1
|
Faiz M, Riedemann M, Jutzi JS, Mullally A. Mutant Calreticulin in MPN: Mechanistic Insights and Therapeutic Implications. Curr Hematol Malig Rep 2025; 20:4. [PMID: 39775969 DOI: 10.1007/s11899-024-00749-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2024] [Indexed: 01/11/2025]
Abstract
PURPOSE OF REVIEW More than a decade following the discovery of Calreticulin (CALR) mutations as drivers of myeloproliferative neoplasms (MPN), advances in the understanding of CALR-mutant MPN continue to emerge. Here, we summarize recent advances in mehanistic understanding and in targeted therapies for CALR-mutant MPN. RECENT FINDINGS Structural insights revealed that the mutant CALR-MPL complex is a tetramer and the mutant CALR C-terminus is exposed on the cell surface. Targeting mutant CALR utilizing antibodies is the leading therapeutic approach, while mutant CALR-directed vaccines are also in early clinical trials. Additionally, chimeric antigen receptor (CAR) T-cells directed against mutant CALR are under evaluation in preclinical models. Approaches addressing the cellular effects of mutant CALR beyond MPL-JAK-STAT activation, such as targeting the unfolded protein response, proteasome, and N-glycosylation pathways, have been tested in preclinical models. In CALR-mutant MPN, the path from discovery to mechanistic understanding to direct therapeutic targeting has advanced rapidly. The longer-term goal remains clonally-selective therapies that modify the disease course in patients.
Collapse
Affiliation(s)
- Mifra Faiz
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Institute of Medicine, Boston, MA, 02115, USA
| | - Merle Riedemann
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Institute of Medicine, Boston, MA, 02115, USA
| | - Jonas S Jutzi
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Institute of Medicine, Boston, MA, 02115, USA
| | - Ann Mullally
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Hematology Division, VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA.
| |
Collapse
|
2
|
Najim M, Abu-Tineh M, Alshurafa A, Ibrahim MIM, Ansari S, Faraj H, Alateeg S, Akiki SJ, Yassin MA. The characteristics of CALR mutations in myeloproliferative neoplasms: a clinical experience from a tertiary care center in Qatar and a literature review. Hematology 2024; 29:2360246. [PMID: 38804886 DOI: 10.1080/16078454.2024.2360246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 05/21/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Myeloproliferative neoplasms (MPNs) are hematological disorders characterized by abnormal production of myeloid cells due to genetic mutations. Since 2013, researchers have identified somatic mutations in the Calreticulin (CALR) gene, primarily insertions or deletions, in two Philadelphia chromosome-negative MPNs; essential thrombocytosis (ET) and primary myelofibrosis (PMF), and occasionally in chronic myelomonocytic leukemia (CMML). This study aims to identify the various types of CALR mutations and their impact on CALR-positive MPN patients' clinical manifestations and outcomes. METHODS A single-center retrospective study was conducted. The data was collected from pre-existing records. The study was carried out on Philadelphia-negative MPN patients who were being followed up on at the NCCCR (National Center for Cancer Care and Research) to assess the clinical manifestation and outcome of disease treatment. All patients included, were followed in our center between January 1, 2008, and November 20, 2021. RESULTS A total of 50 patients with CALR-positive MPN were reviewed with a median follow-up of three years (1-11). This cohort included 31 (62%) patients with ET, 10 (20%) patients with PMF, and 9 (18%) patients with prefibrotic myelofibrosis (pre-MF). The study involved 38 (76%) male and 12 (24%) female patients. There were 16 (32%) patients diagnosed before the age of 40, 24 (48%) patients diagnosed between the ages of 40 and 60; and 10 (20%) patients diagnosed after the age of 60. Molecular analysis showed 24 (48%) patients with CALR type 1, 21 (42%) patients with CALR type 2, and 5 (10%) patients with none Type 1, none Type 2 CALR mutations. Two patients have double mutations; 1(2%) with none Type 1, none Type 2 CALR and JAK2 mutations, and 1(2%) with CALR type 1 and MPL mutations. The thrombotic events were 3 (6%) venous thromboembolisms, 3 (6%) abdominal veins thromboses, 2 (4%) strokes, and 4 (8%) ischemic cardiac events. Only 4 (8%) patients progressed to Myelofibrosis and were carrying CALR 1 mutations, and 1 (2%) patient progressed to AML with CALR 2 mutation. CONCLUSION The data shows a significant rise in CALR-positive MPN diagnoses in younger people, emphasizing the need for a better assessment tool to improve disease management and reduce complications.
Collapse
Affiliation(s)
- Mostafa Najim
- Department of Medicine, Rochester Regional Health, Unity Hospital, Rochester, NY, USA
| | - Mohammad Abu-Tineh
- Department of Medicine, Tower Health, Reading Hospital, West Reading, PA, USA
| | - Awni Alshurafa
- Department of Medical Oncology, Hematology and BMT Section, National Center for Cancer Care and Research, Doha, Qatar
| | | | - Soubiya Ansari
- Internal Medicine Department, Hamad Medical Corporation, Doha, Qatar
| | - Hazem Faraj
- Internal Medicine Department, Hamad Medical Corporation, Doha, Qatar
| | - Saif Alateeg
- Internal Medicine Department, Hamad Medical Corporation, Doha, Qatar
| | - Susanna Jane Akiki
- Department of Diagnostic Laboratory, Hamad Medical Corporation, Doha, Qatar
| | - Mohamed A Yassin
- Department of Medical Oncology, Hematology and BMT Section, National Center for Cancer Care and Research, Doha, Qatar
| |
Collapse
|
3
|
Faiz M, Kalev‐Zylinska ML, Dunstan‐Harrison C, Singleton DC, Hay MP, Ledgerwood EC. Megakaryocyte maturation involves activation of the adaptive unfolded protein response. Genes Cells 2024; 29:889-901. [PMID: 39138929 PMCID: PMC11555628 DOI: 10.1111/gtc.13151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/21/2024] [Accepted: 07/26/2024] [Indexed: 08/15/2024]
Abstract
Endoplasmic reticulum stress triggers the unfolded protein response (UPR) to promote cell survival or apoptosis. Transient endoplasmic reticulum stress activation has been reported to trigger megakaryocyte production, and UPR activation has been reported as a feature of megakaryocytic cancers. However, the role of UPR signaling in megakaryocyte biology is not fully understood. We studied the involvement of UPR in human megakaryocytic differentiation using PMA (phorbol 12-myristate 13-acetate)-induced maturation of megakaryoblastic cell lines and thrombopoietin-induced differentiation of human peripheral blood-derived progenitors. Our results demonstrate that an adaptive UPR is a feature of megakaryocytic differentiation and that this response is not associated with ER stress-induced apoptosis. Differentiation did not alter the response to the canonical endoplasmic reticulum stressors DTT or thapsigargin. However, thapsigargin, but not DTT, inhibited differentiation, consistent with the involvement of Ca2+ signaling in megakaryocyte differentiation.
Collapse
Affiliation(s)
- Mifra Faiz
- Department of BiochemistrySchool of Biomedical Sciences, University of OtagoDunedinNew Zealand
| | - Maggie L. Kalev‐Zylinska
- Blood and Cancer Biology Laboratory, Department of Molecular Medicine & PathologyFaculty of Medical and Health Sciences, The University of AucklandAucklandNew Zealand
| | | | - Dean C. Singleton
- Auckland Cancer Society Research CentreFaculty of Medical and Health Sciences, The University of AucklandAucklandNew Zealand
| | - Michael P. Hay
- Auckland Cancer Society Research CentreFaculty of Medical and Health Sciences, The University of AucklandAucklandNew Zealand
| | - Elizabeth C. Ledgerwood
- Department of BiochemistrySchool of Biomedical Sciences, University of OtagoDunedinNew Zealand
| |
Collapse
|
4
|
Guleken Z, Aday A, Bayrak AG, Hindilerden İY, Nalçacı M, Cebulski J, Depciuch J. Relationship between amide ratio assessed by Fourier-transform infrared spectroscopy: A biomarker candidate for polycythemia vera disease. JOURNAL OF BIOPHOTONICS 2024; 17:e202400162. [PMID: 38978265 DOI: 10.1002/jbio.202400162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/10/2024] [Accepted: 06/21/2024] [Indexed: 07/10/2024]
Abstract
The study utilized Fourier transform infrared (FTIR) spectroscopy coupled with chemometrics to investigate protein composition and structural changes in the blood serum of patients with polycythemia vera (PV). Principal component analysis (PCA) revealed distinct biochemical properties, highlighting elevated absorbance of phospholipids, amides, and lipids in PV patients compared to healthy controls. Ratios of amide I/amide II and amide I/amide III indicated alterations in protein structures. Support vector machine analysis and receiver operating characteristic curves identified amide I as a crucial predictor of PV, achieving 100% accuracy, sensitivity, and specificity, while amide III showed a lower predictive value (70%). PCA analysis demonstrated effective differentiation between PV patients and controls, with key wavenumbers including amide II, amide I, and CH lipid vibrations. These findings underscore the potential of FTIR spectroscopy for diagnosing and monitoring PV.
Collapse
Affiliation(s)
- Zozan Guleken
- Faculty of Medicine, Department of Physiology, Gaziantep University of Islam Science and Technology, Gaziantep, Turkey
| | - Aynur Aday
- Faculty of Medicine, Department of Internal Medicine, Division of Medical Genetics, Istanbul University, Istanbul, Turkey
| | - Ayşe Gül Bayrak
- Faculty of Medicine, Department of Internal Medicine, Division of Medical Genetics, Istanbul University, Istanbul, Turkey
| | - İpek Yönal Hindilerden
- Department of Internal Medicine, Division of Hematology, Istanbul University Istanbul Faculty of Medicine, Istanbul, Turkey
| | - Meliha Nalçacı
- Department of Internal Medicine, Division of Hematology, Istanbul University Istanbul Faculty of Medicine, Istanbul, Turkey
| | - Jozef Cebulski
- Institute of Physics, University of Rzeszow, Rzeszow, Poland
| | - Joanna Depciuch
- Institute of Nuclear Physics, Krakow, Poland
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
5
|
Aubin L, Vilas Boas R, Daltro De Oliveira R, Le Brun V, Divoux M, Rey J, Mansier O, Ianotto JC, Pastoret C, Desmares A, Murati A, de Mas V, Tavitian S, Girodon F, Soret Dulphy J, Maslah N, Goncalves Monteiro V, Boyer F, Orvain C, Ranta D, Cayssials É, Le Clech L, Nicol C, Rottier C, Botin Lopez T, Castel B, Rispal P, Beziat G, Bescond C, Laribi K, Benajiba L, Ugo V, Lippert E, Cottin L, Luque Paz D. CALR-mutated patients with low allele burden represent a specific subtype of essential thrombocythemia: A study on behalf of FIM and GBMHM. Am J Hematol 2024; 99:1001-1004. [PMID: 38404143 DOI: 10.1002/ajh.27265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 02/27/2024]
Abstract
A low allele burden (i.e., <20%) of the CALR driver mutation is found in 10.8% of CALR-mutated MPNs, mostly in essential thrombocythemia, and correlates with a milder phenotype and a more indolent evolution compared to patients with an allele burden ≥20%.
Collapse
Affiliation(s)
- Laura Aubin
- Univ Angers, Nantes Université, CHU Angers, Inserm, CNRS, CRCI2NA, Angers, France
- Laboratoire d'Hématologie, CH St Malo, St Malo, France
- Laboratoire d'Hématologie, CHU Rennes, Rennes, France
| | | | | | | | - Marion Divoux
- Hématologie Clinique, CHU Nancy, Nancy, France
- Laboratoire d'Hématologie, CHU Nancy, Nancy, France
| | - Jérôme Rey
- Centre de Recherche en Cancérologie de Marseille (CRCM), Département d'Hématologie, Institut Paoli-Calmettes, CRCM, Inserm, Marseille, France
| | - Olivier Mansier
- Laboratoire d'Hématologie, CHU Bordeaux, Bordeaux, France
- Inserm U1034, Université de Bordeaux, Bordeaux, France
| | | | | | - Anne Desmares
- Laboratoire d'Hématologie, CHU Rennes, Rennes, France
| | - Anne Murati
- Centre de Recherche en Cancérologie de Marseille (CRCM), Département de Biopathologie et Département d'Oncologie Prédictive, Institut Paoli-Calmettes, Inserm, Marseille, France
| | - Véronique de Mas
- Laboratoire d'Hématologie, Institut Universitaire du Cancer de Toulouse Oncopole, CHU Toulouse, Toulouse, France
| | - Suzanne Tavitian
- Service d'Hématologie, Institut Universitaire du Cancer de Toulouse Oncopole, CHU Toulouse, Toulouse, France
| | | | - Juliette Soret Dulphy
- INSERM U944/CNRS UMR7212, Hôpital Saint Louis APHP, Université de Paris, Paris, France
| | - Nabih Maslah
- Laboratoire de Biologie Cellulaire, Université Paris Cité, APHP, Hôpital Saint-Louis, Paris, France
| | | | | | | | - Dana Ranta
- Hématologie Clinique, CHU Nancy, Nancy, France
| | - Émilie Cayssials
- Service d'Oncologie Hématologique et Thérapie Cellulaire, CHU de Poitiers, Poitiers, France
| | | | | | - Camille Rottier
- Laboratoire d'oncobiologie moléculaire, CHU Amiens-Picardie, Amiens, France
| | | | - Brice Castel
- Service de Médecine Interne, CH de Bigorre, Tarbes, France
| | | | | | | | - Kamel Laribi
- Hématologie Clinique, CH Le Mans, Le Mans, France
| | - Lina Benajiba
- INSERM U944/CNRS UMR7212, Hôpital Saint Louis APHP, Université de Paris, Paris, France
| | - Valérie Ugo
- Univ Angers, Nantes Université, CHU Angers, Inserm, CNRS, CRCI2NA, Angers, France
| | - Eric Lippert
- Laboratoire d'Hématologie, CHRU Brest, Brest, France
- INSERM, U1078, Université de Brest, Brest, France
| | - Laurane Cottin
- Univ Angers, Nantes Université, CHU Angers, Inserm, CNRS, CRCI2NA, Angers, France
| | - Damien Luque Paz
- Univ Angers, Nantes Université, CHU Angers, Inserm, CNRS, CRCI2NA, Angers, France
| |
Collapse
|
6
|
Wang Z, Tian X, Ma J, Zhang Y, Ta W, Duan Y, Li F, Zhang H, Chen L, Yang S, Liu E, Lin Y, Yuan W, Ru K, Bai J. Clinical laboratory characteristics and gene mutation spectrum of Ph-negative MPN patients with atypical variants of JAK2, MPL, or CALR. Cancer Med 2024; 13:e7123. [PMID: 38618943 PMCID: PMC11017299 DOI: 10.1002/cam4.7123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/21/2024] [Accepted: 03/09/2024] [Indexed: 04/16/2024] Open
Abstract
OBJECTIVE To evaluate the incidence, clinical laboratory characteristics, and gene mutation spectrum of Ph-negative MPN patients with atypical variants of JAK2, MPL, or CALR. METHODS We collected a total of 359 Ph-negative MPN patients with classical mutations in driver genes JAK2, MPL, or CALR, and divided them into two groups based on whether they had additional atypical variants of driver genes JAK2, MPL, or CALR: 304 patients without atypical variants of driver genes and 55 patients with atypical variants of driver genes. We analyzed the relevant characteristics of these patients. RESULTS This study included 359 patients with Ph-negative MPNs with JAK2, MPL, or CALR classical mutations and found that 55 (15%) patients had atypical variants of JAK2, MPL, or CALR. Among them, 28 cases (51%) were male, and 27 (49%) were female, with a median age of 64 years (range, 21-83). The age of ET patients with atypical variants was higher than that of ET patients without atypical variants [70 (28-80) vs. 61 (19-82), p = 0.03]. The incidence of classical MPL mutations in ET patients with atypical variants was higher than in ET patients without atypical variants [13.3% (2/15) vs. 0% (0/95), p = 0.02]. The number of gene mutations in patients with atypical variants of driver genes PV, ET, and Overt-PMF is more than in patients without atypical variants of PV, ET, and Overt-PMF [PV: 3 (2-6) vs. 2 (1-7), p < 0.001; ET: 4 (2-8) vs. 2 (1-7), p < 0.05; Overt-PMF: 5 (2-9) vs. 3 (1-8), p < 0.001]. The incidence of SH2B3 and ASXL1 mutations were higher in MPN patients with atypical variants than in those without atypical variants (SH2B3: 16% vs. 6%, p < 0.01; ASXL1: 24% vs. 13%, p < 0.05). CONCLUSION These data indicate that classical mutations of JAK2, MPL, and CALR may not be completely mutually exclusive with atypical variants of JAK2, MPL, and CALR. In this study, 30 different atypical variants of JAK2, MPL, and CALR were identified, JAK2 G127D being the most common (42%, 23/55). Interestingly, JAK2 G127D only co-occurred with JAK2V617F mutation. The incidence of atypical variants of JAK2 in Ph-negative MPNs was much higher than that of the atypical variants of MPL and CALR. The significance of these atypical variants will be further studied in the future.
Collapse
Affiliation(s)
- Zhanlong Wang
- Department of HematologyThe Second Hospital of Tianjin Medical UniversityTianjinChina
- Sino‐US Diagnostics LabTianjin Enterprise Key Laboratory of AI‐aided Hematopathology DiagnosisTianjinChina
| | - Xin Tian
- Sino‐US Diagnostics LabTianjin Enterprise Key Laboratory of AI‐aided Hematopathology DiagnosisTianjinChina
| | - Jinyu Ma
- Department of HematologyThe Second Hospital of Tianjin Medical UniversityTianjinChina
| | - Yuhui Zhang
- Department of HematologyThe Second Hospital of Tianjin Medical UniversityTianjinChina
| | - Wenru Ta
- Department of HematologyThe Second Hospital of Tianjin Medical UniversityTianjinChina
- Sino‐US Diagnostics LabTianjin Enterprise Key Laboratory of AI‐aided Hematopathology DiagnosisTianjinChina
| | - Yifan Duan
- Department of HematologyThe Second Hospital of Tianjin Medical UniversityTianjinChina
| | - Fengli Li
- Sino‐US Diagnostics LabTianjin Enterprise Key Laboratory of AI‐aided Hematopathology DiagnosisTianjinChina
| | - Hong Zhang
- Sino‐US Diagnostics LabTianjin Enterprise Key Laboratory of AI‐aided Hematopathology DiagnosisTianjinChina
| | - Long Chen
- Sino‐US Diagnostics LabTianjin Enterprise Key Laboratory of AI‐aided Hematopathology DiagnosisTianjinChina
| | - Shaobin Yang
- Sino‐US Diagnostics LabTianjin Enterprise Key Laboratory of AI‐aided Hematopathology DiagnosisTianjinChina
| | - Enbin Liu
- Sino‐US Diagnostics LabTianjin Enterprise Key Laboratory of AI‐aided Hematopathology DiagnosisTianjinChina
| | - Yani Lin
- Sino‐US Diagnostics LabTianjin Enterprise Key Laboratory of AI‐aided Hematopathology DiagnosisTianjinChina
| | - Weiping Yuan
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
| | - Kun Ru
- Sino‐US Diagnostics LabTianjin Enterprise Key Laboratory of AI‐aided Hematopathology DiagnosisTianjinChina
- Department of Pathology and Lab MedicineShandong Cancer HospitalJinanChina
| | - Jie Bai
- Department of HematologyThe Second Hospital of Tianjin Medical UniversityTianjinChina
| |
Collapse
|
7
|
Zanelli M, Fragliasso V, Loscocco GG, Sanguedolce F, Broggi G, Zizzo M, Palicelli A, Ricci S, Ambrogi E, Martino G, Aversa S, Coppa F, Gentile P, Gozzi F, Caltabiano R, Koufopoulos N, Asaturova A, Cimino L, Cavazza A, Orcioni GF, Ascani S. Chronic myeloproliferative neoplasms with concomitant CALR mutation and BCR::ABL1 translocation: diagnostic and therapeutic implications of a rare hybrid disease. Front Cell Dev Biol 2024; 12:1391078. [PMID: 38596359 PMCID: PMC11002177 DOI: 10.3389/fcell.2024.1391078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 03/12/2024] [Indexed: 04/11/2024] Open
Abstract
Myeloproliferative neoplasms (MPNs) are subdivided into Philadelphia (Ph) chromosome-positive chronic myeloid leukemia (CML) and Ph-negative MPNs. BCR::ABL1 translocation is essential for the development and diagnosis of CML; on the other hand, the majority of Ph-negative MPNs are characterized by generally mutually exclusive mutations of Janus kinase 2 (JAK2), calreticulin (CALR), or thrombopoietin receptor/myeloproliferative leukemia (MPL). CALR mutations have been described essentially in JAK2 and MPL wild-type essential thrombocythemia and primary myelofibrosis. Rarely coexisting CALR and MPL mutations have been found in Ph-negative MPNs. BCR::ABL1 translocation and JAK2 mutations were initially considered mutually exclusive genomic events, but a discrete number of cases with the combination of these genetic alterations have been reported. The presence of BCR::ABL1 translocation with a coexisting CALR mutation is even more uncommon. Herein, starting from a routinely diagnosed case of CALR-mutated primary myelofibrosis subsequently acquiring BCR::ABL1 translocation, we performed a comprehensive review of the literature, discussing the clinicopathologic and molecular features, as well as the outcome and treatment of cases with BCR::ABL1 and CALR co-occurrence.
Collapse
Affiliation(s)
- Magda Zanelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Valentina Fragliasso
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Reggio Emila, Italy
| | - Giuseppe Gaetano Loscocco
- Department of Experimental and Clinical Medicine, CRIMM, Center of Research and Innovation of Myeloproliferative Neoplasms, Azienda Ospedaliero-Universitaria Careggi, University of Florence, Florence, Italy
- Doctorate School GenOMec, University of Siena, Siena, Italy
| | | | - Giuseppe Broggi
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia” Anatomic Pathology, University of Catania, Catania, Italy
| | - Maurizio Zizzo
- Surgical Oncology Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Andrea Palicelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Stefano Ricci
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Elisa Ambrogi
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Giovanni Martino
- Pathology Unit, Azienda Ospedaliera Santa Maria di Terni, University of Perugia, Terni, Italy
- Hematology, Centro di Ricerca Emato-Oncologica-C.R.E.O., University of Perugia, Perugia, Italy
| | - Sara Aversa
- Pathology Unit, Azienda Ospedaliera Santa Maria di Terni, University of Perugia, Terni, Italy
| | - Francesca Coppa
- Pathology Unit, Azienda Ospedaliera Santa Maria di Terni, University of Perugia, Terni, Italy
| | - Pietro Gentile
- Ocular Immunology Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Fabrizio Gozzi
- Ocular Immunology Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Rosario Caltabiano
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia” Anatomic Pathology, University of Catania, Catania, Italy
| | - Nektarios Koufopoulos
- Second Department of Pathology, Medical School, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - Aleksandra Asaturova
- Pathology Department, FSBI “National Medical Research Centre for Ostetrics, Gynecology and Perinatology Named After Academician V.I Kulakov” of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Luca Cimino
- Ocular Immunology Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Alberto Cavazza
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | | | - Stefano Ascani
- Pathology Unit, Azienda Ospedaliera Santa Maria di Terni, University of Perugia, Terni, Italy
| |
Collapse
|
8
|
Bhuria V, Franz T, Baldauf C, Böttcher M, Chatain N, Koschmieder S, Brümmendorf TH, Mougiakakos D, Schraven B, Kahlfuß S, Fischer T. Activating mutations in JAK2 and CALR differentially affect intracellular calcium flux in store operated calcium entry. Cell Commun Signal 2024; 22:186. [PMID: 38509561 PMCID: PMC10956330 DOI: 10.1186/s12964-024-01530-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/13/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND Calcium (Ca2+) signaling regulates various vital cellular functions, including integrin activation and cell migration. Store-operated calcium entry (SOCE) via calcium release-activated calcium (CRAC) channels represents a major pathway for Ca2+ influx from the extracellular space in multiple cell types. The impact of JAK2-V617F and CALR mutations which are disease initiating in myeloproliferative neoplasms (MPN) on SOCE, calcium flux from the endoplasmic reticulum (ER) to the cytosol, and related key signaling pathways in the presence or absence of erythropoietin (EPO) or thrombopoietin (TPO) is poorly understood. Thus, this study aimed to elucidate the effects of these mutations on the aforementioned calcium dynamics, in cellular models of MPN. METHODS Intracellular Ca2+ levels were measured over a time frame of 0-1080 s in Fura-2 AM labeled myeloid progenitor 32D cells expressing various mutations (JAK2-WT/EpoR, JAK2-V617F/EpoR; CALR-WT/MPL, CALR-ins5/MPL, and del52/MPL). Basal Ca2+ concentrations were assessed from 0-108 s. Subsequently, cells were stimulated with EPO/TPO in Ca2+-free Ringer solution, measuring Ca2+ levels from 109-594 s (store depletion). Then, 2 mM of Ca2+ buffer resembling physiological concentrations was added to induce SOCE, and Ca2+ levels were measured from 595-1080 s. Fura-2 AM emission ratios (F340/380) were used to quantify the integrated Ca2+ signal. Statistical significance was assessed by unpaired Student's t-test or Mann-Whitney-U-test, one-way or two-way ANOVA followed by Tukey's multiple comparison test. RESULTS Following EPO stimulation, the area under the curve (AUC) representing SOCE significantly increased in 32D-JAK2-V617F cells compared to JAK2-WT cells. In TPO-stimulated CALR cells, we observed elevated Ca2+ levels during store depletion and SOCE in CALR-WT cells compared to CALR-ins5 and del52 cells. Notably, upon stimulation, key components of the Ca2+ signaling pathways, including PLCγ-1 and IP3R, were differentially affected in these cell lines. Hyper-activated PLCγ-1 and IP3R were observed in JAK2-V617F but not in CALR mutated cells. Inhibition of calcium regulatory mechanisms suppressed cellular growth and induced apoptosis in JAK2-V617F cells. CONCLUSIONS This report highlights the impact of JAK2 and CALR mutations on Ca2+ flux (store depletion and SOCE) in response to stimulation with EPO and TPO. The study shows that the JAK2-V617F mutation strongly alters the regulatory mechanism of EpoR/JAK2-dependent intracellular calcium balance, affecting baseline calcium levels, EPO-induced calcium entry, and PLCγ-1 signaling pathways. Our results reveal an important role of calcium flux in the homeostasis of JAK2-V617F positive cells.
Collapse
Affiliation(s)
- Vikas Bhuria
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany.
- Health-Campus Immunology, Infectiology, and Inflammation (GC-I3), Medical Center, Otto-von-Guericke University, Magdeburg, Germany.
- Center for Health and Medical Prevention - CHaMP, Otto-von-Guericke University, Magdeburg, Germany.
| | - Tobias Franz
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Conny Baldauf
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Martin Böttcher
- Health-Campus Immunology, Infectiology, and Inflammation (GC-I3), Medical Center, Otto-von-Guericke University, Magdeburg, Germany
- Department of Hematology and Oncology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Nicolas Chatain
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center of Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Steffen Koschmieder
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center of Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Tim H Brümmendorf
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center of Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Dimitrios Mougiakakos
- Health-Campus Immunology, Infectiology, and Inflammation (GC-I3), Medical Center, Otto-von-Guericke University, Magdeburg, Germany
- Department of Hematology and Oncology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Burkhart Schraven
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
- Health-Campus Immunology, Infectiology, and Inflammation (GC-I3), Medical Center, Otto-von-Guericke University, Magdeburg, Germany
- Center for Health and Medical Prevention - CHaMP, Otto-von-Guericke University, Magdeburg, Germany
| | - Sascha Kahlfuß
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
- Health-Campus Immunology, Infectiology, and Inflammation (GC-I3), Medical Center, Otto-von-Guericke University, Magdeburg, Germany
- Center for Health and Medical Prevention - CHaMP, Otto-von-Guericke University, Magdeburg, Germany
- Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Thomas Fischer
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany.
- Health-Campus Immunology, Infectiology, and Inflammation (GC-I3), Medical Center, Otto-von-Guericke University, Magdeburg, Germany.
- Center for Health and Medical Prevention - CHaMP, Otto-von-Guericke University, Magdeburg, Germany.
| |
Collapse
|
9
|
Michalak M. Calreticulin: Endoplasmic reticulum Ca 2+ gatekeeper. J Cell Mol Med 2024; 28:e17839. [PMID: 37424156 PMCID: PMC10902585 DOI: 10.1111/jcmm.17839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/11/2023] Open
Abstract
Endoplasmic reticulum (ER) luminal Ca2+ is vital for the function of the ER and regulates many cellular processes. Calreticulin is a highly conserved, ER-resident Ca2+ binding protein and lectin-like chaperone. Over four decades of studying calreticulin demonstrate that this protein plays a crucial role in maintaining Ca2+ supply under different physiological conditions, in managing access to Ca2+ and how Ca2+ is used depending on the environmental events and in making sure that Ca2+ is not misused. Calreticulin plays a role of ER luminal Ca2+ sensor to manage Ca2+-dependent ER luminal events including maintaining interaction with its partners, Ca2+ handling molecules, substrates and stress sensors. The protein is strategically positioned in the lumen of the ER from where the protein manages access to and distribution of Ca2+ for many cellular Ca2+-signalling events. The importance of calreticulin Ca2+ pool extends beyond the ER and includes influence of cellular processes involved in many aspects of cellular pathophysiology. Abnormal handling of the ER Ca2+ contributes to many pathologies from heart failure to neurodegeneration and metabolic diseases.
Collapse
Affiliation(s)
- Marek Michalak
- Department of BiochemistryUniversity of AlbertaEdmontonAlbertaCanada
| |
Collapse
|
10
|
Barosi G, Campanelli R, Catarsi P, Abbà C, Carolei A, Massa M, Gale RP, Rosti V. Type 1 CALR mutation allele frequency correlates with CD34/CXCR4 expression in myelofibrosis-type megakaryocyte dysplasia: A mechanism of disease progression? Blood Cancer J 2024; 14:18. [PMID: 38253566 PMCID: PMC10803778 DOI: 10.1038/s41408-024-00991-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Affiliation(s)
- Giovanni Barosi
- Center for the Study of Myelofibrosis, Istituto di Ricovero e Cura a Carattere Scientifico Policlinico S. Matteo Foundation, Pavia, Italy.
| | - Rita Campanelli
- Center for the Study of Myelofibrosis, Istituto di Ricovero e Cura a Carattere Scientifico Policlinico S. Matteo Foundation, Pavia, Italy
| | - Paolo Catarsi
- Center for the Study of Myelofibrosis, Istituto di Ricovero e Cura a Carattere Scientifico Policlinico S. Matteo Foundation, Pavia, Italy
| | - Carlotta Abbà
- General Medicine 2, Center for Sistemic Amyloidosis and High Complexity Diseases, Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo Foundation, Pavia, Italy
| | - Adriana Carolei
- Center for the Study of Myelofibrosis, Istituto di Ricovero e Cura a Carattere Scientifico Policlinico S. Matteo Foundation, Pavia, Italy
| | - Margherita Massa
- General Medicine 2, Center for Sistemic Amyloidosis and High Complexity Diseases, Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo Foundation, Pavia, Italy
| | - Robert Peter Gale
- Centre for Haematology Research, Imperial College London, London, UK
| | - Vittorio Rosti
- Center for the Study of Myelofibrosis, Istituto di Ricovero e Cura a Carattere Scientifico Policlinico S. Matteo Foundation, Pavia, Italy
| |
Collapse
|
11
|
Loscocco GG, Gesullo F, Capecchi G, Atanasio A, Maccari C, Mannelli F, Vannucchi AM, Guglielmelli P. One thousand patients with essential thrombocythemia: the Florence-CRIMM experience. Blood Cancer J 2024; 14:10. [PMID: 38238287 PMCID: PMC10796728 DOI: 10.1038/s41408-023-00968-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/04/2023] [Accepted: 12/07/2023] [Indexed: 01/22/2024] Open
Abstract
We describe 1000 patients with essential thrombocythemia seen at the Center Research and Innovation of Myeloproliferative Neoplasms (CRIMM), Florence, Italy, between 1980 and 2023: median age 59 years (18-95), females 65%, JAK2/CALR/MPL-mutated 66%/19%/4%, triple-negative (TN) 11%. Extreme thrombocytosis (ExT, platelets ≥1000 × 109/L) in 16%, leukocytosis (leukocytes >11 × 109/L) in 16%, and at least one cardiovascular risk factor in 52% of cases. JAK2-mutated patients were older (median 62 years) and CALR-mutated and TN (53 years for both) younger (p < 0.001). Female gender clustered with TN (76%) and JAK2 (67%) vs CALR (46%) mutations (p < 0.001). ExT clustered with CALR (type-2 more than type-1), TN and MPL, and leukocytosis with JAK2 mutation (p < 0.001). In multivariable analysis, risk factors for arterial thrombosis-free survival were age ≥60 years (HR 2.0; p < 0.001) and JAK2 mutation (HR 1.3; p = 0.02) with borderline significance for male gender (p = 0.08) and cardiovascular risk factors (p = 0.08); for venous thrombosis-free survival, JAK2 mutation (HR 1.9; p = 0.03) with borderline significance for venous thrombosis history (p = 0.07); for overall survival, older age (p < 0.001), male gender (HR 1.9; p < 0.001), absolute neutrophil count (ANC) ≥ 8 × 109/L (HR 1.8; p = 0.01), absolute lymphocyte count (ALC) < 1.7 × 109/L (HR 1.2; p = 0.03); for myelofibrosis-free survival, CALR mutation (HR 2.7; p < 0.001, particularly for CALR type 1/1-like, HR 3.3) and MPL mutation (HR 3.9; p = 0.001); for leukemia-free survival, older age (p = 0.03). Cytoreductive therapy appeared to mitigate both venous (HR 0.3; p = 0.01) and arterial thrombosis (HR 4; p = 0.04); there was a trend for aspirin in preventing arterial thrombosis recurrence. The current study provides real-world observations in essential thrombocythemia, representing a valid source document for interpreting current literature and planning future studies.
Collapse
Affiliation(s)
- Giuseppe G Loscocco
- Department of Experimental and Clinical Medicine, CRIMM, Center of Research and Innovation of Myeloproliferative Neoplasms, Azienda Ospedaliero-Universitaria Careggi, University of Florence, Florence, Italy
- Doctorate School GenOMec, University of Siena, Siena, Italy
| | - Francesca Gesullo
- Department of Experimental and Clinical Medicine, CRIMM, Center of Research and Innovation of Myeloproliferative Neoplasms, Azienda Ospedaliero-Universitaria Careggi, University of Florence, Florence, Italy
| | - Giulio Capecchi
- Department of Experimental and Clinical Medicine, CRIMM, Center of Research and Innovation of Myeloproliferative Neoplasms, Azienda Ospedaliero-Universitaria Careggi, University of Florence, Florence, Italy
| | - Alessandro Atanasio
- Department of Experimental and Clinical Medicine, CRIMM, Center of Research and Innovation of Myeloproliferative Neoplasms, Azienda Ospedaliero-Universitaria Careggi, University of Florence, Florence, Italy
| | - Chiara Maccari
- Department of Experimental and Clinical Medicine, CRIMM, Center of Research and Innovation of Myeloproliferative Neoplasms, Azienda Ospedaliero-Universitaria Careggi, University of Florence, Florence, Italy
| | - Francesco Mannelli
- Department of Experimental and Clinical Medicine, CRIMM, Center of Research and Innovation of Myeloproliferative Neoplasms, Azienda Ospedaliero-Universitaria Careggi, University of Florence, Florence, Italy
| | - Alessandro M Vannucchi
- Department of Experimental and Clinical Medicine, CRIMM, Center of Research and Innovation of Myeloproliferative Neoplasms, Azienda Ospedaliero-Universitaria Careggi, University of Florence, Florence, Italy.
| | - Paola Guglielmelli
- Department of Experimental and Clinical Medicine, CRIMM, Center of Research and Innovation of Myeloproliferative Neoplasms, Azienda Ospedaliero-Universitaria Careggi, University of Florence, Florence, Italy
| |
Collapse
|
12
|
Neupane N, Low SK, Kharel H, Bhattarai S, Thapa S, Mahmoud A, Pokhrel NB, Ammad Ud Din M, Kouides P. Comparative thrombotic risk associated with CALR1, CALR2, and JAK2 V617F mutations in essential thrombocythemia. Am J Hematol 2024; 99:E26-E28. [PMID: 37950856 DOI: 10.1002/ajh.27148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/07/2023] [Accepted: 10/12/2023] [Indexed: 11/13/2023]
Affiliation(s)
- Niraj Neupane
- Department of Internal Medicine, Rochester General Hospital, Rochester, New York, USA
| | - Soon K Low
- Department of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Himal Kharel
- Department of Internal Medicine, Rochester General Hospital, Rochester, New York, USA
| | | | - Sangharsha Thapa
- Department of Medicine, Westchester Medical Center, New York Medical College, Westchester, New York, USA
| | - Amir Mahmoud
- Department of Internal Medicine, Rochester General Hospital, Rochester, New York, USA
| | - Nishant B Pokhrel
- Department of Internal Medicine, Norwalk Hospital, Norwalk, Connecticut, USA
| | | | - Peter Kouides
- Department of Hematology, Lipson Cancer Institute, Rochester General Hospital, Rochester, New York, USA
| |
Collapse
|
13
|
Pescia C, Lopez G, Cattaneo D, Bucelli C, Gianelli U, Iurlo A. The molecular landscape of myeloproliferative neoplasms associated with splanchnic vein thrombosis: Current perspective. Leuk Res 2024; 136:107420. [PMID: 38016412 DOI: 10.1016/j.leukres.2023.107420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 11/30/2023]
Abstract
BCR::ABL1-negative myeloproliferative neoplasms (MPNs) are classically represented by polycythemia vera, essential thrombocythemia, and primary myelofibrosis. BCR::ABL1-negative MPNs are significantly associated with morbidity and mortality related to an increased risk of thrombo-hemorrhagic events. They show a consistent association with splanchnic vein thrombosis (SVT), either represented by the portal, mesenteric or splenic vein thrombosis, or Budd-Chiari Syndrome. SVT is also a frequent presenting manifestation of MPN. MPNs associated with SVT show a predilection for younger women, high association with JAK2V617F mutation, low JAK2V617F variant allele frequency (generally <10 %), and low rates of CALR, MPL, or JAK2 exon 12 mutations. Next-Generation Sequencing techniques have contributed to deepening our knowledge of the molecular landscape of such cases, with potential diagnostic and prognostic implications. In this narrative review, we analyze the current perspective on the molecular background of MPN associated with SVT, pointing as well future directions in this field.
Collapse
Affiliation(s)
- Carlo Pescia
- Unit of Anatomic Pathology, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - Gianluca Lopez
- Unit of Anatomic Pathology, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Biomedical, Surgical and Dental Sciences, University of Milan, Italy
| | - Daniele Cattaneo
- Hematology Division, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Cristina Bucelli
- Hematology Division, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Umberto Gianelli
- Department of Health Sciences, University of Milan, Milan, Italy; Unit of Anatomic Pathology, ASST Santi Paolo e Carlo, Milan, Italy
| | - Alessandra Iurlo
- Hematology Division, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
14
|
Havelange V, Constantinescu SN. Molecular pathogenesis of myeloproliferative neoplasms: Where do we stand in 2023? Am J Hematol 2023; 98:1512-1516. [PMID: 37635451 DOI: 10.1002/ajh.27062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/29/2023]
Affiliation(s)
- Violaine Havelange
- Université catholique de Louvain and de Duve Institute, Brussels, Belgium
- Department of Hematology, Cliniques universitaires Saint-Luc, Brussels, Belgium
| | - Stefan N Constantinescu
- Université catholique de Louvain and de Duve Institute, Brussels, Belgium
- Department of Hematology, Cliniques universitaires Saint-Luc, Brussels, Belgium
- Ludwig Institute for Cancer Research Brussels, Brussels, Belgium
- WelBio Department, Wel Research Institute, Wavre, Belgium
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, Oxford University, Oxford, UK
| |
Collapse
|
15
|
Mroczkowska-Bękarciak A, Wróbel T. BCR::ABL1-negative myeloproliferative neoplasms in the era of next-generation sequencing. Front Genet 2023; 14:1241912. [PMID: 37745842 PMCID: PMC10514516 DOI: 10.3389/fgene.2023.1241912] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 08/22/2023] [Indexed: 09/26/2023] Open
Abstract
The classical BCR::ABL1-negative myeloproliferative neoplasms such as polycythemia vera (PV), essential thrombocythemia (ET), and myelofibrosis (MF) are clonal diseases with the presence of characteristic "driver mutations" in one of the genes: JAK2, CALR, or MPL. The search for mutations in these three genes is required for the diagnosis of MPNs. Nevertheless, the progress that has been made in the field of molecular genetics has opened a new era in medicine. The search for additional mutations in MPNs is helpful in assessing the risk stratification, disease progression, transformation to acute myeloid leukemia (AML), or choosing the right treatment. In some cases, advanced technologies are needed to find a clonal marker of the disease and establish a diagnosis. This review focuses on how the use of new technologies like next-generation sequencing (NGS) helps in the diagnosis of BCR::ABL1-negative myeloproliferative neoplasms.
Collapse
|
16
|
Holmström MO, Andersen M, Traynor S, Ahmad SM, Lisle TL, Handlos Grauslund J, Skov V, Kjær L, Ottesen JT, Gjerstorff MF, Hasselbalch HC, Andersen MH. Therapeutic cancer vaccination against mutant calreticulin in myeloproliferative neoplasms induces expansion of specific T cells in the periphery but specific T cells fail to enrich in the bone marrow. Front Immunol 2023; 14:1240678. [PMID: 37662956 PMCID: PMC10470021 DOI: 10.3389/fimmu.2023.1240678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 07/12/2023] [Indexed: 09/05/2023] Open
Abstract
Background Therapeutic cancer vaccination against mutant calreticulin (CALR) in patients with CALR-mutant (CALRmut) myeloproliferative neoplasms (MPN) induces strong T-cell responses against mutant CALR yet fails to demonstrate clinical activity. Infiltration of tumor specific T cells into the tumor microenvironment is needed to attain a clinical response to therapeutic cancer vaccination. Aim Determine if CALRmut specific T cells isolated from vaccinated patients enrich in the bone marrow upon completion of vaccination and explore possible explanations for the lack of enrichment. Methods CALRmut specific T cells from four of ten vaccinated patients were expanded, enriched, and analyzed by T-cell receptor sequencing (TCRSeq). The TCRs identified were used as fingerprints of CALRmut specific T cells. Bone marrow aspirations from the four patients were acquired at baseline and at the end of trial. T cells were enriched from the bone marrow aspirations and analyzed by TCRSeq to identify the presence and fraction of CALRmut specific T cells at the two different time points. In silico calculations were performed to calculate the ratio between transformed cells and effector cells in patients with CALRmut MPN. Results The fraction of CALRmut specific T cells in the bone marrow did not increase upon completion of the vaccination trial. In general, the T cell repertoire in the bone marrow remains relatively constant through the vaccination trial. The enriched and expanded CALRmut specific T cells recognize peripheral blood autologous CALRmut cells. In silico analyses demonstrate a high imbalance in the fraction of CALRmut cells and CALRmut specific effector T-cells in peripheral blood. Conclusion CALRmut specific T cells do not enrich in the bone marrow after therapeutic cancer peptide vaccination against mutant CALR. The specific T cells recognize autologous peripheral blood derived CALRmut cells. In silico analyses demonstrate a high imbalance between the number of transformed cells and CALRmut specific effector T-cells in the periphery. We suggest that the high burden of transformed cells in the periphery compared to the number of effector cells could impact the ability of specific T cells to enrich in the bone marrow.
Collapse
Affiliation(s)
- Morten Orebo Holmström
- National Center for Cancer Immune Therapy, Department of Oncology, Herlev University Hospital, Herlev, Denmark
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Morten Andersen
- Centre for Mathematical Modeling – Human Health and Disease, IMFUFA, Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Sofie Traynor
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Shamaila Munir Ahmad
- National Center for Cancer Immune Therapy, Department of Oncology, Herlev University Hospital, Herlev, Denmark
| | - Thomas Landkildehus Lisle
- National Center for Cancer Immune Therapy, Department of Oncology, Herlev University Hospital, Herlev, Denmark
| | - Jacob Handlos Grauslund
- National Center for Cancer Immune Therapy, Department of Oncology, Herlev University Hospital, Herlev, Denmark
| | - Vibe Skov
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Lasse Kjær
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Johnny T. Ottesen
- Centre for Mathematical Modeling – Human Health and Disease, IMFUFA, Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Morten Frier Gjerstorff
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Department of Oncology, Odense University Hospital, Odense, Denmark
| | | | - Mads Hald Andersen
- National Center for Cancer Immune Therapy, Department of Oncology, Herlev University Hospital, Herlev, Denmark
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
17
|
Xu K, Ge Q, Zhang Y, Ouyang G, Yan X. Expression properties, structural features and functional analysis of CALR E381A in MPN patients. Am J Transl Res 2023; 15:4718-4726. [PMID: 37560236 PMCID: PMC10408505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/24/2023] [Indexed: 08/11/2023]
Abstract
OBJECTIVE To investigate the expression properties, structural features and function of CALR E381A in myeloproliferative neoplasms (MPN) patients. METHODS In this retrospective study, 435 MPN patients admitted to the Department of Hematology, Ningbo First Hospital from July 2015 to July 2021 were selected as the study subjects. Mutations in CALR exon 9 from genomic DNA samples were identified by PCR, followed by Sanger sequencing. The physicochemical properties of the wild-type calreticulin and the p.E381A variant, and the structural information of the p.E381A variant were analyzed by using the bioinformatics databases. Growth assay of UT-7/mpl cells with CALR E381A was used for the functional analysis of CALR E381A. RESULTS The predominant types of CALR variants were identified as follows: p.L367fs*46 (38.1%), p.K385fs*47 (25.8%) and p.E381A (19.6%). Notably, the frequency of the p.E381A variant (c.1142A >C) in polycythemia vera or essential thrombocythemia was significantly higher than the frequency of that as a single nucleotide polymorphism (SNP) in the East Asian population. Furthermore, CALR E381A coexisted with other genetic variants, of which JAK2 V617F was more common. Bioinformatics analysis confirmed that CALR E381A did not change the physicochemical properties of the calreticulin protein, but did change the electrical charge, energy state and steric hindrance of amino acid residues at site 381. UT-7/mpl cells harboring CALR E381A overexpression did not exhibit altered cell growth, which is distinctly different from the stereotypical frameshift mutation. CONCLUSION CALR E381A is not a driver mutation for the development of MPN but may be a risk SNP implying an inherited predisposition for MPN disease in East Asian populations.
Collapse
Affiliation(s)
- Kaihong Xu
- Department of Hematology, Ningbo First Hospital Ningbo, Zhejiang, China
| | - Qunfang Ge
- Department of Hematology, Ningbo First Hospital Ningbo, Zhejiang, China
| | - Yanli Zhang
- Department of Hematology, Ningbo First Hospital Ningbo, Zhejiang, China
| | - Guifang Ouyang
- Department of Hematology, Ningbo First Hospital Ningbo, Zhejiang, China
| | - Xiao Yan
- Department of Hematology, Ningbo First Hospital Ningbo, Zhejiang, China
| |
Collapse
|
18
|
Iurlo A, Bucelli C, Cattaneo D. Essential Thrombocythemia in Adolescents and Young Adults: Clinical Aspects, Treatment Options and Unmet Medical Needs. Curr Treat Options Oncol 2023; 24:802-820. [PMID: 37195587 DOI: 10.1007/s11864-023-01099-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2023] [Indexed: 05/18/2023]
Abstract
OPINION STATEMENT Current treatment of essential thrombocythemia (ET) should primarily prevent thrombo-hemorrhagic events, without increasing the rate of fibrotic progression or leukemic evolution, and secondarily control microvascular symptoms. Unlike other classic BCR::ABL1-negative myeloproliferative neoplasms, ET is frequently diagnosed in adolescents and young adults (AYA), defined as individuals aged 15 to 39 years, in up to 20% of patients. However, since the current risk stratification of this disease is based on models, including that of ELN, IPSET-Thrombosis and its revised version, mainly applied to an older patients' population, international guidelines are needed that specifically consider how to evaluate the prognosis of AYAs with ET. Furthermore, although ET is the most frequent MPN among AYA subjects, there is a lack of specific recommendations on how to treat it in this subgroup of patients, as management decisions are typically extrapolated from those for the elderly. Accordingly, since AYAs with ET represent a unique disease subset defined by attenuated genetic risk, more indolent phenotype, and longer survival than their older counterparts, treatment selection requires special attention to specific issues such as the risk of fibrotic/leukemic transformation, carcinogenicity, and fertility. This review article will provide a comprehensive overview of the diagnosis, prognostic stratification, and possible therapeutic approaches for AYA patients with ET, including antiplatelets/anticoagulants and cytoreductive agents, with a focus on pregnancy management in real-life clinical practice.
Collapse
Affiliation(s)
- Alessandra Iurlo
- Hematology Division, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy.
| | - Cristina Bucelli
- Hematology Division, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Daniele Cattaneo
- Hematology Division, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
19
|
Giraldo-Rincón AI, Naranjo Molina S, Gomez-Lopera N, Aguirre Acevedo D, Ucroz Benavidez A, Gálvez Cárdenas K, Cuellar Ambrosí F, Torres JD, Ospina S, Palacio K, Gaviria Jaramillo L, Muñeton CM, Vasquez Palacio G. JAK2, CALR, and MPL Mutation Profiles in Colombian patients with BCR-ABL Negative Myeloproliferative Neoplasms. Colomb Med (Cali) 2023; 54:e2035353. [PMID: 38111518 PMCID: PMC10726695 DOI: 10.25100/cm.v54i3.5353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 04/25/2023] [Indexed: 12/20/2023] Open
Abstract
Background Among the chronic myeloproliferative neoplasms (MPNs) not associated with BCR-ABL mutations are polycythemia vera, primary myelofibrosis, and essential thrombocythemia. These diseases are caused by mutations in genes, such as the JAK2, MPL, and CALR genes, which participate in regulating the JAK-STAT signaling pathway. Objective This study aimed to establish the frequencies of mutations in the JAK2, MPL, and CALR genes in a group of Colombian patients with a negative clinical diagnosis of BCR-ABL chronic myeloproliferative neoplasms. Methods The JAK2 V617F and MPL W515K mutations and deletions or insertions in exon 9 of the CALR gene were analyzed in 52 Colombian patients with polycythemia vera, primary myelofibrosis, and essential thrombocythemia. Results The JAK2V617F mutation was carried by 51.9% of the patients, the CALR mutation by 23%, and the MPL mutation by 3.8%; 23% were triple-negative for the mutations analyzed. In these neoplasms, 6 mutation types in CALR were identified, one of which has not been previously reported. Additionally, one patient presented a double mutation in both the CALR and JAK2 genes. Regarding the hematological results for the mutations, significant differences were found in the hemoglobin level, hematocrit level, and platelet count among the three neoplasms. Conclusion Thus, this study demonstrates the importance of the molecular characterization of the JAK2, CALR and MPL mutations in Colombian patients (the genetic context of which remains unclear in the abovementioned neoplasms) to achieve an accurate diagnosis, a good prognosis, adequate management, and patient survival.
Collapse
Affiliation(s)
| | - Sara Naranjo Molina
- Universidad de Antioquia, Facultad de Medicina, Unidad de Genética Médica, Medellín, Colombia
| | - Natalia Gomez-Lopera
- Universidad de Antioquia, Facultad de Medicina, Unidad de Genética Médica, Medellín, Colombia
| | | | - Andrea Ucroz Benavidez
- Universidad de Antioquia, Facultad de Medicina, Unidad de Genética Médica, Medellín, Colombia
| | | | | | | | - Sigifredo Ospina
- Hospital Universitario San Vicente Fundación, Medellín, Colombia
| | - Katherine Palacio
- Universidad de Antioquia, Facultad de Medicina, Unidad de Genética Médica, Medellín, Colombia
| | | | - Carlos Mario Muñeton
- Universidad de Antioquia, Facultad de Medicina, Unidad de Genética Médica, Medellín, Colombia
| | - Gonzalo Vasquez Palacio
- Universidad de Antioquia, Facultad de Medicina, Unidad de Genética Médica, Medellín, Colombia
| |
Collapse
|
20
|
Ciftciler R, Balasar O. A rare CALR variant mutation and efficient peginterferon alfa-2a response in a patient with essential thrombocythemia. Cancer Genet 2023; 274-275:51-53. [PMID: 36972657 DOI: 10.1016/j.cancergen.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 01/08/2023] [Accepted: 03/16/2023] [Indexed: 03/28/2023]
Abstract
Calreticulin (CALR) is a calcium-binding protein chaperone that may be found throughout the extracellular matrix and membranes of cells. It regulates calcium homeostasis and ensures the appropriate folding of newly generated glycoproteins within the endoplasmic reticulum. A somatic mutation in JAK2, CALR, or MPL is responsible for the great majority of essential thrombocythemia (ET) cases. ET has a diagnostic and prognostic value because of the sort of mutation that causes it. ET patients with the JAK2 V617F mutation had more noticeable leukocytosis, higher hemoglobin levels, and lower platelet levels, but also more thrombotic problems and a higher risk of PV transition. CALR mutations, on the other hand, are linked to a younger age group, males, with lower hemoglobin and leukocyte counts, but higher platelet counts, and a higher risk of myelofibrosis transformation. There are two predominant types of CALR mutations in ET patients. Different CALR point mutations have been identified in recent years, but their involvement in the molecular pathogenesis of MPN, including ET, is still unknown. In this case report, we presented a rare CALR mutation in a patient who was diagnosed with ET and followed up.
Collapse
|
21
|
Wang YH, Chen YJ, Lai YH, Wang MC, Chen YY, Wu YY, Yang YR, Tsou HY, Li CP, Hsu CC, Huang CE, Chen CC. Mutation-Driven S100A8 Overexpression Confers Aberrant Phenotypes in Type 1 CALR-Mutated MPN. Int J Mol Sci 2023; 24:8747. [PMID: 37240094 PMCID: PMC10217897 DOI: 10.3390/ijms24108747] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/11/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Numerous pathogenic CALR exon 9 mutations have been identified in myeloproliferative neoplasms (MPN), with type 1 (52bp deletion; CALRDEL) and type 2 (5bp insertion; CALRINS) being the most prevalent. Despite the universal pathobiology of MPN driven by various CALR mutants, it is unclear why different CALR mutations result in diverse clinical phenotypes. Through RNA sequencing followed by validation at the protein and mRNA levels, we found that S100A8 was specifically enriched in CALRDEL but not in CALRINS MPN-model cells. The expression of S100a8 could be regulated by STAT3 based on luciferase reporter assay complemented with inhibitor treatment. Pyrosequencing demonstrated relative hypomethylation in two CpG sites within the potential pSTAT3-targeting S100a8 promoter region in CALRDEL cells as compared to CALRINS cells, suggesting that distinct epigenetic alteration could factor into the divergent S100A8 levels in these cells. The functional analysis confirmed that S100A8 non-redundantly contributed to accelerated cellular proliferation and reduced apoptosis in CALRDEL cells. Clinical validation showed significantly enhanced S100A8 expression in CALRDEL-mutated MPN patients compared to CALRINS-mutated cases, and thrombocytosis was less prominent in those with S100A8 upregulation. This study provides indispensable insights into how different CALR mutations discrepantly drive the expression of specific genes that contributes to unique phenotypes in MPN.
Collapse
Affiliation(s)
- Ying-Hsuan Wang
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (Y.-H.W.); (Y.-J.C.); (Y.-H.L.); (Y.-Y.C.); (Y.-Y.W.); (Y.-R.Y.); (H.-Y.T.); (C.-P.L.); (C.-C.H.)
| | - Ying-Ju Chen
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (Y.-H.W.); (Y.-J.C.); (Y.-H.L.); (Y.-Y.C.); (Y.-Y.W.); (Y.-R.Y.); (H.-Y.T.); (C.-P.L.); (C.-C.H.)
| | - Yi-Hua Lai
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (Y.-H.W.); (Y.-J.C.); (Y.-H.L.); (Y.-Y.C.); (Y.-Y.W.); (Y.-R.Y.); (H.-Y.T.); (C.-P.L.); (C.-C.H.)
| | - Ming-Chung Wang
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan;
| | - Yi-Yang Chen
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (Y.-H.W.); (Y.-J.C.); (Y.-H.L.); (Y.-Y.C.); (Y.-Y.W.); (Y.-R.Y.); (H.-Y.T.); (C.-P.L.); (C.-C.H.)
| | - Yu-Ying Wu
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (Y.-H.W.); (Y.-J.C.); (Y.-H.L.); (Y.-Y.C.); (Y.-Y.W.); (Y.-R.Y.); (H.-Y.T.); (C.-P.L.); (C.-C.H.)
| | - Yao-Ren Yang
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (Y.-H.W.); (Y.-J.C.); (Y.-H.L.); (Y.-Y.C.); (Y.-Y.W.); (Y.-R.Y.); (H.-Y.T.); (C.-P.L.); (C.-C.H.)
| | - Hsing-Yi Tsou
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (Y.-H.W.); (Y.-J.C.); (Y.-H.L.); (Y.-Y.C.); (Y.-Y.W.); (Y.-R.Y.); (H.-Y.T.); (C.-P.L.); (C.-C.H.)
| | - Chian-Pei Li
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (Y.-H.W.); (Y.-J.C.); (Y.-H.L.); (Y.-Y.C.); (Y.-Y.W.); (Y.-R.Y.); (H.-Y.T.); (C.-P.L.); (C.-C.H.)
| | - Chia-Chen Hsu
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (Y.-H.W.); (Y.-J.C.); (Y.-H.L.); (Y.-Y.C.); (Y.-Y.W.); (Y.-R.Y.); (H.-Y.T.); (C.-P.L.); (C.-C.H.)
| | - Cih-En Huang
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (Y.-H.W.); (Y.-J.C.); (Y.-H.L.); (Y.-Y.C.); (Y.-Y.W.); (Y.-R.Y.); (H.-Y.T.); (C.-P.L.); (C.-C.H.)
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chih-Cheng Chen
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; (Y.-H.W.); (Y.-J.C.); (Y.-H.L.); (Y.-Y.C.); (Y.-Y.W.); (Y.-R.Y.); (H.-Y.T.); (C.-P.L.); (C.-C.H.)
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| |
Collapse
|
22
|
Desikan H, Kaur A, Pogozheva ID, Raghavan M. Effects of calreticulin mutations on cell transformation and immunity. J Cell Mol Med 2023; 27:1032-1044. [PMID: 36916035 PMCID: PMC10098294 DOI: 10.1111/jcmm.17713] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/16/2023] Open
Abstract
Myeloproliferative neoplasms (MPNs) are cancers involving dysregulated production and function of myeloid lineage hematopoietic cells. Among MPNs, Essential thrombocythemia (ET), Polycythemia Vera (PV) and Myelofibrosis (MF), are driven by mutations that activate the JAK-STAT signalling pathway. Somatic mutations of calreticulin (CRT), an endoplasmic reticulum (ER)-localized lectin chaperone, are driver mutations in approximately 25% of ET and 35% of MF patients. The MPN-linked mutant CRT proteins have novel frameshifted carboxy-domain sequences and lack an ER retention motif, resulting in their secretion. Wild type CRT is a regulator of ER calcium homeostasis and plays a key role in the assembly of major histocompatibility complex (MHC) class I molecules, which are the ligands for antigen receptors of CD8+ T cells. Mutant CRT-linked oncogenesis results from the dysregulation of calcium signalling in cells and the formation of stable complexes of mutant CRT with myeloproliferative leukemia (MPL) protein, followed by downstream activation of the JAK-STAT signalling pathway. The intricate participation of CRT in ER protein folding, calcium homeostasis and immunity suggests the involvement of multiple mechanisms of mutant CRT-linked oncogenesis. In this review, we highlight recent findings related to the role of MPN-linked CRT mutations in the dysregulation of calcium homeostasis, MPL activation and immunity.
Collapse
Affiliation(s)
- Harini Desikan
- Department of Microbiology and ImmunologyUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Amanpreet Kaur
- Department of Microbiology and ImmunologyUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Irina D. Pogozheva
- Department of Medicinal ChemistryCollege of Pharmacy, University of MichiganAnn ArborMichiganUSA
| | - Malini Raghavan
- Department of Microbiology and ImmunologyUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| |
Collapse
|
23
|
Kyllesbech C, Trier N, Mughal F, Hansen P, Holmström M, El Fassi D, Hasselbalch H, Skov V, Kjær L, Andersen M, Ciplys E, Slibinskas R, Frederiksen J, Højrup P, Houen G. Antibodies to calnexin and mutated calreticulin are common in human sera. Curr Res Transl Med 2023; 71:103380. [PMID: 36738659 DOI: 10.1016/j.retram.2023.103380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/12/2023] [Accepted: 01/24/2023] [Indexed: 01/30/2023]
Abstract
PURPOSE OF THE STUDY Calreticulin is an endoplasmic reticulum chaperone protein, which is involved in protein folding and in peptide loading of major histocompatibility complex class I molecules together with its homolog calnexin. Mutated calreticulin is associated with a group of hemopoietic disorders, especially myeloproliferative neoplasms. Currently only the cellular immune response to mutated calreticulin has been described, although preliminary findings have indicated that antibodies to mutated calreticulin are not specific for myeloproliferative disorders. These findings have prompted us to characterize the humoral immune response to mutated calreticulin and its chaperone homologue calnexin. PATIENTS AND METHODS We analyzed sera from myeloproliferative neoplasm patients, healthy donors and relapsing-remitting multiple sclerosis patients for the occurrence of autoantibodies to wild type and mutated calreticulin forms and to calnexin by enzyme-linked immunosorbent assay. RESULTS Antibodies to mutated calreticulin and calnexin were present at similar levels in serum samples of myeloproliferative neoplasm and multiple sclerosis patients as well as healthy donors. Moreover, a high correlation between antibodies to mutated calreticulin and calnexin was seen for all patient and control groups. Epitope binding studies indicated that cross-reactive antibodies bound to a three-dimensional epitope encompassing a short linear sequence in the C-terminal of mutated calreticulin and calnexin. CONCLUSION Collectively, these findings indicate that calreticulin mutations may be common and not necessarily lead to onset of myeloproliferative neoplasm, possibly due to elimination of cells with mutations. This, in turn, may suggest that additional molecular changes may be required for development of myeloproliferative neoplasm.
Collapse
Affiliation(s)
- C Kyllesbech
- Department of Neurology, Valdemar Hansens vej 23, Rigshospitalet, Glostrup, Denmark; Institute of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, Odense M, Denmark
| | - N Trier
- Department of Neurology, Valdemar Hansens vej 23, Rigshospitalet, Glostrup, Denmark
| | - F Mughal
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, Copenhagen Ø, Denmark
| | - P Hansen
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, Copenhagen Ø, Denmark
| | - M Holmström
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Borgmester Ib Juuls Vej 25C, Copenhagen University Hospital, Herlev, Denmark; Department of Immunology and Microbiology, University of Copenhagen, Blegdamsvej 3B, Copenhagen, Denmark
| | - D El Fassi
- Department of Hematology, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, Copenhagen N, Denmark
| | - H Hasselbalch
- Department of Hematology, Zealand University Hospital Roskilde, Sygehusvej 10, Roskilde, Denmark
| | - V Skov
- Department of Hematology, Zealand University Hospital Roskilde, Sygehusvej 10, Roskilde, Denmark
| | - L Kjær
- Department of Hematology, Zealand University Hospital Roskilde, Sygehusvej 10, Roskilde, Denmark
| | - M Andersen
- Department of Immunology and Microbiology, University of Copenhagen, Blegdamsvej 3B, Copenhagen, Denmark
| | - E Ciplys
- Institute of Biotechnology, University of Vilnius, Sauletékio al. 7, Vilnius, Lithuania
| | - R Slibinskas
- Institute of Biotechnology, University of Vilnius, Sauletékio al. 7, Vilnius, Lithuania
| | - J Frederiksen
- Department of Neurology, Valdemar Hansens vej 23, Rigshospitalet, Glostrup, Denmark
| | - P Højrup
- Institute of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, Odense M, Denmark
| | - G Houen
- Department of Neurology, Valdemar Hansens vej 23, Rigshospitalet, Glostrup, Denmark; Institute of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, Odense M, Denmark.
| |
Collapse
|
24
|
Combaluzier S, Quessada J, Abbou N, Arcani R, Tichadou A, Gabert J, Costello R, Loosveld M, Venton G, Berda-Haddad Y. Cytological Diagnosis of Classic Myeloproliferative Neoplasms at the Age of Molecular Biology. Cells 2023; 12:cells12060946. [PMID: 36980287 PMCID: PMC10047531 DOI: 10.3390/cells12060946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Myeloproliferative neoplasms (MPN) are clonal hematopoietic stem cell-derived disorders characterized by uncontrolled proliferation of differentiated myeloid cells. Two main groups of MPN, BCR::ABL1-positive (Chronic Myeloid Leukemia) and BCR::ABL1-negative (Polycythemia Vera, Essential Thrombocytosis, Primary Myelofibrosis) are distinguished. For many years, cytomorphologic and histologic features were the only proof of MPN and attempted to distinguish the different entities of the subgroup BCR::ABL1-negative MPN. World Health Organization (WHO) classification of myeloid neoplasms evolves over the years and increasingly considers molecular abnormalities to prove the clonal hematopoiesis. In addition to morphological clues, the detection of JAK2, MPL and CALR mutations are considered driver events belonging to the major diagnostic criteria of BCR::ABL1-negative MPN. This highlights the preponderant place of molecular features in the MPN diagnosis. Moreover, the advent of next-generation sequencing (NGS) allowed the identification of additional somatic mutations involved in clonal hematopoiesis and playing a role in the prognosis of MPN. Nowadays, careful cytomorphology and molecular biology are inseparable and complementary to provide a specific diagnosis and to permit the best follow-up of these diseases.
Collapse
Affiliation(s)
- Sophie Combaluzier
- Hematology Laboratory, Timone University Hospital, 13005 Marseille, France
| | - Julie Quessada
- Hematological Cytogenetics Laboratory, Timone University Hospital, 13005 Marseille, France
- CNRS, INSERM, CIML, Luminy Campus, Aix-Marseille University, 13009 Marseille, France
| | - Norman Abbou
- Molecular Biology Laboratory, North University Hospital, 13015 Marseille, France
- INSERM, INRAE, C2VN, Luminy Campus, Aix-Marseille University, 13005 Marseille, France
| | - Robin Arcani
- INSERM, INRAE, C2VN, Luminy Campus, Aix-Marseille University, 13005 Marseille, France
- Department of Internal Medicine, Timone University Hospital, 13005 Marseille, France
| | - Antoine Tichadou
- Hematology and Cellular Therapy Department, Conception University Hospital, 13005 Marseille, France
| | - Jean Gabert
- Molecular Biology Laboratory, North University Hospital, 13015 Marseille, France
| | - Régis Costello
- INSERM, INRAE, C2VN, Luminy Campus, Aix-Marseille University, 13005 Marseille, France
- Hematology and Cellular Therapy Department, Conception University Hospital, 13005 Marseille, France
- TAGC, INSERM, UMR1090, Luminy Campus, Aix-Marseille University, 13005 Marseille, France
| | - Marie Loosveld
- Hematology Laboratory, Timone University Hospital, 13005 Marseille, France
- Hematological Cytogenetics Laboratory, Timone University Hospital, 13005 Marseille, France
- CNRS, INSERM, CIML, Luminy Campus, Aix-Marseille University, 13009 Marseille, France
| | - Geoffroy Venton
- INSERM, INRAE, C2VN, Luminy Campus, Aix-Marseille University, 13005 Marseille, France
- Hematology and Cellular Therapy Department, Conception University Hospital, 13005 Marseille, France
- TAGC, INSERM, UMR1090, Luminy Campus, Aix-Marseille University, 13005 Marseille, France
| | - Yaël Berda-Haddad
- Hematology Laboratory, Timone University Hospital, 13005 Marseille, France
| |
Collapse
|
25
|
Structural and Dynamic Differences between Calreticulin Mutants Associated with Essential Thrombocythemia. Biomolecules 2023; 13:biom13030509. [PMID: 36979444 PMCID: PMC10046389 DOI: 10.3390/biom13030509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 03/12/2023] Open
Abstract
Essential thrombocythemia (ET) is a blood cancer. ET is characterized by an overproduction of platelets that can lead to thrombosis formation. Platelet overproduction occurs in megakaryocytes through a signaling pathway that could involve JAK2, MPL, or CALR proteins. CALR mutations are associated with 25–30% of ET patients; CALR variants must be dimerized to induce ET. We classified these variants into five classes named A to E; classes A and B are the most frequent classes in patients with ET. The dynamic properties of these five classes using structural models of CALR’s C-domain were analyzed using molecular dynamics simulations. Classes A, B, and C are associated with frameshifts in the C-domain. Their dimers can be stable only if a disulfide bond is formed; otherwise, the two monomers repulse each other. Classes D and E cannot be stable as dimers due to the absence of disulfide bonds. Class E and wild-type CALR have similar dynamic properties. These results suggest that the disulfide bond newly formed in classes A, B, and C may be essential for the pathogenicity of these variants. They also underline that class E cannot be directly related to ET but corresponds to human polymorphisms.
Collapse
|
26
|
Lim HY, Ho P. Thrombosis Risk Assessment in Myeloproliferative Neoplasm-Is There a Role for Viscoelastic Testing? Semin Thromb Hemost 2023; 49:173-181. [PMID: 36055269 DOI: 10.1055/s-0042-1753483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Philadelphia chromosome-negative myeloproliferative neoplasms include polycythemia vera, essential thrombocythemia, and myelofibrosis. They are associated with increased thrombotic events, and the primary goal of therapy, in particular those with polycythemia vera and essential thrombocythemia, is the prevention of thrombotic complications typically with antiplatelet therapy and/or cytoreduction. While several patient-, disease-, and genomic-related factors have been identified to influence thrombotic risks, there are no routine laboratory investigations to date that are sufficiently accurate to assess the underlying procoagulant state and predict the thrombotic risks. Conventional coagulation testing only measures time to clot formation and cannot reliably predict bleeding and thrombotic risks. Global coagulation assays such as thromboelastography, thrombin, and fibrin generation may provide a more thorough assessment of hemostatic function. Thromboelastography and thromboelastometry are viscoelastic tests which measure the mechanical properties of the hemostatic process, including the global dynamics of clot formation, stabilization, and dissolution. While viscoelastic testing is gaining traction in the investigations of coagulopathies and goal-directed blood product replacement in trauma and massive transfusion settings, the role of these assays in thrombosis is less well defined. Here, we provide a review of the current evidence of the role of viscoelastic testing in myeloproliferative neoplasm, particularly in the thrombotic risk assessment.
Collapse
Affiliation(s)
- Hui Yin Lim
- Department of Hematology, Northern Pathology Victoria, Northern Hospital, Epping VIC, Australia.,Australian Centre for Blood Diseases, Monash University, Melbourne VIC, Australia.,Department of Medicine, Northern Health, University of Melbourne, Heidelberg, VIC, Australia
| | - Prahlad Ho
- Department of Hematology, Northern Pathology Victoria, Northern Hospital, Epping VIC, Australia.,Australian Centre for Blood Diseases, Monash University, Melbourne VIC, Australia.,Department of Medicine, Northern Health, University of Melbourne, Heidelberg, VIC, Australia
| |
Collapse
|
27
|
Foßelteder J, Pabst G, Sconocchia T, Schlacher A, Auinger L, Kashofer K, Beham-Schmid C, Trajanoski S, Waskow C, Schöll W, Sill H, Zebisch A, Wölfler A, Thomas D, Reinisch A. Human gene-engineered calreticulin mutant stem cells recapitulate MPN hallmarks and identify targetable vulnerabilities. Leukemia 2023; 37:843-853. [PMID: 36813992 PMCID: PMC10079532 DOI: 10.1038/s41375-023-01848-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/24/2023]
Abstract
Calreticulin (CALR) mutations present the main oncogenic drivers in JAK2 wildtype (WT) myeloproliferative neoplasms (MPN), including essential thrombocythemia and myelofibrosis, where mutant (MUT) CALR is increasingly recognized as a suitable mutation-specific drug target. However, our current understanding of its mechanism-of-action is derived from mouse models or immortalized cell lines, where cross-species differences, ectopic over-expression and lack of disease penetrance are hampering translational research. Here, we describe the first human gene-engineered model of CALR MUT MPN using a CRISPR/Cas9 and adeno-associated viral vector-mediated knock-in strategy in primary human hematopoietic stem and progenitor cells (HSPCs) to establish a reproducible and trackable phenotype in vitro and in xenografted mice. Our humanized model recapitulates many disease hallmarks: thrombopoietin-independent megakaryopoiesis, myeloid-lineage skewing, splenomegaly, bone marrow fibrosis, and expansion of megakaryocyte-primed CD41+ progenitors. Strikingly, introduction of CALR mutations enforced early reprogramming of human HSPCs and the induction of an endoplasmic reticulum stress response. The observed compensatory upregulation of chaperones revealed novel mutation-specific vulnerabilities with preferential sensitivity of CALR mutant cells to inhibition of the BiP chaperone and the proteasome. Overall, our humanized model improves purely murine models and provides a readily usable basis for testing of novel therapeutic strategies in a human setting.
Collapse
Affiliation(s)
- Johannes Foßelteder
- Department of Internal Medicine, Division of Hematology, Medical University of Graz, Graz, Austria
| | - Gabriel Pabst
- Department of Internal Medicine, Division of Hematology, Medical University of Graz, Graz, Austria.,Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria.,Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna BioCenter (VBC), Vienna, Austria
| | - Tommaso Sconocchia
- Department of Internal Medicine, Division of Hematology, Medical University of Graz, Graz, Austria
| | - Angelika Schlacher
- Department of Internal Medicine, Division of Hematology, Medical University of Graz, Graz, Austria
| | - Lisa Auinger
- Department of Internal Medicine, Division of Hematology, Medical University of Graz, Graz, Austria
| | - Karl Kashofer
- Diagnostic & Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | | | - Slave Trajanoski
- Core Facility Computational Bioanalytics, Medical University of Graz, Graz, Austria
| | - Claudia Waskow
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany.,Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich-Schiller-University, Jena, Germany
| | - Wolfgang Schöll
- Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria
| | - Heinz Sill
- Department of Internal Medicine, Division of Hematology, Medical University of Graz, Graz, Austria
| | - Armin Zebisch
- Department of Internal Medicine, Division of Hematology, Medical University of Graz, Graz, Austria.,Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Albert Wölfler
- Department of Internal Medicine, Division of Hematology, Medical University of Graz, Graz, Austria
| | - Daniel Thomas
- Cancer Program, Precision Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia.,Adelaide Medical School, The University of Adelaide, Adelaide, Australia
| | - Andreas Reinisch
- Department of Internal Medicine, Division of Hematology, Medical University of Graz, Graz, Austria. .,Department of Blood Group Serology and Transfusion Medicine, Medical University of Graz, Graz, Austria.
| |
Collapse
|
28
|
Jutzi JS, Marneth AE, Jiménez-Santos MJ, Hem J, Guerra-Moreno A, Rolles B, Bhatt S, Myers SA, Carr SA, Hong Y, Pozdnyakova O, van Galen P, Al-Shahrour F, Nam AS, Mullally A. CALR-mutated cells are vulnerable to combined inhibition of the proteasome and the endoplasmic reticulum stress response. Leukemia 2023; 37:359-369. [PMID: 36473980 DOI: 10.1038/s41375-022-01781-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022]
Abstract
Cancer is driven by somatic mutations that provide a fitness advantage. While targeted therapies often focus on the mutated gene or its direct downstream effectors, imbalances brought on by cell-state alterations may also confer unique vulnerabilities. In myeloproliferative neoplasms (MPN), somatic mutations in the calreticulin (CALR) gene are disease-initiating through aberrant binding of mutant CALR to the thrombopoietin receptor MPL and ligand-independent activation of JAK-STAT signaling. Despite these mechanistic insights into the pathogenesis of CALR-mutant MPN, there are currently no mutant CALR-selective therapies available. Here, we identified differential upregulation of unfolded proteins, the proteasome and the ER stress response in CALR-mutant hematopoietic stem cells (HSCs) and megakaryocyte progenitors. We further found that combined pharmacological inhibition of the proteasome and IRE1-XBP1 axis of the ER stress response preferentially targets Calr-mutated HSCs and megakaryocytic-lineage cells over wild-type cells in vivo, resulting in an amelioration of the MPN phenotype. In serial transplantation assays following combined proteasome/IRE1 inhibition for six weeks, we did not find preferential depletion of Calr-mutant long-term HSCs. Together, these findings leverage altered proteostasis in Calr-mutant MPN to identify combinatorial dependencies that may be targeted for therapeutic benefit and suggest that eradicating disease-propagating Calr-mutant LT-HSCs may require more sustained treatment.
Collapse
Affiliation(s)
- Jonas S Jutzi
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Anna E Marneth
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - María José Jiménez-Santos
- Bioinformatics Unit, Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Jessica Hem
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Angel Guerra-Moreno
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Benjamin Rolles
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Shruti Bhatt
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Pharmacy, National University of Singapore, Singapore, Singapore
| | - Samuel A Myers
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Steven A Carr
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Yuning Hong
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3083, Australia
| | - Olga Pozdnyakova
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Peter van Galen
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Fátima Al-Shahrour
- Bioinformatics Unit, Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Anna S Nam
- Weill Cornell Medicine, New York City, N.Y., USA
| | - Ann Mullally
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
29
|
Lilleskare S, Vorland M, Vo AK, Aarsand AK, Reikvam H. Frequency of JAK2V617F, MPL and CALR driver mutations and associated clinical characteristics in a Norwegian patient cohort with myeloproliferative neoplasms. Scand J Clin Lab Invest 2023; 83:3-7. [PMID: 36476017 DOI: 10.1080/00365513.2022.2150984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Myeloproliferative neoplasms are hematological disorders characterized by increased production in one or more myeloid cell lines, associated with driver mutations in JAK2-, MPL- and CALR-genes. The aims of this study were to investigate the prevalence of these driver mutations in a Norwegian patient cohort with myeloproliferative neoplasms, and to assess whether the different mutations were associated with different clinical presentation and natural history.Results from 820 patients in whom analysis for JAK2V617F-, CALR- and MPL had been performed at Haukeland University Hospital in the period 2014-2019 were retrieved and analyzed together with clinical variables related to diagnosis, hematological blood parameters and complications, obtained from patient records.We identified 182 cases of myeloproliferative neoplasms: 78 with JAK2V617F, 28 with CALR-mutations, two with MPL-mutations and 23 cases without a driver mutation. There was a lower prevalence of JAK2V617F mutation than expected in the polycythemia vera group, likely related to overdiagnosis. In patients with essential thrombocytosis, we found significantly higher levels of hemoglobin and erythrocyte volume fraction for JAK2V617F-mutated disease, and significantly higher levels of platelets and lactate dehydrogenase for CALR-mutated disease. Patients with JAK2V617F-mutated primary myelofibrosis had significantly higher levels of hemoglobin, and there was an increased number of smokers or former smokers in this group compared to patients with CALR-mutations.Except for a lower prevalence of JAK2V617F-mutation in polycythemia vera, the mutational distribution in our patient cohort was similar to previous findings in other populations. The novel finding of a higher prevalence of smokers in JAK2V617F-mutated primary myelofibrosis warrants further investigation.
Collapse
Affiliation(s)
- Susanne Lilleskare
- Department of Medicine, Stavanger University Hospital, Stavanger, Norway
| | - Marta Vorland
- Department of Cancer Genomics, Haukeland University Hospital, Bergen, Norway
| | - Anh Khoi Vo
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Aasne K Aarsand
- Norwegian Porphyria Centre and Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway.,Norwegian Organization for Quality Improvement of Laboratory Examinations, Haraldsplass Deaconess Hospital, Bergen, Norway
| | - Håkon Reikvam
- Department of Medicine, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
| |
Collapse
|
30
|
Puglianini OC, Peker D, Zhang L, Papadantonakis N. Essential Thrombocythemia and Post-Essential Thrombocythemia Myelofibrosis: Updates on Diagnosis, Clinical Aspects, and Management. Lab Med 2023; 54:13-22. [PMID: 35960786 DOI: 10.1093/labmed/lmac074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Although several decades have passed since the description of myeloproliferative neoplasms (MPN), many aspects of their pathophysiology have not been elucidated. In this review, we discuss the mutational landscape of patients with essential thrombocythemia (ET), prognostic scores and salient pathology, and clinical points. We discuss also the diagnostic challenges of differentiating ET from prefibrotic MF. We then focus on post-essential thrombocythemia myelofibrosis (post-ET MF), a rare subset of MPN that is usually studied in conjunction with post-polycythemia vera MF. The transition of ET to post-ET MF is not well studied on a molecular level, and we present available data. Patients with secondary MF could benefit from allogenic hematopoietic stem cell transplantation, and we present available data focusing on post-ET MF.
Collapse
Affiliation(s)
- Omar Castaneda Puglianini
- H. Lee Moffitt Cancer Center & Research Institute, Department of Blood & Marrow Transplant & Cellular Immunotherapy, Tampa, FL, USA
- Department of Oncologic Sciences, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Deniz Peker
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Linsheng Zhang
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Nikolaos Papadantonakis
- Winship Cancer Institute of Emory University, Department of Hematology and Medical Oncology, Atlanta, GA, USA
| |
Collapse
|
31
|
La Spina E, Giallongo S, Giallongo C, Vicario N, Duminuco A, Parenti R, Giuffrida R, Longhitano L, Li Volti G, Cambria D, Di Raimondo F, Musumeci G, Romano A, Palumbo GA, Tibullo D. Mesenchymal stromal cells in tumor microenvironment remodeling of BCR-ABL negative myeloproliferative diseases. Front Oncol 2023; 13:1141610. [PMID: 36910610 PMCID: PMC9996158 DOI: 10.3389/fonc.2023.1141610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
Chronic myeloproliferative neoplasms encompass the BCR-ABL1-negative neoplasms polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF). These are characterized by calreticulin (CALR), myeloproliferative leukemia virus proto-oncogene (MPL) and the tyrosine kinase Janus kinase 2 (JAK2) mutations, eventually establishing a hyperinflammatory tumor microenvironment (TME). Several reports have come to describe how constitutive activation of JAK-STAT and NFκB signaling pathways lead to uncontrolled myeloproliferation and pro-inflammatory cytokines secretion. In such a highly oxidative TME, the balance between Hematopoietic Stem Cells (HSCs) and Mesenchymal Stromal Cells (MSCs) has a crucial role in MPN development. For this reason, we sought to review the current literature concerning the interplay between HSCs and MSCs. The latter have been reported to play an outstanding role in establishing of the typical bone marrow (BM) fibrotic TME as a consequence of the upregulation of different fibrosis-associated genes including PDGF- β upon their exposure to the hyperoxidative TME characterizing MPNs. Therefore, MSCs might turn to be valuable candidates for niche-targeted targeting the synthesis of cytokines and oxidative stress in association with drugs eradicating the hematopoietic clone.
Collapse
Affiliation(s)
- Enrico La Spina
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Sebastiano Giallongo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Cesarina Giallongo
- Department of Medical-Surgical Science and Advanced Technologies "Ingrassia", University of Catania, Catania, Italy
| | - Nunzio Vicario
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Andrea Duminuco
- Department of General Surgery and Medical-Surgical Specialties, A.O.U. "Policlinico-Vittorio Emanuele", University of Catania, Catania, Italy
| | - Rosalba Parenti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Rosario Giuffrida
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Lucia Longhitano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Giovanni Li Volti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Daniela Cambria
- Department of General Surgery and Medical-Surgical Specialties, A.O.U. "Policlinico-Vittorio Emanuele", University of Catania, Catania, Italy
| | - Francesco Di Raimondo
- Department of General Surgery and Medical-Surgical Specialties, A.O.U. "Policlinico-Vittorio Emanuele", University of Catania, Catania, Italy
| | - Giuseppe Musumeci
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Alessandra Romano
- Department of General Surgery and Medical-Surgical Specialties, A.O.U. "Policlinico-Vittorio Emanuele", University of Catania, Catania, Italy
| | - Giuseppe Alberto Palumbo
- Department of Medical-Surgical Science and Advanced Technologies "Ingrassia", University of Catania, Catania, Italy
| | - Daniele Tibullo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| |
Collapse
|
32
|
O’Sullivan J, Green A, Harrison C. Treatment Algorithm of Essential Thrombocythemia. PATHOGENESIS AND TREATMENT OF LEUKEMIA 2023:523-538. [DOI: 10.1007/978-981-99-3810-0_38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
33
|
Pan Y, Wang X, Wen S, Liu X, Yang L, Luo J. The different variant allele frequencies of type I/type II mutations and the distinct molecular landscapes in CALR-mutant essential thrombocythaemia and primary myelofibrosis. HEMATOLOGY (AMSTERDAM, NETHERLANDS) 2022; 27:902-908. [PMID: 36000955 DOI: 10.1080/16078454.2022.2107888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVE Calreticulin (CALR) mutations have been identified as driver mutations in a quarter of patients with essential thrombocythaemia (ET) and primary myelofibrosis (PMF), which are subgroups of myeloproliferative neoplasms (MPNs). A 52-bp deletion (type I mutation) and a 5-bp insertion (type II mutation) are the most frequent variants. To better understand the impact of different CALR mutant variants, with or without nondriver mutations, on the clinical subtypes of MPN needs further investigation. METHODS The clinical characteristics, laboratory parameters and genetic mutation statuses were analysed in a cohort of 77 MPN patients with CALR mutations (ET = 24, prePMF = 33, and overt PMF = 20). Targeted NGS using a 38-gene panel was performed to evaluate the variant allele frequency (VAF) of CALR type I/type II mutations and assess the molecular landscape of nondriver gene mutations. RESULTS A lower VAF of type I vs. type II was observed in CALR-mutant ET, prePMF and overt PMF, and a higher frequency of type I vs. type II was found in CALR-mutant overt PMF. Additional somatic mutations were indicated to be useful in understanding the pathogenesis of MPN. In this study, the mutation landscape was more complex in overt PMF than in ET or in prePMF. Mutations in epigenetic regulators (ASXL1, EZH2 and TET2) were more common in overt PMF. CONCLUSIONS The two different subtypes of CALR mutations may have different impacts on MPN. A lower VAF of CALR type I indicates a greater contribution to disease progression in MPN, and increased nondriver mutations may be important in myelofibrosis progression.
Collapse
Affiliation(s)
- Yuxia Pan
- Department of Hematology, The Second Hospital of Hebei Medical University, Key Laboratory of Hematology, Shijiazhuang, People's Republic of China
| | - Xingzhe Wang
- Department of Hematology, The Second Hospital of Hebei Medical University, Key Laboratory of Hematology, Shijiazhuang, People's Republic of China
| | - Shupeng Wen
- Department of Hematology, The Second Hospital of Hebei Medical University, Key Laboratory of Hematology, Shijiazhuang, People's Republic of China
| | - Xiaojun Liu
- Department of Hematology, The Second Hospital of Hebei Medical University, Key Laboratory of Hematology, Shijiazhuang, People's Republic of China
| | - Lin Yang
- Department of Hematology, The Second Hospital of Hebei Medical University, Key Laboratory of Hematology, Shijiazhuang, People's Republic of China
| | - Jianmin Luo
- Department of Hematology, The Second Hospital of Hebei Medical University, Key Laboratory of Hematology, Shijiazhuang, People's Republic of China
| |
Collapse
|
34
|
Calreticulin mutations affect its chaperone function and perturb the glycoproteome. Cell Rep 2022; 41:111689. [DOI: 10.1016/j.celrep.2022.111689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/17/2022] [Accepted: 10/27/2022] [Indexed: 11/23/2022] Open
|
35
|
Kim HY, Han Y, Jang JH, Jung CW, Kim SH, Kim HJ. Effects of CALR-Mutant Type and Burden on the Phenotype of Myeloproliferative Neoplasms. Diagnostics (Basel) 2022; 12:2570. [PMID: 36359414 PMCID: PMC9689478 DOI: 10.3390/diagnostics12112570] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 08/13/2023] Open
Abstract
Somatic CALR mutations occur in approximately 70% of patients with JAK2 V617F-negative essential thrombocythemia (ET) and primary myelofibrosis (PMF). We evaluated the effects of the CALR mutant type and burden on the phenotype of CALR-mutated myeloproliferative neoplasms (MPN). Of the 510 patients with suspected or diagnosed MPN, all 49 patients detected with CALR mutations were diagnosed with ET (n = 32) or PMF (n = 17). The CALR mutant burden was significantly higher in PMF than in ET (45% vs. 34%), and type 1-like and type 2-like mutations were detected in 49% and 51% patients, respectively. Patients with MPN and type 2-like mutation showed a significantly higher median platelet count than those with type 1-like mutation. Particularly, patients with ET and type 2-like mutation had no thrombotic events, despite higher platelet counts. The effect of CALR mutant burden differed depending on the mutant type. A higher mutant burden tended to be associated with a cytopenic phenotype (i.e., lower hemoglobin levels and platelet counts) in patients with the type 1-like mutation and a proliferative hematological phenotype (i.e., higher platelet and neutrophil counts) in patients with the type 2-like mutation. This study suggests that the disease phenotype of MPN may be altered through CALR mutant burden and mutant type.
Collapse
Affiliation(s)
- Hyun-Young Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| | - Yujin Han
- Department of Laboratory Medicine, Seegene Medical Foundation, Seoul 04805, Korea
| | - Jun Ho Jang
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| | - Chul Won Jung
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| | - Sun-Hee Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| | - Hee-Jin Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| |
Collapse
|
36
|
Lewandowski K, Kanduła Z, Gniot M, Paczkowska E, Nawrocka PM, Wojtaszewska M, Janowski M, Mariak M, Handschuh L, Kozlowski P. Essential thrombocythaemia progression to the fibrotic phase is associated with a decrease in JAK2 and PDL1 levels. Ann Hematol 2022; 101:2665-2677. [PMID: 36266510 DOI: 10.1007/s00277-022-05001-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 10/01/2022] [Indexed: 11/01/2022]
Abstract
It has been postulated that the changes in the molecular characteristics of the malignant clone(s) and the abnormal activation of JAK-STAT signaling are responsible for myeloproliferative neoplasm progression to more advanced disease phases and the immune escape of the malignant clone. The continuous JAK-STAT pathway activation leads to enhanced activity of the promoter of CD274 coding programmed death-1 receptor ligand (PD-L1), increased PD-L1 level, and the immune escape of MPN cells. The aim of study was to evaluate the PDL1 mRNA and JAK2 mRNA level in molecularly defined essential thrombocythaemia (ET) patients (pts) during disease progression to post-ET- myelofibrosis (post-ET-MF). The study group consisted of 162 ET pts, including 30 pts diagnosed with post-ET-MF. The JAK2V617F, CALR, and MPL mutations were found in 59.3%, 19.1%, and 1.2% of pts, respectively. No copy-number alternations of the JAK2, PDL1, and PDCDL1G2 (PDL2) genes were found. The level of PD-L1 was significantly higher in the JAK2V617F than in the JAK2WT, CALR mutation-positive, and triple-negative pts. The PD-L1 mRNA level was weakly correlated with both the JAK2V617F variant allele frequency (VAF), and with the JAK2V617F allele mRNA level. The total JAK2 level in post-ET-MF pts was lower than in ET pts, despite the lack of differences in the JAK2V617F VAF. In addition, the PD-L1 level was lower in post-ET-MF. A detailed analysis has shown that the decrease in JAK2 and PDL1 mRNA levels depended on the bone marrow fibrosis grade. The PDL1 expression showed no differences in relation to the genotype of the JAK2 haplotypeGGCC_46/1, hemoglobin concentration, hematocrit value, leukocyte, and platelet counts. The observed drop of the total JAK2 and PDL1 levels during the ET progression to the post-ET-MF may reflect the changes in the JAK2V617F positive clone proliferative potential and the PD-L1 level-related immunosuppressive effect. The above-mentioned hypothesis is supported by The Cancer Genome Atlas (TCGA) data, confirming a strong positive association between CD274 (encoding PD-L1), CXCR3 (encoding CXCR3), and CSF1 (encoding M-CSF) expression levels, and recently published results documenting a drop in the CXCR3 level and circulating M-CSF in patients with post-ET-MF.
Collapse
Affiliation(s)
- Krzysztof Lewandowski
- Department of Hematology and Bone Marrow Transplantation, Poznan University of Medical Sciences, Poznan, Poland.
| | - Zuzanna Kanduła
- Department of Hematology and Bone Marrow Transplantation, Poznan University of Medical Sciences, Poznan, Poland
| | - Michał Gniot
- Department of Hematology and Bone Marrow Transplantation, Poznan University of Medical Sciences, Poznan, Poland
| | - Edyta Paczkowska
- Department of General Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Paulina Maria Nawrocka
- Laboratory of Genomics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Marzena Wojtaszewska
- Department of Hematology and Bone Marrow Transplantation, Poznan University of Medical Sciences, Poznan, Poland
| | - Michał Janowski
- Department of General Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Magdalena Mariak
- Department of Hematology and Bone Marrow Transplantation, Poznan University of Medical Sciences, Poznan, Poland
| | - Luiza Handschuh
- Institute of Computing Science, Poznan University of Technology, 60-965, Poznan, Poland.,Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Piotr Kozlowski
- Laboratory of Genomics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| |
Collapse
|
37
|
Immanuel T, Li J, Green TN, Bogdanova A, Kalev-Zylinska ML. Deregulated calcium signaling in blood cancer: Underlying mechanisms and therapeutic potential. Front Oncol 2022; 12:1010506. [PMID: 36330491 PMCID: PMC9623116 DOI: 10.3389/fonc.2022.1010506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/21/2022] [Indexed: 02/05/2023] Open
Abstract
Intracellular calcium signaling regulates diverse physiological and pathological processes. In solid tumors, changes to calcium channels and effectors via mutations or changes in expression affect all cancer hallmarks. Such changes often disrupt transport of calcium ions (Ca2+) in the endoplasmic reticulum (ER) or mitochondria, impacting apoptosis. Evidence rapidly accumulates that this is similar in blood cancer. Principles of intracellular Ca2+ signaling are outlined in the introduction. We describe different Ca2+-toolkit components and summarize the unique relationship between extracellular Ca2+ in the endosteal niche and hematopoietic stem cells. The foundational data on Ca2+ homeostasis in red blood cells is discussed, with the demonstration of changes in red blood cell disorders. This leads to the role of Ca2+ in neoplastic erythropoiesis. Then we expand onto the neoplastic impact of deregulated plasma membrane Ca2+ channels, ER Ca2+ channels, Ca2+ pumps and exchangers, as well as Ca2+ sensor and effector proteins across all types of hematologic neoplasms. This includes an overview of genetic variants in the Ca2+-toolkit encoding genes in lymphoid and myeloid cancers as recorded in publically available cancer databases. The data we compiled demonstrate that multiple Ca2+ homeostatic mechanisms and Ca2+ responsive pathways are altered in hematologic cancers. Some of these alterations may have genetic basis but this requires further investigation. Most changes in the Ca2+-toolkit do not appear to define/associate with specific disease entities but may influence disease grade, prognosis, treatment response, and certain complications. Further elucidation of the underlying mechanisms may lead to novel treatments, with the aim to tailor drugs to different patterns of deregulation. To our knowledge this is the first review of its type in the published literature. We hope that the evidence we compiled increases awareness of the calcium signaling deregulation in hematologic neoplasms and triggers more clinical studies to help advance this field.
Collapse
Affiliation(s)
- Tracey Immanuel
- Blood and Cancer Biology Laboratory, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Jixia Li
- Blood and Cancer Biology Laboratory, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
- Department of Laboratory Medicine, School of Medicine, Foshan University, Foshan City, China
| | - Taryn N. Green
- Blood and Cancer Biology Laboratory, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Anna Bogdanova
- Red Blood Cell Research Group, Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zürich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zürich, Switzerland
| | - Maggie L. Kalev-Zylinska
- Blood and Cancer Biology Laboratory, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
- Haematology Laboratory, Department of Pathology and Laboratory Medicine, Auckland City Hospital, Auckland, New Zealand
| |
Collapse
|
38
|
Jutzi JS, Marneth AE, Ciboddo M, Guerra-Moreno A, Jiménez-Santos MJ, Kosmidou A, Dressman JW, Liang H, Hamel R, Lozano P, Rumi E, Doench JG, Gotlib J, Krishnan A, Elf S, Al-Shahrour F, Mullally A. Whole-genome CRISPR screening identifies N-glycosylation as a genetic and therapeutic vulnerability in CALR-mutant MPNs. Blood 2022; 140:1291-1304. [PMID: 35763665 PMCID: PMC9479036 DOI: 10.1182/blood.2022015629] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 06/10/2022] [Indexed: 01/13/2023] Open
Abstract
Calreticulin (CALR) mutations are frequent, disease-initiating events in myeloproliferative neoplasms (MPNs). Although the biological mechanism by which CALR mutations cause MPNs has been elucidated, there currently are no clonally selective therapies for CALR-mutant MPNs. To identify unique genetic dependencies in CALR-mutant MPNs, we performed a whole-genome clustered regularly interspaced short palindromic repeats (CRISPR) knockout depletion screen in mutant CALR-transformed hematopoietic cells. We found that genes in the N-glycosylation pathway (among others) were differentially depleted in mutant CALR-transformed cells as compared with control cells. Using a focused pharmacological in vitro screen targeting unique vulnerabilities uncovered in the CRISPR screen, we found that chemical inhibition of N-glycosylation impaired the growth of mutant CALR-transformed cells, through a reduction in MPL cell surface expression. We treated Calr-mutant knockin mice with the N-glycosylation inhibitor 2-deoxy-glucose (2-DG) and found a preferential sensitivity of Calr-mutant cells to 2-DG as compared with wild-type cells and normalization of key MPNs disease features. To validate our findings in primary human cells, we performed megakaryocyte colony-forming unit (CFU-MK) assays. We found that N-glycosylation inhibition significantly reduced CFU-MK formation in patient-derived CALR-mutant bone marrow as compared with bone marrow derived from healthy donors. In aggregate, our findings advance the development of clonally selective treatments for CALR-mutant MPNs.
Collapse
Affiliation(s)
- Jonas S Jutzi
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Anna E Marneth
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Michele Ciboddo
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- The Ben May Department for Cancer Research, University of Chicago, Chicago, IL
| | - Angel Guerra-Moreno
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - María José Jiménez-Santos
- Bioinformatics Unit, Structural Biology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Anastasia Kosmidou
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - James W Dressman
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, SC
| | - Hongyan Liang
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, SC
| | - Rebecca Hamel
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
- RWTH Aachen University, Aachen, Germany
| | - Patricia Lozano
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Elisa Rumi
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Hematology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
| | | | - Jason Gotlib
- Department of Medicine, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA
| | - Anandi Krishnan
- Department of Pathology, Stanford Cancer Institute, Stanford University School of Medicine, Palo Alto, CA; and
| | - Shannon Elf
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
- The Ben May Department for Cancer Research, University of Chicago, Chicago, IL
| | - Fátima Al-Shahrour
- Bioinformatics Unit, Structural Biology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Ann Mullally
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
- Broad Institute, Cambridge, MA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| |
Collapse
|
39
|
Gerds AT, Gotlib J, Ali H, Bose P, Dunbar A, Elshoury A, George TI, Gundabolu K, Hexner E, Hobbs GS, Jain T, Jamieson C, Kaesberg PR, Kuykendall AT, Madanat Y, McMahon B, Mohan SR, Nadiminti KV, Oh S, Pardanani A, Podoltsev N, Rein L, Salit R, Stein BL, Talpaz M, Vachhani P, Wadleigh M, Wall S, Ward DC, Bergman MA, Hochstetler C. Myeloproliferative Neoplasms, Version 3.2022, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw 2022; 20:1033-1062. [PMID: 36075392 DOI: 10.6004/jnccn.2022.0046] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The classic Philadelphia chromosome-negative myeloproliferative neoplasms (MPN) consist of myelofibrosis, polycythemia vera, and essential thrombocythemia and are a heterogeneous group of clonal blood disorders characterized by an overproduction of blood cells. The NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines) for MPN were developed as a result of meetings convened by a multidisciplinary panel with expertise in MPN, with the goal of providing recommendations for the management of MPN in adults. The Guidelines include recommendations for the diagnostic workup, risk stratification, treatment, and supportive care strategies for the management of myelofibrosis, polycythemia vera, and essential thrombocythemia. Assessment of symptoms at baseline and monitoring of symptom status during the course of treatment is recommended for all patients. This article focuses on the recommendations as outlined in the NCCN Guidelines for the diagnosis of MPN and the risk stratification, management, and supportive care relevant to MF.
Collapse
Affiliation(s)
- Aaron T Gerds
- Case Comprehensive Cancer Center/University Hospitals Seidman Cancer Center and Cleveland Clinic Taussig Cancer Institute
| | | | - Haris Ali
- City of Hope National Medical Center
| | | | | | | | | | | | | | | | - Tania Jain
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins
| | | | | | | | | | | | | | | | - Stephen Oh
- Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine
| | | | | | | | - Rachel Salit
- Fred Hutchinson Cancer Research Center/Seattle Cancer Care Alliance
| | - Brady L Stein
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University
| | | | | | | | - Sarah Wall
- The Ohio State University Comprehensive Cancer Center - James Cancer Hospital and Solove Research Institute
| | - Dawn C Ward
- UCLA Jonsson Comprehensive Cancer Center; and
| | | | | |
Collapse
|
40
|
Mora B, Passamonti F. Towards a Personalized Definition of Prognosis in Philadelphia-Negative Myeloproliferative Neoplasms. Curr Hematol Malig Rep 2022; 17:127-139. [PMID: 36048275 PMCID: PMC9499895 DOI: 10.1007/s11899-022-00672-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2022] [Indexed: 11/29/2022]
Abstract
Purpose of Review Philadelphia-negative myeloproliferative neoplasms (MPNs) include polycythemia vera (PV), essential thrombocythemia (ET), prefibrotic (pre-), and overt-primary myelofibrosis (primary MF, PMF). PV and ET could evolve into secondary MF (SMF), whose early diagnosis relies on monitoring signs of possible progression. All MPNs have a risk of blast phase (BP), that is associated with a very dismal outcome. Overall survival (OS) is different among MPNs, and disease-specific prognostic scores should be applied for a correct clinical management. In this review, an overview of current prognostic scores in MPNs will be provided. Recent Findings The biological complexity of MPNs and its role on the trajectory of disease outcome have led to the design of integrated prognostic models that are nowadays of common use in PMF patients. As for PV and ET, splicing gene mutations could have a detrimental role, but with the limit of the not routinary recommended application of extensive molecular analysis in these diseases. SMF is recognized as a distinct entity compared to PMF, and OS estimates should be calculated by the MYSEC-PM (Myelofibrosis SECondary-prognostic model). Both in PMF and SMF, decisions as selection of patients potentially candidates to allogenic stem cell transplant or that could benefit from an early shift from standard treatment are based not only on conventional prognostic scores, but also on multivariable algorithms. Summary The expanding landscape of risk prediction for OS, evolution to BP, and SMF progression from PV/ET informs personalized approach to the management of patients affected by MPNs.
Collapse
Affiliation(s)
- Barbara Mora
- Hematology, Ospedale Di Circolo, A.S.S.T. Sette Laghi, Viale Borri 57, 21100, Varese, Italy.,Department of Medicine and Surgery, University of Insubria, Via Guicciardini 9, 21100, Varese, Italy
| | - Francesco Passamonti
- Hematology, Ospedale Di Circolo, A.S.S.T. Sette Laghi, Viale Borri 57, 21100, Varese, Italy. .,Department of Medicine and Surgery, University of Insubria, Via Guicciardini 9, 21100, Varese, Italy.
| |
Collapse
|
41
|
Ibarra J, Elbanna YA, Kurylowicz K, Ciboddo M, Greenbaum HS, Arellano NS, Rodriguez D, Evers M, Bock-Hughes A, Liu C, Smith Q, Lutze J, Baumeister J, Kalmer M, Olschok K, Nicholson B, Silva D, Maxwell L, Dowgielewicz J, Rumi E, Pietra D, Casetti IC, Catricala S, Koschmieder S, Gurbuxani S, Schneider RK, Oakes SA, Elf SE. Type I but Not Type II Calreticulin Mutations Activate the IRE1α/XBP1 Pathway of the Unfolded Protein Response to Drive Myeloproliferative Neoplasms. Blood Cancer Discov 2022; 3:298-315. [PMID: 35405004 PMCID: PMC9338758 DOI: 10.1158/2643-3230.bcd-21-0144] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 01/21/2022] [Accepted: 04/08/2022] [Indexed: 01/09/2023] Open
Abstract
Approximately 20% of patients with myeloproliferative neoplasms (MPN) harbor mutations in the gene calreticulin (CALR), with 80% of those mutations classified as either type I or type II. While type II CALR-mutant proteins retain many of the Ca2+ binding sites present in the wild-type protein, type I CALR-mutant proteins lose these residues. The functional consequences of this differential loss of Ca2+ binding sites remain unexplored. Here, we show that the loss of Ca2+ binding residues in the type I mutant CALR protein directly impairs its Ca2+ binding ability, which in turn leads to depleted endoplasmic reticulum (ER) Ca2+ and subsequent activation of the IRE1α/XBP1 pathway of the unfolded protein response. Genetic or pharmacologic inhibition of IRE1α/XBP1 signaling induces cell death in type I mutant but not type II mutant or wild-type CALR-expressing cells, and abrogates type I mutant CALR-driven MPN disease progression in vivo. SIGNIFICANCE Current targeted therapies for CALR-mutated MPNs are not curative and fail to differentiate between type I- versus type II-driven disease. To improve treatment strategies, it is critical to identify CALR mutation type-specific vulnerabilities. Here we show that IRE1α/XBP1 represents a unique, targetable dependency specific to type I CALR-mutated MPNs. This article is highlighted in the In This Issue feature, p. 265.
Collapse
Affiliation(s)
- Juan Ibarra
- The Ben May Department for Cancer Research, University of Chicago, Chicago, Illinois
- Committee on Cancer Biology, University of Chicago, Chicago, Illinois
| | - Yassmin A. Elbanna
- The Ben May Department for Cancer Research, University of Chicago, Chicago, Illinois
| | - Katarzyna Kurylowicz
- The Ben May Department for Cancer Research, University of Chicago, Chicago, Illinois
| | - Michele Ciboddo
- The Ben May Department for Cancer Research, University of Chicago, Chicago, Illinois
| | - Harrison S. Greenbaum
- The Ben May Department for Cancer Research, University of Chicago, Chicago, Illinois
| | - Nicole S. Arellano
- The Ben May Department for Cancer Research, University of Chicago, Chicago, Illinois
| | - Deborah Rodriguez
- The Ben May Department for Cancer Research, University of Chicago, Chicago, Illinois
| | - Maria Evers
- The Ben May Department for Cancer Research, University of Chicago, Chicago, Illinois
- Committee on Cancer Biology, University of Chicago, Chicago, Illinois
| | - Althea Bock-Hughes
- The Ben May Department for Cancer Research, University of Chicago, Chicago, Illinois
- Committee on Molecular Metabolism and Nutrition, University of Chicago, Chicago, Illinois
| | - Chenyu Liu
- The Ben May Department for Cancer Research, University of Chicago, Chicago, Illinois
| | - Quinn Smith
- The Ben May Department for Cancer Research, University of Chicago, Chicago, Illinois
| | - Julian Lutze
- Committee on Cancer Biology, University of Chicago, Chicago, Illinois
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois
| | - Julian Baumeister
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University and Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Milena Kalmer
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University and Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Kathrin Olschok
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University and Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Benjamin Nicholson
- The Ben May Department for Cancer Research, University of Chicago, Chicago, Illinois
- Committee on Cancer Biology, University of Chicago, Chicago, Illinois
| | - Diane Silva
- Department of Pathology, University of Chicago, Chicago, Illinois
| | - Luke Maxwell
- The Ben May Department for Cancer Research, University of Chicago, Chicago, Illinois
| | - Jonathan Dowgielewicz
- Committee on Molecular Metabolism and Nutrition, University of Chicago, Chicago, Illinois
| | - Elisa Rumi
- Department of Hematology Oncology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Daniela Pietra
- Department of Hematology Oncology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy
| | | | - Silvia Catricala
- Department of Hematology Oncology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy
| | - Steffen Koschmieder
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University and Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | | | - Rebekka K. Schneider
- Department of Cell Biology, Institute for Biomedical Technologies, RWTH Aachen University, Aachen, Germany
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Scott A. Oakes
- Committee on Cancer Biology, University of Chicago, Chicago, Illinois
- Department of Pathology, University of Chicago, Chicago, Illinois
| | - Shannon E. Elf
- The Ben May Department for Cancer Research, University of Chicago, Chicago, Illinois
- Committee on Cancer Biology, University of Chicago, Chicago, Illinois
| |
Collapse
|
42
|
CALR type 1 mutations are associated with an increased incidence of myelofibrosis in young male patients. Ir J Med Sci 2022; 192:591-593. [PMID: 35672563 PMCID: PMC10066159 DOI: 10.1007/s11845-022-03047-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/02/2022] [Indexed: 10/18/2022]
Abstract
Abstract
Background
Calreticulin (CALR) mutations are commonly identified in patients with essential thrombocythaemia or myelofibrosis. CALR type 1 mutations are known to have a higher overall incidence in males but little is known about the risks of mutation subtypes on myelofibrotic change across patient age and sex.
Aims
To identify differences in the incidence of myelofibrotic change within subgroups of patients with CALR type 1 mutations.
Methods
All patients with a positive CALR exon 9 mutation identified within our unit between February 2016 and September 2020 were reviewed with note taken of patient sex, age at diagnosis, initial MPN diagnosis, and subsequent disease transformation.
Results
In our cohort, young male patients with CALR type 1 mutations were shown to be at significantly increased risk of myelofibrosis compared to age matched female patients.
Conclusions
Male patients have a worse myeloproliferative neoplasm phenotype than female patients with it occurring at a younger age and being more myelofibrotic in nature. Further investigation is needed into the reasons for this variability.
Collapse
|
43
|
Deletion of Grin1 in mouse megakaryocytes reveals NMDA receptor role in platelet function and proplatelet formation. Blood 2022; 139:2673-2690. [PMID: 35245376 DOI: 10.1182/blood.2021014000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 02/18/2022] [Indexed: 11/20/2022] Open
Abstract
The process of proplatelet formation (PPF) requires coordinated interaction between megakaryocytes (MKs) and the extracellular matrix (ECM), followed by a dynamic reorganization of the actin and microtubule cytoskeleton. Localized fluxes of intracellular calcium ions (Ca2+) facilitate MK-ECM interaction and PPF. Glutamate-gated N-methyl-D--aspartate receptor (NMDAR) is highly permeable to Ca2+. NMDAR antagonists inhibit MK maturation ex vivo, however there is no in vivo data. Using the Cre-loxP system, we generated a platelet lineage-specific knockout mouse model of reduced NMDAR function in MKs and platelets (Pf4-Grin1-/- mice). Effects of NMDAR deletion were examined using well-established assays of platelet function and production in vivo and ex vivo. We found that Pf4-Grin1-/- mice had defects in megakaryopoiesis, thrombopoiesis and platelet function, which manifested as reduced platelet counts, lower rates of platelet production in the immune model of thrombocytopenia, and a prolonged tail bleeding time. Platelet activation was impaired to a range of agonists associated with reduced Ca2+ responses, including metabotropic-like, and defective platelet spreading. MKs showed reduced colony and proplatelet formation. Impaired reorganization of intracellular F-actin and α-tubulin was identified as the main cause of reduced platelet function and production. Pf4-Grin1-/- MKs also had lower levels of transcripts encoding crucial ECM elements and enzymes, suggesting NMDAR signaling is involved in ECM remodeling. In summary, we provide the first genetic evidence that NMDAR plays an active role in platelet function and production. NMDARs regulate PPF through the mechanism that involves MK-ECM interaction and cytoskeletal reorganization. Our results suggest that NMDAR helps guide PPF in vivo.
Collapse
|
44
|
Cheng C, Lai JWY, Yung Y, Chan H, Wong RSM, Chan NPH, Cheung JS, Luo X, Pitts H, Ng MHL. Mutational spectrum and prognosis in Chinese patients with prefibrotic primary myelofibrosis. EJHAEM 2022; 3:184-190. [PMID: 35846205 PMCID: PMC9176118 DOI: 10.1002/jha2.361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 01/19/2023]
Abstract
Prefibrotic primary myelofibrosis (Pre-PMF) has been classified as a separate entity of myeloproliferative neoplasms (MPNs). Pre-PMF is clinically heterogeneous but a specific prognostic model is lacking. Gene mutations have emerged as useful tools for stratification of myelofibrosis patients. However, there have been limited studies comprehensively investigating the mutational spectrum and its clinicopathological significance in pre-PMF subjects. In this study, we addressed these issues by profiling the mutation status of 141 genes in 172 Chinese MPN patients including 72 pre-PMF cases. Our findings corroborated the clinical/molecular distinctiveness of pre-PMF and suggested a refined risk classification strategy for this entity.
Collapse
Affiliation(s)
- Chi‐Keung Cheng
- Blood Cancer Cytogenetics and Genomics LaboratoryDepartment of Anatomical and Cellular PathologyPrince of Wales HospitalThe Chinese University of Hong KongHong KongChina
| | - Jennifer W. Y. Lai
- Department of Medicine and Therapeutics, Prince of Wales HospitalThe Chinese University of Hong KongHong KongChina
| | - Yuk‐Lin Yung
- Blood Cancer Cytogenetics and Genomics LaboratoryDepartment of Anatomical and Cellular PathologyPrince of Wales HospitalThe Chinese University of Hong KongHong KongChina
| | - Hoi‐Yun Chan
- Blood Cancer Cytogenetics and Genomics LaboratoryDepartment of Anatomical and Cellular PathologyPrince of Wales HospitalThe Chinese University of Hong KongHong KongChina
| | - Raymond S. M. Wong
- Department of Medicine and Therapeutics, Prince of Wales HospitalThe Chinese University of Hong KongHong KongChina
- Sir Y. K. Pao Centre for Cancer, Prince of Wales HospitalHong KongChina
| | - Natalie P. H. Chan
- Blood Cancer Cytogenetics and Genomics LaboratoryDepartment of Anatomical and Cellular PathologyPrince of Wales HospitalThe Chinese University of Hong KongHong KongChina
| | - Joyce S. Cheung
- Blood Cancer Cytogenetics and Genomics LaboratoryDepartment of Anatomical and Cellular PathologyPrince of Wales HospitalThe Chinese University of Hong KongHong KongChina
| | - Xi Luo
- Blood Cancer Cytogenetics and Genomics LaboratoryDepartment of Anatomical and Cellular PathologyPrince of Wales HospitalThe Chinese University of Hong KongHong KongChina
| | - Herbert‐Augustus Pitts
- Blood Cancer Cytogenetics and Genomics LaboratoryDepartment of Anatomical and Cellular PathologyPrince of Wales HospitalThe Chinese University of Hong KongHong KongChina
| | - Margaret H. L. Ng
- Blood Cancer Cytogenetics and Genomics LaboratoryDepartment of Anatomical and Cellular PathologyPrince of Wales HospitalThe Chinese University of Hong KongHong KongChina
- State Key Laboratory of Translational OncologyThe Chinese University of Hong KongHong KongChina
| |
Collapse
|
45
|
Fabris S, Cattaneo D, Salerio S, Bucelli C, Ciceri G, Pasquale R, Todoerti K, Gianelli U, Baldini L, Neri A, Iurlo A. Impact on thrombotic risk of canonical and atypical CALR mutations in essential thrombocythemia. A single-center cohort study. Thromb Res 2022; 210:67-69. [PMID: 35016075 DOI: 10.1016/j.thromres.2021.12.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 01/05/2023]
Affiliation(s)
- Sonia Fabris
- Hematology Division, Foundation IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - Daniele Cattaneo
- Hematology Division, Foundation IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Simone Salerio
- Hematology Division, Foundation IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Cristina Bucelli
- Hematology Division, Foundation IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Gabriella Ciceri
- Hematology Division, Foundation IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Raffaella Pasquale
- Hematology Division, Foundation IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Katia Todoerti
- Hematology Division, Foundation IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Umberto Gianelli
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy; Division of Pathology, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Luca Baldini
- Hematology Division, Foundation IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Antonino Neri
- Hematology Division, Foundation IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Alessandra Iurlo
- Hematology Division, Foundation IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
46
|
Al-Mashdali AF, Yassin MA. Rebound of platelet count in a patient with type 2 calreticulin-mutant essential thrombocythemia in the postpartum period: A case report. Medicine (Baltimore) 2021; 100:e27725. [PMID: 34871269 PMCID: PMC8568366 DOI: 10.1097/md.0000000000027725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/22/2021] [Indexed: 01/05/2023] Open
Abstract
INTRODUCTION Essential thrombocythemia (ET) is an uncommon myeloproliferative neoplasm. It is more common in females; 20% of them are below 40 years old. The optimal management of ET during pregnancy and postpartum periods is still not well established. PATIENT CONCERN We report a case of a young lady with type 2 calreticulin-mutant ET who developed a marked rebound in her platelet count (reaching 2030 × 103/μL) 2 weeks after premature delivery of her baby (24th week of gestation). She was on Pegylated Interferon alfa 2-a during pregnancy (her platelet was around 500 × 103/μL during the second trimester), but she had stopped it on her own from the 20th week of gestation. DIAGNOSIS Postpartum rebound of platelet count due to medication non-compliance. INTERVENTION AND OUTCOME We resumed her regular Pegylated Interferon, and subsequently, her platelet count reduced dramatically within 4 weeks to an acceptable level (684 × 103 /μL). CONCLUSION The guideline is still not well-established regarding the optimal approach for postpartum rebound of platelet count in patients with ET. It is still unclear if the platelet count will fall spontaneously without intervention after the rebound phase. Further research is required to establish the optimal management of ET during the postpartum phase. This case emphasizes the importance of platelet count follow-up during the postpartum period and outlines our management approach in such cases.
Collapse
Affiliation(s)
| | - Mohamed A. Yassin
- National Center for Cancer Care and Research, Department of Oncology, Hematology and BMT Section, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
47
|
Sabattini E, Pizzi M, Agostinelli C, Bertuzzi C, Sagramoso Sacchetti CA, Palandri F, Gianelli U. Progression in Ph-Chromosome-Negative Myeloproliferative Neoplasms: An Overview on Pathologic Issues and Molecular Determinants. Cancers (Basel) 2021; 13:5531. [PMID: 34771693 PMCID: PMC8583143 DOI: 10.3390/cancers13215531] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/28/2021] [Accepted: 11/02/2021] [Indexed: 12/19/2022] Open
Abstract
Progression in Ph-chromosome-negative myeloproliferative neoplasms (MPN) develops with variable incidence and time sequence in essential thrombocythemia, polycythemia vera, and primary myelofibrosis. These diseases show different clinic-pathologic features and outcomes despite sharing deregulated JAK/STAT signaling due to mutations in either the Janus kinase 2 or myeloproliferative leukemia or CALReticulin genes, which are the primary drivers of the diseases, as well as defined diagnostic criteria and biomarkers in most cases. Progression is defined by the development or worsening of marrow fibrosis or the progressive increase in the marrow blast percentage. Progression is often related to additional genetic aberrations, although some can already be detected during the chronic phase. Detailed scoring systems for clinical usage that are mostly applied in patients with primary myelofibrosis have been defined, and the most recent ones include cytogenetic and molecular parameters with prognostic significance. Additional different clinic-pathologic changes have been reported that may occur during the course of the disease and that are, at present, classified as WHO-defined types of progression, although they likely represent such an event. The present review is meant to provide an updated overview on progression in Ph-chromosome-negative MPN, with a major focus on the pathologic side.
Collapse
Affiliation(s)
- Elena Sabattini
- Haematopathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (C.A.); (C.B.); (C.A.S.S.)
| | - Marco Pizzi
- Surgical Pathology and Cytopathology Unit, Department of Medicine—DIMED, University of Padua, 35121 Padua, Italy;
| | - Claudio Agostinelli
- Haematopathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (C.A.); (C.B.); (C.A.S.S.)
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy
| | - Clara Bertuzzi
- Haematopathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (C.A.); (C.B.); (C.A.S.S.)
| | | | - Francesca Palandri
- Istituto di Ematologia “Seragnoli” IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Umberto Gianelli
- Pathology Unit, Department of Pathophysiology and Transplantation, University of Milan and IRCCS Fondazione Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| |
Collapse
|
48
|
Sabattini E, Pizzi M, Agostinelli C, Bertuzzi C, Sagramoso Sacchetti CA, Palandri F, Gianelli U. Progression in Ph-Chromosome-Negative Myeloproliferative Neoplasms: An Overview on Pathologic Issues and Molecular Determinants. Cancers (Basel) 2021. [PMID: 34771693 DOI: 10.3390/cancers13215531.pmid:34771693;pmcid:pmc8583143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
Progression in Ph-chromosome-negative myeloproliferative neoplasms (MPN) develops with variable incidence and time sequence in essential thrombocythemia, polycythemia vera, and primary myelofibrosis. These diseases show different clinic-pathologic features and outcomes despite sharing deregulated JAK/STAT signaling due to mutations in either the Janus kinase 2 or myeloproliferative leukemia or CALReticulin genes, which are the primary drivers of the diseases, as well as defined diagnostic criteria and biomarkers in most cases. Progression is defined by the development or worsening of marrow fibrosis or the progressive increase in the marrow blast percentage. Progression is often related to additional genetic aberrations, although some can already be detected during the chronic phase. Detailed scoring systems for clinical usage that are mostly applied in patients with primary myelofibrosis have been defined, and the most recent ones include cytogenetic and molecular parameters with prognostic significance. Additional different clinic-pathologic changes have been reported that may occur during the course of the disease and that are, at present, classified as WHO-defined types of progression, although they likely represent such an event. The present review is meant to provide an updated overview on progression in Ph-chromosome-negative MPN, with a major focus on the pathologic side.
Collapse
Affiliation(s)
- Elena Sabattini
- Haematopathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Marco Pizzi
- Surgical Pathology and Cytopathology Unit, Department of Medicine-DIMED, University of Padua, 35121 Padua, Italy
| | - Claudio Agostinelli
- Haematopathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy
| | - Clara Bertuzzi
- Haematopathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | | | - Francesca Palandri
- Istituto di Ematologia "Seragnoli" IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Umberto Gianelli
- Pathology Unit, Department of Pathophysiology and Transplantation, University of Milan and IRCCS Fondazione Ca' Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| |
Collapse
|
49
|
Hashimoto Y, Ito T, Gotoh A, Nakamae M, Kimura F, Koike M, Kirito K, Wada H, Usuki K, Tanaka T, Mori T, Wakita S, Saito TI, Kada A, Saito AM, Shimoda K, Sugimoto Y, Kurokawa T, Tomita A, Edahiro Y, Akashi K, Matsumura I, Takenaka K, Komatsu N. Clinical characteristics, prognostic factors, and outcomes of patients with essential thrombocythemia in Japan: the JSH-MPN-R18 study. Int J Hematol 2021; 115:208-221. [PMID: 34727329 DOI: 10.1007/s12185-021-03253-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/23/2021] [Accepted: 10/24/2021] [Indexed: 11/25/2022]
Abstract
We conducted a large-scale, nationwide retrospective study of Japanese patients who were diagnosed with essential thrombocythemia based on the diagnostic criteria in the World Health Organization classification. We investigated clinical characteristics, survival rates, and the incidence of thrombohemorrhagic events as well as risk factors for these events. A total of 1152 patients were analyzed in the present study. Median age at diagnosis was 65 years, the median platelet count was 832 × 109/L, and the positive mutation rates of JAK2V617F, CALR, and MPL were 62.8, 25.1, and 4.1%, respectively. Compared with European and American patients, Japanese patients were more likely to have cardiovascular risk factors and less likely to have systemic symptoms including palpable splenomegaly. Thrombocytosis was identified as a risk factor for hemorrhagic events and prognosis, but not for thrombotic events. The prognostic factors and risk classifications reported in Europe and the United States were generally applicable to Japanese patients. Regarding transformations, secondary myelofibrosis progressed in a time-dependent manner, but progression to acute leukemia was low in "true" ET patients. Skin cancers were less common and gastrointestinal cancers more common as secondary malignancies in Japanese patients, suggesting ethnic differences.
Collapse
Affiliation(s)
- Yoshinori Hashimoto
- Department of Hematology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
- Laboratory for the Development of Therapies Against MPN, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Advanced Hematology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tomoki Ito
- First Department of Internal Medicine, Kansai Medical University, Osaka, Japan
| | - Akihiko Gotoh
- Department of Hematology, Tokyo Medical University, Tokyo, Japan
| | - Mika Nakamae
- Hematology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Fumihiko Kimura
- Division of Hematology, Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Michiaki Koike
- Department of Hematology, Juntendo University Shizuoka Hospital, Shizuoka, Japan
| | - Keita Kirito
- Department of Hematology and Oncology, University of Yamanashi, Yamanashi, Japan
| | - Hideho Wada
- Department of Hematology, Kawasaki Medical School, Okayama, Japan
| | - Kensuke Usuki
- Department of Hematology, NTT Medical Center Tokyo, Tokyo, Japan
| | - Takayuki Tanaka
- Department of Hematology, Tottori Prefectural Central Hospital, Tottori, Japan
| | - Takehiko Mori
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
- Department of Hematology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Satoshi Wakita
- Division of Hematology, Department of Internal Medicine, Nippon Medical School, Tokyo, Japan
| | - Toshiki I Saito
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Aichi, Japan
| | - Akiko Kada
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Aichi, Japan
| | - Akiko M Saito
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Aichi, Japan
| | - Kazuya Shimoda
- Division of Hematology, Diabetes, and Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Yuka Sugimoto
- Department of Community Hematology, Mie University, Mie, Japan
| | - Toshiro Kurokawa
- Department of Hematology, Toyama Red Cross Hospital, Toyama, Japan
| | - Akihiro Tomita
- Department of Hematology, Fujita Health University School of Medicine, Aichi, Japan
| | - Yoko Edahiro
- Department of Hematology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
- Laboratory for the Development of Therapies Against MPN, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Advanced Hematology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Koichi Akashi
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Itaru Matsumura
- Division of Hematology and Rheumatology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Katsuto Takenaka
- Department of Hematology, Clinical Immunology and Infectious Diseases, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Norio Komatsu
- Department of Hematology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
- Laboratory for the Development of Therapies Against MPN, Juntendo University Graduate School of Medicine, Tokyo, Japan.
- Department of Advanced Hematology, Juntendo University Graduate School of Medicine, Tokyo, Japan.
- PharmaEssentia Japan KK, Tokyo, Japan.
| |
Collapse
|
50
|
Loscocco GG, Guglielmelli P, Gangat N, Rossi E, Mannarelli C, Betti S, Maccari C, Ramundo F, Jadoon Y, Gesullo F, Ceglie S, Paoli C, Pardanani A, De Stefano V, Tefferi A, Vannucchi AM. Clinical and molecular predictors of fibrotic progression in essential thrombocythemia: A multicenter study involving 1607 patients. Am J Hematol 2021; 96:1472-1480. [PMID: 34424575 PMCID: PMC9293196 DOI: 10.1002/ajh.26332] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/14/2021] [Accepted: 08/17/2021] [Indexed: 12/31/2022]
Abstract
The current retrospective study involving a total of 1607 patients was designed to identify clinical and molecular variables that were predictive of inferior myelofibrosis‐free survival (MFS) in WHO‐defined essential thrombocythemia (ET), utilizing three independent patient cohorts: University of Florence, Italy (n = 718); Mayo Clinic, USA (n = 479) and Policlinico Gemelli, Catholic University, Rome, Italy (n = 410). The Florence patient cohort was first examined to identify independent risk factors for MFS, which included age > 60 years (HR 2.5, 95% CI 1.3–4.9), male sex (2.1, 1.2–3.9), palpable splenomegaly (2.1, 1.2–3.9), CALR 1/1‐like or MPL mutation (3.4, 1.9–6.1) and JAK2V617F variant allele frequency > 35% (4.2, 1.6–10.8). Subsequently, an operational molecular risk category was developed and validated in the other two cohorts from Mayo Clinic and Rome: “high molecular risk” category included patients with JAK2V617F VAF >35%, CALR type 1/1‐like or MPL mutations; all other driver mutation profiles were assigned to “low molecular risk” category. The former, compared to the latter molecular risk category, displayed significantly higher risk of fibrotic transformation: Florence cohort with respective fibrotic transformation risk rates of 8% vs. 1.2% at 10 years and 33% vs. 8% at 20 years (p < 0.001; HR 6.1; 95% CI 3.2–11.7); Mayo Cohort, 16% vs. 7% at 10 years and 44% vs. 25% at 20 years (p < 0.001; HR 2.5; 95% CI 1.6–4.1); and Rome cohort 7.8% vs. 4.6% at 10 years and 31.2% vs. 7.1% at 20 years (p = 0.007, HR 2.7; 95% CI 1.3–5.8). The present study provides practically useful risk signals for fibrotic transformation in ET and facilitates identification of patients who require close monitoring and appropriate counseling.
Collapse
Affiliation(s)
- Giuseppe G. Loscocco
- Department of Experimental and Clinical Medicine, CRIMM, Center of Research and Innovation of Myeloproliferative Neoplasms, Azienda Ospedaliero‐Universitaria Careggi University of Florence Florence Italy
| | - Paola Guglielmelli
- Department of Experimental and Clinical Medicine, CRIMM, Center of Research and Innovation of Myeloproliferative Neoplasms, Azienda Ospedaliero‐Universitaria Careggi University of Florence Florence Italy
| | - Naseema Gangat
- Divisions of Hematology Mayo Clinic Rochester Minnesota USA
| | - Elena Rossi
- Section of Hematology, Department of Radiological and Hematological Sciences Catholic University Rome Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS Rome Italy
| | - Carmela Mannarelli
- Department of Experimental and Clinical Medicine, CRIMM, Center of Research and Innovation of Myeloproliferative Neoplasms, Azienda Ospedaliero‐Universitaria Careggi University of Florence Florence Italy
| | - Silvia Betti
- Fondazione Policlinico Universitario A. Gemelli IRCCS Rome Italy
| | - Chiara Maccari
- Department of Experimental and Clinical Medicine, CRIMM, Center of Research and Innovation of Myeloproliferative Neoplasms, Azienda Ospedaliero‐Universitaria Careggi University of Florence Florence Italy
| | - Francesco Ramundo
- Section of Hematology, Department of Radiological and Hematological Sciences Catholic University Rome Italy
| | - Yamna Jadoon
- Divisions of Hematology Mayo Clinic Rochester Minnesota USA
| | - Francesca Gesullo
- Department of Experimental and Clinical Medicine, CRIMM, Center of Research and Innovation of Myeloproliferative Neoplasms, Azienda Ospedaliero‐Universitaria Careggi University of Florence Florence Italy
| | - Sara Ceglie
- Section of Hematology, Department of Radiological and Hematological Sciences Catholic University Rome Italy
| | - Chiara Paoli
- Department of Experimental and Clinical Medicine, CRIMM, Center of Research and Innovation of Myeloproliferative Neoplasms, Azienda Ospedaliero‐Universitaria Careggi University of Florence Florence Italy
| | | | - Valerio De Stefano
- Section of Hematology, Department of Radiological and Hematological Sciences Catholic University Rome Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS Rome Italy
| | - Ayalew Tefferi
- Divisions of Hematology Mayo Clinic Rochester Minnesota USA
| | - Alessandro M. Vannucchi
- Department of Experimental and Clinical Medicine, CRIMM, Center of Research and Innovation of Myeloproliferative Neoplasms, Azienda Ospedaliero‐Universitaria Careggi University of Florence Florence Italy
| |
Collapse
|