancing redox homeostasis. It is widely accepted that cancer cells mostly utilize glycolysis, as opposed to normal cells, in which oxidative phosphorylation is the most employed bioenergetic process. Still, studies examining cancer metabolism had been overlooked for many decades, and it was only recently discovered that metabolic alterations affect both the oncogenic potential and therapeutic response. Since most of the published works concern solid tumors, in this comprehensive review, we aim to summarize knowledge about the metabolism of leukemia cells. Leukemia is a malignant disease that ranks first and fifth in cancer-related deaths in children and adults, respectively. Current treatment has reached its limits due to toxicity, and there has been a need for new therapeutic approaches. One of the possible scenarios is improved use of established drugs and another is to introduce new druggable targets. Herein, we aim to describe the complexity of leukemia metabolism and highlight cellular processes that could be targeted therapeutically and enhance the effectiveness of current treatments.
Collapse
Affiliation(s)
- Julia Starkova
- CLIP-Childhood Leukaemia Investigation Prague, Charles University, Prague, Czech Republic; Second Faculty of Medicine, Charles University, Prague, Czech Republic.
| | - Ivana Hermanova
- CLIP-Childhood Leukaemia Investigation Prague, Charles University, Prague, Czech Republic; Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Katerina Hlozkova
- CLIP-Childhood Leukaemia Investigation Prague, Charles University, Prague, Czech Republic; Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Alzbeta Hararova
- Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jan Trka
- CLIP-Childhood Leukaemia Investigation Prague, Charles University, Prague, Czech Republic; Second Faculty of Medicine, Charles University, Prague, Czech Republic; University Hospital Motol, Prague, Czech Republic
| |
Collapse
|
31
|
PHD3 Loss in Cancer Enables Metabolic Reliance on Fatty Acid Oxidation via Deactivation of ACC2. Mol Cell 2017; 63:1006-20. [PMID: 27635760 DOI: 10.1016/j.molcel.2016.08.014] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 07/18/2016] [Accepted: 08/09/2016] [Indexed: 12/18/2022]
Abstract
While much research has examined the use of glucose and glutamine by tumor cells, many cancers instead prefer to metabolize fats. Despite the pervasiveness of this phenotype, knowledge of pathways that drive fatty acid oxidation (FAO) in cancer is limited. Prolyl hydroxylase domain proteins hydroxylate substrate proline residues and have been linked to fuel switching. Here, we reveal that PHD3 rapidly triggers repression of FAO in response to nutrient abundance via hydroxylation of acetyl-coA carboxylase 2 (ACC2). We find that PHD3 expression is strongly decreased in subsets of cancer including acute myeloid leukemia (AML) and is linked to a reliance on fat catabolism regardless of external nutrient cues. Overexpressing PHD3 limits FAO via regulation of ACC2 and consequently impedes leukemia cell proliferation. Thus, loss of PHD3 enables greater utilization of fatty acids but may also serve as a metabolic and therapeutic liability by indicating cancer cell susceptibility to FAO inhibition.
Collapse
|
32
|
Takahashi H, Inoue J, Sakaguchi K, Takagi M, Mizutani S, Inazawa J. Autophagy is required for cell survival under L-asparaginase-induced metabolic stress in acute lymphoblastic leukemia cells. Oncogene 2017; 36:4267-4276. [PMID: 28346428 PMCID: PMC5537607 DOI: 10.1038/onc.2017.59] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 01/31/2017] [Accepted: 02/07/2017] [Indexed: 12/18/2022]
Abstract
L-asparaginase has been used for more than three decades in acute lymphoblastic leukemia (ALL) patients and remains an essential drug in the treatment of ALL. Poor response to L-asparaginase is associated with increased risk of therapeutic failure in ALL. However, both the metabolic perturbation and molecular context of L-asparaginase-treated ALL cells has not been fully elucidated. Here we identify that treatment with L-asparaginase results in metabolic shutdown via the reduction of both glycolysis and oxidative phosphorylation, accompanied by mitochondrial damage and activation of autophagy. The autophagy is involved in reducing reactive oxygen species (ROS) level by eliminating injured mitochondria. Inhibition of autophagy enhances L-asparaginase-induced cytotoxicity and overcomes the acquired resistance to L-asparaginase in ALL cells. The ROS-p53-positive feedback loop is an essential mechanism of this synergistic cytotoxicity. Thus, our findings provide the rationale for the future development of combined treatment of L-asparaginase and anti-autophagy drug in ALL patients.
Collapse
Affiliation(s)
- H Takahashi
- Department of Molecular Cytogenetics, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.,Department of Pediatrics, Hamamatsu University School of Medicine, Shizuoka, Japan.,Bioresource Research Center, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - J Inoue
- Department of Molecular Cytogenetics, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.,Bioresource Research Center, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - K Sakaguchi
- Department of Pediatrics, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - M Takagi
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - S Mizutani
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - J Inazawa
- Department of Molecular Cytogenetics, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.,Bioresource Research Center, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
33
|
Song JH, Park E, Kim MS, Cho KM, Park SH, Lee A, Song J, Kim HJ, Koh JT, Kim TS. l-Asparaginase-mediated downregulation of c-Myc promotes 1,25(OH) 2 D 3 -induced myeloid differentiation in acute myeloid leukemia cells. Int J Cancer 2017; 140:2364-2374. [PMID: 28224619 DOI: 10.1002/ijc.30662] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 02/06/2017] [Accepted: 02/08/2017] [Indexed: 01/29/2023]
Abstract
Treatment of acute myeloid leukemia (AML) largely depends on chemotherapy, but current regimens have been unsatisfactory for long-term remission. Although differentiation induction therapy utilizing 1,25(OH)2 D3 (VD3) has shown great promise for the improvement of AML treatment efficacy, severe side effects caused by its supraphysiological dose limit its clinical application. Here we investigated the combinatorial effect of l-asparaginase (ASNase)-mediated amino acid depletion and the latent alternation of VD3 activity on the induction of myeloid differentiation. ASNase treatment enhanced VD3-driven phenotypic and functional differentiation of three-different AML cell lines into monocyte/macrophages, along with c-Myc downregulation. Using gene silencing with shRNA and a chemical blocker, we found that reduced c-Myc is a critical factor for improving VD3 efficacy. c-Myc-dependent inhibition of mTORC1 signaling and induction of autophagy were involved in the enhanced AML cell differentiation. In addition, in a postculture of AML cells after each treatment, ASNase supports the antileukemic effect of VD3 by inhibiting cell growth and inducing apoptosis. Finally, we confirmed that the administration of ASNase significantly improved VD3 efficacy in the prolongation of survival time in mice bearing tumor xenograft. Our results are the first to demonstrate the extended application of ASNase, which is currently used for acute lymphoid leukemia, in VD3-mediated differentiation induction therapy for AML, and suggest that this drug combination may be a promising novel strategy for curing AML.
Collapse
Affiliation(s)
- Ju Han Song
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Eunchong Park
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Myun Soo Kim
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Kyung-Min Cho
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Su-Ho Park
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Arim Lee
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Jiseon Song
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Hyeoung-Joon Kim
- Department of Hematology, Chonnam National University Hwasun Hospital, Hwasun, 58128, Republic of Korea
| | - Jeong-Tae Koh
- Department of Pharmacology and Dental Therapeutics, Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Tae Sung Kim
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
34
|
Oxidative stress and hypoxia in normal and leukemic stem cells. Exp Hematol 2016; 44:540-60. [PMID: 27179622 DOI: 10.1016/j.exphem.2016.04.012] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 04/06/2016] [Accepted: 04/09/2016] [Indexed: 12/20/2022]
Abstract
The main hematopoietic stem cell (HSC) functions, self-renewal and differentiation, are finely regulated by both intrinsic mechanisms such as transcriptional and epigenetic regulators and extrinsic signals originating in the bone marrow microenvironment (HSC niche) or in the body (humoral mediators). The interaction between regulatory signals and cellular metabolism is an emerging area. Several metabolic pathways function differently in HSCs compared with progenitors and differentiated cells. Hypoxia, acting through hypoxia-inducing factors, has emerged as a key regulator of stem cell biology and acts by maintaining HSC quiescence and a condition of metabolic dormancy based on anaerobic glycolytic energetic metabolism, with consequent low production reactive oxygen species (ROS) and high antioxidant defense. Hematopoietic cell differentiation is accompanied by changes in oxidative metabolism (decrease of anaerobic glycolysis and increase of oxidative phosphorylation) and increased levels of ROS. Leukemic stem cells, defined as the cells that initiate and maintain the leukemic process, show peculiar metabolic properties in that they are more dependent on oxidative respiration than on glycolysis and are more sensitive to oxidative stress than normal HSCs. Several mitochondrial abnormalities have been described in acute myeloid leukemia (AML) cells, explaining the shift to aerobic glycolysis observed in these cells and offering the unique opportunity for therapeutic metabolic targeting. Finally, frequent mutations of the mitochondrial isocitrate dehydrogenase-2 (IDH2) enzyme are observed in AML cells, in which the mutated enzyme acts as an oncogenic driver and can be targeted using specific inhibitors under clinical evaluation with promising results.
Collapse
|
35
|
Bizzozero OA, Soto EF, Pasquini JM. Mechanisms of transport and assembly of myelin proteins. Cancer Lett 1985; 435:92-100. [PMID: 6240910 DOI: 10.1016/j.canlet.2018.08.006] [Citation(s) in RCA: 319] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/06/2018] [Accepted: 08/08/2018] [Indexed: 12/25/2022]
Abstract
The present study was carried out in order to obtain further information regarding the mechanism of transport and assembly of myelin proteins in different subcellular fractions isolated from brain slices incubated in vitro with radioactive amino acids under different experimental conditions. It was found that proteolipid protein (PLP) showed a lag in the entry into the myelin membrane, while basic and Wolfgram proteins appeared to be inserted in this structure immediately after their synthesis. Addition of 500 microM colchicine to the incubation medium blocked the transport of PLP, while the entry of the other proteins was not affected. Pulse-chase experiments using cycloheximide suggest that a precursor-product relationship between microsomes, fraction SN4 and myelin exists only for PLP. The results obtained allow us to draw the following conclusions: The delay in the entry of PLP into myelin membrane is probably due to the time required for its transport towards the final site of assembly; the microtubular network of the oligodendroglial cell is directly involved in the transport of PLP; basic and probably Wolfgram proteins follow a route which clearly differs from that of PLP; delivery of myelin proteins from the site of synthesis towards their site of deposition depends, at least, on two different mechanisms of intracellular transport.
Collapse
|